

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-814027

NanoSIP: NanoSIMS applications for microbial biology

J. Pett-Ridge, P. K. Weber

August 27, 2020

Methods in Molecular Biology

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 **NanoSIP: NanoSIMS applications for microbial biology**

2
3
4 Jennifer Pett-Ridge and Peter K. Weber

5
6 Running Head: NanoSIMS for Microbial Biology
7
8 Jennifer Pett-Ridge
9 Lawrence Livermore National Lab, Physical and Life Science Directorate
10 7000 East Avenue
11 Livermore, CA 94550
12 petridge2@llnl.gov

13
14
15 Peter K. Weber
16 Lawrence Livermore National Lab, Physical and Life Science Directorate
17 7000 East Avenue
18 Livermore, CA 94550
19 weber21@llnl.gov

20
LLNL-JRNL-814027

21 **Abstract**

22 High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a
23 standard method in systems biology and environmental biogeochemistry and is broadly used to
24 decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant
25 and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labelling
26 –an approach we refer to as *nanoSIP*— nanoSIMS imaging offers a distinctive means to quantify
27 net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-
28 complexity environments. While the majority of nanoSIP studies in environmental and microbial
29 biology have focused on nitrogen and carbon metabolism (using ^{15}N and ^{13}C tracers), multiple
30 advances have pushed the capabilities of this approach in the past decade. The development of a
31 high-brightness oxygen ion source has enabled high resolution metal analyses that are easier to
32 perform, allowing quantification of metal distribution in cells and environmental particles. New
33 preparation methods, tools for automated data extraction from large data sets, and analytical
34 approaches that push the limits of sensitivity and spatial resolution have allowed for more robust
35 characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS
36 studies continue to be enhanced by correlation with orthogonal imaging and ‘omics approaches;
37 when linked to molecular visualization methods, such as *in situ* hybridization and antibody
38 labeling, these techniques enable *in situ* function to be linked to microbial identity and gene
39 expression. Here we present an updated description of the primary materials and methods used
40 for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key
41 methodological steps and potential pitfalls.

42
43 Key Words: nanoSIMS, isotope assimilation, metal imaging, single cell biology, sample
44 preparation, SEM, TEM, FIB, FISH, O^- ion source

45 **1. Introduction**

46 Understanding biological exchanges at the single cell scale, especially in complex
47 systems, is one of the grand challenges of microbial ecology and systems biology. This challenge
48 includes characterizing cell-cell interactions, linking phylogenetic identity to ecophysiology for
49 uncultured organisms, and quantifying rates of elemental transfers within and between cells and
50 their surrounding matrix. Recent advances in ‘omics techniques have enabled unprecedented
51 access to gene transcripts, metabolites and proteins, but rarely at the level of individual cells or
52 mineral particles. These data have also enabled insights into the genomic potential of uncultured
53 organisms that exist in complex systems, however, quantitative measures of metabolic functions
54 of these organisms and within-population variability remain largely untested. Isotope tracing
55 techniques are unique in their ability to identify *in situ* ecophysiology of microorganisms and
56 biogeochemical exchanges, making them some of the most powerful techniques in microbial
57 ecology¹⁻⁶. Amongst these approaches, the development of high-resolution secondary ion mass
58 spectrometry⁷, specifically with a CAMECA NanoSIMS 50 and later the 50L, has opened up
59 new capabilities for taking on the challenge of single cell scale isotope imaging and has become
60 a standard method for assessing *in situ* metabolic activity.

61 Nanoscale secondary ion mass spectrometry (nanoSIMS)⁷ is a quantitative imaging
62 technique where a high-energy primary ion beam is used to sputter small volumes of sample
63 surface material, generating secondary ions that are used to create atomic or molecular ion maps.
64 Its high lateral resolution (~ 50 nm) and parts per million to high parts per billion detection limit
65 enables *in situ* characterization of isotope enrichment and elemental composition at the single

67 cell level. The NanoSIMS 50 and 50L (CAMECA, Gennevilliers, France) can image 5 - 7
68 elements or isotopes simultaneously; additional species can be imaged using a magnetic peak
69 switching approach⁸. These characteristics enable mapping of trace element and isotopic
70 variations with submicron-scale resolution, including in subregions of individual cells (**Fig. 1, 2,**
71 **3**). Measurement precision in submicron regions is typically 1 % for isotope ratios; higher
72 precision can be achieved in larger volumes. As such, nanoSIP studies typically involve isotope
73 or rare element labeling, although microscale imaging of naturally occurring elemental or isotope
74 fractionation patterns is possible^{9, 10}.

75 NanoSIMS was first intensively applied to meteoritic material ¹¹, and in the early 2000's
76 to biological materials ranging from cell membranes to bacteria, eukaryote symbionts, archaea,
77 cyanobacteria, spores, biominerals and soils ¹²⁻²⁸. Interest in nanoSIMS applications for
78 microbial ecology, cell biology and environmental science has grown quickly between that
79 period and the present, with multiple CAMECA nanoSIMS instruments in use specifically for
80 these applications. Today, nanoSIMS analysis is a well-accepted technique, and has been
81 discussed in over 1000 publications from many disciplines. Multiple literature reviews have been
82 published that focus on applications including soils^{28, 29}, biofilms³⁰, marine ecology³¹, cell
83 metabolism³², plant elemental distribution³³, the combination of nanoSIP with fluorescent in situ
84 hybridization (FISH)³⁴, general biological applications³⁵⁻³⁷ and cell membranes³⁸. An updated list
85 of nanoSIMS literature in environmental biology and cell biology may be found at
86 <https://www.cameca.com/products/sims/nanosims>³⁹. In this updated version of our 2012
87 chapter⁴⁰, we discuss advances in nanoSIMS analysis techniques, new applications, and
88 methodologies that are becoming standardized.

89 **Recent Developments in nanoSIMS Systems Biology Research**

90 With nanoSIP, metabolic activities of single microbial and eukaryotic cells and their
91 symbionts can be tracked by imaging natural isotopic and elemental composition or isotope
92 distribution after stable isotope probing ⁴⁰. Most nanoSIP environmental microbiology studies
93 have targeted nitrogen and carbon metabolism (using ¹⁵N and ¹³C enriched tracers) (e.g. ^{31, 41-43}),
94 but a growing number discuss patterns of sulfur, phosphorous, and metals (e.g. ⁴⁴⁻⁴⁹) or use D₂O
95 as a means to track active cells ^{50, 51}. While many of the earliest nanoSIP microbiology studies
96 were focused on aquatic bacterial and archaeal communities ^{18-20, 52}, and ¹³C and ¹⁵N fixation in
97 diazotroph cultures such as *Trichodesmium spp.*²³ (**Fig. 1**) and *Anabaena oscillarioides* (**Fig. 2**)
98 ²⁵, recent years have brought a large expansion in the types of microbial study systems. These
99 include: methane producers and consumers in aquatic and industrial waste treatment systems (^{18,}
100 ⁵³⁻⁵⁸, many types of symbionts^{43, 59-61}, and taxa found in the human gut microbiome⁶² and insect
101 gut^{63, 64}. NanoSIMS imaging has proved particularly useful for studies of elemental exchanges
102 between symbionts, and has been applied in sponges and corals⁶⁵⁻⁷⁰, algal-bacterial interactions⁷¹⁻
103 ⁷³, ant-plant-fungus interactions⁷⁴ and microbial mat studies of multi-functional group
104 interactions⁷⁵.

105 In the past decade, nanoSIP approaches have been used to support a systems-level
106 understanding in a substantially expanded pool of study systems, including plants, fungi, soils
107 and viruses. In plants, elemental distributions of Zn, Cd, Fe, Mg, K, Cu, As, Si and U have been
108 mapped at the cellular and subcellular scale as a means to understand patterns of
109 hyperaccumulation, toxicity and metabolism (reviewed in Nunez et al.³⁷). Transfers of carbon,
110 nutrients and water between plant roots and mycorrhizal fungi, first imaged by Nuccio et al. in
111 2013 ⁷⁶, are particularly well suited to nanoSIMS analyses, as these exchanges occur across a

113 microscale interface⁷⁶⁻⁸⁴. In soil, nanoSIMS imaging has the potential to measure
114 biogeochemical exchanges between diverse phases, including bacteria, fungi, minerals, organic
115 matter and phages, although the extreme spatial complexity demands a large number of analyses
116 to provide statistically robust conclusions. Since Hermann et al.'s early perspective article²⁸,
117 many dozens of nanoSIP studies have explored soils, including the fate of isotopically enriched
118 plant amendments to soil^{29, 85-88}, so-called 'rock-eating' microbes that weather primary
119 minerals⁸⁵, the incorporation of microbial necromass into soil organic matter⁸⁷, and soil clay
120 minerals that exhibit antibacterial properties^{89, 90}. Creative applications, including nanoSIMS
121 analysis of μ l quantities of soil porewater⁸⁸ and cells separated from the soil matrix via
122 Nycodenz gradients^{46, 91} can help to deconvolve the isotope enrichment or elemental
123 stoichiometry of distinct soil pools. Viral and phage particles are a final frontier for nanoSIMS
124 imaging, since their size is at the outer limit of technical feasibility⁹²⁻⁹⁴. Novel approaches, such
125 as low energy ion implantation (see below), may help to preserve material from such tiny
126 particles, which are so thin that much of the sample is sputtered away in the initial moments of
127 an analysis, when the sputter rate can be 100 times higher than the equilibrium rate⁹⁴.

128 Environmental systems biology studies using nanoSIP have also expanded in breadth in the
129 past decade, and now reach far beyond queries of C and N fixation and elemental distribution.
130 Using imaging of time-resolved isotope tracing studies, Stuart et al., Hong-Hermesdorf, Miethke
131 et al., and Finzi, Pett-Ridge et al. all illustrated that cells can hold resources in temporary storage
132 molecules (respectively—extracellular polymeric substances, acidocalcisomes, cyanophycin)
133 until needed for later use^{23, 48, 95-97}. NanoSIMS analyses have also been used to characterize the
134 ecophysiology of novel uncultivated organisms^{98, 99}, and the cell to cell variability of growth and
135 fixation rates within populations^{44, 100-103}. As these studies illustrate, individual cells can have
136 widely different assimilation patterns even within highly clonal and synchronized populations. In
137 recent years, studies of cellular metal uptake and intracellular distribution have proliferated^{47, 48,}
138 ¹⁰⁴ (see also citations in Nunez et al.³⁷), in part due to advances in O⁻ primary beam sources (see
139 below). Many such studies have explored Fe metabolism, and the spatial localization of
140 organisms using Fe as an electron donor or acceptor¹⁰⁵⁻¹⁰⁷.

141 Multiple innovations have advanced the use of nanoSIP for systems biology applications.
142 These include more accurate isotope assimilation enrichment calculations^{41, 108}, automated
143 particle analysis software (and thus more highly-replicated studies)^{41, 109}, and use of various
144 forms of spatial statistics (where phenotypically similar features are grouped based on their
145 nanoSIMS chemical and isotopic fingerprints)^{49, 110}. Below, we discuss these and several other
146 notable methodological advances, including a new negative oxygen ion source, low energy ion
147 implantation, improvements in sample preparation and combined imaging and correlated
148 analyses.

149 **150 *Recent nanoSIMS Instrumentation Innovations***

151 The most notable technical advance for nanoSIMS in the past decade was the
152 development of a high-brightness negative oxygen ion source, which enables positive secondary
153 ion imaging with 50 nanometer resolution. In the CAMECA nanoSIMS instruments, imaging
154 resolution is determined by the ion optics, and originally, only the micro Cs⁺ ion source had
155 sufficient brightness to achieve a 50 nm spot size; the lower brightness of the duoplasmatron
156 source (used to generate O⁻ ions) allowed 100 nm resolution at best, with lower stability and
157 reliability. As such, many researchers prioritized Cs⁺ analyses for electronegative elements like
158 C and N over O⁻ analyses for metals.

159 In 2013, Oregon Physics (Hillsboro, OR, USA) produced a high-brightness O⁻ source
160 called the *Hyperion II*, which generates ions from oxygen gas using a radiofrequency (RF)
161 inductively coupled plasma (ICP)^{111, 112}. The Oregon Physics system substantially suppresses
162 electron extraction while producing a high-brightness O⁻ beam. Based on tests with Lawrence
163 Livermore National Laboratory's NanoSIMS 50, the Hyperion II was modified to achieve ~50
164 nanometer spatial resolution, and allow imaging of low micromolar concentrations of metals in
165 biological materials with ~250 nm resolution (**Fig. 4**). Furthermore, the Hyperion II output is
166 very stable (<1% drift over 24 hours) with a low maintenance requirement (every 1 to 3 years).
167 As a result, it is now the preferred O⁻ source for the CAMECA NanoSIMS 50L¹¹³. The superior
168 performance of this new source has the potential to attract more researchers to trace metal
169 analysis in biological systems. In our own research, it has enabled higher throughput, as well as
170 spatial resolution sufficient for sub-cellular imaging⁴⁷.

171 Another notable technological advance is the new low energy ion implantation capability
172 for the CAMECA nanoSIMS instruments (extreme low impact energy, or EXLIE) which opens
173 the potential for analysis of smaller and thinner samples. In dynamic SIMS instruments like the
174 NanoSIMS 50, the analysis ion beam controls the yield of desired secondary ions, with a Cs⁺
175 beam used for negative secondary ions, and an O⁻ ion beam for positive secondary ions.
176 However, this enhancement effect is weak at the sample surface because ions from the analysis
177 beam are implanted some 10s of nanometers below the surface. This is problematic for samples
178 that are only 10s of nanometers thick, such as viruses. To overcome this challenge, Cabin-
179 Flaman et al. demonstrated that initial Cs⁰ deposition resulted in a ~10 increase in ion yield at the
180 surface, allowing them to image strands of combed DNA^{114, 115}. In response, CAMECA has
181 released a hardware and software package that allows the operator to reduce the analysis beam
182 energy to only a couple hundred volts so that the beam effectively coats the sample locally. In
183 our experience, this system works well, but Cs⁺ is incompatible with gold coated samples
184 (presumably the Cs interacts with the gold, not the biological sample). Further use of EXLIE
185 should enhance quantitative analysis of extremely other extremely thin particles such as phage
186 and viruses, DNA and RNA, cell membranes and lipid rafts, exudates, and other small and thin
187 biological materials.

188

189 ***Moving toward standardized methods***

190 While nanoSIP has become widely used by the fields of systems biology and microbial
191 ecology, due to the limited number of instruments, the application of high spatial resolution
192 SIMS to biology is still limited to a couple dozen labs and user facilities, each with its own
193 protocols for analysis, standardization and data treatment. A number of important issues are still
194 not codified in the literature and not widely reported in nanoSIMS-based publications:

- 195 1. Standards to demonstrate proper operation and tuning of the instrument and for
196 quantification of isotopic ratios and elemental concentrations.
- 197 2. Effective mass resolving power (see Section 3.4.1) and demonstration of negligible
198 collection of isobaric interferences
- 199 3. Pre-analysis ion implantation and sputtering equilibrium
- 200 4. Demonstration of sample performance (charging, flatness, orientation)
- 201 5. Data extraction protocols, including defining regions of interest
- 202 6. Effects of sample preparation

203 As the systems biology community continues to elaborate on the nanoSIP approach, it will serve
204 the community to have a more standardized approach. In the methods description that follows,

205 we describe a series of protocols that could serve as a basis for standardization.
206

207 **2. Materials**

208 **2.1 Sample selection and experimental design**

- 209 1. Cultures, co-cultures, natural communities from soil, water or sediment, tissues
- 210 2. Treatments and controls, harvests from a temporal series (if desired)
- 211 3. Final preparation must fit within a 50 mm circle and be vacuum compatible.

212 **2.2 Incubations for stable isotope probing cultures and microbial communities**

- 213 1. Substrates labeled with stable isotopes. These can be purchased from companies such as
214 Cambridge Isotopes, Isotec-Sigma or JPT Peptide Technologies. Substrates may also be
215 grown (e.g. ^{13}C and ^{15}N plant litter) or purified in house⁹⁶.
- 216 2. To label cultures with gasses or gas-exchangeable compounds: sealed vials, gas bags, or
217 environmental chambers. For gas injection: gas tight syringe, gas tank regulator, and
218 extraction port.
- 219 3. Any inert container can be used for labeling experiments with non-gaseous compounds.
220 Field labeling is also possible if a portion of the system can be at least partially sealed off.

221 **2.3 Sample preparation and pre-analysis characterization**

- 222 1. While fixation is not always necessary, when used, fixation options include:
223 glutaraldehyde, paraformaldehyde, formaldehyde, ethanol, fast freezing, and high
224 pressure freezing.
- 225 2. Embedding options; epoxy, acrylic, elemental sulfur, sucrose, OCT, paraffin.
- 226 3. Cutting options: Cryostat, ultramicrotome, razor blade, focused ion beam (FIB) ¹¹⁶.
- 227 4. Sample support options: Si wafers; Transmission Electron Microscopy (TEM) grid; filter;
228 indium tin oxide (ITO) coated glass slides; vector bond, poly-L-lysine, egg white.
- 229 5. Sample mapping options: epi-illumination, phase contrast, fluorescence, electron
230 microscopy.
- 231 6. Coordinate encoding; light and electron microscopy systems can be used
- 232 7. Conductive coat options: Evaporator or sputter coater with carbon, gold, iridium, or
233 platinum.

234 **2.4 High spatial resolution SIMS**

- 235 1. The NanoSIMS 50 and NanoSIMS 50L (CAMECA) are state of the art instruments for
236 isotope and elemental imaging. These nanoSIMS instruments are a form of magnetic
237 sector SIMS with high spatial resolution (down to 50 nanometer), high mass resolving
238 power and transmission, and simultaneous detection. They use a high-energy primary ion
239 beam to interrogate the sample (sputtering). In this process, a small volume of the sample
240 is impacted by the primary ion beam, breaking bonds and ejecting atoms and small
241 molecules. A fraction of the sputtered material spontaneously ionizes, in proportion to the
242 element-specific ionization probability. The ions are extracted by an electric field into a
243 secondary ion mass spectrometer. The sensitivity ranges from detecting 1 in 20 nitrogen
244 atoms to 1 in 1,000,000 helium atoms, and mass resolving power (specificity) can be up
245 to 15,000 M/ΔM in corrected units (see Section 3.4.1) ^{7,11}. Imaging is achieved by
246 scanning the primary beam over the sample (in a region $< 50 \mu\text{m}^2$) and reconstructing the
247 ion images digitally.
- 248 2. Certified standards can be acquired from the U.S. National Institute of Standards and
249 Technology (NIST) or equivalent agencies, though few are relevant for systems biology

251 nanoSIP studies. Reference standards can be generated ‘in house’ by characterizing
252 samples by bulk methods and verifying high resolution homogeneity by replicate SIMS
253 analyses. A further option is ion implantation in epoxy or other surrogate biological
254 materials ¹¹⁷. Tuning samples can be cell cultures or other materials of known
255 composition (e.g., NBS610 from NIST or a piece of metal) used for instrument tuning
256 and mass selection.

257 **2.5 Data analysis**

- 258 1. NanoSIMS image analysis software (L’image, L. Nittler, Carnegie Institution of
259 Washington
- 260 2. WinImage, Cameca
- 261 3. OpenMIMS (<https://nano.bwh.harvard.edu/openmims>), an add-on for Image J, a free-
262 ware program available from the U.S. National Institutes of Health
[\(<http://rsb.info.nih.gov/ij/download.html>\)](http://rsb.info.nih.gov/ij/download.html)
- 263 4. Look@NanoSIMS¹¹⁸, a free-ware program developed for MatLab (MathWorks)

264 **3. Methods**

265 **3.1 Sample selection and experimental design**

266 A wide range of biological samples can be analyzed by nanoSIMS if properly prepared (see **3.3**).
267 Experimental effects should be maximized to allow for high spatial resolution analysis: ideally
268 with isotope enrichment >1 atom % or trace element concentration differences that are >2-fold.
269 Typically, treatment samples are referenced to control samples. For nanoSIP experiments, useful
270 controls include no-heavy isotope addition controls (e.g. ¹²C), and time-zero isotope addition
271 controls. If an isotopically labeled solid substrates has been used as an amendment (e.g., ¹³C
272 plant material, necromass, EPS^{87, 96, 119-121}), it is essential to analyze some of the same material
273 ‘neat’—to understand its microscale heterogeneity. For trace element studies, no-treatment
274 controls are likely sufficient. For many experiments, time course analyses aid data
275 interpretation^{23, 95, 100-102}. Finally, while nanoSIMS analysis time is frequently costly and limited,
276 biological replicates are essential for each timepoint and treatment and will substantially improve
277 statistical power.

278 **3.2 Isotopic labeling of cultures and microbial communities**

279 If an isotope label is to be tracked, the labeled substrate will depend on the experimental goals,
280 but can range from dinitrogen gas to amino acids to complex biomolecules such as cellulose.
281 Typically, ¹³C and/or ¹⁵N are added as tracers in nanoSIP studies because they can be used
282 without altering cellular function (**Figs. 1, 2**). Other options include ¹⁸O₂ and ²H labeled
283 substrates and water. Elemental labels such as F, Br and I can also be used as tracers ^{22, 122}. For
284 example bromine-labeled deoxy-uridine (BrdU) may be used as a DNA tag to track cellular
285 division ^{24, 123, 124}, and can be used to track the fate of a Br –labeled nucleic acids (**Fig. 5**).
286 Methods for introducing isotopically labeled substrates can follow the pattern established by
287 stable isotope probing (SIP) ^{125, 126}, a set of widely accepted techniques used in microbial
288 ecology. As a general principle, incubation experiments must last significantly longer than the
289 time of diffusion into the sample, however a balance must be struck in order to avoid cross-
290 feeding effects. Depending upon the research goal, each labeling experiment will necessarily
291 have minor differences, though many may resemble the following example protocol, which was
292 used to ¹³C and ¹⁵N label a freshwater cyanobacteria culture ²⁵ (**Fig. 6**).

296 *A. oscillarioides* was grown in liquid culture with standard conditions, nutrients,
297 buffer and trace element amended media²⁵. Exponential phase cultures were transferred
298 to sealed serum vials with no gas phase. Thereafter, a 24 hr incubation occurred with a
299 12 h light: 12 h dark illumination regime. At the outset of the pulse labeling, 0.07 ml of
300 NaH¹³CO₃ (~99 atm % ¹³C, 0.047M, final enrichment of 1.7 atm % ¹³C-dissolved
301 inorganic carbon) and 0.3 ml of 99 atm % ¹⁵N₂, 0.57 mM, final enrichment of 13.6 atm %
302 (¹⁵N₂) were injected into each vial. Basic environmental factors (irradiance, temperature,
303 pH, starting inorganic N and C pools) were measured during the incubation period. At
304 multiple time-points (0 min, 15 min, 30 min, 1 hr, 2 hrs, 4 hrs, 8 hrs, and 24 hrs), a vial
305 was destructively sampled and cells were fixed with 2 % glutaraldehyde in order to
306 determine uptake rates over the diel cycle.

