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Abstract.

Prescribed burning as a silvicultural tool may be effective for achieving various management
objectives, yet some practitioners have concerns about inadvertently increasing overstory tree
mortality. Using extensive data from a long-term, ongoing study in northcentral Alabama, USA,
that systematically applies a variety of thinning and prescribed burning disturbances on mixed
pine-hardwood stands, we assess survival trends for different groups of trees. The primary
research question is whether more frequent prescribed burns adversely affects overstory survival
versus infrequent or no burns; secondary questions explore whether overstory survival trends
differ based on thinning level, species group, or size class. Interest is in broad groups of trees,
not individual tree survival or mortality; consequently, survival analysis methods are used,
including nonparametric Kaplan-Meier (KM) techniques for examining single grouping factors,

and parametric accelerated failure time models for analyzing simultaneous effects of multiple
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covariates. Leveraging relatively recent methodological advances, the statistical techniques are
adjusted for interval censored data. KM survival curves showed that more frequent prescribed
fires did not result in differing survival trends. Also, trees in unthinned stands had the lowest 14-
year survival compared to thinned stands, oaks had the highest survival compared to pines and
the others species group, and the smallest size class of overstory trees had the lowest survival.
These results support managing transitional mixed pine-hardwoods using thinning and multiple

prescribed fires to restore specific species composition and structure.

Introduction.

Prescribed fire is widely used to achieve various forest management objectives (Brose, 2014;
Arthur et al., 2015), including shifting the forest species mix, promoting regeneration of fire-
tolerant species, increasing diversity of wildlife habitat, and reducing hazardous fuels (Calkin et
al., 2015; Keyser et al., 2018). Yet, despite the variety of potential benefits, prescribed burns are
not without costs, including smoke production, carbon release, risk of escape, and unintended
tree mortality (Ager et al., 2013; Calkin et al., 2015; Mann et al., 2020). A special concern is
whether prescribed burns are likely to have deleterious effects on overstory trees, which are
usually intended to be left intact and uninjured to maintain desired forest structure or preserve
future economic value (Mann et al., 2020). A further question is whether repeated burns, as
opposed to a single burn, changes the survival prospects for overstory trees. Repeated prescribed
fire is used to create and maintain the structure and composition of open forest ecosystems, but
understanding about long-term effects on overstory tree mortality is lacking (Arthur et al., 2015;

Keyser et al., 2018).
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Common high priority management goals in forests in the American South include restoring and
sustaining oak-pine (Pinus spp.) savannas, woodlands and forests for conservation of
biodiversity and viable populations of native flora and fauna (Dey et al., 2017; Dey and
Schweitzer, 2018; Johnson et al., 2019). Restoration activities that target shifting stand structure
and composition often include low-intensity prescribed fires applied to mature stands, with a
goal of altering light conditions in the understory and/or decreasing midstory stem density
(Hutchinson et al., 2005; Vander Yacht et al., 2017). However, management objectives
frequently cannot be achieved with a single burn for myriad reasons, including: a long history of
fire suppression; contemporary forest structure and composition; variations in fire intensities;
and vigorous sprouting of top-killed hardwood understories (Arthur et al., 2021). Understories
with hardwood species will sprout following top-kill by fire, and the premise is that with
repeated fires, sprouting vigor will decrease or be eliminated (Hutchinson et al., 2005; Brose et
al., 2013; Arthur et al., 2015; Schweitzer et al., 2016; Waldrop et al., 2016). Creating woodland
and savanna conditions with prescribed fire is predicated on long-term residual tree survival
under frequent fire (Dey et al., 2017). The conundrum is that repeated fires are needed to create
these conditions, while repeated fires may also contribute to greater overstory tree wounding,

stress, and mortality.

Mortality associated with frequent fire occurs primarily on small trees (Arthur et al., 2015;
Schweitzer et al., 2016; Knapp et al., 2017). Trees experience lower rates of fire induced
mortality as bark thickness — the fundamental trait conferring fire resistance (Babl et al., 2020) —

increases. Bark thickness increases with stem size, and most overstory trees will have reached
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the threshold bark thickness needed for cambium protection from the low- to moderate-intensity
fires typical of prescribed burns in the US South (Hengst and Dawson, 1994). Although most
large overstory trees remain visibly uninjured and undamaged from low-intensity dormant
season prescribed fires (Brose and Van Lear, 1998; Sutherland and Smith, 2000; Smith and
Sutherland, 2006; Mann et al., 2020), there is potential to cause damage that may include
outright mortality or wounding of the lower bole that leads to loss of volume and value to the
most valuable part of the tree (Marschall et al., 2014). Understanding long-term mortality trends
of overstory trees following repeated prescribed fires may be helpful for managers considering

this silvicultural tool.

