
Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications

• Single injector with a variable 
injection rate over 36 months 
and then monitored for another 
12 months post-injection (1-
month Δt) for a total of 50 
timesteps

• Features of the data:

• Static Features: Porosity, 
Permeability, Node Location

• Calculated Features: Cell 
Volume (node-centric); 
Distance Between Nodes (Δx, 
Δy, Δz); Linear Distance 
Between Nodes (vector 
magnitude)

• Dynamic Features: Pressure or 
Saturation, Injection Rate

• Assigned Features: Node Types 
(injector, interior, edge, face, 
corner)
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ABSTRACT
Carbon sequestration is a vital part of the effort to mitigate 

anthropogenic climate change. Previously, we have shown 

that Graph Neural Networks (GNNs) provide the ability to 

extract meaningful insights during prediction of subsurface 

behavior in carbon storage projects. However, these models 

have struggled with long-term prediction accuracy due to 

error accumulation caused by autoregressive prediction. 

This research leverages the Illinois Basin – Decatur Project 

(IBDP) dataset to examine strategies for minimizing loss 

over time in a MeshGraphNet GNN model to improve 

reliability of predictions while minimizing inferencing time. 

OBJECTIVES
• Develop variations on the MeshGraphNet (MGN) 

model: MeshGraphNet + Multi-step Rollout (MGN-
MR) and MeshGraphNet + Transformer (MGN-T)

• Compare previously developed MGN to variations to 
assess improvement of temporal prediction

DATA – IBDP

FORWARD PREDICTION

CONCLUSIONS
• Implemented multi-step rollout (MGN-

MR) and transformer (MGN-T) 
improvements to the original 
MeshGraphNets model

• MGN-MR shows improvement of 
saturation prediction at both 20 months 
(during injection) and 36 months (end of 
injection)

• Preliminary MGN-T results show a high 
degree of accuracy in encoding and 
decoding graphs for transformer training 

• Multi-step rollout helps stabilize 
prediction over time

METHODS AND RESULTS

EXECUTIVE SUMMARY
Graph neural networks (specifically the MeshGraphNets model) have been 
shown to accurately predict subsurface behavior in models with 
heterogeneous geological properties. However, predictions over time tend 
to accumulate errors. We show that implementing multi-step rollout 
during training can help stabilize prediction over time. Preliminary results 
using transformer methods suggest a further improvement in accuracy.

Predicting Saturation at 36 months
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Porosity

Permeability

• Standardized data based on the IBDP

• 100 realizations (15,610 x 14,967 x 1,120 m3)

• Full data shape: 126 x 125 x 110 (x, y, z)

• Experimental data shape: 11 x 11 x 18 (x, y, z)
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Saturation Results
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