307 Following a ¹³C and/or ¹⁵N tracer experiment (e.g. with compounds such as ¹³C-substrate,
308 ¹⁵N₂ or ¹⁵NH₄⁺), the rate of C or N assimilation may be quantitatively determined with
309 nanoSIMS data. In general, exposure periods should be kept brief relative to the doubling
310 time of microbial populations, and sub-samples should be harvested at multiple time-points
311 during the isotope incubation in order to measure and minimize recycling and leakage, which
312 for N can approach 35% of newly fixed material⁵². As the nanoSIMS measures total
313 elemental or isotopic signal, and does not discriminate between nitrogen derived from NO₃⁻,
314 NH₄⁺, or amino pools, measurements yield net uptake only, not gross assimilation. The
315 amount of C or N lost from a cell due to secondary metabolite production, denitrification,
316 leakage, or sample preparation effects cannot be precisely measured with nanoSIMS
317 analysis. If we define assimilation strictly as the uptake of exogenous C or N and its
318 conversion into organic forms, nanoSIMS measurements will bulk all new ¹³C or ¹⁵N taken
319 up regardless of whether the organism has utilized it for organic biosynthesis or not.

321 **3.3 Sample preparation and pre-analysis characterization**

322 Sample preparation is critical to the success of any nanoSIP experiment, and in some cases is the
323 most challenging step. SIMS is an ultra-high vacuum (~10⁻¹⁰ Torr) technique, and samples must
324 be prepared for the vacuum chamber in a way that preserves the molecular and elemental
325 distribution of interest. NanoSIMS imaging cannot be used for *in vivo* studies, and samples
326 cannot be analyzed in an aqueous phase without a cryogenic stage¹²⁷. To prepare samples, it is
327 often necessary to stabilize biological components (fixation), remove water (dehydration) and
328 salts (derived from growth media or sea or sediment water), mount samples on a conductive
329 support (Si wafer, TEM grid) and then proceed to either an intact sample analysis, or follow with
330 embedding and sectioning. For some non-aqueous sample types (soils, fungal hyphae), we have
331 found it workable to analyze unfixed samples^{28, 87}. For other samples, it is ideal to separate cells
332 or particles from a matrix prior to nanoSIMS analysis; in these cases, a Nycodenz gradient, flow
333 cytometry or microfluidics approach can be used^{46, 91, 103, 128, 129}.

335 **3.3.1 Sample flatness and conductivity**

336 While ideal samples are flat with no more than nm-scale variations in surface topography, in our
337 experience, it is possible to work with non-flat samples. The primary concern topography
338 introduces is increased error in isotopic measurements, which result from spot to spot variations
339 in ion extraction conditions, and effectively detune the mass spectrometer. On a perfectly flat
340 sample (e.g., individual spores), ~1 permil (‰) precision is possible when imaging with electron
341 multipliers. However, with large cells, soil particles or other sources of surface irregularity, only

342 percent level precision is often possible. For a given sample type, it is necessary to establish the
343 precision of the measurement conditions by using comparable samples to the samples of interest.
344 In most cases, control samples that were not exposed to isotopically labeled substrates are the
345 best option. In many nanoSIP studies, the goal is to achieve isotopic enrichment of 10% or
346 higher (100 permil); at these enrichment levels, even many μm of surface topography can be
347 tolerated^{63, 110}.

348 Because SIMS instruments use an ion beam to interrogate the sample and extract ions and
349 electrons, sample charging is a critical consideration. If the sample charges, the extracted
350 secondary ions will have the wrong energy with respect to the tuning of the secondary mass
351 spectrometer, resulting in a loss of mass resolving power and potentially a shift in the mass line.
352 This is primarily an issue for the analysis of negative secondary ions because a significant
353 current of electrons are extracted while a beam of Cs^+ ions are being deposited in the sample. If
354 the sample is nonconductive, the sample will rapidly charge, ruining the analysis. As a practical
355 matter, sample charging can be identified when there are sample regions that appear to have
356 close to zero secondary electron counts. To minimize charging during nanoSIMS analysis,
357 samples (whether intact or sections) are typically coated in an evaporator or sputter coater with a
358 2 – 20 nm layer of gold or other conductor (e.g. carbon, iridium, and platinum). As a general
359 rule, the more topography the sample has, the thicker the conductive coat needs to be to bridge
360 topographic gaps.

361 For biological samples in the absence of minerals, sample charging is generally not a
362 problem (even though biological materials are inherently non-conductive). After sputtering
363 equilibrium is reached, the sample becomes sufficiently conducting to perform high quality
364 analyses. For this same reason, analyses can be performed on filters without having to do more
365 than deposit a conducting coat on the surface to enable the charge to dissipate to ground. In fact,
366 monolayers of cells on a conducting substrate can be analyzed (without a conductive coat)
367 because the sample stops charging after sputtering. Nonetheless, at LLNL, we normally apply a
368 conductive coating our samples to facilitate initial imaging.

369 Samples with a high mineral or salt component often present a greater challenge. Most
370 minerals will charge under Cs^+ analysis after the conductive coat is sputtered away. In these
371 cases, an electron flood gun is needed for charge compensation. While not overly difficult, the
372 electron flood gun does add complexity to the analysis and secondary electron imaging cannot be
373 performed at the same time.

374 For samples that are to be analyzed intact, some will need to be washed in deionized
375 water to remove salts or other compounds that could coat cells or mineral particles and interfere
376 with ion extraction. For cells or particles, washing on a filter is very efficient, and nucleopore or
377 polycarbonate filters can be used as a sample substrate if they are flat at the micron scale. Other
378 ideal sample substrates include Si wafers, plastic slides, and indium-tin-oxide (ITO) coated glass
379 slides. Conductive sample substrates are preferred to insulators, which will charge as soon as the
380 conductive coat is sputtered away. Cell cultures grown on a solid substrate can be gently washed
381 with repeated immersion in deionized water. Poly-L-lysine, vector bond, egg white or other
382 surface coatings are useful to enhance adhesion to the sample substrate.

383

384 **3.3.2 Fixation**

385 Fixation of biological tissues is designed to preserve cell morphology and immobilize analytes of
386 interest for imaging analysis. Chemical fixatives (glutaraldehyde, paraformaldehyde,
387 formaldehyde, ethanol, osmium tetroxide ¹³⁰⁻¹³²) work well if proteins and other structural

388 molecules are the targets. For these analyses, any fixation approach that is suitable for Scanning
389 Electron Microscopy (SEM) imaging will likely work for SIMS imaging. However, more
390 complex methods such as low temperature methods (flash freezing, and high pressure freezing,
391 ¹³³⁻¹³⁵) are sometime warranted to preserve the distribution of small molecules and diffusible ions
392 in biological samples. It is best to avoid applying the stains typically used in EM imaging (e.g.
393 uranyl acetate) in cases where the elemental composition of the sample is of interest. It is also
394 important to recognize that fixatives can cause significant isotope dilution; several nanoSIP
395 studies have shown a stepwise dilution of isotopic composition after chemical fixation, FISH and
396 CARD-FISH protocols ^{34, 136, 137}.

397 The selection of a fixation procedure is a practical matter—if no fixation is necessary,
398 none should be used. When needed, chemical fixatives can be added directly to samples in
399 solution at concentrations ranging from 2-4%. But the effects of fixatives may be highly sample
400 dependent, and the SIMS community has reported widely differing experiences. Glutaraldehyde
401 is a very aggressive cross-linking agent and is thought to be incompatible with other treatments,
402 such as FISH. Osmium tetroxide is known to cross-link phospholipids. Fixation is not necessary
403 for bacterial spores ²⁶ and potentially encysted microbes. By contrast, vegetative cells are prone
404 to lysis without fixation, especially during washing to remove salts²⁵. Herman *et al* ¹³⁸ report
405 only 35% of photosynthetically fixed ¹³C was retained as protein in symbiotic algae, following
406 chemical fixation in a glutaraldehyde: paraformaldehyde mixture. In our experience at LLNL,
407 mean nanoSIMS isotope ratios of cyanobacteria fixed with glutaraldehyde correspond well with
408 the isotope enrichment measured in the same cells via IRMS ^{23, 25}, as long as enrichment values
409 are less than 50 atom %.

410 Cryogenic methods of tissue fixation are presumed to be more conservative, but are
411 substantially more laborious, and flash freezing and high pressure freezing can only be applied to
412 sample aliquots or very small samples ¹³¹. In studies where significant migration of the element
413 of interest is likely to occur during sample preparation, low temperature methods such as freeze-
414 drying may be the best solution ^{47, 139}, but more work is needed to demonstrate quantitative
415 elemental distribution retention.

416 3.3.3 Embedding and Sectioning

417 In cases where the goal is to target intercellular elemental or isotopic distribution (e.g. **Figs 1, 2,**
418 **3, 7**), embedding and sectioning will likely be needed prior to nanoSIMS analysis. As with other
419 aspect of sample preparation, the embedding and sectioning method should be chosen with the
420 target ions and molecules in mind. Key questions to consider are:

- 421 i. Will *in situ* hybridization or antibody labeling be performed on the section?
- 422 ii. Are diffusible ions or molecules of interest?
- 423 iii. Will the embedding medium be a significant source of interference with the target
424 species?

425 If none of the above cases apply, then standard embedding methods will likely work and have
426 previously been used to localize ¹³C- and ¹⁵N-labeled structural molecules ^{23, 24, 27} and fragile
427 marine aggregate ¹⁴⁰. Samples can be embedded in a number of polymers for room temperature
428 sectioning (e.g., epoxy, acrylic, paraffin ¹³⁴). Where larger areas need to be analyzed, histological
429 methods can be used ¹⁴¹. *In situ* hybridization or antibody labeling require the fewest
430 modifications to standard embedding methods for successful labeling. The fixative should
431 minimize cross-linking of the target (e.g. paraformaldehyde instead of glutaraldehyde), and the
432 embedding medium should allow exposure of the target molecules. For resin embedding, acrylic

434 tends to penetrate samples more readily in our experience. Even better nanoSIMS results can be
435 achieved if the embedding medium is porous or removed after sectioning, such as with most
436 histological and cryogenic methods ^{134, 141}.

437 If diffusible ion and molecules are of interest, embedding methods that employ room
438 temperature liquids should be avoided. FIB (focused ion beam) sectioning is likely the best
439 option for preserving the distribution of diffusible species because a fully dry sample can be
440 sectioned, however, the method requires specialized equipment and limited sample material can
441 be processed (TEM sections are particularly time consuming to make by FIB sectioning). If the
442 samples are only destined for SIMS analysis, top-cutting may be a more rapid option ¹¹⁶. One
443 other potential alternative is sulfur embedding ¹⁴²⁻¹⁴⁴ which we have used to section
444 heterogeneous soil aggregates²⁸.

445 A final embedding/sectioning option is cryogenic sectioning, which can be performed
446 with sucrose, OCT or similar compounds. Cryosectioning of water-ice embedded samples is also
447 an option, but is challenging. Cryogenic methods will only preserve the distribution of diffusible
448 ions and molecules if there is no cyro-protectant infiltration and fast freezing is employed; both
449 are major changes from standard protocols and not easily implemented. In particular, removing
450 the cryo-protectant (e.g., sucrose) from these protocols leaves the frozen section brittle and very
451 difficult to section.

452 Sectioning can be performed with an ultramicrotome, a standard “histological”
453 microtome or cryostat, or even with a razor blade, depending on the type of pre-nanoSIMS
454 imaging that is desired. Standard TEM-grade ultrathin sections (~100 nm) can be analyzed by
455 nanoSIMS, however more data can be collected from thicker sections (up to 500 nm) if lesser
456 TEM image quality is acceptable. Thicker sections are also desirable if large areas (millimeters²)
457 need to be imaged or analyzed. If transmission light imaging is necessary during the sample
458 mapping phase, indium tin oxide (ITO) coated glass slides are preferable to uncoated glass slides
459 because they do not charge in the SIMS. An adhesive surface coating (e.g. poly-L-lysine) is
460 necessary to retain cryogenic sections during washing or staining. Focused ion beam (FIB)
461 milling can be used as an alternative to embedding and sectioning ¹¹⁶, particularly where the user
462 needs to have precise control over the location and orientation of the section. All thin sections
463 can be laid onto a TEM grid or directly on a solid substrate prior to nanoSIMS analysis.

464 As an example of a general procedure for sample preparation, before nanoSIMS
465 microanalysis, the filaments of *A. oscillarioides* (described above) were fixed with
466 glutaraldehyde, filtered, washed with Milli-Q (18 MΩ) H₂O, transferred onto a silicon wafer and
467 dried. Since the filaments were sufficiently large, light microscopy was used for navigation and
468 target identification (**Fig. 6**).

470 **3.3.4 Sample mapping**

471 Sample mapping is the final critical step prior to nanoSIMS analyses; it can greatly enhance
472 operator efficiency and is often essential to interpretation of results. Most nanoSIMS instruments
473 have the equivalent of an epi-illumination microscope for sample navigation, and therefore epi-
474 illumination micrographs provide the best reference images for general navigation. SEM
475 mapping (and TEM, or Scanning Transmission Electron Microscopy (STEM) for thin sections)
476 can also positively identify targets for analysis; these images are often comparable (though with
477 higher resolution) to the secondary electron or ion images generated in the nanoSIMS. An ideal
478 series of mapping images should capture the whole sample scale, as well as individual target
479 analysis locations, with reference points that can be used to translate from one image scale to the

480 next. For target points that are difficult to find in the nanoSIMS light imaging system, such as
481 very small or complex targets, coordinate encoding (relative to obvious fiducial points) can aid
482 navigating for analysis. Matrix-based coordinate transformations simplify the translation of
483 coordinates to the nanoSIMS, which has a somewhat non-intuitive coordinate system. When
484 analyzing samples on Si wafers, we often make faint scratch marks with a diamond-tipped pen
485 before the sample is deposited, this helps to provide unique reference points.
486

487 **3.4 NanoSIMS analyses**

488 High spatial resolution SIMS (better than 0.5 micron lateral resolution) is necessary to
489 characterize the isotopic and elemental composition of individual microbial cells. The CAMECA
490 NanoSIMS 50 and 50L are the state-of-the-art for combining high lateral resolution, high mass
491 resolution and high transmission, and may be used for both stable isotope and trace element
492 analyses of microbial samples (outlined below). These instruments have two modes of analysis: a
493 Cs⁺ primary beam to generate negative secondary ions, or an O⁻ primary beam to generate
494 positive secondary ions. As a general rule, electronegative elements (e.g., halides) are detected as
495 negative secondary ions, and electropositive elements (e.g., metals) are detected as positive
496 secondary ions. Manufacturer manuals and standard references on SIMS can provide additional
497 guidance on the choice of detection polarity¹¹⁷. In some cases, an experiment requires both
498 electronegative and positive elements to be mapped in the same sample. This is possible, but
499 changing polarities is a multiple-hour effort. Alternatively, at high enough concentrations, some
500 elements can be imaged with sufficient sensitivity in their non-typical polarity (e.g., FeO⁻ instead
501 of Fe⁺; C⁺ instead of C⁻, P⁺ instead of P⁻; **Fig. 4**)^{26,47,117}.

502 For any analysis, it is useful to have standard samples that are routinely used for tuning.
503 This allows session to session comparison of transmission, mass resolving power (MRP), and
504 elemental or isotopic ratios. Standards are also important for finding the correct species, which
505 can be particularly challenging for higher masses. Simple reference materials (e.g., iron) are
506 easier to work with than multi-element standards like the National Institute of Science and
507 Technology's NBS610, which has 500 µg/g of most elements. However, there are characteristic
508 spectra for NBS610 that can be used for mass calibration, such as the ⁵⁶Fe⁺ peak below a ~100x
509 larger ⁴⁰Ca¹⁶O⁺ + Si₂⁺ peak at mass 56. Setting up for carbon and nitrogen isotope measurements
510 can easily be done with any biological sample.
511

512 **3.4.1 NanoSIMS tuning and estimating mass resolving power**

513 Tuning a SIMS instrument requires expert knowledge. The central aspects of SIMS instrument
514 tuning are primary ion beam alignment, peak shape, mass selection and resolving isobaric
515 interferences—all of which are important variables to report on in a nanoSIP article's methods
516 description. Here we present the basics issues.

517 The alignment and focus of the primary ion beam (analysis beam) sets the location of the
518 ion source for the secondary mass spectrometer and determines the quality of the ion images.
519 Grid samples are typically used to identify and correct for distortion and calibrate the scanning
520 scale. If high current sputtering is used to reduce the time to achieve sputtering equilibrium, the
521 higher and lower current beams need to be aligned. This alignment should be done before
522 finalizing the tuning of the instrument because sometimes it is better to move the lower current
523 beam position toward the higher current one to optimize ion current or quality of the focus.

524 To obtain accurate measurements, the instrument must be tuned and aligned to collect the
525 ions of a species of interest to the exclusion of other species at the same nominal mass. The

526 secondary ion beam for the species of interest must be tightly focused at the detectors and
527 multiple beam diameters from adjacent masses, and the detector must be aligned to collect
528 effectively 100% of the transmitted ions of interest and only those ions, with room for small
529 variations in the magnetic field or other potential shifts in the mass line. The result is a peak that
530 is flat-topped and steep-sided. A metric of the peak shape is the mass resolving power (MRP),
531 which is also a metric of the ability to resolve adjacent masses. MRP is defined based on the
532 nominal mass, M , at which the measurement is made, and the resolvable difference in mass, ΔM ,
533 between two adjacent species:

$$534 \quad \text{MRP} = M/\Delta M. \quad (1)$$

535 Because of the proportional nature of this metric, the measured MRP of the mass
536 spectrometer is effectively applicable across all masses. It is important to note, however, that the
537 resolvable difference in mass increases with mass. The CAMECA NanoSIMS software uses the
538 steepness of the side slopes of the mass peaks as a measure of the mass resolving power of the
539 secondary mass spectrometer.

$$540 \quad \text{MRP} \cong R/(4 \cdot L90), \quad (2)$$

541 where R is the effective radial distance of the detector position and $L90$ is the average lateral
542 distance between the 10 and 90% height of the peak side slope. This estimate of mass resolving
543 power is ~ 1.5 times higher than the effective MRP based on the standard definition of MRP, and
544 in our publications, we report the MRP of our analyses based on this correction (Fig. 8).
545 Regardless of the MRP value reported, it is essential to be aware of all potential interferences
546 and ensure that their contribution to the measured mass line is negligible. Simply observing that
547 a peak top looks flat on a standard is not sufficient to be sure there is not a significant unresolved
548 interference. Blanks and control samples are important for checking for interferences, as are
549 software programs that can calculate potential interferences.

550 Peak shape is an integrated function of everything from the primary beam location and
551 size to the gain on the detector. A tightly focused primary beam reduces the abundance of off-
552 axis ions, which cause angular aberration. A well centered primary beam relative to the
553 secondary ion collection lenses minimizes potential distortion. The secondary ion beam should
554 be aligned relative to all the lenses, slits and apertures in the secondary mass spectrometer to
555 maximize transmission and minimize distortion. The entrance slit width is selected based on the
556 target MRP, an aperture slit (similar to a field aperture for the CAMECA ims series) is used to
557 reduce angular aberration, and an energy slit is used to reduce chromatic aberration, along with
558 other tuning. The detector gain and threshold must be set to exclude noise and register $>90\%$ of
559 the incident ions. In our experience, dimers (e.g. $^{12}\text{C}^{12}\text{C}$, or $^{12}\text{C}^{13}\text{C}$) result in higher gain than
560 monomers, and the detector voltages must be adjusted accordingly. Incorrect detector settings or
561 a failing detector can result in sloped peak tops. It is also important to set detector deflector
562 settings so that the ions strike a region of the detector first dynode with a flat response to
563 scanning, to achieve a flat top peak. Finally, for a NanoSIMS 50 or 50L, it is important to keep
564 sustained count rates below $\sim 300,000$ counts per second to prevent premature aging of the
565 electron multipliers. Sustained high count rates can result in dead spots on the detector first
566 dynode and overall loss of sensitivity from carbon deposition on the other dynodes.

567 3.4.2 Cs^+ analysis for electronegative elements and isotope ratios

568 The vast majority of system biology studies requiring nanoSIMS analysis are focused on
569 electronegative elements such as H, C, O, N, P and S³⁹. All of these elements (and their
570 corresponding isotopes) are analyzed with a Cs^+ primary beam. Of these, combined C and N

572 isotope measurements are the most common and stringent analyses at the low end of the periodic
573 table; we discuss their analysis in detail below.

574 For both of carbon-13 and nitrogen-15, the higher sensitivity is achieved using a Cs^+
575 primary beam and extracting negative secondary ions. The rare and major isotopes are both
576 mapped in the sample, and the ratio of the two reveals the distribution of the incorporated label
577 in the sample (**Fig. 1, 2, 6, 9**). Nitrogen is typically detected as the molecular ion CN^- because of
578 the poor yield of N^- and N^+ ^{145, 146}. Carbon isotopes can be measured using the monomers (C^-),
579 the hydrides (CH^-), the dimers (C_2^-), or the CN species (where mass resolving power
580 requirements increase respectively). The CN species typically have the highest ion count rate in
581 biological samples, but because ~12,000 MRP (~18,000 based on the CAMECA software) is
582 required to resolve $^{13}\text{C}^{14}\text{N}^-$ from $^{11}\text{B}^{16}\text{O}^-$ at mass 27, these species are typically only used when
583 the highest surface sensitivity is required¹⁴⁷.

584 We have found that the C_2^- dimers measured at mass 24 and 25 are more compatible with
585 the CN^- species (e.g., $^{12}\text{C}_2^-$, $^{13}\text{C}^{12}\text{C}^-$, $^{12}\text{C}^{14}\text{N}^-$, $^{12}\text{C}^{15}\text{N}^-$) because of similar secondary ion focusing
586 (**Fig. 10**). Simply put, the maximum transmission for the carbon dimers is better aligned with the
587 maximum transmission for CN^- than the carbon monomers are. Physically, this means that the
588 optimal focusing voltage for the lens used to focus the secondary ion beam in the entrance slit to
589 the mass spectrometer is more similar for C_2^- and CN^- than for C^- and CN^- . Because the ions are
590 all detected simultaneously, only a single E0S focusing voltage can be used, and therefore if C^-
591 and CN^- are measured, the E0S focusing voltage has to be compromised for one or both sets of
592 species. This compromise not only results in a loss in transmission, but it also very likely results
593 in lower reproducibility of isotope ratio measurements. Maintaining optimal focus at the entrance
594 slit is important to isotope ratio measurement reproducibility. The difference in the difference in
595 E0S focusing voltage for these species is likely due to the differences in energy spectra resulting
596 from C_2^- and CN^- primarily coming from molecule decomposition during flight, while C^- is
597 generated at the sample¹⁴⁸. We have observed that the offset between C^- and CN^- varies, but we
598 have not succeeded in making this offset acceptably small. We have also observed that there is
599 often a measurable offset between C_2^- and CN^- , but it has always been relatively small (<10 V;
600 **Fig. 10**).

601 The $^{15}\text{N}/^{14}\text{N}$ ratio can be directly calculated from the ratio of the CN ions ($^{12}\text{C}^{15}\text{N}^-/^{12}\text{C}^{14}\text{N}^-$). The $^{13}\text{C}/^{12}\text{C}$ ratio, however, equals $^{12}\text{C}^{13}\text{C}/(2 \times ^{12}\text{C}_2^-)$ based on:

$$603 (\sum_{i=12}^{13} [^i\text{C}])^2 = [^{12}\text{C}]^2 + [^{13}\text{C}]^2 + 2[^{12}\text{C}][^{13}\text{C}], \quad (3)$$

604 where $[^i\text{C}]$, the relative abundance of the respective isotopes, and the individual terms on the
605 right hand side of the equation are the expected relative abundances for the respective
606 combinations of species¹⁴⁹.