Many studies involving fire in eastern upland systems are in hardwood-dominated forests, rather
than mixed pine-hardwood systems. Mortality effects have been studied in relationship to one to
four prescribed burns in undisturbed mature forests (Hutchinson et al., 2005; Arthur et al., 2015;
Keyser et al., 2018); to multiple burns following midstory reductions (Waldrop et al., 2016;
Iverson et al., 2017); and to single burns following canopy-level reductions (Albrecht and
McCarthy, 2006; Brose, 2010; Holzmueller et al., 2014). However, few studies have reported on
fire-induced mortality in managed mixed pine-hardwood systems (Clabo and Clatterbuck, 2015;
Schweitzer et al., 2016, 2019). Moreover, much previous research has focused on the
establishment of mixed pine-hardwood forests (Waldrop, 1989; Steinbeck and Kuers, 1996),
while relatively less addresses the management of these systems (Willis et al., 2019; Kenefic et

al., 2021).
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This paper profiles the survival experience of overstory trees (stems > 14.0 cm [5.5 in.] at 1.4 m
[4.5 ft.] above groundline; DBH) in a fire and thinning restoration study on the William F.
Bankhead National Forest (BNF) in northcentral Alabama, USA. The primary research question
is whether frequent prescribed burns affect the survival of overstory trees when compared to
infrequent burns or no burns. Important secondary questions are whether survival trends differ
according to degree of initial thinning, species group, or size class. We evaluate hypotheses that
increasing burn frequency does not lead to higher mortality a.) overall; b.) by thinning level; c.)
by species group; and d.) within size class (i.e., within size subcategories within the overstory
class). Additionally, we describe a regression-type model that is useful for estimating survival
quantiles (such as median survival) after controlling for certain commonly available covariates.
The model is useful for comparing how overstory trees with different characteristics or with
different site conditions may respond to varying frequencies of prescribed burns. Rather than a
point-in-time estimate of survival or death for an individual tree, the methodology presents

survival distributions over spans of time and for groups of trees sharing similar characteristics.

Methods.

The BNF is a 72,800-ha (180,000-ac) national forest located in northcentral Alabama. The
treatment stands, all located in the northern portion of the BNF, were selected so as to be similar
based on average stand age, composition, and size. They range in area from 8.9 to 18.6 ha (22 to
46 ac) and in age from 30 to 60 years old. The study sites are mixed pine-hardwood forests,
dominated by loblolly (Pinus taeda L.), with a smaller portion of Virginia (P. virginiana Mill.)
and shortleaf (P. echinata Mill.) pine. Upland oak species are common and include chestnut

(Quercus prinus 1..), white (Q. alba L..), northern red (Q. rubra L.), scarlet (Q. coccinea

5
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Munchh.), black, (Q. velutina Lam.) and southern red (Q. falcata Michx.) oaks. Other hardwoods
include yellow poplar (Liriodendron tulipifera L.), red maple (Acer rubrum L.), and black cherry
(Prunus serotina Ehrh.). Soil types are generally well-drained; nine soil series (Soil Survey
Staff) are represented, as follows: Muskingum (accounting for 29.9% of the tree sample size);
Enders (24.2%); Tidings-Bankhead (19.1%); Sipsey (7.7%); Pottsville (6.7%); Ruston (4.1%);

Linker (3.0%); Townley-Apison (2.7%); and Smithdale (2.6%).

Part of the original goal of the study was to test varying levels of management disturbances for
their effectiveness at shifting the species structure toward more hardwood dominance,
particularly oak (Quercus spp.) (USDA Forest Service, 2004). The nine treatment levels (eight
active treatments and one control) were the result of a 3x3 factorial design incorporating two
factors at three levels each. The three thinning levels were: no thinning, light thinning (target
residual basal area [BA] of 17.2 m?/ha [75 ft*/ac]), and heavy thinning (target residual BA of
11.5 m?/ha [50 ft*/ac]). Commercial thinning was conducted by marking from below the smaller
trees (14-15 cm DBH) and trees that appeared stressed, diseased, or damaged. Canopy trees in
the 15.2—30.5 cm (6—12 in.) DBH range were also removed to meet residual basal area targets.
Pine accounted for nearly 90 percent of the total reduction in stems, and all thinning treatments
were completed prior to burning (Schweitzer et al., 2019). Prescribed burns occurred at three
frequencies: no burns, infrequent burns (once per nine years), and frequent burns (once per three
years). A total of 49 landscape-scale prescribed fires, usually encompassing multiple treatment
stands, were conducted over 14 years. The low- to moderate-severity prescribed fires all took
place during the dormant season from January through early April and used backing fires or strip