607 Typical analytical conditions for nanoSIMS are: a ~2 pA Cs^+ primary beam focused to a
608 nominal spot size of ~100 nm, a 256 x 256 pixel raster over a 10 x 10 micron² area, a dwell time
609 of 1 ms/pixel, the secondary mass spectrometer tuned for five to seven secondary ions (e.g., $^{12}\text{C}_2^-$,
610 $^{13}\text{C}^{12}\text{C}^-$, $^{12}\text{C}^{14}\text{N}^-$, $^{12}\text{C}^{15}\text{N}^-$ and $^{31}\text{P}^-$) detected on electron multipliers in simultaneous collection
611 mode, ~6500 MRP (~10,000 MRP based on the CAMECA software; see above) to resolve
612 isobaric interferences (e.g. $^{13}\text{C}^{12}\text{C}^-$ vs. $^{12}\text{C}^{1}\text{H}^-$ at mass 25; $^{13}\text{C}_2^-$ vs. $^{12}\text{C}^{14}\text{N}^-$ at mass 26; **Fig. 8**;
613 $^{11}\text{B}^{16}\text{O}^-$ vs. $^{12}\text{C}^{15}\text{N}^-$ at mass 27), and data collection for 10 to 20 serial quantitative secondary ion
614 images (*i.e.* layers). For larger areas, the analysis time must be increased proportional to the area.
615 Hundreds of cells may need to be analyzed in order to account for natural variability in
616 metabolism from one cell to another (**Fig. 11, 12**).

617 When possible, biological samples should be sputtered to a depth of ~60 nm before data
618 collection to achieve sputtering equilibrium. The depth of analysis during a measurement is
619 typically between 50 and 200 nm, however whole cells may be consumed to acquire sufficient
620 counts for high precision analyses, to average over the entire cell, or to generate a cell depth
621 profile (**Fig. 13**). The sputter rate for biological materials with a Cs⁺ primary beam (16 kV,
622 normal incidence) is 1-2 nm·μm²·pA⁻¹·s⁻¹ at equilibrium^{94, 150}. With a 2 pA Cs⁺ analysis beam
623 and a 1x1 μm² raster, a 1 μm cell can be consumed in a few minutes.

624 In addition to C and N, the distribution of electronegative elements (e.g., H, O, S and P)
625 or highly abundant electropositive elements (e.g., Fe as FeO⁻) can be imaged during stable
626 isotope analyses⁸⁷. These can also include labeling elements such as F, I or Au (see Section 3.6,
627 ‘*immuno-labeling*’^{22, 122}. In some cases, magnetic peak switching may be necessary to image the
628 distribution of all elements of interest; at LLNL we have successfully analyzed up to 20 elements
629 in a single analysis of bacterial spores. Samples can be imaged simultaneously by secondary
630 electrons with negative secondary ions.

632 **3.4.3 NanoSIMS trace element analysis**

633 Trace element analysis in biological samples is often used to determine the concentration and
634 distribution of metal cofactors and labels. With the invention of the Hyperion II RF inductively
635 coupled plasma ion source, trace metal analysis with nanoSIMS has become significantly easier
636 and more attractive. The method of analysis is similar to the stable isotope analysis method
637 outlined above, except that typically the trace elements of interest are metals, which are imaged
638 with higher sensitivity as positive secondary ions with an O⁻ primary beam¹¹⁷; elements such as
639 Na, K, Al, Mg and Ca ionize extremely well in this mode. To determine whether metals such as
640 Mn, Fe, Cu, Mo, Cr, V and Ni (and in the right circumstances, Zn and As) can be detected in a
641 given system with subcellular resolution depends on their concentration in the sample and
642 relative sensitivity factor (a.k.a., relative useful yield; see 3.5.2 and¹¹⁷). At LLNL, we have
643 imaged a range of trace elements in cells, including Mo (as a proxy for nitrogenase; **Fig. 11**),
644 Mg, Si, P, Mn, Fe, Cu, Zn and As^{47, 48, 104, 151}. The highest spatial resolution achieved with the
645 Hyperion II on a CAMECA NanoSIMS in this mode is ~50 nm with ~0.5 pA O⁻ primary beam^{47,}
646 ¹¹³. For very low concentrations elements (ppb to low ppm), a >100 pA primary beam is
647 necessary to acquire enough counts for imaging, with spatial resolution >250 nm (**Fig. 4**). The
648 sputter rate for biological materials with an O⁻ primary beam is ~0.2 nm·μm²·pA⁻¹·s⁻¹¹⁵⁰. For
649 many metals, low ppm-level cellular concentrations can be imaged, but great care must be taken
650 to ensure detectors only collect the isotope or element of interest, as opposed to isobaric
651 interferences.

652 **3.4.4 Standards and controls.**

653 Standards and controls have distinct but related roles that are important to obtaining reliable
654 results. Standards are used to check instrument operation, quantify absolute composition, and
655 provide a reference for other experiments. For high precision isotope measurements or trace
656 element measurements, at least two matrix-matched standards with distinct known compositions
657 are necessary to insure accurate and meaningful results^{47, 152}. Experimental controls are used to
658 test for experimental artifacts and the statistical significance of treatments.

659 Standards are not readily available for biological SIMS because certified biological
660 samples are not appropriate. As a result, standards typically need to be produced and
661 characterized ‘in-house’ or borrowed from other laboratories. In cases of large effects relative to

663 analytical uncertainty, no-isotope experimental controls can sometimes take the place of
664 standards. For elemental analyses, it is necessary for the measured ratios of interest to be on the
665 order of 10x higher than background to be confident the effects are real^{48, 139}. Furthermore,
666 correct instrument operation is hard to verify. One stop-gap option is to always analyze the same
667 sample at every session, even if the absolute composition is uncertain or it is not relevant to the
668 biological sample (e.g., NBS610)^{48, 139}.

669 For C and N isotopic measurements, we at LLNL originally used a well-characterized
670 *Bacillus subtilis* spore preparation as a reference standard for²³. Measurement precision, $\sigma_{(internal)}$
671 for this standard is 0.4-1.4 % (2 σ for individual $^{13}\text{C}/^{12}\text{C}$ and $^{15}\text{N}/^{14}\text{N}$ measurements), and
672 replicate analyses yielded an analytical precision, $\sigma_{(std)}$, of 2.1 % (2 σ for an individual
673 measurement) (Fig. 8). More recently, we use an in-house characterized culture of *Pseudomonas*
674 *stutzeri* deposited on a Si wafer because these cells provide a better matrix match for our typical
675 experiments.

676 For high spatial resolution elemental analyses of biological samples, absolute
677 concentration standards are more difficult to establish for multiple reasons. First, concentrations
678 are typically low and therefore prone to contamination. Second, elemental concentrations can
679 vary spatially, making it difficult to relate high resolution analyses with bulk composition. Third,
680 the composition of the elemental concentration standards needs to closely match the unknowns.
681 Beyond these constraints, it is ideal to have multiple concentrations in the relevant range to
682 establish a calibration curve to control for potential isobaric interferences.

683 The combination of achieving sample homogeneity and matching the composition of the
684 unknown is typically the hardest problem. Concentration standards should be compositionally
685 equivalent to the unknowns because matrix and composition effects are well known to affect
686 relative ion yields^{117, 153-155}. Recently Ackerman et al. used homogenized fish tissue mixed with
687 dilute copper solutions to make multiple concentration standards (Fig. 4)⁴⁷. Repeated analyses
688 of the material correlated well with bulk concentration data.

689 In case where biological standards are not available, the NIST glass standard NBS610 is
690 useful for mass alignment of metallic elements and for detector gain control, but not
691 quantification in biological samples. NIST also produces trace element standards for biological
692 materials, but these are large, heterogeneous particle samples designed for bulk analysis and are
693 challenging for SIMS. Reference samples normally have to be made and characterized by the
694 interested lab. A good but expensive alternative for elemental quantification is to have the
695 element of interest implanted in epoxy or another surrogate biological material. The ion implant
696 is then analyzed by depth profiling and integrating over the ions collected from the implanted
697 species¹¹⁷.

698

699 **3.5 Data processing and image analysis**

700 NanoSIMS researchers have developed multiple programs that allow nanoSIMS ion images to be
701 displayed and processed to extract the quantitative data (see 2.5). Data processing should include
702 corrections for detector dead-time and image shift and should enable regions of interest (ROIs) to
703 be defined. The isotopic composition for each ROI is calculated by averaging over all of the
704 replicate scans. ROI definition algorithms can be used to identify cells, partition images into
705 uniform subregions, or define threshold cutoffs for extracting data automatically. Notably,
706 Arandia-Gorostidi et al. and Dekas et al. both used auto-identification to select many 100s of
707 putative cells in their analyses^{41, 109}, far more than in many early nanoSIMS studies.

708

709 **3.5.1 Quantifying and reporting isotopic data**

710 As discussed in section **3.4.4**, standards are a critical part of ensuring good instrument
 711 performance and accurate data. For isotopic ratios, standards should be used to calculate
 712 instrumental mass fractionation (IMF), which can be expressed as:

713
$$IMF = \frac{R_{STD-meas}}{R_{STD-true}}, \quad (4)$$

714
 715 where $R_{STD-meas}$ and $R_{STD-true}$ are the measured and true isotopic ratios for the standard,
 716 respectively. There is cause for concern if the IMF differs from 1 by more than a few percent.
 717 Considering the precision of nanoSIMS ($>0.1\%$), the true isotopic ratio in the unknown,
 718 $R_{UNK-est}$, can be estimated from the ratio measured for the unknown, $R_{UNK-meas}$ and the IMF
 719 using a gain correction:

720
$$R_{UNK-est} = \frac{R_{UNK-meas}}{IMF}. \quad (5)$$

721
 722 The resulting isotopic data can be presented as ratios, delta values, and atom percent
 723 excess (APE) (e.g. **Fig. 6**). For tracer experiments, APE provides the clearest indication of the
 724 uptake of a stable isotope tracer. APE is calculated based on the initial isotopic ratio of the
 725 sample (or organism) at $T = 0$ (R_i) and the final isotopic ratio in the sample, R_f , ²³:

726
$$APE = \left[\frac{R_f}{R_f+1} - \frac{R_i}{R_i+1} \right] \cdot 100\%, \quad (6)$$

727 Note that R is the ratio of the rare isotope to the abundant isotope (e.g., $^{13}\text{C}/^{12}\text{C}$) and that $R/(R+1)$ is the fraction, f , of the rare isotope of element X, which can be written f_X .

728 Data can also be presented as net incorporation of the labeled element in the substrate if
 729 its isotopic composition and amount are well constrained and it is uniformly available to the
 730 sampled organisms. In Popa et al, we defined the term Fx_{net} as the net incorporation of an
 731 element (e.g., net carbon incorporation is “ F_{Cnet} ”) ²⁵. Assuming a two-isotope system, we derived
 732 Fx_{net} based on a two-component mixing model that accounts for the minor (Eq. 7) and major
 733 isotopes (Eq. 8) of element X incorporated from the initial biomass and the spiked pool:

734
$$fx_f = F_i \cdot f_{x_i} + F_s \cdot f_{x_s} \quad \& \quad (7)$$

735
$$[1 - fx_f] = F_i \cdot [1 - f_{x_i}] + F_s \cdot [1 - f_{x_s}], \quad (8)$$

736 where F_i is the fraction of the labeled element that was initially in the sampled organism and F_s
 737 is the fraction of the labeled element that was taken up from the spiked pool. In Popa et al., we
 738 originally derived Fx_{net} as a function of initial biomass, solving equations 7 and 8 for F_s/F_i ,
 739 yielding

740
$$Fx_{net} = \frac{F_s}{F_i} = \frac{R_f(1-f_{x_i})-f_{x_i}}{f_{x_s}-R_f(1-f_{x_s})}, \quad (9)$$

741 where R_s is the isotopic ratio in the spiked pool, ²⁵. Here we suggest both a correction and a
 742 change to that original equation. The correction is that here we restore the “1–” in the last term of
 743 the denominator, which was accidentally omitted in the Popa et al. article. The change is that
 744 here Fx_{net} is expressed as a fraction, as opposed to a percentage. While technically this equation
 745 applies only to the labeled element, it can be used to estimate change in biomass assuming no
 746 change in stoichiometry. We note that it is not necessary to quantify the actual biomass to use
 747 this equation.

748 Unfortunately, defining net incorporation as a function of initial biomass tends to cause
 749 confusion because Fx_{net} exceeds 1 (i.e., 100%) after biomass doubles. Therefore to avoid

751 confusion, we defined a new parameter, X_{net} , which is net incorporation of an element as a
752 function of total final biomass⁴¹:

$$753 \quad X_{net} = \frac{F_s}{F_s + F_i} = \frac{F_{x_{net}}}{F_{x_{net}} + 1} \quad (10)$$

754 Using this formulation, net incorporation of carbon is notated as C_{net} .

755 3.5.2 Quantifying and reporting elemental data

756 For biological samples, relative and absolute elemental concentrations are typically determined
757 based on the relative ion count rates for the element of interest, X, compared to a uniformly
758 distributed major element—typically C in most biological samples. This approach may not be
759 valid if the element of interest is in a structure that is low in C relative to the average matrix
760 concentration (e.g. if metal is sequestered in a vacuole). In rare cases, implantation of a reference
761 ion has been used to enable direct quantification in biological samples¹⁵⁶. To the extent SIMS is
762 used to quantify trace elements in biological samples, researchers tend to use matrix-matched
763 elemental standards.

764 If a matrix-matched standard for element X is available, the concentrations of element X,
765 $[X]_{UNK}$, can readily be determined based on proportionality using a parameter known as the
766 relative useful yield (RUY)¹⁵⁷. This approach works because SIMS typically yields a linear
767 change in relative ion count rates as the concentration of that species increases in the sample.
768 Ideally linearity is demonstrated in the relevant range using a set of standards. Resolving isobaric
769 interferences is an important aspect of getting a reliable, linear response. The ion yield for the
770 element of interest is normalized to a reference ion. The RUY is defined as ratio of the
771 concentrations of element X and the reference element—here C—to the corresponding ion ratio
772 measured for a standard:

$$774 \quad RUY_{X:C} = \frac{[X]_{STD}}{[C]_{STD}} \cdot \left(\frac{X^+}{C^+} \right)_{STD}^{-1} \quad (11)$$

775 where $[X]_{STD}$ and $[C]_{STD}$ are the concentrations in the standard of element X and carbon,
776 respectively, and $\left(\frac{X^+}{C^+} \right)_{STD}$ is the measured ion ratio, here shown as positive ions. Note that the
777 concentrations can be in any units, and the ion ratio can be for the measured species (e.g., $^{56}\text{Fe}^+$
778 and $^{12}\text{C}^+$) or it can be corrected for the isotope abundances, as long as these choices and the
779 measured species are consistent for the standard and the unknowns. The RUY is then used to
780 calculate the concentration of element X in the unknown using:

$$781 \quad [X]_{UNK} = \left(\frac{X^+}{C^+} \right)_{UNK} \cdot [C]_{UNK} \cdot RUY \quad (12)$$

782 Note that ideally $[C]_{UNK} = [C]_{STD}$, or else $[C]_{UNK}$ needs to be determined by an independent
783 method. In some work, the RUY is define as the inverse, with the appropriate change in Eq. 12.

784 Relative sensitivity factor (RSF) is a related parameter used in the semiconductor
785 industry¹¹⁷ that is generally not applicable as defined, but which can be used to estimate the RUY .

$$786 \quad RUY_{X:ref} \approx \frac{RSF_x}{RSF_{ref}} \quad (13)$$

787 where RSF_x and RSF_{ref} are for the element of interest, X, and the reference ion, which was C
788 above. We have used this approach obtained reasonable estimates of copper in *Chlamydomonas*
789 *reinhardtii* cells using calcium as the reference ion⁴⁸.

790 In the absence of a standard for absolute quantification, elemental data are typically
791 reported as ion ratios, which is indicated by maintaining the charge symbol (e.g., $^{63}\text{Cu}^+/\text{C}^+$).
792 The mass superscripts are removed if the ratio is corrected for isotopic abundances.
793

794 3.5.3 Measurement precision

795 Measurement precision should be determined based on replicate measurements of the ratio of
796 interest during the analysis by calculating the standard error of the mean (SE). This statistic can
797 be compared to Poisson statistics error for a ratio, σ_{ratio} , calculated from Gaussian error
798 propagation:

$$800 \sigma_{ratio} = R \cdot \left[\left(\frac{X_{numerator}^{0.5}}{X_{numerator}} \right)^2 + \left(\frac{X_{denominator}^{0.5}}{X_{denominator}} \right)^2 \right]^{0.5} \quad (14)$$

801 where R is the calculated ratio and X is the number of ion counts for the numerator and
802 denominator, respectively, which would typically be the minor and major isotopes, respectively.
803 Because this calculation is based on a sum of squares, the error for the minor isotope will
804 dominate σ_{ratio} if $X_{minor} \ll X_{major}$ (e.g., ^{13}C vs. ^{12}C) and σ_{ratio} can be estimated directly from X_{minor}
805 and R :

$$807 \sigma_{ratio} \approx R \cdot \left(\frac{X_{minor}^{0.5}}{X_{minor}} \right) \quad (15)$$

808 σ_{ratio} should be compared to the standard error (SE) for replicate measurements of the ratio in the
809 sample. If the measured SE is significantly worse ($>2\sigma$), then there is potential for improving
810 the precision of the measurement based on tuning, sample flatness, or other factors. In practice,
811 the precision of isotope ratio measurements by ion counting is no better than ~ 1 permil under the
812 best conditions.

813 In addition to considering these factors, measurement reproducibility from sample to
814 sample and even from subregion to subregions within an image has to be included in the
815 measurement precision when two measurements are being compared, even within the same
816 image. For example, two cells within an image can only be considered statistically different if
817 the difference between the two measurements is greater than the variability of measurements on
818 comparable samples. The potential exists for measured isotopic ratios to vary across a nanoSIMS
819 image for an isotopically homogeneous sample because of sample and tuning problems. This
820 error can formally be incorporated into the measurement precision, by summing measurement
821 error and the location to location variability in quadrature:

$$823 \text{SE} = [\text{SE}_{\text{meas}}^2 + \text{SD}_{\text{tests}}^2]^{1/2} \quad (16)$$

824 where SD_{tests} is the standard deviation of test measurements for location to location variability.
825 The summed errors must be expressed in fractional units, such as permil. While this calculation
826 is simple, ensuring that all the sources of potential error are included is not, and care should be
827 taken when making inferences from small differences in ratios, or large differences with large
828 but seemingly statistically significant precision estimates.

829 The error discussed so far is internal error, meaning that it only accounts for the
830 variability of a particular set of measurements. For comparison to other measurements and
831 absolute values, external measurement error is estimated from standard measurements using the
832 sum in quadrature approach used above. Because of the potential for shifts in measured isotopic

834 ratios relative to an absolute value (i.e., IMF) for slightly different samples, caution must also be
835 exercised when using the external error estimates. With all of these issues to consider,
836 researchers typically focus on achieving large relative isotopic enrichments in nanoSIP
837 measurements.

838

839 **3.6 Combination with synergistic techniques**

840 Coupling nanoSIMS with other imaging or bulk characterization methodologies provides an
841 enormous opportunity to extend inferences and understanding of a sample¹⁵⁸. By combining
842 nanoSIMS analysis with approaches such as FISH, SEM, TEM, X-ray microscopy, or immuno-
843 methodologies, systems biologists can also explore the physiology of known and uncultured
844 microorganisms by simultaneously collecting functional, phylogenetic, and molecular
845 information from individual cells or particles. While the list of synergistic approaches discussed
846 here is by no means exhaustive, the following technologies have been used in combination with
847 nanoSIMS:

848

- 849 1. **Bulk analysis** (IRMS and ICP-MS): For many studies, it is very useful to initially analyze a
850 bulk sample mass by isotope ratio mass spectrometry (IRMS) to ensure that some isotopic
851 enrichment occurred, and to determine average APE and net-fixation values. To perform
852 isotopic bulk analysis IRMS with small samples garnered from cultures or environmental
853 samples, samples may be filtered onto pre-combusted glass fiber (GF/F) filters, dried, and
854 then analyzed. In our experience, absolute isotope enrichment values of a cell concentrate
855 measured via IRMS can differ significantly from the nanoSIMS analyses because of cell to
856 cell variability and surface contamination; close attention is necessary make quantitative
857 comparisons¹³⁷. Similarly if, trace metal distribution is of interest, it is important to constrain
858 the likely concentrations in individual cells or particles by first analyzing an extract of whole
859 cells or target molecules by inductively coupled plasma mass spectrometry (ICP-MS)¹⁵¹.
- 860 2. **Light microscopy**: Light images can be useful for navigation in the nanoSIMS CCD view,
861 which also uses light microscopy. Images should be collected at multiple levels of
862 magnification to identify analysis targets and aid in locating them. Post-analysis imaging can
863 be used to confirm targets.
- 864 3. **SEM**: SEM imaging is a relatively fast screening tool and allows pre-identification of
865 particles of appropriate size and morphology with higher resolution than light microscopy
866 (e.g., hyphal and bacterial surfaces; filamentous vs. single cells, amorphous vs. crystalline
867 minerals). SEM images are also frequently useful to guide both pre- and post-SIMS analysis,
868 after regions with unique isotopic or molecular signatures have been identified. If necessary,
869 SEM-EDS mapping can additionally be used to identify basic elemental distribution. Low
870 voltage imaging (<5kV) typically provides better surface characterization of biological or
871 soil samples. SEM can be very useful for guiding and confirming analysis of small or
872 complex targets. SEM images are readily correlated to SIMS secondary electron images,
873 although harder to correlate to nanoSIMS CCD images.
- 874 4. **TEM, STEM and analytical TEM**^{23, 48, 63, 159, 160}: EM imaging is useful for identifying
875 ultrastructure in thin and FIB sections, but correlation with nanoSIMS is more challenging
876 than for light microscopy or SEM. Light micrographs are typically needed to help find
877 desired location on transmission electron micrographs.
- 878 5. **Atomic force microscopy (AFM)**^{94, 161}: While it has only rarely been used in combination
879 with SIMS, AFM imaging provides nanometer-scale topographic information and can be

880 performed in liquid under controlled conditions. A group in Luxemburg took the step to
881 incorporate an AFM into a NanoSIMS 50 to allow correlated height measurements without
882 exposing the sample to vacuum ¹⁶².

883 6. FISH, El-FISH and BONCAT: In 2008, several research groups independently developed
884 new approaches which combined nanoSIMS analysis with *in situ* hybridization(EL-FISH ²²,
885 SIMSISH ¹²², and HISH ²⁰); in each, a phylogenetic probe is linked to a highly electronegative
886 elemental label (fluorine, iodine, gold, selenium, or bromine) instead of the typical
887 fluorophore. These approaches enable simultaneous localization of the tag via Fluorescence
888 *in situ* hybridization (FISH) ^{163, 164} or Catalyzed Reporter Deposition-Fluorescence In Situ
889 Hybridization (CARD-FISH) ¹⁶⁵ and chemical mapping in the nanoSIMS. These approaches
890 can help overcome problems with background autofluorescence in FISH images, because
891 nanoSIMS is used to detect the elemental tag linked to the oligonucleotide probe. The key to
892 this approach is to use highly electronegative elements, such as halides, sulfur, selenium,
893 tellurium and noble metals, which can be detected with very high sensitivity (1 in 20 atoms)
894 in concert with carbon and nitrogen isotopes (for functional characterization). When
895 choosing which elemental tag to apply, care should be taken to ensure the natural background
896 of these elements in low in the sample (e.g. marine sample often have high F background).
897 To date, introducing multiple probes simultaneously (with multiple elemental tags) has
898 proven difficult. It is often possible to simply correlate fluorescent features in FISH/CARD-
899 FISH images with the isotope ratios of the same locations in nanoSIMS images^{34, 41, 54, 75, 137,}
900 ¹⁶⁶. It may be possible to use FISH-SIMS approaches in embedded samples; the work of
901 Lemaire et al ¹⁶⁷, where fixed samples were embedded in TissueTek® and then cryosectioned
902 and FISH labeled, suggests this may be possible. We caution however, that the application of
903 CARD-FISH may also reduce original cell enrichment by 60-80% for ¹³C and 30-60% for
904 ¹⁵N^{34, 136, 137}. Other molecular tagging methods (e.g. BONCAT) may also be combined with
905 nanoSIP studies, particularly for targeting active cells^{92, 168}.

906 7. Synchrotron imaging (e.g. STXM and NEXAFS) ^{87, 169-171}: Spectroscopic techniques allow
907 precise, quantitative measurement of molecular and isotopic patterns in an undisturbed
908 sample, at high resolution, and may be particularly useful for imaging of microbial
909 populations in mineral matrices such as soils and sediments. Scanning Transmission X-ray
910 Microscopy (STXM) can map organic C distribution, image associations of organics with
911 specific mineral types, and has been used to trace organic matter of differing origins into the
912 soil matrix ^{172, 173}. Research at LLNL shows that nanoSIMS and STXM are quite synergistic,
913 have similar resolution, and together yield data on both molecular class and elemental
914 quantity; STXM data is based on transmission (integrates total volume under the beam),
915 while nanoSIMS can characterize either surfaces or a 3-D volume depending on the method
916 of preparation and analysis conditions. NanoSIMS may be preceded by synchrotron-based x-
917 ray imaging techniques such as Scanning Transmission X-ray Microscopy (STXM) and Near
918 Edge X-ray Absorption Fine Structure (NEXAFS) to determine mineral oxidation state or
919 dominant organic constituents. Sample specimens can be mounted on silicon nitride (Si₃N₄)
920 windows or standard TEM grids without a chemical adhesive. Samples should be analyzed
921 by STXM, then coated with a thin conductive layer of gold or iridium and imaged by SEM,
922 and then by nanoSIMS.

923 8. Molecular and structural imaging (e.g. MALDI, Raman, TOF-SIMS, X-ray tomography)^{91,}
924 ^{174, 175}: Multiple imaging techniques now have the capability to map a molecular landscape
925 with subcellular resolution¹⁵⁸. While the majority of these approaches do not have the spatial

resolution of NanoSIMS, the sample preparation requirements are similar enough that a single preparation can often be imaged first for molecular distribution, and later by nanoSIMS for elemental or isotope distribution.

9. Antibody labeling or “immuno-labeling”^{176, 177}: Antibody-labeled immuno-gold tags can also be used to target the locale of specific proteins within a cell^{131, 178}. Initial mapping may be performed by TEM (**Fig. 7**) or SEM with a back scatter detector¹⁷⁹ before nanoSIMS analysis for validation and higher resolution sample mapping.

10. Microarrays (Chip-SIP)^{1, 79, 147, 180-182}: Microarrays, while less commonly used than a decade ago, are very compatible with nanoSIP studies and a creative means to measure the isotope ratios of individual biomolecules (RNA, DNA, peptides, proteins, sugars, lectins, etc). They are typically printed with microscopic spots of a biomolecule tethered to a surface (often a glass slide). Our group uses Chip-SIP¹, a technique where community RNA (extracted following an isotope tracing experiment) is hybridized to an ITO-coated slide surface derivatized with either functionalized alkylphosphonates and/or organosilanes and printed with custom 16S rRNA probes¹⁴⁷. Then, a nanoSIMS is used to quantify the amount and isotope enrichment in the hybridized RNA. Many 1000s of probes can be analyzed in a single nanoSIMS session, and like all nanoSIP studies, Chip-SIP is compatible with dual-label (i.e. ¹³C and ¹⁵N) experiments—unlike the traditional SIP method. Because of the unpredictability of probe binding, it is best to design a suite of probes for each taxon of interest. ITO slides and Si slides can also serve as a substrate for DNA deposited and hybridized, or combed DNA, as described by Cabin-Flaman et al. via ‘combing-imaging by SIMS’ (CIS)^{114, 115}.

4. Future Directions

Continued development of the NanoSIMS and related technologies, such as sample preparation and data processing, can broadly benefit systems biology research, and expand the potential for nanoSIP studies. The success of the CAMECA NanoSIMS 50 and 50L has resulted in a steady growth in the number of instruments worldwide, and most scientists with an interesting nanoSIP research problem and some funding can likely gain access to a nanoSIMS through a user proposal, a collaboration, or a fee-for-service arrangement. Other large- and small-geometry SIMS instruments can also be made to work for biological applications (e.g. 7f with hyperion; LG-SIMS; TOF-SIMS). Looking forward, SIMS instrumentation is also continuing to evolve, such as MS-MS ToF-SIMS¹⁶² and FT-ICR SIMS¹⁸³, and there are new capabilities for nanoSIMS in development that will lead to higher spatial resolution and instrument sensitivity: in-situ atomic force microscopy (AFM)¹⁶², brighter reactive ion sources¹⁸⁴, a cryogenic stage¹²⁷, and the extreme low implantation energy approach discussed above. These advances will particularly benefit those looking to analyze ever-smaller particles (e.g., viruses, DNA), and do quantitative elemental analysis where cryo-preservation is ideal (e.g., subcellular trace metals).

Advances in the technologies that support the NanoSIMS can also make a big difference in the quality and throughput of nanoSIP experiments. More studies with multi-isotope simultaneous labeling can help to distinguish overlaps in metabolism and activity (e.g., heterotrophs, autotrophs, mixotrophs⁴¹), and differential elemental stoichiometry⁴⁶. Sample preparation is a perennial challenge and any new methods that make it easier to prepare high quality samples for nanoSIMS analysis would advance the field. On the output end, data processing can be time consuming, and improved software and automation would be beneficial

971 as researchers seek larger data sets. Finally, standardization continues to be an area that needs
972 more effort, but the wide breadth of need and challenges of production are serious hurdles.

973 The nanoSIP method we describe here is a highly flexible and adaptable approach,
974 enabling the study of isotope and element exchanges and transformations at single cell and sub-
975 cellular level. In microbial assemblages, it can enable identity and function to be directly related
976 to community structure, microgradients, and substrates, and has broad relevance for microbiome
977 studies, both in nature and in laboratory, human, or industrial settings. Researchers using
978 nanoSIP and nanoSIMS can answer basic but previously inaccessible questions about where
979 organisms are within a community and what they are doing there. In many cases, these advances
980 in our scientific understanding require coordinated use of multiple approaches, including
981 sequencing and synergistic visualization techniques. After two decades of application, it is a
982 fully standard method in systems biology, microbial ecology, soils and plant research and cell
983 biology. Researchers have seen the value of this approach and are making the necessary efforts
984 to design experiments and supporting analyses to take advantage of its insights into biological
985 function.

986

987

988 **Acknowledgements**

989 We thank Ian Hutcheon, for his many years of mentorship, advice, and leadership of the LLNL
990 SIMS group. We also thank our many colleagues and collaborators, with special thanks to Steve
991 Blazewicz, Anne Dekas, Ben Jacobsen, Xavier Mayali, Erin Nuccio, Rhona Stuart, and Dagmar
992 Woebken. Christina Ramon plays a critical role in helping to prepare and organize many of the
993 samples we have discussed. This work was funded in part by multiple awards from the DOE
994 OBER Genomic Science program and LLNL Laboratory Directed Research and Development
995 program and performed under the auspices of the U.S. Department of Energy at Lawrence
996 Livermore National Laboratory under Contract DE-AC52-07NA27344.

999 **References**

1000

1001 1. Mayali, X., P.K. Weber, E.L. Brodie, S. Mabery, P.D. Hoeprich and J. Pett-Ridge, *High-*
1002 *throughput isotopic analysis of RNA microarrays to quantify microbial resource use.*
1003 *ISME J*, 2012. **6**(6): p. 1210-1221.

1004 2. Adamczyk, J., M. Hesselsoe, N. Iversen, M. Horn, A. Lehner, P.H. Nielsen, M. Schloter,
1005 P. Roslev and M. Wagner, *The Isotope Array, a New Tool That Employs Substrate-*
1006 *Mediated Labeling of rRNA for Determination of Microbial Community Structure and*
1007 *Function*. *Appl. Environ. Microbiol.*, 2003. **69**(11): p. 6875-6887.

1008 3. Ouverney, C.C. and J.A. Fuhrman, *Combined Microautoradiography-16S rRNA Probe*
1009 *Technique for Determination of Radioisotope Uptake by Specific Microbial Cell Types In*
1010 *Situ*. *Appl. Environ. Microbiol.*, 1999. **65**(4): p. 1746-1752.

1011 4. Jehmlich, N., F. Schmidt, M. Taubert, J. Seifert, F. Bastida, M. von Bergen, H.-H.
1012 Richnow and C. Vogt, *Protein-based stable isotope probing*. *Nature Protocols*, 2010.
1013 **5**(12): p. 1957-1966.

1014 5. Murrell, J.C. and A.S. Whiteley, eds. *Stable Isotope Probing and Related Technologies*.
1015 2011, ASM Press: Washington, D.C. 345.

1016 6. Koch, B.J., T.A. McHugh, M. Hayer, E. Schwartz, S.J. Blazewicz, P. Dijkstra, N. van
1017 Gestel, J.C. Marks, R.L. Mau, E.M. Morrissey, J. Pett-Ridge and B.A. Hungate,
1018 *Estimating taxon-specific population dynamics in diverse microbial communities*.
1019 *Ecosphere*, 2018. **9**(1): p. e02090-15.

1020 7. Hillion, F., B. Daigne, F. Girard and G. Slodzian, *A new high performance instrument:*
1021 *the CAMECA NanoSIMS 50*, in *Secondary Ion Mass Spectrometry: SIMS IX*, A.
1022 Benninghoven, et al., Editors. 1993, John Wiley & Sons: Chichester, UK. p. 254-257.

1023 8. Ghosal, S., T.J. Leighton, K.E. Wheeler, I.D. Hutcheon and P.K. Weber, *Spatially*
1024 *resolved characterization of water and ion incorporation in Bacillus spores*. *Applied and*
1025 *environmental microbiology*, 2010. **76**(10): p. 3275-3282.

1026 9. Orphan, V.J., C.H. House, K.-U. Hinrichs, K.D. McKeegan and E.F. DeLong, *Methane-*
1027 *consuming archaea revealed by directly coupled isotopic and phylogenetic analysis*.
1028 *science*, 2001. **293**(5529): p. 484-487.

1029 10. Smart, K., M. Kilburn, C. Salter, J. Smith and C. Grovenor, *NanoSIMS and EPMA*
1030 *analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum*
1031 *lesbiacum*. *International Journal of Mass Spectrometry*, 2007. **260**(2-3): p. 107-114.

1032 11. Stadermann, F.J., R.M. Walker and E. Zinner, *Nanosims: The next generation ion probe*
1033 *for the microanalysis of extraterrestrial material*. *Meteoritics & Planetary Science*, 1999.
1034 **34**: p. A111-A112.

1035 12. Guerquin-Kern, J.-L., F. Hillion, J.-C. Madelmont, P. Labarre, J. Papon and A. Croisy,
1036 *Ultra-structural cell distribution of the melanoma marker iodobenzamide: improved*
1037 *potentiality of SIMS imaging in life sciences*. *BioMedical Engineering OnLine*, 2004: p.
1038 <http://www.biomedical-engineering-online.com/content/3/1/10>.

1039 13. Kraft, M.L., S.F. Fishel, C.G. Marxer, P.K. Weber, I.D. Hutcheon and S.G. Boxer,
1040 *Quantitative analysis of supported membrane composition using the NanoSIMS*. *Applied*
1041 *Surface Science*, 2006. **252**(19): p. 6950-6956.

1042 14. Moreau, J.W., P.K. Weber, M.C. Martin, B. Gilbert, I.D. Hutcheon and J.F. Banfield,
1043 *Extracellular proteins limit the dispersal of biogenic nanoparticles*. *Science*, 2007. **316**:
1044 p. 1600-1603.

1045 15. Peteranderl, R. and C. Lechene, *Measure of carbon and nitrogen stable isotope ratios in*
1046 *cultured cells*. *Journal of the American Society for Mass Spectrometry*, 2004. **15**(4): p.
1047 478-485.

1048 16. Wainwright, M., P.K. Weber, J.B. Smith, I.D. Hutcheon, B. Klyce, N.C.
1049 Wickramasinghe, J.V. Narlikar and P. Rajaratnam, *Studies on bacteria-like particles*
1050 *sampled from the stratosphere*. *Aerobiologia*, 2004. **20**: p. 237-240.

1051 17. Galli Marxner, C., M.L. Kraft, P.K. Weber, I. Hutcheon and S.G. Boxer, *Supported*
1052 *membrane composition analysis by secondary ion mass spectrometry with high lateral*
1053 *resolution*. *Biophys J.*, 2005. **88**: p. 2965-2975.

1054 18. Dekas, A.E., R.S. Poretsky and V.J. Orphan, *Deep-Sea Archaea Fix and Share Nitrogen*
1055 *in Methane-Consuming Microbial Consortia*. *Science*, 2009. **326**(5951): p. 422-426.

1056 19. Halm, H., N. Musat, P. Lam, R. Langlois, F. Musat, S. Peduzzi, G. Lavik, C.J. Schubert,
1057 B. Sinha, J. LaRoche and M.M.M. Kuypers, *Co-occurrence of denitrification and*
1058 *nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland)*. *Environmental*
1059 *Microbiology*, 2009. **11**(8): p. 2190-2190.

1060 20. Musat, N., H. Halm, B. Winterholler, P. Hoppe, S. Peduzzi, F. Hillion, F. Horreard, R.
1061 Amann, B.B. Jørgensen and M.M.M. Kuypers, *A single-cell view on the ecophysiology of*
1062 *anaerobic phototrophic bacteria*. *Proceedings of the National Academy of Sciences*,
1063 2008. **105**(46): p. 17861-17866.

1064 21. Quintana, C., T.D. Wu, B. Delatour, M. Dhenain, J.L. Guerquin-Kern and A. Croisy,
1065 *Morphological and chemical studies of pathological human and mice brain at the*
1066 *subcellular level: Correlation between light, electron, and NanoSIMS microscopies*.
1067 *Microscopy Research and Technique*, 2007. **70**(4): p. 281-295.

1068 22. Behrens, S., T. Losekann, J. Pett-Ridge, P.K. Weber, W. Ng, B.S. Stevenson, I.D.
1069 Hutcheon, D.A. Relman and A.M. Spormann, *Linking microbial phylogeny to metabolic*
1070 *activity at the single-cell level by using enhanced Element Labeling-catalyzed reporter*
1071 *deposition Fluorescence In Situ Hybridization (EL-FISH) and NanoSIMS*. *Applied and*
1072 *Environmental Microbiology*, 2008. **74**(10): p. 3143.

1073 23. Finzi-Hart J. Pett-Ridge, J., P. Weber, R. Popa, S.J. Fallon, T. Gunderson, I. Hutcheon,
1074 K. Nealson and D.G. Capone, *Fixation and fate of carbon and nitrogen in*
1075 *Trichodesmium IMS101 using nanometer resolution secondary ion mass spectrometry*
1076 *(NanoSIMS)*. *PNAS*, 2008. **106**: p. 6345-6350 *equal contribution.

1077 24. Lechene, C., F. Hillion, G. McMahon, D. Benson, A. Kleinfeld, J.P. Kampf, D. Distel, Y.
1078 Luyten, J. Bonventre, D. Hentschel, K. Park, S. Ito, M. Schwartz, G. Benichou and G.
1079 Slodzian, *High-resolution quantitative imaging of mammalian and bacterial cells using*
1080 *stable isotope mass spectrometry*. *Journal of Biology*, 2006. **5**(6): p. 20.

1081 25. Popa, R., P.K. Weber, J. Pett-Ridge, J.A. Finzi, S.J. Fallon, I.D. Hutcheon, K.H. Nealson
1082 and D.G. Capone, *Carbon and nitrogen fixation and metabolite exchange in and between*
1083 *individual cells of Anabaena oscillarioides*. *Isme Journal*, 2007. **1**(4): p. 354-360.

1084 26. Ghosal, S., S.J. Fallon, T. Leighton, K.E. Wheeler, I.D. Hutcheon and P.K. Weber,
1085 *Imaging and 3D elemental characterization of intact bacterial spores with high-*
1086 *resolution secondary ion mass spectrometry (NanoSIMS) depth profile analysis*.
1087 *Analytical Chemistry*, 2008. **80**(15): p. 5986-5992.

1088 27. Lechene, C.P., Y. Luyten, G. McMahon and D.L. Distel, *Quantitative imaging of*
1089 *nitrogen fixation by individual bacteria within animal cells*. *Science*, 2007. **317**: p. 1563-
1090 1566.

1091 28. Herrmann, A., K. Ritz, N. Nunan, P. Clode, J. Pett-Ridge, M. Kilburn, D. Murphy, A.
1092 O'Donnell and E. Stockdale, *Nano-scale secondary ion mass spectrometry – a new*
1093 *analytical tool in biogeochemistry and soil ecology: A review article*. *Soil Biology and*
1094 *Biochemistry*, 2007. **39**: p. 1835-1850.

1095 29. Mueller, C.W., P.K. Weber, M.R. Kilburn, C. Hoeschen, M. Kleber and J. Pett-Ridge,
1096 *Advances in the Analysis of Biogeochemical Interfaces: NanoSIMS to Investigate Soil*
1097 *Microenvironments*, in *Advances in Agronomy*, D. Sparks, Editor. 2013.

1098 30. Renslow, R.S., S.R. Lindemann, J.K. Cole, Z. Zhu and C.R. Anderton, *Quantifying*
1099 *element incorporation in multispecies biofilms using nanoscale secondary ion mass*
1100 *spectrometry image analysis*. *Biointerphases*, 2016. **11**(2): p. 02A322.

1101 31. Mayali, X., *NanoSIMS: microscale quantification of biogeochemical activity with large-*
1102 *scale impacts*. *Annual Review of Marine Science*, 2020. **12**: p. 449-467.

1103 32. Gao, D., X. Huang and Y. Tao, *A critical review of NanoSIMS in analysis of microbial*
1104 *metabolic activities at single-cell level*. *Critical reviews in biotechnology*, 2016. **36**(5): p.
1105 884-890.

1106 33. Zhao, F.-J., K.L. Moore, E. Lombi and Y.-G. Zhu, *Imaging element distribution and*
1107 *speciation in plant cells*. *Trends in plant science*, 2014. **19**(3): p. 183-192.

1108 34. Musat, N., F. Musat, P.K. Weber and J. Pett-Ridge, *Tracking microbial interactions with*
1109 *NanoSIMS*. *Current opinion in biotechnology*, 2016. **41**: p. 114-121.

1110 35. Agüi-Gonzalez, P., S. Jähne and N.T. Phan, *SIMS imaging in neurobiology and cell*
1111 *biology*. *Journal of Analytical Atomic Spectrometry*, 2019. **34**(7): p. 1355-1368.

1112 36. Boxer, S.G., M.L. Kraft and P.K. Weber, *Advances in imaging secondary ion mass*
1113 *spectrometry for biological samples*. *Annual review of biophysics*, 2009. **38**: p. 53-74.

1114 37. Nuñez, J., R. Renslow, J.B. Cliff III and C.R. Anderton, *NanoSIMS for biological*
1115 *applications: current practices and analyses*. *Biointerphases*, 2018. **13**(3): p. 03B301.

1116 38. Gorman, B.L. and M.L. Kraft, *High-Resolution Secondary Ion Mass Spectrometry*
1117 *Analysis of Cell Membranes*. 2019, ACS Publications.

1118 39. CAMECA. *NanoSIMS 50L: Scientific Publications*. Available from:
1119 <https://www.cameca.com/products/sims/nanosims>.

1120 40. Pett-Ridge, J. and P.K. Weber, *NanoSIP: NanoSIMS applications for microbial biology*,
1121 in *Microbial Systems Biology: Methods and Protocols*, A. Navid, Editor. 2012, Humana
1122 Press, **Cover Image**.

1123 41. Dekas, A.E., A.E. Parada, X. Mayali, J.A. Fuhrman, J. Wollard, P.K. Weber and J. Pett-
1124 Ridge, *Characterizing chemoautotrophy and heterotrophy in marine archaea and*
1125 *bacteria with single-cell multi-isotope nanoSIP*. *Frontiers in Microbiology*, 2019.
1126 **10**(2682).

1127 42. Chadwick, G.L., F.J. Otero, J.A. Gralnick, D.R. Bond and V.J. Orphan, *NanoSIMS*
1128 *imaging reveals metabolic stratification within current-producing biofilms*. *Proceedings*
1129 *of the National Academy of Sciences*, 2019. **116**(41): p. 20716-20724.

1130 43. Volland, J.-M., A. Schintlmeister, H. Zambalos, S. Reipert, P. Mozetič, S. Espada-
1131 Hinojosa, V. Turk, M. Wagner and M. Bright, *NanoSIMS and tissue autoradiography*
1132 *reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host*. *The*
1133 *ISME journal*, 2018. **12**(3): p. 714-727.

1134 44. Calabrese, F., I. Voloshynovska, F. Musat, M. Thullner, M. Schlömann, H.H. Richnow,
1135 J. Lambrecht, S. Müller, L.Y. Wick and N. Musat, *Quantitation and comparison of*

1136 phenotypic heterogeneity among single cells of monoclonal microbial populations.
1137 Frontiers in microbiology, 2019. **10**: p. 2814.

1138 45. Braun, P.D., H.N. Schulz-Vogt, A. Vogts and M. Nausch, *Differences in the*
1139 *accumulation of phosphorus between vegetative cells and heterocysts in the*
1140 *cyanobacterium Nodularia spumigena*. Scientific reports, 2018. **8**(1): p. 1-6.

1141 46. Gross, A., Y. Lin, P.K. Weber, J. Pett-Ridge and W.L. Silver, *The role of soil redox*
1142 *conditions in microbial phosphorus cycling in humid tropical forests*. Ecology, 2020.
1143 **101**(2): p. e02928.

1144 47. Ackerman, C.M., P.K. Weber, T. Xiao, B. Thai, T.J. Kuo, E. Zhang, J. Pett-Ridge and
1145 C.J. Chang, *Multimodal LA-ICP-MS and nanoSIMS imaging enables copper mapping*
1146 *within photoreceptor megamitochondria in a zebrafish model of Menkes disease*.
1147 Metallomics, 2018. **10**(3): p. 474-485.