head fires to ensure that only surface fire occurred. Four replications (blocks) of the nine
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treatment levels were initiated from 2006 to 2008, yielding 36 total treatment stands. Each
treatment stand was surveyed and marked with five permanent measurement plots of 0.08 ha (0.2
ac) each, with one centrally located and the other four positioned to capture the range of
conditions within each stand. All trees with DBH of 14.0 cm (5.5 in.) or greater were counted
and their locations recorded using GPS. Trees were measured before thinning and in the summer
following each prescribed burn. Except for dead and down trees, all surveyed trees, regardless of
treatment level received, were remeasured in the observation years for that block; hence, tree
observations occurred once every three years, consistent with the timing of the prescribed burns
for that block. The current analysis utilizes data through five burn cycles for all four blocks; thus,
frequently burned stands received five fires, while infrequently burned stands received two fires.
Further background on the study and analysis on other research questions may be found

elsewhere (Schweitzer ef al., 2016, 2019).

Measurements of DBH at the beginning of the study were used to place overstory trees into four
size classes, as follows: [14.0 cm, 19.1 cm); [19.1 cm, 24.1 cm); [24.1 cm, 29.2 cm); [29.2 cm
and greater) ([5.5 in., 7.5 in.); [7.5 in., 9.5 in); [9.5 in., 11.5 in.); [11.5 in. and greater)), where
the “[lower, upper)” notation indicates that the interval includes the lower boundary but not the
upper boundary. For this analysis, the sample of trees consists of those overstory trees present
after thinning. Although additional trees grew into the overstory class during the study (and some
recorded trees grew into larger size classes from their starting class), this analysis fixes the size
classes as recorded at initial observation. Tree species were grouped into pines, oaks, and others

both to keep the number of comparison groups manageable analytically and because there was
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special research interest in the survival experience of pines and oaks given the forest

management goal of transitioning from pine-dominant to mixed pine-hardwood.

Survival analysis refers to a class of methods directed at analyzing time-to-event data. While
these methods were developed in the biomedical research domain (Klein and Moeschberger,
2003), they have been applied in forestry and fire ecology, including in Woodall et al. (2005),
Moritz et al. (2009), Uzoh and Mori (2012), Morin et al. (2015), and Maringer et al. (2021).
Survival analysis methods are particularly suitable for the current work both because of the
nature of our underlying research questions (survival trends over spans of time, and for whole
groups rather than individual trees) and because of the structure of the empirical data. These
methods are indicated when the data consist of individual sample units for which the primary
outcome is a measure of time until some event (in this case, tree death) occurs. A further
characteristic of the data is the common occurrence of censoring, in which the exact event time is
not observed. Censoring may happen in one of several ways. In the archetypical case, known as
right censoring, the exact event time is not observed for a sample unit because either the study
ends or the sample unit drops out of the study without the event ever occuring. In left censoring,
all that is known about the event time is that it occurred before some specific observation time.
Finally, if an event is only known to have occurred between two specific time points, then the
unit is interval censored. Moritz et al. (2009) demonstrated that failing to account for censoring
may lead to biased parameter estimates. Since the trees in our sample were assessed for mortality
status every three years, those that died during the study are interval censored, while all that
survived are right censored. In this analysis, we use modified methodologies illustrated by

Gomez (2009) for interval censored data.
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We first applied survival analysis considering only one factor at a time (burn level, thin level,
species, or size class). This provided insight into the association of these factors with long-term
survival marginally over all other variables and thus provided guidance for the multivariable
model building effort described below. We used the nonparametric Kaplan-Meier (KM) survival
estimator (Kaplan and Meier, 1958), with weighted log-rank tests modified for interval-censored
data (Gémez et al., 2009) together with permutation tests (Fay and Shih, 1998) for determining
whether survival distributions for different groups varied by more than might be expected by
chance, using @ = 0.05 as the threshold for statistical significance. Next, we focused specifically
on studying interaction effects between burn level and the other three main grouping factors. To
do this, we constructed three separate accelerated failure time (AFT) models of the survival
times. The AFT model is a parametric, regression-like model used in survival analysis to enable
estimation of survival time distributions for groups conditional on included covariates. The AFT
model is a log-linear model, in which the natural logarithm of the survival time, T, is expressed

as a linear combination of the covariates and parameters and an error term:

Y=InT=u+B'Z+ oW,

where p is a baseline log survival time, Z is a matrix of covariate values for the observations, 8
is a vector of regression coefficients describing the relationships between the covariates and the
log survival time, o is the scale parameter, and W is the error term distribution. A variety of
choices may be made for the distribution of event times, 7, each of which implies a
corresponding distribution for the error term, W (Klein and Moeschberger, 2003; Gémez et al.,
2009). Three common choices are the Weibull, the log-logistic, and the log-normal distributions.