1148 48. Hong-Hermesdorf, A., M. Miethke, S.D. Gallaher, J. Kropat, S.C. Dodani, D. Barupala,
1149 J. Chan, D.W. Domaille, D.I. Shirasaki, J.A. Loo, P.K. Weber, J. Pett-Ridge, T.L.
1150 Stemmler, C.J. Chang and S.S. Merchant., *Selective sub-cellular visualization of trace*
1151 *metals identifies dynamic sites of Cu accumulation in Chlamydomonas*. Nature Chemical
1152 Biology, 2014. **10**: p. 1034-1042

1153 49. Dawson, K.S., S. Scheller, J.G. Dillon and V.J. Orphan, *Stable isotope phenotyping via*
1154 *cluster analysis of NanoSIMS data as a method for characterizing distinct microbial*
1155 *ecophysiolgies and sulfur-cycling in the environment*. Frontiers in microbiology, 2016.
1156 **7**: p. 774.

1157 50. Berry, D., E. Mader, T.K. Lee, D. Woebken, Y. Wang, D. Zhu, M. Palatinszky, A.
1158 Schintlmeister, M.C. Schmid and B.T. Hanson, *Tracking heavy water (D₂O)*
1159 *incorporation for identifying and sorting active microbial cells*. Proceedings of the
1160 National Academy of Sciences, 2015. **112**(2): p. E194-E203.

1161 51. Kopf, S.H., S.E. McGlynn, A. Green-Saxena, Y. Guan, D.K. Newman and V.J. Orphan,
1162 *Heavy water and 15 N labelling with Nano SIMS analysis reveals growth rate-dependent*
1163 *metabolic heterogeneity in chemostats*. Environmental microbiology, 2015. **17**(7): p.
1164 2542-2556.

1165 52. Ploug, H., N. Musat, B. Adam, C.L. Moraru, G. Lavik, T. Vagner, B. Bergman and
1166 M.M.M. Kuypers, *Carbon and nitrogen fluxes associated with the cyanobacterium*
1167 *Aphanizomenon sp. in the Baltic Sea*. ISME J, 2010. **4**(9): p. 1215-1223.

1168 53. Scheller, S., H. Yu, G.L. Chadwick, S.E. McGlynn and V.J. Orphan, *Artificial electron*
1169 *acceptors decouple archaeal methane oxidation from sulfate reduction*. Science, 2016.
1170 **351**(6274): p. 703-707.

1171 54. Dekas, A.E., S.A. Connan, G.L. Chadwick, E. Trembath-Reichert and V.J. Orphan,
1172 *Activity and interactions of methane seep microorganisms assessed by parallel*
1173 *transcription and FISH-NanoSIMS analyses*. ISME J, 2016. **10**(3): p. 678-692.

1174 55. Green-Saxena, A., A.E. Dekas, N.F. Dalleska and V.J. Orphan, *Nitrate-based niche*
1175 *differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of*
1176 *methane*. ISME J, 2014. **8**(1): p. 150-163.

1177 56. Milucka, J., M. Kirf, L. Lu, A. Krupke, P. Lam, S. Littmann, M.M.M. Kuypers and C.J.
1178 Schubert, *Methane oxidation coupled to oxygenic photosynthesis in anoxic waters*. ISME
1179 J, 2015. **9**(9): p. 1991-2002.

1180 57. Marlow, J.J., J.A. Steele, W. Ziebis, A.R. Thurber, L.A. Levin and V.J. Orphan,
1181 *Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep*
1182 *sea*. *Nature Communications*, 2014. **5**(1): p. 1-12.

1183 58. Oswald, K., J.S. Graf, S. Littmann, D. Tienken, A. Brand, B. Wehrli, M. Albertsen, H.
1184 Daims, M. Wagner and M.M. Kuypers, *Crenothrix are major methane consumers in*
1185 *stratified lakes*. *The ISME journal*, 2017. **11**(9): p. 2124-2140.

1186 59. Foster, R.A., M.M. Kuypers, T. Vagner, R.W. Paerl, N. Musat and J.P. Zehr, *Nitrogen*
1187 *fixation and transfer in open ocean diatom-cyanobacterial symbioses*. *Isme J*, 2011. **5**(9):
1188 p. 1484-93.

1189 60. Thompson, A.W., R.A. Foster, A. Krupke, B.J. Carter, N. Musat, D. Vaulot, M.M.M.
1190 Kuypers and J.P. Zehr, *Unicellular Cyanobacterium Symbiotic with a Single-Celled*
1191 *Eukaryotic Alga*. *Science*, 2012. **337**(6101): p. 1546-1550.

1192 61. Adam, B., I. Klawonn, J.B. Sveden, J. Bergkvist, N. Nahar, J. Walve, S. Littmann, M.J.
1193 Whitehouse, G. Lavik, M.M.M. Kuypers and H. Ploug, *N₂-fixation, ammonium release*
1194 *and N-transfer to the microbial and classical food web within a plankton community*.
1195 *ISME J*, 2016. **10**(2): p. 450-459.

1196 62. Berry, D., B. Stecher, A. Schintlmeister, J. Reichert, S. Brugiroux, B. Wild, W. Wanek,
1197 A. Richter, I. Rauch and T. Decker, *Host-compound foraging by intestinal microbiota*
1198 *revealed by single-cell stable isotope probing*. *Proceedings of the National Academy of*
1199 *Sciences*, 2013. **110**(12): p. 4720-4725.

1200 63. Carpenter, K.J., P.K. Weber, M.L. Davisson, J. Pett-Ridge, M.I. Haverty and P.J.
1201 Keeling, *Correlated SEM, FIB-SEM, TEM, and NanoSIMS Imaging of Microbes from the*
1202 *Hindgut of a Lower Termite: Methods for In Situ Functional and Ecological Studies of*
1203 *Uncultivable Microbes*. *Microscopy and Microanalysis*, 2013. **19**(06): p. 1490-1501.

1204 64. Tai, V., K.J. Carpenter, P.K. Weber, C.A. Nalepa, S.J. Perlman and P.J. Keeling, *Genome*
1205 *evolution and nitrogen-fixation in bacterial ectosymbionts of a protist inhabiting wood-*
1206 *feeding cockroaches*. *Applied and Environmental Microbiology*, 2016.
doi:10.1128/AEM.00611-16

1207 65. Ceh, J., M.R. Kilburn, J.B. Cliff, J.B. Raina, M. van Keulen and D.G. Bourne, *Nutrient*
1208 *cycling in early coral life stages: Pocillopora damicornis larvae provide their algal*
1209 *symbiont (Symbiodinium) with nitrogen acquired from bacterial associates*. *Ecology and*
1210 *Evolution*, 2013. **3**(8): p. 2393-2400.

1211 66. Pernice, M., S.R. Dunn, L. Tonk, S. Dove, I. Domart-Coulon, P. Hoppe, A.
1212 Schintlmeister, M. Wagner and A. Meibom, *A nanoscale secondary ion mass*
1213 *spectrometry study of dinoflagellate functional diversity in reef-building corals*.
1214 *Environmental microbiology*, 2015. **17**(10): p. 3570-3580.

1215 67. Wangpraseurt, D., M. Pernice, P. Guagliardo, M.R. Kilburn, P.L. Clode, L. Polerecky
1216 and M. Kühl, *Light microenvironment and single-cell gradients of carbon fixation in*
1217 *tissues of symbiont-bearing corals*. *The ISME journal*, 2016. **10**(3): p. 788-792.

1218 68. Lema, K.A., P.L. Clode, M.R. Kilburn, R. Thornton, B.L. Willis and D.G. Bourne,
1219 *Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora*
1220 *millepora*. *The ISME journal*, 2016. **10**(7): p. 1804-1808.

1221 69. Kopp, C., I. Domart-Coulon, D. Barthelemy and A. Meibom, *Nutritional input from*
1222 *dinoflagellate symbionts in reef-building corals is minimal during planula larval life*
1223 *stage*. *Science advances*, 2016. **2**(3): p. e1500681.

1225 70. Yang, S.-H., K. Tandon, C.-Y. Lu, N. Wada, C.-J. Shih, S.S.-Y. Hsiao, W.-N. Jane, T.-C.
1226 Lee, C.-M. Yang and C.-T. Liu, *Metagenomic, phylogenetic, and functional*
1227 *characterization of predominant endolithic green sulfur bacteria in the coral Isopora*
1228 *palifera*. *Microbiome*, 2019. **7**(1): p. 1-13.

1229 71. Samo, T.J., J.A. Kimbrel, D.J. Nilson, J. Pett-Ridge, P.K. Weber and X. Mayali,
1230 *Attachment between heterotrophic bacteria and microalgae influences symbiotic*
1231 *microscale interactions*. *Environmental microbiology*, 2018.

1232 72. de-Bashan, L.E., X. Mayali, B.M. Bebout, P.K. Weber, A.M. Detweiler, J.-P. Hernandez,
1233 L. Prufert-Bebout and Y. Bashan, *Establishment of stable synthetic mutualism without*
1234 *co-evolution between microalgae and bacteria demonstrated by mutual transfer of*
1235 *metabolites (NanoSIMS isotopic imaging) and persistent physical association*
1236 *(Fluorescent in situ hybridization)*. *Algal Research*, 2016. **15**: p. 179-186.

1237 73. Alonso, C., N. Musat, B. Adam, M. Kuypers and R. Amann, *HISH-SIMS analysis of*
1238 *bacterial uptake of algal-derived carbon in the Río de la Plata estuary*. *Systematic and*
1239 *applied microbiology*, 2012. **35**(8): p. 541-548.

1240 74. Leroy, C., A. Jauneau, Y. Martinez, A. Cabin-Flaman, D. Gibouin, J. Orivel and N.
1241 Séjalon-Delmas, *Exploring fungus-plant N transfer in a tripartite ant-plant-fungus*
1242 *mutualism*. *Annals of botany*, 2017. **120**(3): p. 417-426.

1243 75. Lee, J.Z., L.C. Burow, D. Woebken, R.C. Everroad, M.D. Kubo, A.M. Spormann, P.K.
1244 Weber, J. Pett-Ridge, B.M. Bebout and T.M. Hoehler, *Fermentation couples Chloroflexi*
1245 *and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats*. *Frontiers*
1246 *in Microbiology*, 2014. **5**.

1247 76. Nuccio, E.E., A. Hodge, J. Pett-Ridge, D.J. Herman, P.K. Weber and M.K. Firestone, *An*
1248 *arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and*
1249 *nitrogen cycling during litter decomposition*. *Environmental Microbiology*, 2013. **15**(6):
1250 p. 1870-1881, **Cover Image**.

1251 77. Kaiser, C., M.R. Kilburn, P.L. Clode, L. Fuchslueger, M. Koranda, J.B. Cliff, Z.M.
1252 Solaiman and D.V. Murphy, *Exploring the transfer of recent plant photosynthates to soil*
1253 *microbes: mycorrhizal pathway vs direct root exudation*. *New Phytologist*, 2015. **205**(4):
1254 p. 1537-1551.

1255 78. Kuga, Y., N. Sakamoto and H. Yurimoto, *Stable isotope cellular imaging reveals that*
1256 *both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid*
1257 *protocorms*. *New Phytologist*, 2014. **202**(2): p. 594-605.

1258 79. Pett-Ridge, J. and M.K. Firestone, *Using stable isotopes to explore root-microbe-mineral*
1259 *interactions in soil*. *Rhizosphere*, 2017. **3**: p. 244-253.

1260 80. Hestrin, R., E.C. Hammer, C.W. Mueller and J. Lehmann, *Synergies between*
1261 *mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition*.
1262 *Communications biology*, 2019. **2**(1): p. 1-9.

1263 81. Gorka, S., M. Dietrich, W. Mayerhofer, R. Gabriel, J. Wiesenbauer, V. Martin, Q. Zheng,
1264 B. Imai, J. Prommer and M. Weidinger, *Rapid transfer of plant photosynthates to soil*
1265 *bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability*.
1266 *Frontiers in microbiology*, 2019. **10**: p. 168.

1267 82. Worrich, A., H. Stryhanyuk, N. Musat, S. König, T. Banitz, F. Centler, K. Frank, M.
1268 Thullner, H. Harms and H.-H. Richnow, *Mycelium-mediated transfer of water and*
1269 *nutrients stimulates bacterial activity in dry and oligotrophic environments*. *Nature*
1270 *communications*, 2017. **8**(1): p. 1-9.

1271 83. Bougoure, J., M. Ludwig, M. Brundrett, J. Cliff, P. Clode, M. Kilburn and P. Grierson,
1272 *High-resolution secondary ion mass spectrometry analysis of carbon dynamics in*
1273 *mycorrhizas formed by an obligately myco-heterotrophic orchid.* Plant, Cell &
1274 Environment, 2014. **37**(5): p. 1223-1230.

1275 84. Hill, P.W., R. Broughton, J. Bougoure, W. Havelange, K.K. Newsham, H. Grant, D.V.
1276 Murphy, P. Clode, S. Ramayah and K.A. Marsden, *Angiosperm symbioses with non-*
1277 *mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a*
1278 *warming maritime Antarctic.* Ecology letters, 2019. **22**(12): p. 2111-2119.

1279 85. Mergelov, N., C.W. Mueller, I. Prater, I. Shorkunov, A. Dolgikh, E. Zazovskaya, V.
1280 Shishkov, V. Krupskaya, K. Abrosimov and A. Cherkinsky, *Alteration of rocks by*
1281 *endolithic organisms is one of the pathways for the beginning of soils on Earth.* Scientific
1282 reports, 2018. **8**(1): p. 1-15.

1283 86. Kopittke, P.M., R.C. Dalal, C. Hoeschen, C. Li, N.W. Menzies and C.W. Mueller, *Soil*
1284 *organic matter is stabilized by organo-mineral associations through two key processes:*
1285 *The role of the carbon to nitrogen ratio.* Geoderma, 2020. **357**: p. 113974.

1286 87. Keiluweit, M., J.J. Bougoure, L.H. Zeglin, D.D. Myrold, P.K. Weber, J. Pett-Ridge, M.
1287 Kleber and P.S. Nico, *Nano-scale investigation of the association of microbial nitrogen*
1288 *residues with iron (hydr)oxides in a forest soil O-horizon.* Geochimica et Cosmochimica
1289 Acta, 2012. **95**(0): p. 213-226.

1290 88. Keiluweit, M., J.J. Bougoure, P.S. Nico, J. Pett-Ridge, P.K. Weber and M. Kleber,
1291 *Mineral protection of soil carbon counteracted by root exudates.* Nature Climate Change,
1292 2015. **5**(6): p. 588-595.

1293 89. Morrison, K.D., R. Misra and L.B. Williams, *Unearthing the antibacterial mechanism of*
1294 *medicinal clay: A geochemical approach to combating antibiotic resistance.* Scientific
1295 Reports, 2016. **6**: p. 19043.

1296 90. Londono, S.C., H.E. Hartnett and L.B. Williams, *Antibacterial activity of aluminum in*
1297 *clay from the Colombian Amazon.* Environmental Science & Technology, 2017. **51**(4): p.
1298 2401-2408.

1299 91. Eichorst, S.A., F. Strasser, T. Woyke, A. Schintlmeister, M. Wagner and D. Woebken,
1300 *Advancements in the application of NanoSIMS and Raman microspectroscopy to*
1301 *investigate the activity of microbial cells in soils.* FEMS Microbiology Ecology, 2015.
1302 **91**(10).

1303 92. Pasulka, A.L., K. Thamatrakoln, S.H. Kopf, Y. Guan, B. Poulos, A. Moradian, M.J.
1304 Sweredoski, S. Hess, M.B. Sullivan and K.D. Bidle, *Interrogating marine virus-host*
1305 *interactions and elemental transfer with BONCAT and nanoSIMS-based methods.*
1306 Environmental microbiology, 2018. **20**(2): p. 671-692.

1307 93. Greenwood, D.J., M.S. Dos Santos, S. Huang, M.R. Russell, L.M. Collinson, J.I.
1308 MacRae, A. West, H. Jiang and M.G. Gutierrez, *Subcellular antibiotic visualization*
1309 *reveals a dynamic drug reservoir in infected macrophages.* Science, 2019. **364**(6447): p.
1310 1279-1282.

1311 94. Gates, S.D., R.C. Condit, N. Moussatche, B.J. Stewart, A.J. Malkin and P.K. Weber,
1312 *High initial sputter rate found for vaccinia virions using isotopic labeling, nanoSIMS,*
1313 *and AFM.* Analytical chemistry, 2018. **90**(3): p. 1613-1620.

1314 95. Stuart, R.K., X. Mayali, A.A. Boaro, A. Zemla, R.C. Everroad, D. Nilson, P.K. Weber,
1315 M. Lipton, B.M. Bebout and J. Pett-Ridge, *Light Regimes Shape Utilization of*

1316 *Extracellular Organic C and N in a Cyanobacterial Biofilm.* mBio, 2016. **7**(3): p.
1317 e00650-16.

1318 96. Stuart, R.K., X. Mayali, J.Z. Lee, R.C. Everroad, M. Hwang, B.M. Bebout, P.K. Weber,
1319 J. Pett-Ridge and M.P. Thelen, *Cyanobacterial reuse of extracellular organic carbon in*
1320 *microbial mats.* ISME J, 2016. **10**(5): p. 1240-1251.

1321 97. Stuart, R.K., X. Mayali, M.P. Thelen, J. Pett-Ridge and P.K. Weber, *Measuring*
1322 *Cyanobacterial Metabolism in Biofilms with NanoSIMS Isotope Imaging and Scanning*
1323 *Electron Microscopy (SEM).* Bioprotocol, 2017. **7**: p. e2263.

1324 98. Probst, A.J., T. Weinmaier, K. Raymann, A. Perras, J.B. Emerson, T. Rattei, G. Wanner,
1325 A. Klingl, I.A. Berg, M. Yoshinaga, B. Viehweger, K.-U. Hinrichs, B.C. Thomas, S.
1326 Meck, A.K. Auerbach, M. Heise, A. Schintlmeister, M. Schmid, M. Wagner, S. Gribaldo,
1327 J.F. Banfield, and C. Moissl-Eichinger, *Biology of a widespread uncultivated archaeon*
1328 *that contributes to carbon fixation in the subsurface.* Nat Commun, 2014. **5**.

1329 99. Tveit, A.T., A.G. Hestnes, S.L. Robinson, A. Schintlmeister, S.N. Dedysh, N. Jehmlich,
1330 M. von Bergen, C. Herbold, M. Wagner and A. Richter, *Widespread soil bacterium that*
1331 *oxidizes atmospheric methane.* Proceedings of the National Academy of Sciences, 2019.
1332 **116**(17): p. 8515-8524.

1333 100. Sheik, A.R., E.E. Muller, J.-N. Audinot, L.A. Lebrun, P. Grys, C. Guignard and P.
1334 Wilmes, *In situ phenotypic heterogeneity among single cells of the filamentous bacterium*
1335 *Candidatus Microthrix parvella.* The ISME journal, 2016. **10**(5): p. 1274-1279.

1336 101. Nikolic, N., F. Schreiber, D.J. Kiviet, T. Bergmiller, S. Littmann, M.M. Kuypers and M.
1337 Ackermann, *Cell-to-cell variation and specialization in sugar metabolism in clonal*
1338 *bacterial populations.* PLoS genetics, 2017. **13**(12): p. e1007122.

1339 102. Gangwe Nana, G.Y., C. Ripoll, A. Cabin-Flaman, D. Gibouin, A. Delaune, L. Jannière,
1340 G. Grancher, G. Chagny, C. Loutelier-Bourhis and E. Lentzen, *Division-based, growth*
1341 *rate diversity in bacteria.* Frontiers in microbiology, 2018. **9**: p. 849.

1342 103. Zimmermann, M., S. Escrig, T. Hübschmann, M.K. Kirf, A. Brand, R.F. Inglis, N. Musat,
1343 S. Müller, A. Meibom and M. Ackermann, *Phenotypic heterogeneity in metabolic traits*
1344 *among single cells of a rare bacterial species in its natural environment quantified with a*
1345 *combination of flow cell sorting and NanoSIMS.* Frontiers in microbiology, 2015. **6**: p.
1346 243.

1347 104. Tsednee, M., M. Castruita, P.A. Salomé, A. Sharma, B.E. Lewis, S.R. Schmollinger, D.
1348 Strenkert, K. Holbrook, M.S. Otegui and K. Khatua, *Manganese co-localizes with*
1349 *calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in*
1350 *manganese-deficient conditions.* Journal of Biological Chemistry, 2019. **294**(46): p.
1351 17626-17641.

1352 105. Kessler, N., R. Armoza-Zvuloni, S. Wang, S. Basu, P.K. Weber, R.K. Stuart and Y.
1353 Shaked, *Selective collection of iron-rich dust particles by natural Trichodesmium*
1354 *colonies.* The ISME journal, 2020. **14**(1): p. 91-103.

1355 106. Newsome, L., R. Lopez Adams, H.F. Downie, K.L. Moore and J.R. Lloyd, *NanoSIMS*
1356 *imaging of extracellular electron transport processes during microbial iron (III)*
1357 *reduction.* FEMS microbiology ecology, 2018. **94**(8): p. fyy104.

1358 107. Fleming, E., T. Woyke, R. Donatello, M.M. Kuypers, A. Sczyrba, S. Littmann and D.
1359 Emerson, *Insights into the fundamental physiology of the uncultured Fe-oxidizing*
1360 *bacterium Leptothrix ochracea.* Applied and Environmental Microbiology, 2018. **84**(9).

1361 108. Stryhanyuk, H., F. Calabrese, S. Kümmel, F. Musat, H.H. Richnow and N. Musat,
1362 *Calculation of single cell assimilation rates from SIP-NanoSIMS-derived isotope ratios: a comprehensive approach*. *Frontiers in microbiology*, 2018. **9**: p. 2342.

1363 109. Arandia-Gorostidi, N., P.K. Weber, L. Alonso-Saez, X.A.G. Moran and X. Mayali,
1364 *Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment*. *ISME J*, 2017. **11**(3): p. 641-650.

1365 110. Frizz, J.F., K. Lou, H.A. Klitzing, W.P. Hanafin, V. Lizunov, R.L. Wilson, K.J.
1366 Carpenter, R. Kim, I.D. Hutzcheon and J. Zimmerberg, *Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts*. *Proceedings of the National Academy of Sciences*, 2013. **110**(8): p. E613-E622.

1367 111. Smith, N.S., R.W. Boswell, P.P. Tesch and N.P. Martin, *Rf system, magnetic filter, and high voltage isolation for an inductively coupled plasma ion source*. 2017, Google Patents.

1368 112. Smith, N., P. Tesch, N. Martin and D. Kinion, *A high brightness source for nano-probe secondary ion mass spectrometry*. *Applied surface science*, 2008. **255**(4): p. 1606-1609.

1369 113. Malherbe, J., F. Penen, M.-P. Isaure, J. Frank, G. Hause, D. Dobritzsch, E. Gontier, F.o. Horréard, F.o. Hillion and D. Schaumlöffel, *A new radio frequency plasma oxygen primary ion source on nano secondary ion mass spectrometry for improved lateral resolution and detection of electropositive elements at single cell level*. *Analytical chemistry*, 2016. **88**(14): p. 7130-7136.

1370 114. Cabin-Flaman, A., A.-F.o. Monnier, Y. Coffinier, J.-N. Audinot, D. Gibouin, T. Wirtz, R. Boukherroub, H.-N.l. Migeon, A. Bensimon and L. Jannière, *Combed single DNA molecules imaged by secondary ion mass spectrometry*. *Analytical chemistry*, 2011. **83**(18): p. 6940-6947.