These imply, respectively, an extreme value distribution, a logistic distribution, and a normal

9
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distribution for W. We tested each of these three choices and selected the best fitting model with
respect to the Akaike Information Criterion (AIC) statistic (Akaike, 1998). At this stage of the
analysis, where we were only concerned with studying interaction effects involving burn level,
the only explanatory variables used in the AFT models were the main effects and interaction

term for burn level and one of the other three factors.

In the last stage of the analysis we again used the AFT approach, but this time attempted to
construct the most comprehensive, best fitting model while balancing that goal with the equally
important objective of interpretability. In other words, if a covariate or interaction term enhanced
model fit only trivially (in terms of AIC), we favored parsimony in the model and dropped that
term. Potential covariates included tree-level variables (size class, species group); plot-level
variables (South aspect [yes/no], Southern pine beetle [Dendroctonus frontalis Zimm.]
infestation [yes/no], average elevation, soil type, average plot slope); and stand-level variables
(block, burn level, thin level). After conducting variable selection, we used the best fitting model
to construct model-based survival curves for subgroups based on treatment factors, species, and
size, and to estimate median survival times for these groups. We used the acceleration factor
(AF), defined as the exponentiation of the estimated coefficient, [, to aid interpretation of the
AFT model parameters. The AF indicates how percentiles of survival times (such as the median
survival time) for the reference group change for trees with different values for the covariates.
AF values greater than one increase the survival times percentiles, while values less than one
decrease them. To take into account the hierarchical nature of the data (trees nested within plots,

plots nested within stands), we built the AFT model using a generalized estimating equation

10
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approach, with the 180 stand-specific plots identified as clusters, within which the individual

trees may have some correlation (Therneau, 2021).

Statistical analysis was conducted using R, version 4.1.1 (R Core Team, 2021), with particular
reliance on the survival (Therneau, 2021), interval (Fay and Shaw, 2010), and Icens (Gentleman

and Vandal, 2021) packages.

Results.

Prior to any treatment we recorded 10,241 overstory trees. Of these, 4,446 were harvested and 46
were knocked over in the thinning operations, leaving 5,749 trees included in this analysis. The
overall survival rate of these trees at 14 years after first observation was 77.5% (Table 1). The
first portion of the survival analysis focused on examining survival trends along single variables.
KM survival curves for groups of trees determined by burn level alone were extremely similar.
In other words, when not conditioning on any other tree or plot characteristics, there was no
indication of decreased overstory tree survival in plots receiving frequent burns relative to no
burns (Table 1a, Figure 1a). Trees in the no thin group had the lowest survival, while those in the
light and heavy thin groups had similar survival (Table 1b, Figure 1b). Oaks had higher overall
survival compared to pines and all other species (Table 1c, Figure 1c). The smallest size class of
overstory tree had the lowest survival, while there was very little difference between the largest

two size classes (Table 1d, Figure 1d).
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Table 1. Overstory tree counts and deaths by time and grouping factors.

TIME PERIOD 14-year

Pre-cut Cut/KO TO Died Tl Died T2 Died T3 Died T4 Died T5 Survival

TOTAL 10241 4492 5749 60 5689 156 5533 247 5286 254 5032 577 4455 77.5%
a.| Burn Noburn 3281 1473 1808 22 1786 36 1750 84 1666 68 1598 214 1384 76.5%
level Infreq. 3458 1546 1912 19 1893 79 1814 70 1744 96 1648 143 1505 78.7%
Frequent 3502 1473 2029 19 2010 41 1969 93 1876 90 1786 220 1566 77.2%

b.] Thin  No thin 3400 6 3394 34 3360 103 3257 161 3096 211 2885 501 2384 70.2%
level Light thin 3430 2088 1342 15 1327 25 1302 39 1263 31 1232 57 1175 87.6%
Heavy thin 3411 2398 1013 11 1002 28 974 47 927 12 915 19 896 88.5%

c.| Species Oaks 732 143 589 1 588 11 577 11 566 10 556 8 548 93.0%
group Pine 8729 4014 4715 53 4662 128 4534 217 4317 220 4097 547 3550 75.3%
Other 780 335 445 6 439 17 422 19 403 24 379 22 357 80.2%

d.| Size [14.0--19.1) 3602 1816 1786 34 1752 90 1662 117 1545 148 1397 278 1119 62.7%
class (cm) [19.1 -- 24.1) 3024 1480 1544 13 1531 29 1502 51 1451 50 1401 154 1247 80.8%
[24.1--29.2) 2168 838 1330 7 1323 17 1306 37 1269 33 1236 89 1147 86.2%