1371 115. Cabin-Flaman, A., A.-F. Monnier, Y. Coffinier, J.-N. Audinot, D. Gibouin, T. Wirtz, R. Boukherroub, H.-N. Migeon, A. Bensimon and L. Jannière, *Combining combing and secondary ion mass spectrometry to study DNA on chips using ¹³C and ¹⁵N labeling*. *F1000Research*, 2016. **5**.

1372 116. Weber, P.K., G.A. Graham, N.E. Teslich, W. MoberlyChan, S. Ghosal, T.J. Leighton and K.E. Wheeler, *NanoSIMS imaging of *Bacillus* spores sectioned by Focused Ion Beam*. *Journal of Microscopy*, 2010. **238**: p. 189-199.

1373 117. Wilson, R.G., F.A. Stevie and C.W. Magee, *Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis*. 1989, New York: Wiley.

1374 118. Polerecky, L., B. Adam, J. Milucka, N. Musat, T. Vagner and M.M. Kuypers, *Look@ NanoSIMS—a tool for the analysis of nanoSIMS data in environmental microbiology*. *Environmental microbiology*, 2012. **14**(4): p. 1009-1023.

1375 119. Huang, W., K.E. Hammel, J. Hao, A. Thompson, V.I. Timokhin and S.J. Hall, *Enrichment of lignin-derived carbon in mineral-associated soil organic matter*. *Environmental science & technology*, 2019. **53**(13): p. 7522-7531.

1376 120. Whitman, T., Z. Zhu and J. Lehmann, *Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon*. *Environmental science & technology*, 2014. **48**(23): p. 13727-13734.

1377 121. Hatton, P.-J., L. Remusat, B. Zeller, E.A. Brewer and D. Derrien, *NanoSIMS investigation of glycine-derived C and N retention with soil organo-mineral associations*. *Biogeochemistry*, 2015. **125**(3): p. 303-313.

1407 122. Li, T., T.D. Wu, L. Mazeas, L. Toffin, J.L. Guerquin-Kern, G. Leblon and T. Bouchez,
1408 *Simultaneous analysis of microbial identity and function using NanoSIMS*.
1409 Environmental Microbiology, 2008. **10**(3): p. 580-588.

1410 123. Benn, P.A. and M.A. Perle, *Chapter 4. Chromosome staining and banding techniques.*, in
1411 *Human Cytogenetics: Volume I, Constitutional Analysis: A Practical Approach*, D.E.
1412 Rooney and B.H. Czepulkowski, Editors. 1992, Oxford University Press: New York.

1413 124. Latt, S.A., *Microfluorometric detection of deoxyribonucleic acid replication in human*
1414 *metaphase chromosomes*. Proc Natl Acad Sci USA, 1973. **49**: p. 3395-3399.

1415 125. Manefield, M., A.S. Whiteley, R.I. Griffiths and M.J. Bailey, *RNA stable isotope*
1416 *probing, a novel means of linking microbial community function to phylogeny*. Applied
1417 and Environmental Microbiology, 2002. **68**: p. 5367-5373.

1418 126. Radajewski, S., P. Ineson, N.R. Parekh and J. Murrell, *Stable-isotope probing as a tool in*
1419 *microbial ecology*. Nature, 2000. **403**(10): p. 646-649.

1420 127. Jensen, L.H.S., T. Cheng, F.O.V. Plane, S. Escrig, A. Comment, B. van den Brandt, B.M.
1421 H umbel and A. Meibom. *En route to ion microprobe analysis of soluble compounds at*
1422 *the single cell level: The CryoNanoSIMS*. in *European Microscopy Congress 2016: Proceedings*. 2016. Wiley Online Library.

1423 128. Lovrić, J., P. Malmberg, B.R. Johansson, J.S. Fletcher and A.G. Ewing, *Multimodal*
1424 *imaging of chemically fixed cells in preparation for NanoSIMS*. Analytical chemistry, 2016. **88**(17): p. 8841-8848.

1425 129. Gibbin, E., A. Gavish, I. Domart-Coulon, E. Kramarsky-Winter, O. Shapiro, A. Meibom
1426 and A. Vardi, *Using NanoSIMS coupled with microfluidics to visualize the early stages of*
1427 *coral infection by Vibrio coralliilyticus*. BMC microbiology, 2018. **18**(1): p. 1-10.

1428 130. Nunan, N., K. Ritz, D. Crabb, K. Harris, K. Wu, J.W. Crawford and I.M. Young,
1429 *Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin*
1430 *sections of undisturbed soil*. FEMS Microbiology Ecology, 2001. **37**(1): p. 67-77.

1431 131. Kuo, J., ed. *Electron Microscopy: Methods and Protocols*. 2nd edition ed. Methods in
1432 Molecular Biology. 2007, Humana Press: Totowa, NJ.

1433 132. Tippkötter, R. and K. Ritz, *Evaluation of polyester, epoxy and acrylic resins for*
1434 *suitability in preparation of soil thin sections for in situ biological studies*. Geoderma, 1996. **69**(1-2): p. 31-57.

1435 133. Chandra, S. and G.H. Morrison, *Sample preparation of animal tissues and cell cultures*
1436 *for secondary ion mass spectrometry (SIMS) microscopy*. Biology of the Cell, 1992. **74**:
1437 p. 31-42.

1438 134. Dykstra, M.J. and L.E. Reuss, eds. *Biological Electron Microscopy: Theory, Techniques*
1439 *and Troubleshooting*. 2nd ed. 2003, Kluwer Academic/Plenum Publishers: New York.

1440 135. Echlin, P., *Low-Temperature Microscopy and Analysis*. 1992, New York: Springer.

1441 136. Musat, N., H. Stryhanyuk, P. Bombach, L. Adrian, J.-N. Audinot and H.H. Richnow, *The*
1442 *effect of FISH and CARD-FISH on the isotopic composition of ¹³C- and ¹⁵N-labeled*
1443 *Pseudomonas putida cells measured by nanoSIMS*. Systematic and Applied
1444 *Microbiology*, 2014. **37**(4): p. 267-276.

1445 137. Woebken, D., L.C. Burow, F. Behnam, X. Mayali, A. Schintlmeister, E.D. Fleming, L.
1446 Prufert-Bebout, S.W. Singer, A. Lopez Cortes, T.M. Hoehler, J. Pett-Ridge, A.M.
1447 Spormann, M. Wagner, P.K. Weber and B.M. Bebout, *Revisiting N-2 fixation in*
1448 *Guerrero Negro intertidal microbial mats with a functional single-cell approach*. Isme
1449 Journal, 2015. **9**(2): p. 485-496.

1453 138. Herrmann, A.M., P.L. Clode, I.R. Fletcher, N. Nunan, E.A. Stockdale, A.G. O'Donnell
1454 and D.V. Murphy, *A novel method for the study of the biophysical interface in soils using*
1455 *nano-scale secondary ion mass spectrometry*. *Rapid Communications in Mass*
1456 *Spectrometry*, 2007. **21**(1): p. 29-34.

1457 139. Weng, N., H. Jiang and W.-X. Wang, *In situ subcellular imaging of copper and zinc in*
1458 *contaminated oysters revealed by nanoscale secondary ion mass spectrometry*.
1459 *Environmental science & technology*, 2017. **51**(24): p. 14426-14435.

1460 140. Rogge, A., C.M. Flintrop, M.H. Iversen, I. Salter, A.A. Fong, A. Vogts and A.M. Waite,
1461 *Hard and soft plastic resin embedding for single-cell element uptake investigations of*
1462 *marine-snow-associated microorganisms using nano-scale secondary ion mass*
1463 *spectrometry*. *Limnology and Oceanography: Methods*, 2018. **16**(8): p. 484-503.

1464 141. Fike, D.A., C.L. Gammon, W. Ziebis and V.J. Orphan, *Micron-scale mapping of sulfur*
1465 *cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-*
1466 *FISH approach*. *ISME Journal*, 2008. **2**(7): p. 749-759.

1467 142. De Gregorio, B.T., R.M. Stroud, L.R. Nittler, C.M.O.D. Alexander, A.L.D. Kilcoyne and
1468 T.J. Zega, *Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2:*
1469 *Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial*
1470 *organics by electron irradiation*. *Geochimica et Cosmochimica Acta*, 2010. **74**(15): p.
1471 4454-4470.

1472 143. Lehmann, J., B.Q. Liang, D. Solomon, M. Lerotic, F. Luiza~ o, J. Kinyangi, T. Scha" fer,
1473 S. Wirick and C. Jacobsen, *Near-edge X-ray absorption fine structure (NEXAFS)*
1474 *spectroscopy for mapping nano-scale distribution of organic carbon forms in soil:*
1475 *application to black carbon particles*. *Global Biogeochemical Cycles*, 2005. **29**: p. Art.
1476 No. GB1013.

1477 144. Flynn, G.J., L.P. Keller, C. Jacobsen and S. Wirick, *An assessment of the amount and*
1478 *types of organic matter contributed to the Earth by interplanetary dust*. *Advances in*
1479 *Space Research*, 2004. **33**: p. 57-66.

1480 145. Gnaser, H., *Formation of metastable N2- and CO- anions in sputtering*. *Physical Review*
1481 *A*, 1997. **56**(4): p. R2518.

1482 146. McMahon, G., H.F. Saint-Cyr, C. Lechene and C.J. Unkefer, *CN- Secondary Ions Form*
1483 *by Recombination as Demonstrated Using Multi-Isotope Mass Spectrometry of 13C- and*
1484 *15N-Labeled Polyglycine*. *Journal of the American Society for Mass Spectrometry*, 2006.
1485 **17**(8): p. 1181-1187.

1486 147. Mayali, X., P.K. Weber, E. Nuccio, J. Lietard, M. Somoza, S.J. Blazewicz and J. Pett-
1487 Ridge, *Chip-SIP: Stable Isotope Probing Analyzed with rRNA-Targeted Microarrays and*
1488 *NanoSIMS*, in *Stable Isotope Probing*. 2019, Springer. p. 71-87.

1489 148. Gnaser, H., *Singly-and doubly-negative carbon clusters in sputtering: Energy spectra,*
1490 *abundance distributions and unimolecular fragmentation*. *Nuclear Instruments and*
1491 *Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*,
1492 **1999**. **149**(1-2): p. 38-52.

1493 149. Weber, P.K., C.R. Bacon, I.D. Hutcheon, B.L. Ingram and J.L. Wooden, *Ion microprobe*
1494 *measurement of strontium isotopes in calcium carbonate with application to salmon*
1495 *otoliths*. *Geochimica et Cosmochimica Acta*, 2005. **69**(5): p. 1225-1239.

1496 150. Ghosal, S., S.J. Fallon, T. Leighton, K. Wheeler, I.D. Hutcheon and P.K. Weber, *Analysis*
1497 *of bacterial spore permeability to water and ions using NanoSecondary Ion Mass*

1498 151. Wolfe-Simon, F., J.S. Blum, T.R. Kulp, G.W. Gordon, S.E. Hoeft, J. Pett-Ridge, J.F.
1499 1500 Stoltz, S.M. Webb, P.K. Weber, P.C.W. Davies, A.D. Anbar and R.S. Oremland, *A*
1501 1502 *bacterium that can grow by using arsenic instead of phosphorus*. *Science*, 2011.
1503 152. Hauri, E.H., D. Papineau, J. Wang and F. Hillion, *High-precision analysis of multiple*
1504 1505 *sulfur isotopes using NanoSIMS*. *Chemical Geology*, 2016. **420**: p. 148-161.
1506 153. Chandra, S., D.R. Smith and G.H. Morrison, *Subcellular imaging by dynamic SIMS ion*
1507 1508 *microscopy*. *Anal Chem*, 2000. **72**: p. 104A - 114A.
1509 154. Guerquin-Kern, J.L., T.D. Wu, C. Quintana and A. Croisy, *Progress in analytical*
1510 1508 *imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy)*.
1511 1509 *Biochimica Et Biophysica Acta-General Subjects*, 2005. **1724**(3): p. 228-238.
1512 155. Burns, M.S., D.M. File, V. Deline and P. Galle, *Matrix effects in secondary ion mass*
1513 1511 *spectrometric analysis of biological tissue*. *Scanning electron microscopy*, 1986(Pt 4): p.
1514 1512 1277-1290.
1515 156. Harris, W.C., S. Chandra and G.H. Morrison, *Ion implantation for quantitative ion*
1516 1514 *microscopy of biological soft tissue*. *Analytical chemistry*, 1983. **55**(12): p. 1959-1963.
1517 157. Phinney, D., *Quantitative Analysis of Microstructures by Secondary Ion Mass*
1518 1516 *Spectrometry*. *Microscopy and Microanalysis*, 2006. **12**(4): p. 352.
1519 158. Decelle, J., G. Veronesi, B. Gallet, H. Stryhanyuk, P. Benettoni, M. Schmidt, R.
1520 1518 Tucoulou, M. Passarelli, S. Bohic and P. Clode, *Subcellular Chemical Imaging: New*
1521 1519 *Avenues in Cell Biology*. *Trends in Cell Biology*, 2020. **30**(3): p. 173-188.
1522 159. Penen, F., J. Malherbe, M.-P. Isaure, D. Dobritzsch, I. Bertalan, E. Gontier, P. Le
1523 1521 *Coustumer and D. Schaumlöffel, Chemical bioimaging for the subcellular localization of*
1524 1522 *trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS*. *Journal of Trace*
1525 1523 *Elements in Medicine and Biology*, 2016. **37**: p. 62-68.
1526 160. Nomaki, H., C. LeKieffre, S. Escrig, A. Meibom, S. Yagyu, E.A. Richardson, T.
1527 1525 Matsuzaki, M. Murayama, E. Geslin and J.M. Bernhard, *Innovative TEM-coupled*
1528 1526 *approaches to study foraminiferal cells*. *Marine Micropaleontology*, 2018. **138**: p. 90-
1529 1527 104.
1530 161. Kraft, M.L., P.K. Weber, M.L. Longo, I.D. Hutcheon and S.G. Boxer, *Phase separation*
1531 1529 *of lipid membranes analyzed with high-resolution secondary ion mass spectrometry*.
1532 1530 *Science*, 2006. **313**: p. 1948-1951.
1533 162. Wirtz, T., Y. Fleming, U. Gysin, T. Glatzel, U. Wegmann, E. Meyer, U. Maier and J.
1534 1532 Rychen, *Combined SIMS-SPM instrument for high sensitivity and high-resolution*
1535 1533 *elemental 3D analysis*. *Surface and interface analysis*, 2013. **45**(1): p. 513-516.
1536 163. Orphan, V.J., C.H. House, K.-U. Hinrichs, K.D. McKeegan and E.F. DeLong, *Methane-*
1537 1535 *consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis*.
1538 1536 *Science*, 2001. **293**: p. 484-487.
1539 164. Amann, R.I., L. Krumholz and D.A. Stahl, *Fluorescent-oligonucleotide probing of whole*
1540 1538 *cells for determinative, phylogenetic, and environmental studies in microbiology*. *Journal*
1541 1539 *of Bacteriology*, 1990. **172**(2): p. 762-770.
1542 165. Pernthaler, A., J. Pernthaler and R. Amann, *Fluorescence In Situ Hybridization and*
1541 *Catalyzed Reporter Deposition for the Identification of Marine Bacteria*. *Appl. Environ.*
1542 *Microbiol.*, 2002. **68**(6): p. 3094-3101.

1543 166. Woebken, D., L.C. Burow, L. Prufert-Bebout, B.M. Bebout, T.M. Hoehler, J. Pett-Ridge,
 1544 A.M. Spormann, P.K. Weber and S.W. Singer, *Identification of a novel cyanobacterial*
 1545 *group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis*. The
 1546 ISME journal, 2012. **6**(7): p. 1427-1439.

1547 167. Lemaire, R., R.I. Webb and Z. Yuan, *Micro-scale observations of the structure of aerobic*
 1548 *microbial granules used for the treatment of nutrient-rich industrial wastewater*. ISME J,
 1549 2008. **2**(5): p. 528-541.

1550 168. Hatzenpichler, R., S. Scheller, P.L. Tavormina, B.M. Babin, D.A. Tirrell and V.J.
 1551 Orphan, *In situ visualization of newly synthesized proteins in environmental microbes*
 1552 *using amino acid tagging and click chemistry*. Environmental microbiology, 2014. **16**(8):
 1553 p. 2568-2590.

1554 169. Bradley, J.P., Z.R. Dai, R. Erni, N.D. Browning, G.A. Graham, P.K. Weber, J.B. Smith,
 1555 I.D. Hutcheon, H. Ishii, S. Bajt, C. Floss, F.J. Stadermann and S. Sandford, *An*
 1556 *astronomical 2175 Å feature in interplanetary dust particles*. Science, 2005. **307**: p. 244-
 1557 247.

1558 170. Remusat, L., P.-J. Hatton, P.S. Nico, B. Zeller, M. Kleber and D. Derrien, *NanoSIMS*
 1559 *study of organic matter associated with soil aggregates: advantages, limitations, and*
 1560 *combination with STXM*. Environmental science & technology, 2012. **46**(7): p. 3943-
 1561 3949.

1562 171. De Samber, B., R. De Rycke, M. De Bruyne, M. Kienhuis, L. Sandblad, S. Bohic, P.
 1563 Cloetens, C. Urban, L. Polerecky and L. Vincze, *Effect of sample preparation techniques*
 1564 *upon single cell chemical imaging: A practical comparison between synchrotron*
 1565 *radiation based X-ray fluorescence (SR-XRF) and Nanoscopic Secondary Ion Mass*
 1566 *Spectrometry (nano-SIMS)*. Analytica Chimica Acta, 2020.

1567 172. Lehmann, J., J. Kinyangi and D. Solomon, *Organic matter stabilization in soil*
 1568 *microaggregates: implications from spatial heterogeneity of organic carbon contents and*
 1569 *carbon forms*. Biogeochemistry, 2007. **85**(1): p. 45-57.

1570 173. Wan, J., T. Tyliszczak and T.K. Tokunaga, *Organic carbon distribution, speciation, and*
 1571 *elemental correlations within soil microaggregates: applications of STXM and NEXAFS*
 1572 *spectroscopy*. 2007.

1573 174. Kopp, C., M. Wisztorski, J. Revel, M. Mehiri, V. Dani, L. Capron, D. Carette, I.
 1574 Fournier, L. Massi and D. Mouajjah, *MALDI-MS and NanoSIMS imaging techniques to*
 1575 *study cnidarian-dinoflagellate symbioses*. Zoology, 2015. **118**(2): p. 125-131.

1576 175. Schlüter, S., T. Eickhorst and C.W. Mueller, *Correlative imaging reveals holistic view of*
 1577 *soil microenvironments*. Environmental science & technology, 2018. **53**(2): p. 829-837.

1578 176. Lin, S., S. Henze, P. Lundgren, B. Bergman and E.J. Carpenter, *Whole-Cell*
 1579 *Immunolocalization of Nitrogenase in Marine Diazotrophic Cyanobacteria,*
 1580 *Trichodesmium spp.* Appl. Environ. Microbiol., 1998. **64**(8): p. 3052-3058.

1581 177. Levenson, R.M., A.D. Borowsky and M. Angelo, *Immunohistochemistry and mass*
 1582 *spectrometry for highly multiplexed cellular molecular imaging*. Laboratory
 1583 *Investigation*, 2015. **95**(4): p. 397-405.

1584 178. Singer, S.W., C.S. Chan, M.H. Hwang, A. Zemla, N.C. VerBerkmoes, R.L. Hettich, J.F.
 1585 Banfield and M.P. Thelen, *Characterization of Cytochrome579, an Unusual Cytochrome*
 1586 *Isolated from an Iron-Oxidizing Microbial Community*. Applied and Environmental
 1587 Microbiology, 2008. **74**: p. 4454-4462.

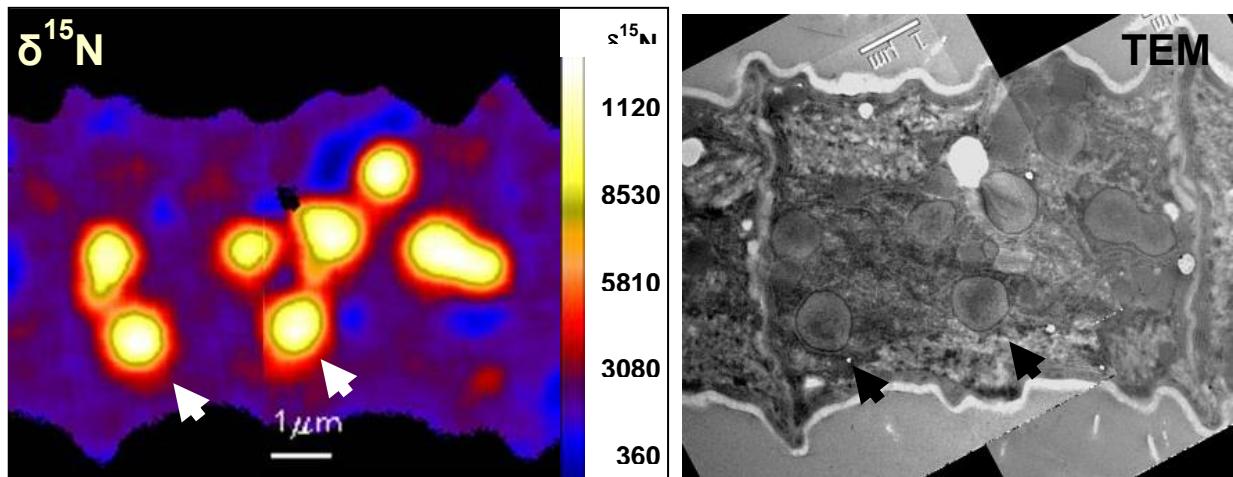
1588 179. Gerard, E., F. Guyot, P. Philippot and P. Lopez-Garcia, *Fluorescence in situ*
1589 *hybridization coupled to ultra small immunogold detection to identify prokaryotic cells*
1590 *using transmission and scanning electron microscopy*. Journal of Microbiological
1591 Methods, 2005. **63**: p. 20-28.

1592 180. Mayali, X., P.K. Weber, S. Mabery and J. Pett-Ridge, *Phylogenetic patterns in the*
1593 *microbial response to resource availability: amino acid incorporation in San Francisco*
1594 *Bay*. PlosOne, 2014. **9**(4): p. e95842.

1595 181. Mayali, X., P.K. Weber and J. Pett-Ridge, *Taxon-specific C:N relative use efficiency for*
1596 *amino acids in an estuarine community*. FEMS Microbiology Ecology, 2013. **83**(2): p.
1597 402-412.

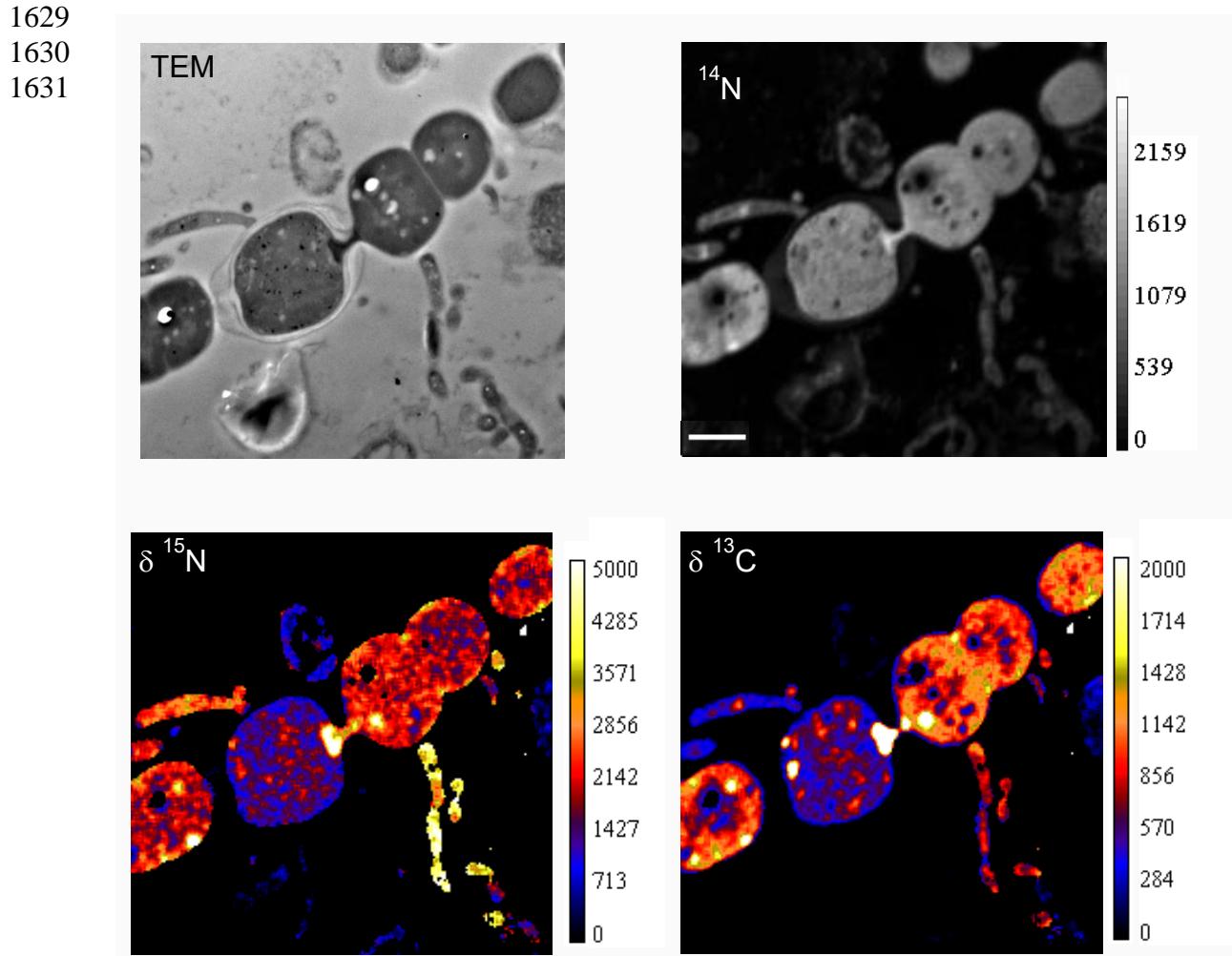
1598 182. Bryson, S., Z. Li, F. Chavez, P.K. Weber, J. Pett-Ridge, R.L. Hettich, C. Pan, X. Mayali
1599 and R.S. Mueller, *Phylogenetically conserved resource partitioning in the coastal*
1600 *microbial loop*. The ISME journal, 2017. **11**(12): p. 2781-2792.

1601 183. Smith, D.F., A. Kiss, F.E. Leach, E.W. Robinson, L. Paša-Tolić and R.M. Heeren, *High*
1602 *mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry*
1603 *for biological tissue imaging*. Analytical and bioanalytical chemistry, 2013. **405**(18): p.
1604 6069-6076.

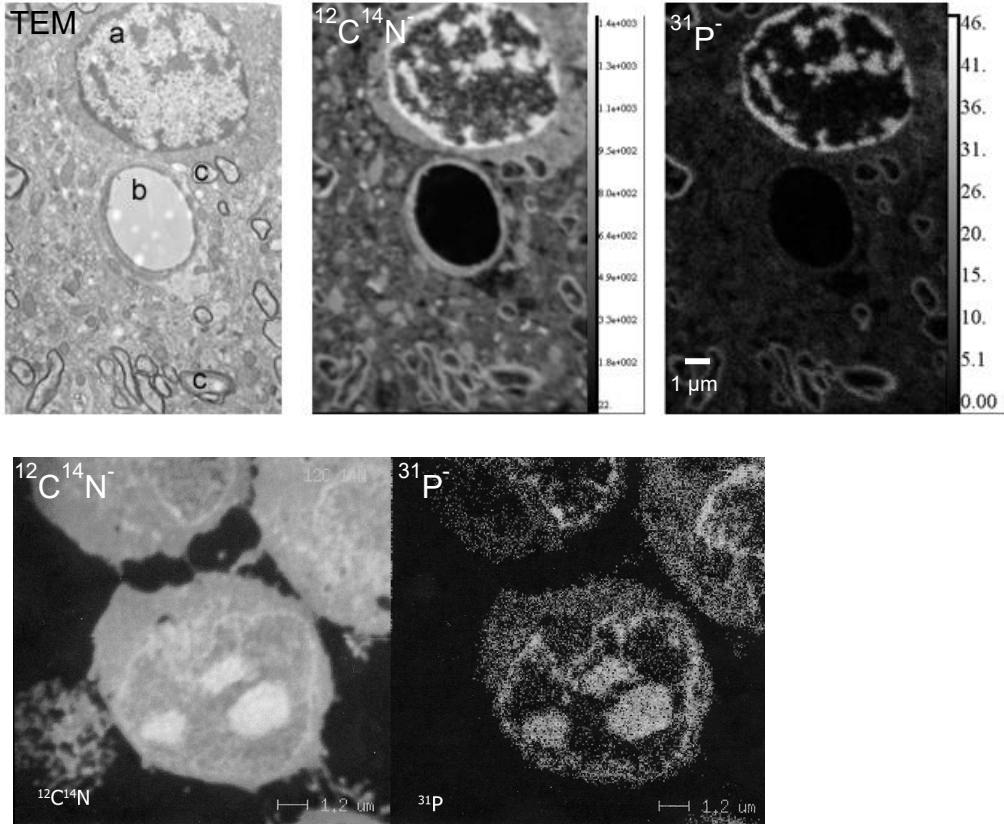

1605 184. Steele, A.V., A. Schwarzkopf, J.J. McClelland and B. Knuffman, *High-brightness Cs*
1606 *focused ion beam from a cold-atomic-beam ion source*. Nano futures, 2017. **1**(1): p.
1607 015005.

1608

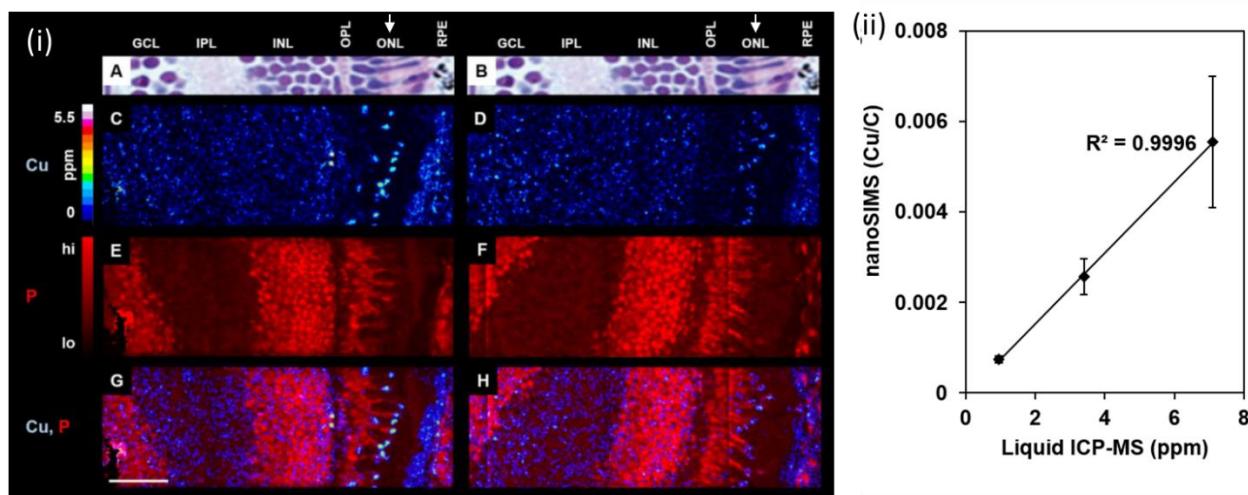
1609


1610 **Figure Captions**

1611 **Fig. 1.** Correlated NanoSIMS nitrogen isotopic composition and TEM images of a
1612 *Trichodesmium* thin-section incubated for 8 hrs with $^{13}\text{C}-\text{HCO}_3^-$ and $^{15}\text{N}-\text{N}_2$. The cyanobacterial
1613 filament was resin embedded, ultramicrotomed into 200 nm thick sections, imaged by TEM, and
1614 then analyzed by nanoSIMS. The nitrogen isotope data are shown as deviations from the natural
1615 abundance value in parts per thousand, as indicated in the legend ($\delta^{15}\text{N}$). Areas of ^{15}N
1616 enrichment indicate localization of newly fixed nitrogen, which is accumulated in cyanophycin
1617 granules (arrows) apparent in the TEM image. (Reprinted with permission from: Finzi-Hart, Pett-
1618 Ridge et al. *PNAS* 2008).


1619
1620
1621

1622 **Fig 2.** Thin section isotope imaging illustrates how newly acquired C and N is allocated to
1623 regions of active growth or maintenance. Correlated TEM and NanoSIMS images of a
1624 filamentous cyanobacterium, *Anabaena* sp. *SSM-00* (larger cells) infected by an epibiont
1625 (*Rhizobium* sp. WH2K) that attaches to the *Anabaena* heterocyst, the site of N fixation. The $\delta^{13}\text{C}$
1626 and $\delta^{15}\text{N}$ images show that newly acquired ^{13}C and ^{15}N fixed by *Anabaena* is used by the
1627 epibiont, in addition to being allocated for active growth or maintenance in the *Anabaena*. Scale
1628 bar is 2 μm . In collaboration with A. Spormann and W.O. Ng, Stanford University.



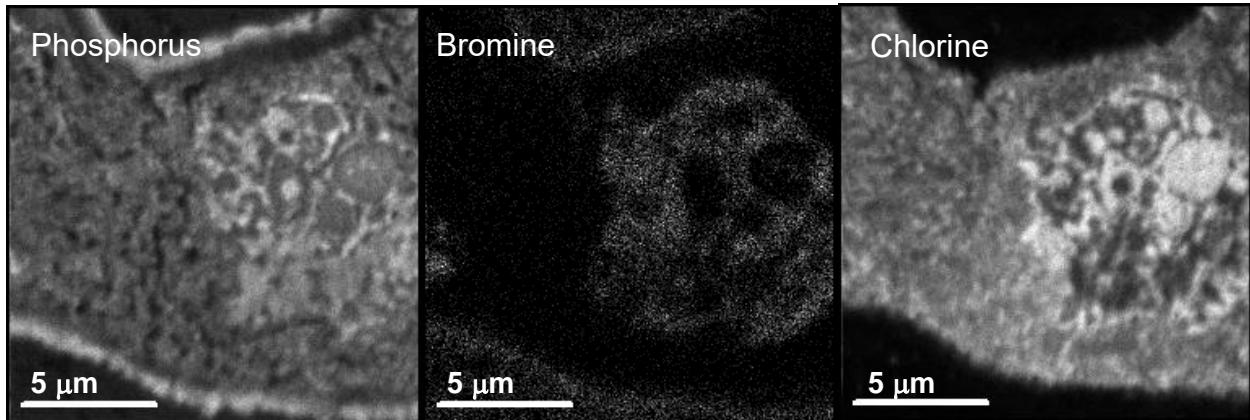
1632 **Fig. 3.** TEM and NanoSIMS images illustrating the potential for analysis of subcellular
1633 elemental distribution in resin-embedded and microtome-sectioned cells. Top row, left to right:
1634 TEM of ultramicrotome section of mouse brain tissue, (a) a glial cell nucleus, (b) a blood vessel,
1635 and (c) myelinated axons are indicated; $^{12}\text{C}^{14}\text{N}^-$ ion image; $^{31}\text{P}^-$ ion image of the same region. (In
1636 collaboration with B. Anderson, SUNY Stony Brook). Bottom row, left to right: NanoSIMS
1637 secondary ion images showing the distributions of N (measured as CN^-) and P in sectioned non-
1638 Hodgkin's lymphoma cells (Raji). (In collaboration with G. L. DeNardo, University of
1639 California, Davis.)

1640
1641

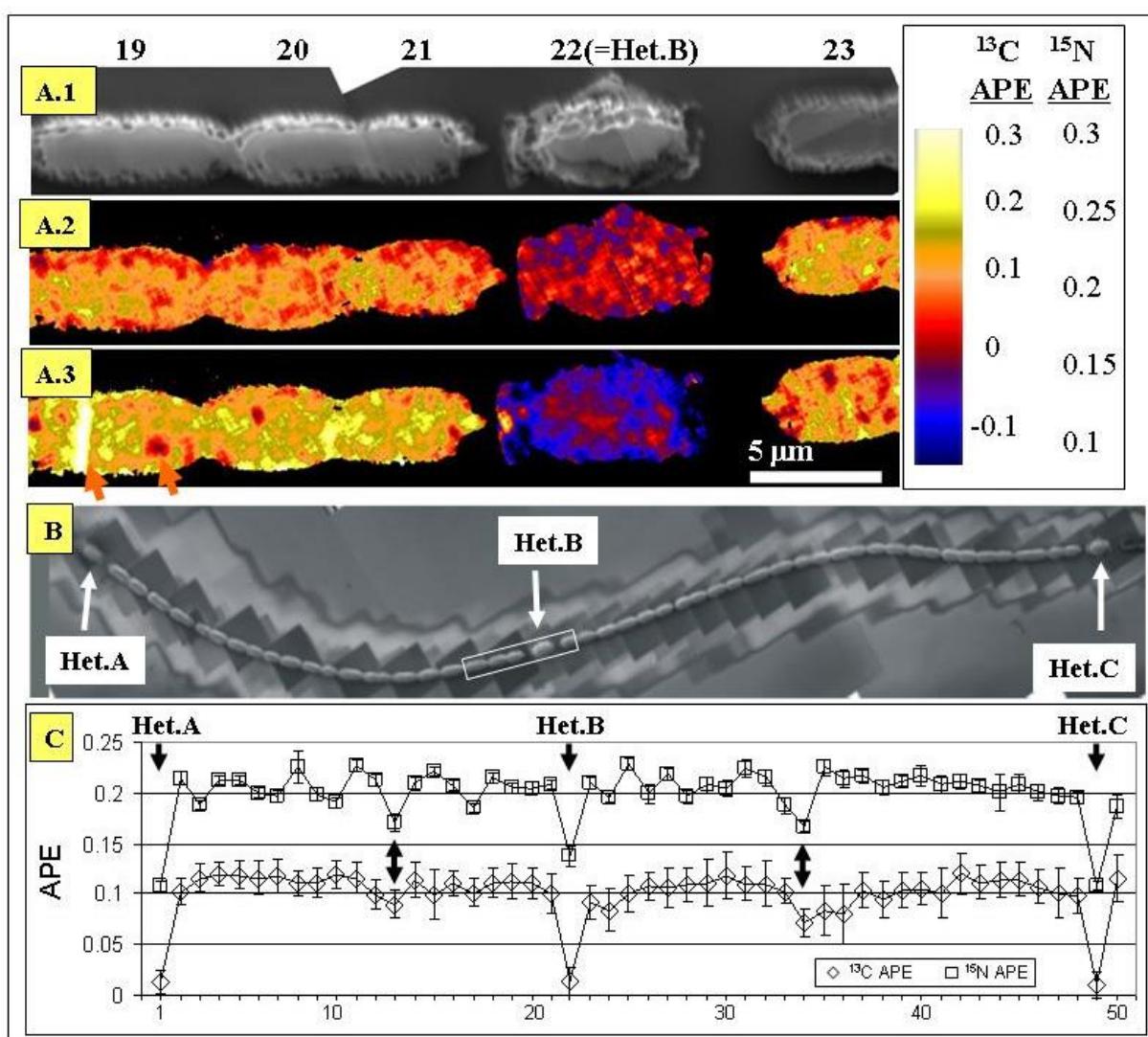
1642 **Fig. 4. (i)** Zebrafish embryo retina sections for wild type (A, C, E & G) and copper deficient
 1643 *Cal^{gw71}* embryos, (B, D, F, H). Left to right orientation is from inner to outer retina. A, B:
 1644 Anatomical nuclear staining for reference. NanoSIMS images include: C, D: copper (Cu); E, F:
 1645 phosphorous (P); G, H: overlay of copper and phosphorous images. GCL: Ganglion cell layer;
 1646 IPL: Inner plexiform layer; INL: Inner nuclear layer; OPL: Outer plexiform layer; ONL: Outer
 1647 nuclear layer; RPE: Retinal pigmented epithelium. Scale bar 25 μ m. NanoSIMS copper ion
 1648 image (D) for the copper deficient embryos show reduced copper in megamitochondria relative
 1649 to the wild type in ONL, but elevated relative to other organs (not shown). These images provide
 1650 evidence for copper prioritization for vision. **(ii)** Standard curve for copper generated by
 1651 nanoSIMS analysis of matrix-matched standards plotted against copper concentrations
 1652 determined by liquid ICP-MS. $N \geq 3$ measurements per point. Error bars represent standard
 1653 deviations. (Reprinted with permission from: Akerman et al. *Metallomics* 2018).

1654

1655

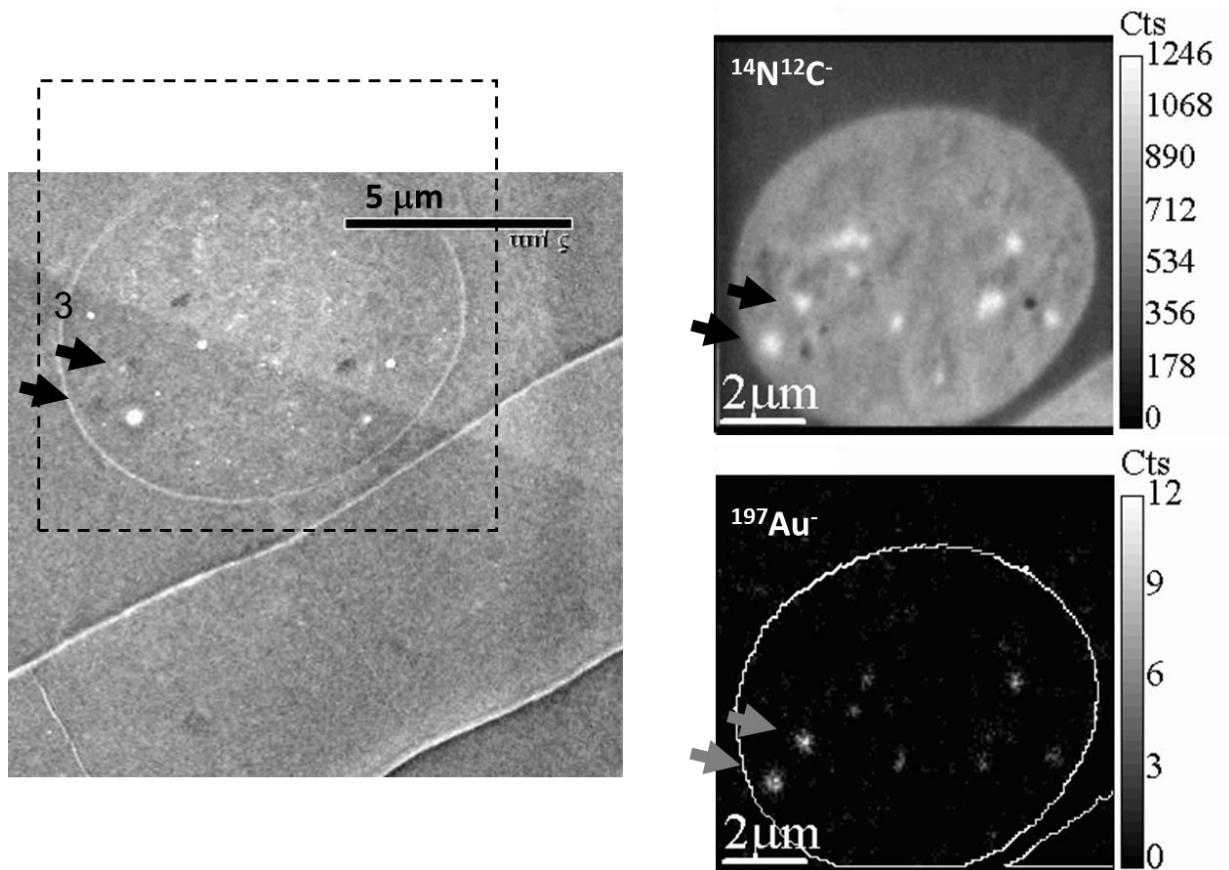

1656 **Fig. 5.** NanoSIMS ion images showing co-localization of bromine ($^{77}\text{Br}^-$) with phosphorus ($^{31}\text{P}^-$)
1657 in a HeLa cell, indicating the incorporation of BrdU into DNA. The high P signal shows the
1658 location of the DNA in the nucleus. The lack of correlation between bromine and chlorine ($^{35}\text{Cl}^-$)
1659 indicates that the distribution of bromine is not the result of being a trace constituent in the major
1660 halide-bearing molecules. Results also showed the Br accumulates in the nucleus, suggesting that
1661 the DNA-RNA hybrid was being degraded. The cells were grown on a Si wafer, treated with
1662 BrdU, fixed and dried, and analyzed in the NanoSIMS by sputtering with high beam current until
1663 the nucleus was reached. (In collaboration with L. Dugan, LLNL).