[29.2+) 1447 358 1089 6 1083 20 1063 42 1021 23 998 56 942 86.5%

Time TO refers to after thinning and before first fire. T1,...,T5 refer to summer following Burn #1,...,#5. After 5 time
intervals, the Infrequent Burn treatments had received 2 fires (just before T1 and T4), while the Frequent Burn
treatments had received 5 fires. Trees counted at T5 are right censored; trees counted in the “Died” columns are
interval censored. Size classes were determined based upon Pre-cut DBH only.

a Survival by Burning Level b Survival by Thinning Level
o]
@_|
o
‘; @ '; @
c o7 = o
o o
~_| ~_|
o o
— No Bum — No Thin
""" Infreq Lt Thin
g_ === Froq g_ ----- Hvy Thin
T T T T T T T T
0 5 10 15 0 5 10 15
Years from first observation (t) Years from first observation (t)
C Survival by Species Group d Survival by Size Class
o]
(=]
-
7\‘ =] 7\‘ -]
= al e o
o o
~_| Il
o o
—— Oaks — [14.0-19.1 cm")
,,,,,, Pin s [19.1-24.1 cm)
el == Othir © | T Re1292em)
== &4 -— @e2cm)

T T
5 10

Years from first observation (t)

T
0

T T T
5 10 15

Years from first observation (t)

Figure 1. Overstory tree survival by single factors (burn level, thin level, species group, and size
class). The horizontal reference line in each plot at 0.775 indicates the average 14-year survival rate
for the full cohort of overstory trees in this study.
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The permutation tests used in conjunction with the weighted log-rank tests resulted in no
significant difference in the survival distributions for burn level groups (p = 0.60), while for thin

level, species group, and size class the tests were all significant (p < 0.0001 for each factor).

The second portion of the analysis employed three separate AFT models to examin how burn
level interacted with other grouping factors to affect survival times. The interaction term in each
model was significant, although the p-values were near 0.05 (Table 2). The main effects of
thinning level, species group, and size class were also significant in each model, with p-values
much lower than 0.05 in each case. For Model 2 (testing the interaction of burn level with
species group), the main effect for burn level was also significant, with the p-value between 0.01

and 0.05; in the other two models, the burn level main effect was not statistically significant.
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Table 2. Three AFT models examining interaction terms involving Burn level.

MODEL 1: MODEL 2: MODEL 3:
Burn Level * Thin Level Burn Level * Species Group Burn Level * Size Class
Variable B  Sig. |Variable B  Sig. |Variable B Sig.
M. E.|Infreq Burn 0.12 Infreq Burn -0.54 * |Infreq Burn 0.00
Freq Burn 0.08 Freq Burn -0.60 * |[Freq Burn -0.06
Light Thin 0.57 ****|Pine -1.00 ****[19.1, 24.1 cm) 0.17 *x
Heavy Thin 0.68 ****[Other -0.76  ** |([24.1,29.2 cm) 0.31  **
[29.2 cm +) 0.37  ***
I.T. |Infreq + Light Thin -0.40 ** |Infreq + Pine 0.61 * |Infreq+[19.1,24.1cm) 0.17
Freq + Light Thin -0.11 Freq + Pine 0.66 * |[Freq+[19.1,24.1 cm) 0.24 *
Infreq + Heavy Thin -0.32 * [Infreq + Other 0.48 Infreq + [24.1,29.2 cm) 0.14
Freq + Heavy Thin  -0.45 * |Freq + Other 0.34 Freq + [24.1, 29.2 cm) 0.30  **
Infreq + [29.2 cm +) 0.04
Freq Burn +[29.2cm +) 0.24

Parameter estimates in three different models. Each model incorporates Burn Level with one other main effect,
either Thin Level (Model 1), Species Group (Model 2), or Size Class (Model 3), and the interaction of those two
variables. Parameter estimates () greater than zero indicate an effect of increasing survival times, while values
less than zero decrease survival times relative to the reference group of No Burn, and either No Thin (Model 1) or
Oaks (Model 2) or the [14.0, 19.1 cm) size class (Model 3).

Sig.: Significance. ****: p < 0.0001; ***: p <0.001; **: p<0.01; *: p < 0.05.

M.E.: Main Effects; I.T.: Interaction Terms.