1664

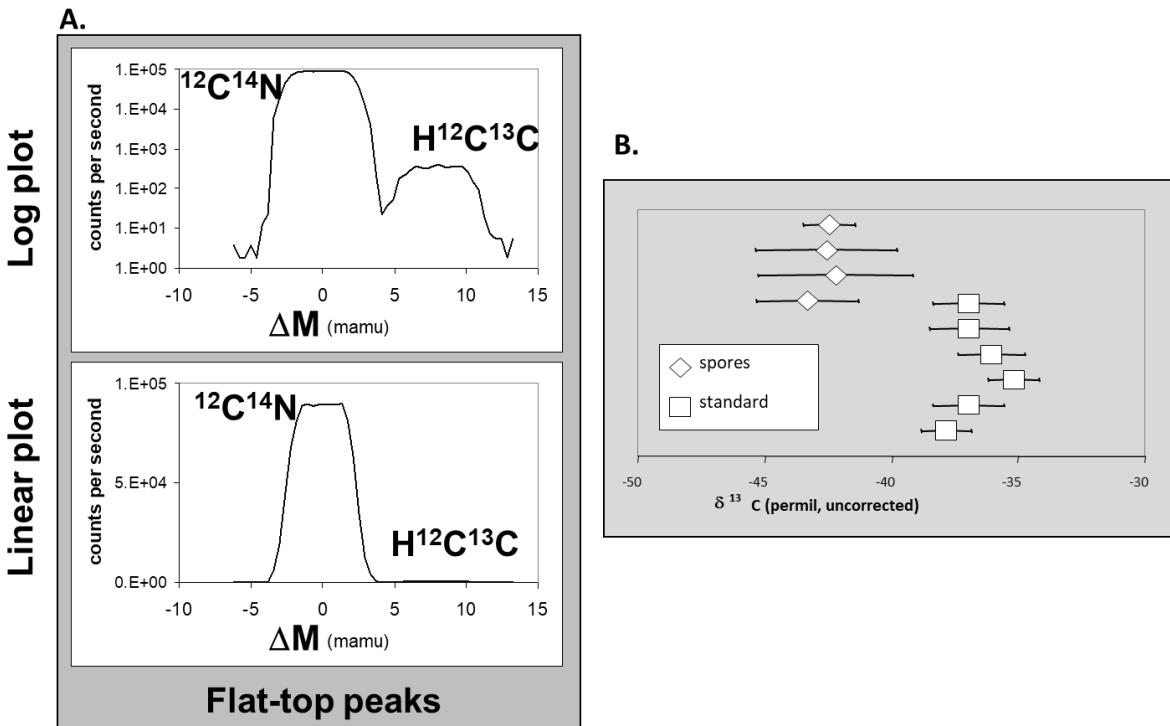

1665

1666

1667

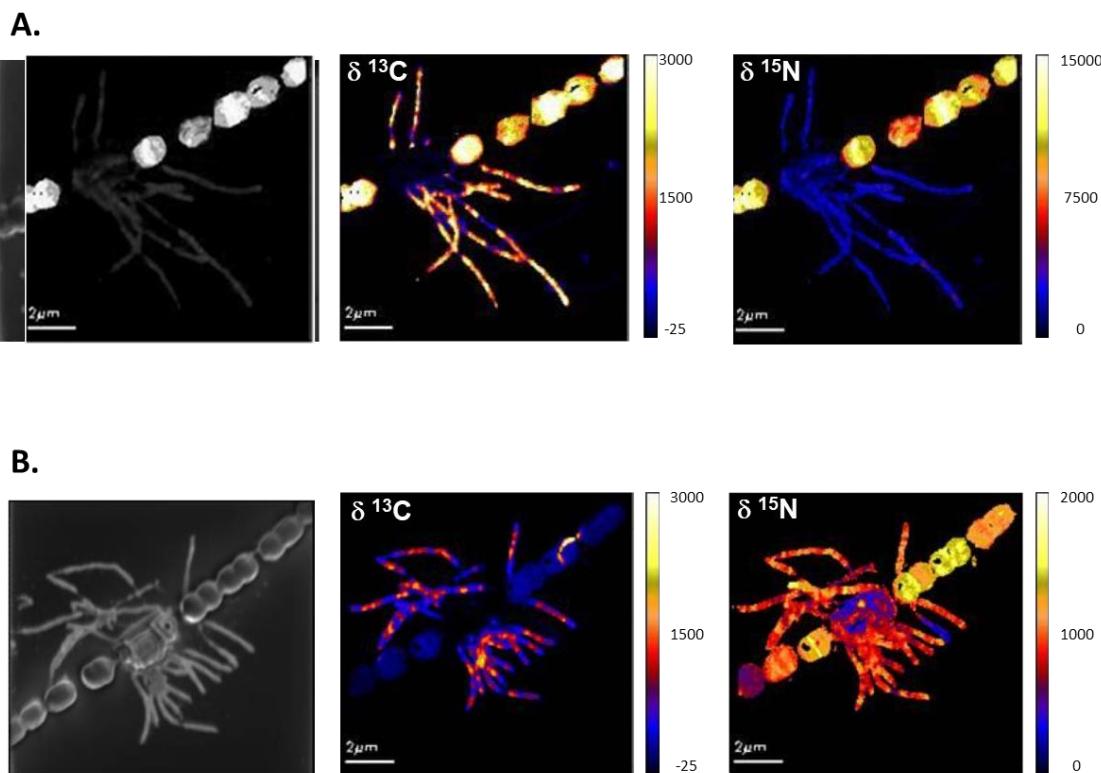


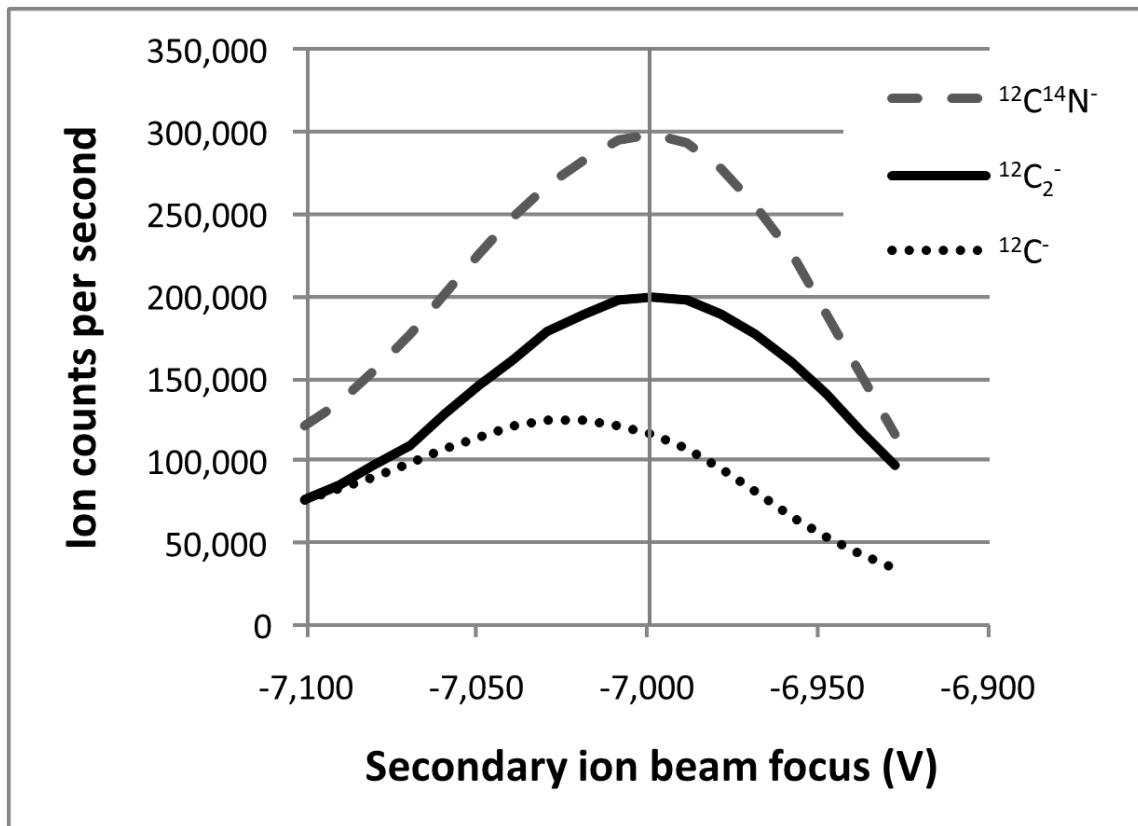
1668 **Fig. 6.** (A) Chain of 5 cells from a filament of *A. oscillarioides* analyzed with NanoSIMS after 4
 1669 hours of incubation with $\text{H}^{13}\text{CO}_3^-$ and $^{15}\text{N}_2$. Het = Heterocyst. Individual cells are numbered to
 1670 correspond with the numbering in part C. (A.1) = Image reconstruction based on secondary
 1671 electrons. (A.2) = The distribution of ^{13}C enrichment. (A.3) = The distribution of ^{15}N
 1672 enrichment. Enrichment is expressed as atom percent enrichment (APE). (B) = Post-analysis
 1673 NanoSIMS secondary electron image of a filament of 50 cells of *A. oscillarioides* showing 3
 1674 heterocysts (Popa, 2007 #1969) after 4 h of incubation with $\text{H}^{13}\text{CO}_3^-$ and $^{15}\text{N}_2$. The white box
 1675 indicates the area shown in the images A.1, A.2 and A.3. (C) = The cell-to-cell variation in ^{13}C
 1676 (diamonds) and ^{15}N enrichment (squares) along the same 50 cells filament. There are 1 to 6
 1677 independent replicate measurements per cell. Error bars represent two standard errors (Reprinted
 1678 with permission from: Popa et al. *ISME Journal* 2007).
 1679


1680
 1681
 1682

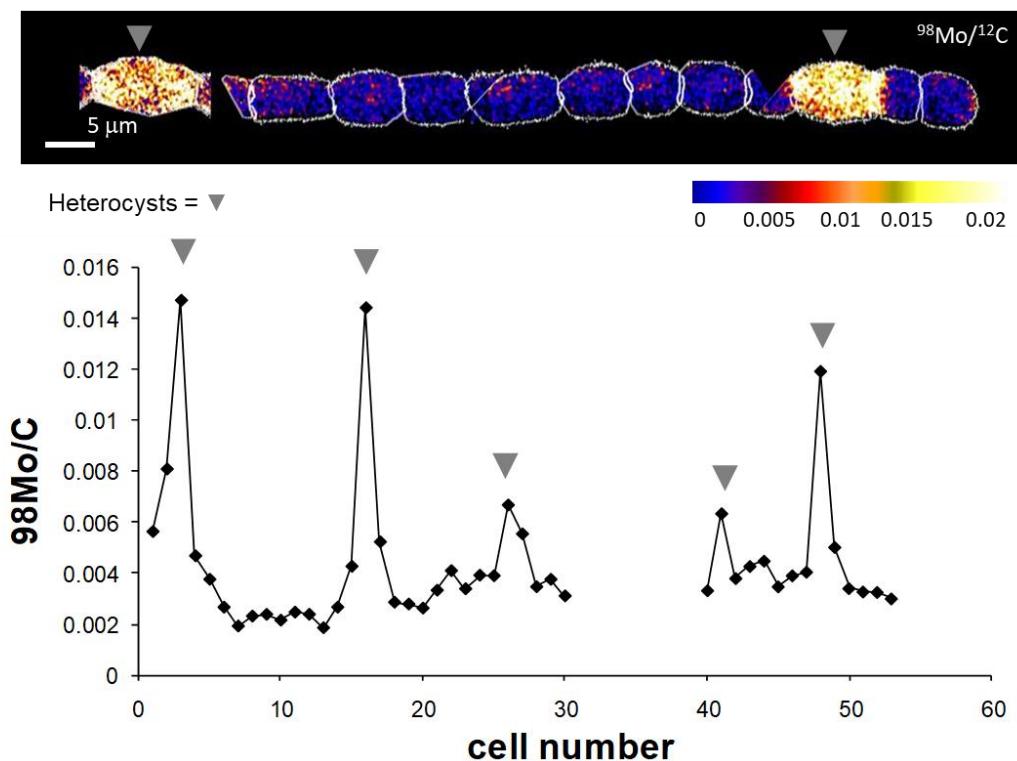
1683 **Fig. 7.** Correlated SEM and NanoSIMS micrographs showing the localization of Rubisco,
1684 labeled with 5 nm immuno-gold in thin sections of the cyanobacterium *Trichodesmium* IMS 101.
1685 The immuno-gold can be imaged in the NanoSIMS, allowing stable isotope probing and immuno-
1686 localization. Note that the gold enhances the production of CN- ions. (In collaboration with G.
1687 Sandh & B. Bergman, Stockholm University).
1688

1689
1690

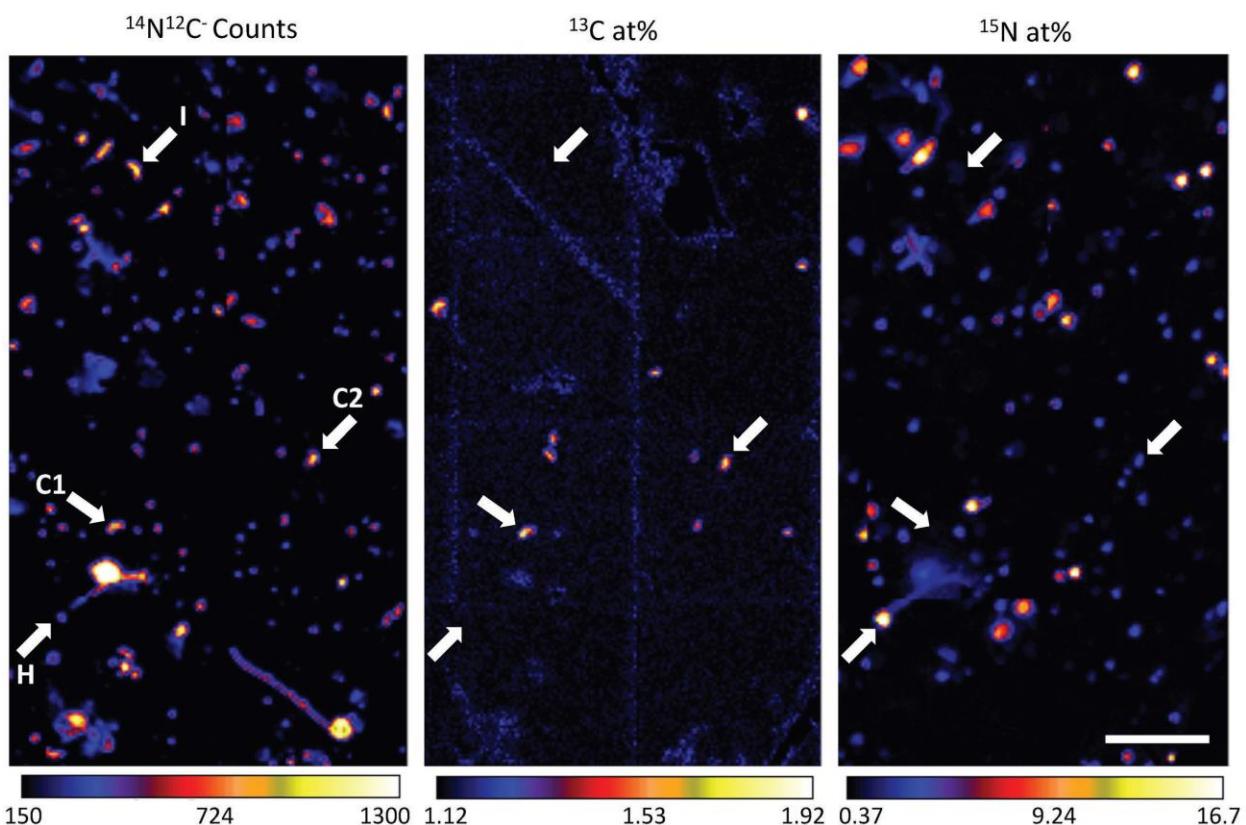

1691 **Fig. 8.** Flattop peaks and ultimate precision. (a) Logarithmic and linear plots of a mass scan at
 1692 mass 26. $^{12}\text{C}^{14}\text{N}^-$ is readily resolved from $\text{H}^{12}\text{C}^{13}\text{C}^-$, which is 0.007 amu heavier. $^{13}\text{C}_2^-$ is only
 1693 0.004 amu heavier than $^{12}\text{C}^{14}\text{N}^-$ and could be resolved, but typically is 4 to 5 orders of magnitude
 1694 less abundant, and therefore is negligible. Note that the $^{12}\text{C}^{14}\text{N}^-$ peak is flat-topped, which means
 1695 that a range of mass lines from the top of the peak can be aligned with the detector and precise
 1696 measurements still be achieved. (b) Measurement precision is affected by instrument tuning and
 1697 stability and sample characteristics, but the ultimate limit on measurement precision is the
 1698 number of ions collected for the minor species. Therefore, in this example, the precision of the
 1699 measurements of bacterial spores is lower than the precision for the graphite standard because
 1700 the spores have less mass, and therefore less $^{13}\text{C}^-$ counts.


1701
 1702
 1703

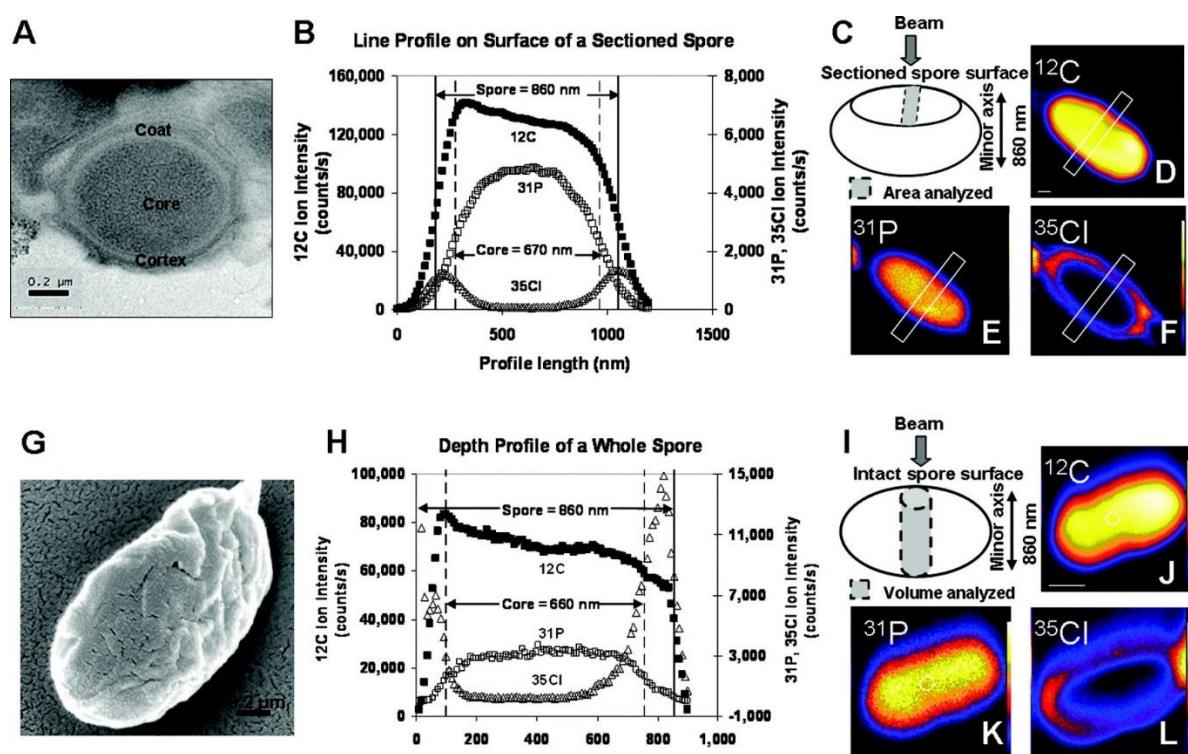
1704
1705
1706
1707
1708
1709


Fig. 9. NanoSIMS images of a filamentous cyanobacterium, *Anabaena* sp. *SSM-00* (larger cells) infected by an epibiont (*Rhizobium* sp. WH2K) that attaches to the *Anabaena* heterocyst, the site of N fixation. A and B are replicate filaments from the same culture, illustrating that cell to cell variation in isotopic enrichment may be extremely large, even while relative enrichment patterns remain consistent. (In collaboration with A. Spormann & W.O. Ng, Stanford University).

1711
1712 **Fig. 10.** Scan of the secondary ion beam focus voltage for lens E0S, showing the relative change
1713 in detected counts. The maximum transmission for $^{12}\text{C}^{14}\text{N}^-$ and $^{12}\text{C}_2^-$ coincide here, whereas the
1714 maximum transmission for $^{12}\text{C}^-$ is offset. While the $^{12}\text{C}^{14}\text{N}^-$ and $^{12}\text{C}_2^-$ scans are not always this
1715 well aligned, C is typically offset, resulting in either reduced transmission for C or CN if the two
1716 are detected simultaneously. The difference in count rate among these species varies from
1717 sample to sample, but in biological samples, CN typically has a higher count rate, and C and C_2
1718 are similar.



1720 **Fig. 11.** Molybdenum distribution in an *Anabaena oscillarioides*. Filaments were fixed in
 1721 gluteraldehyde and sputtered with O⁻ beam to a depth of 1μm on a Si planchette (wafer). Data
 1722 for multiple Mo isotopes were collected to assess for isobaric interferences. Top: ion ratio map
 1723 of ⁹⁸Mo⁻ normalized to ¹²C⁻ for quantification. A thin white line outlines each individual cell.
 1724 Grey triangles indicate heterocyst cells. Bottom: data summary for two replicate filaments.
 1725 Heterocyst cells are consistently enriched in Mo, a critical nitrogenase co-factor, suggesting
 1726 active N-fixation. Mo concentrations are estimates based on published relative sensitivity factors
 1727 (Wilson, 1989). Mean Mo concentration is 64 (±4) μg/g in heterocysts (n = 5) and 18 (±0.9) μg/g
 1728 in vegetative cells (n = 46).
 1729


1730

1731 **Fig. 12.** Representative nanoSIP images demonstrating high-throughput metabolic screening of
1732 cells filtered from Pacifica, California seawater incubated with ^{13}C -bicarbonate and ^{15}N -amino
1733 acids for 6 days. $^{14}\text{N}^{12}\text{C}^-$ ion counts reflect all carbon- and nitrogen-containing particles, ^{13}C
1734 atom percent indicates cells enriched in ^{13}C , and ^{15}N atom percent indicates cells enriched in ^{15}N .
1735 The same four cells are indicated with arrows in each panel, with letters in the first panel
1736 indicating putative metabolism: I (no enrichment; inactive cell), C1 (enrichment in only ^{13}C ;
1737 chemoautotroph), H (enrichment in only ^{15}N ; heterotroph), and C2, (enrichment in ^{13}C , minor
1738 enrichment in ^{15}N ; chemoautotroph). Scale bar is 11 μm . (Reprinted with permission from:
1739 Dekas et al. *Frontiers in Microbiology* 2019).
1740

1741

1742 **Fig. 13.** Comparison of NanoSIMS-based characterization of sectioned versus whole *Bacillus*
 1743 *thuringiensis* (*Bti*) spores. (A) TEM image of a sectioned *Bti* spore showing its layered
 1744 architecture and overall dimensions. Scale bar 200 nm. (B) Lateral profile across the surface of a
 1745 sectioned *Bti* spore showing the distribution of ^{12}C , ^{31}P , and ^{35}Cl . The dashed lines identify the
 1746 core region based on the ^{31}P profile. The whole spore is defined based on the ^{12}C profile and
 1747 identified by solid lines. Profile: length 1200 nm; width 200 nm. (C) Model representation of a
 1748 sectioned spore with the highlighted rectangular region representing the location of profile data.
 1749 (D-F) NanoSIMS secondary ion images showing the distribution of ^{12}C , ^{31}P , and ^{35}Cl across the
 1750 sectioned spore surface. Scale bar 200 nm. (G) SEM image of a whole *Bti* spore. Scale bar 200
 1751 nm. (H) Depth profile of whole spore showing the distribution of ^{12}C , ^{31}P , and ^{35}Cl as a function
 1752 of depth in the spore. (I) Model representation of a whole spore with the highlighted column
 1753 representing the location of the profile data. Profile diameter 200 nm. (J-L) NanoSIMS
 1754 secondary ion images showing the spatial distribution of ^{12}C , ^{31}P , and ^{35}Cl in the spore. Scale bar
 1755 500 nm. Both profiles were acquired with the Cs^{22} primary ion beam. (Reprinted with permission
 1756 from: Ghosal et al. *Analytical Chemistry* 2008).

1758
 1759