The last stage of the analysis explored the simultaneous effect of multiple grouping variables and
covariates, as well as interaction effects, on the survival times. The best model contained the
treatment factors burn level and thin level, and their interaction, as well as species group, size
class, and an indicator for presence of the Southern pine beetle (Table 3). Average plot elevation,
average slope percent, south facing aspect, and soil type were found to be nonsignificant as
explanatory variables. Additional interaction terms, such as those shown in Table 2, were tested

but did not substantially improve the model fit after the inclusion of the other covariates.

14



295  Relative to oaks and keeping all other factors constant, the AFT model estimates a 46% and 35%
296  reduction in survival times for pines and other species, respectively. For size class, consistent
297  with the one factor and two factor analyses earlier, each of the larger size classes was associated
298  with increased survival times relative to the smallest size class used as the reference group. The
299 increases were 39% for the second size class, and 57% for the largest two size classes. The

300 presence of the southern pine beetle was associated with a 29% decrease! in survival times

301 (Table 3, column AF).

302
303 Table 3. Results of AFT model.
Sig.
Variable B z level AF
TRTMT. FACTORS Light Thin 0.38 4.17 HokAx 1.46
Heavy Thin 0.44 4.09 HokAx 1.56
Infreq Burn 0.09 1.26 1.09
_________________________ FreqBurn 017 256  * 119
SPECIES GRP. Pine -0.61 -4.67 Hok kK 0.54
... Other 043 34 ¥ 065
SIZE CLASS (cm) [19.1--24.1) 0.33 5.76 Hok kK 1.39
[24.1--29.2) 0.45 5.82 Hokxk 1.57
_________________________ 2924) 045 553 **** 157
PLOTFACTORS _ Beetle 035 399 **** 071
INTERACTION Light Thin + Infreq Burn -0.29 -2.19 * 0.75
TERMS Heavy Thin + Infreq Burn -0.22 -1.78 0.80
Light Thin + Freq Burn -0.20 -1.65 0.82
Heavy Thin + Freq Burn -0.52 -3.32 HEkx 0.59
Notes: Reference group = No Thin; No Burn; Oaks; [14.1 -- 19.1 cm); No Beetle.
Sig. level: ****: p <0.0001; ***: p <0.001; **: p<0.01; *: p <0.05.
AF: Acceleration Factor = exp(3)
304

! Note that pine beetle presence did not fully account for the lower survivorship of either unthinned stands
(relative to light and heavy thinned stands) or pine (relative to the other species groups). Out of 180 plots, 8 were
affected by the beetle. Repeating the analysis after excluding all 447 trees from these 8 plots resulted in estimated
coefficients of: Light Thin § = 0.42 (p < 0.001); Heavy Thin 8 = 0.50 (p < 0.001); and Pine § = —0.65 (p <
0.0001). See Supplement for full details of this model.
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To interpret the effects of the active treatments versus the control, we must add the estimated
coefficients and exponentiate the result (or multiply the appropriate AF values). All the active
management treatments increased modeled survival times. The heavy thin, no burn treatment
was associated with the largest impact on modeled survival times, increasing the distributions
56% (Table 4). The lowest impact was found in the no thin, infrequent burn (+9%) and the heavy
thin, frequent burn (+10%) treatments. As burn frequency increased, AF values increased for no
thin treatments; decreased, for heavy thin treatments; and decreased then increased for light thin

treatments.

Table 4. Acceleration factors for treatment levels.

Burn Level
Thin Level None Infrequent Frequent
None 1.00 1.09 1.19
Light 1.46 1.19 1.42
Heavy 1.56 1.36 1.10

Acceleration factors (AF) modify baseline survival functions. AF values greater than one increase expected survival
time, while values less than one decrease them. The reference group here is the no burn, no thin treatment. The
values shown in Table 4 incorporate both main and interaction effects from the AFT model in Table 3.

The AFT model enables us to estimate survival time distributions over an extended time range
and explore how those distibutions change by modifying one or more of the included covariates,
while leaving other covariates at their baseline, or reference group, settings (Figure 2). For
example, assuming no infestation of the pine beetle, the estimated median survival time (across
all treatment groups) for the largest oaks would be just less than 50 years from first observation,
while for the smallest overstory size class of pines the median survival time would be less than
20 years since first observation. The survival distributions are stretched to the right (indicating

longer survival) for oaks relative to pines and others, and for larger size classes relative to

smaller classes. Within a species group + size category, the spread of the survival distributions
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for the nine treatments always follows the pattern shown in Table 4: The heavy thin, no burn
treatment is always the rightmost curve (longest survival), while the no thin, no burn treatment is

always the leftmost curve (shortest survival).

Model-based survival time distribution functions
by size class, species group, and treatment
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Figure 2. Model-based distribution functions of survival times forecasted from AFT model in Table 3. Each
panel contains nine curves, although two pairs of curves overlap and are indistinguishable. Dotted line types
are for heavy thin, dashed for light thin, solid for no thin. Blue curves are for no burn, orange for infrequent,
red for frequent. Horizontal reference lines highlight 50" percentile of survival times. Intersecting vertical
reference lines indicate the median survival time over all nine treatments shown in each panel. Vertical axes
are cropped at the 80" percentile level to enable easier comparison of median survivals and because the AFT
model is not intended to forecast the upper tails of the distributions. Interested readers may find the full,
uncropped plots in the online Supplement file. Panels for third size class (24.1 cm—29.2 cm) are suppressed
because they were virtually identical to those for the largest size class.
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Discussion.

As part of the decision-making process for managing a forest for desired reproduction or a
specific woodland structure, forest managers have incomplete and sometimes conflicting
research outcomes to guide them regarding prescribed fire. Distilling responses of complex
systems and applying results to different systems contributes to these conflicts, as does the
scarcity of prescribed fire research over long time periods. In some systems, such as the mixed
pine-hardwoods examined here, the precise sequence and timing of treatments, including
prescribed fire, needed to achieve a specific stand composition and structure are not clearly
established. Prescribed fire is used in mixedwoods to reduce understory and midstory tree
density, but unintended overstory mortality, particularly as a result of repeated fires, is a highly
relevant concern. The analysis presented in this article relates the experience of a long-term
study in a mixedwoods system and provides insight into the ways overstory survival trends have
differed by frequency of prescribed burns, degree of prior thinning, species group, and size class.
We found that all active treatments (thinning and burning) were associated with increased
modeled survival times and that the absence of any management resulted in the lowest overstory
survival. When considering single factors, we found no change in overstory tree survival for
frequent fire compared to no fire, and oaks had higher overall survival compared to pines and

others. We also found that the smallest size class of trees had the lowest survival.

Species + size class

The three two-factor ATF models supported the single factor analysis when considering how

burn levels interacted with thinning, species groups, and sizes. Oaks had higher overall survival
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compared to pines and others, and for all species, the smallest size classes had the lowest
survival. Compared to oaks in unburned stands, pines decreased in their forecast survival under
all burn levels, but less so for infrequent and frequent fire. Direct fire mortality depends not only
on fire behavior but also on the fire-adaptation protection traits of species, which vary among
species and within species depending on size and tree development. Resistance of trees to some
stressors (e.g., fire, or insects) increases with lignification, diameter, bark thickness and other
factors associated with age (Bova and Dickinson, 2005). Larger trees usually have thicker bark
and can withstand greater heating (Hare, 1965; Hengst and Dawson, 1994), with a critical bark
thickness needed to protect the cambium from injury (Lawes et al., 2011; Hoffmann et al.,
2012). Thickness and insulation properties of the bark of southern pines contribute to its fire
resistance (Hare, 1961). Although oaks were found to be less resistant to fire than loblolly pine
(Hare, 1961), upland oak species, including white oak and northern red oak, were found to have
a linear relationship between bark thickness and DBH, and bark thickness was found to be a
good indicator of protection from lethal fire effects (Hengst and Dawson, 1994). In hardwoods,
Huddle and Pallardy (1996) found size-dependent mortality under annual fires for 40 years and
no thinning, with the smallest diameter oaks (up to 20.1 cm [7.9 in.] DBH) having low survival.
In the survival analysis conducted in this study, survival of overstory trees increased from pines,
to other species, to oaks; and as size class changed from the smallest overstory size class to the

larger size classes. These trends held regardless of burn level.

Although the AFT model presented in Table 3 does not include interaction terms between
species group and size class, we highlight that this was a subjective decision in the modeling

process. In our analyses, three out of six individual species group x size class interaction terms
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had p-values slightly below or slightly above 0.05, our threshold for statistical significance (the
other three had p-values well above 0.05). This was dependent, of course, on other covariates
included in the model. We judged that the overall model fit was not enhanced enough to justify
the inclusion of the extra parameters, because interpretation of the size class and species group
main effects became more confusing. Nevertheless, though opting for interpretability over
complexity in this particular model, and in light of the research mentioned above, it remains
important when considering prescribed fire as a tool that both species and size factors be

considered in conjunction with each other.

Some research suggests that mortality of merchantable overstory trees is minimal under a regime
of repeated, low intensity, dormant season fires (Hutchinson et al., 2005; Smith and Sutherland,
2006). Also, loss of value and volume to bole wounding and damage by decay and degrade are
minimal if damaged trees are harvested within 10 to 15 years of the fire (Marschall et al., 2014;
Mann et al., 2020). We found that within a species group and size category, the spread of the
survival time distributions for all treatments was always to the right of the control group
distribution, indicating longer survival times under active treatment scenarios. Estimated median
survival time for the largest oaks in stands with no treatment was approximately 40 years from
the first observation and increased by up to 20 years with thinning and fire. Compared to the
control group, for all species, heavy thinning alone increased survival time distributions by 56%,
heavy thinning with infrequent fire increased survival times by 36%, and heavy thinning with
frequent fire increased survival times by 10%. Our starting point of TO is not the same as age

zero, and we are not predicting tree age at death. We assessed how the differences in grouping
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factors and covariates affected survival times relative to other groups, and we found large oaks in

this study have the longest expected survival times.

Influence of thinning

Management activities often are necessary to create desired stand conditions, and the decision to
withhold disturbance also has consequences on stand dynamics. In our model-based survival
time distribution functions, the heavy thin, no burn treatment was always the rightmost curve
(longest survival), while the no thin, no burn treatment was always the leftmost curve (shortest
survival). Higher mortality rates are found in stands having higher densities (Oliver and Larson,
1990). Stand dynamics in intentionally undisturbed stands include a period of density-dependent
tree mortality driven by increased competition as stands age and grow (Oliver, 1980; Peet and
Christensen, 1987). The experience in this study was consistent with those observations;
overstory mortality was highest in non-thinned stands, most likely due to stress-induced
competition. For example, Southern pine beetle infestations were highest in the unthinned stands;
out of eight plots affected with outbreaks, six were in unthinned stands (the other two were in
lightly thinned stands). A predisposition to Southern pine beetle attack due to high stand density
can be mitigated with thinning (Ku et al., 1980; Burkhart ez al., 1986). In the no thin treatment
pine had significantly lower survival compared to the oaks and other species groups. In both the
light and heavy thinned stands, the other species group had the lowest survival, while oaks again

had the highest.
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The three non-thinned treatments had similar survival probabilities regardless of burn frequency,
most likely because the low intensity fires had negligible impact on overstory trees across all
species groups. Light thin treatments had slightly lower survival after 14 years when infrequently
burned, while survival rates for the no burn and frequent burn treatments were similar. The lower
survival in light thin stands with infrequent burns may have been due to fire behavior
differences, related to fuel load, while this behavior may have been altered (lessened) in the
heavy thin frequent burn treatments as fuel loadings were kept in balance (Schweitzer and Dey,

2021).

Because low to moderate intensity dormant season fires, the type most used by forest managers,
are limited in the size of tree (e.g., less than 10.2 cm [4 in.] DBH) that can be topkilled in the
short term, dual disturbance of canopy-level density reduction and multiple fires normally are
required for regeneration or for woodland creation (Dey et al., 2017). The intent of these
disturbances is to increase and maintain understory light levels to stimulate oak-pine
reproduction development and recruitment; reduce dense horizontal and vertical structure;
prevent dominance by red maple and other non-desirable competitive species; and to increase
cover of native woodland flora (Reich et al., 1990; Kruger and Reich, 1997; Brose and Van Lear,
1998; Arthur ef al., 2012; Kinkead et al., 2013). These conditions are also desired when
developing and sustaining woodlands (Dey et al., 2017). Survival time distributions showed that
the estimated median survival time for oaks was 25-62 years since the first observation and
increased with stem size. For all oak sizes, higher survival times were estimated under thinning
and burning treatments. Multiple fires are used to create desirable understory conditions for

woodlands, and maintaining overstory density to provide understory light conditions conducive
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to key indicator species is crucial (Dey et al., 2017). Thus, retaining larger oaks under a frequent
fire regime is warranted, as these oaks will have comparable survival to a thin-only regime with

the added benefit of restoring desirable understory vegetation.

Variable responses of forests to prescribed burning, thinning and their combination may be
attributed to myriad site factors that impact reproduction responses to disturbance (McEwan et
al., 2011; Hutchinson et al., 2012; Brose et al., 2013; Keyser et al., 2018). A shelterwood-burn
prescription may work in systems that have adequate sizes and numbers of advance oak-pine
reproduction (Brose and Van Lear, 1998; Brose et al., 1999; Dey and Fan, 2009; Brose, 2010),
while also creating open canopy conditions that mimic woodland structure. The interaction of
disturbances may be paramount. For example, after repeated fires had greatly reduced the
dominance of shade-tolerant saplings, small gaps caused by drought-induced mortality of
overstory trees facilitated the development of large oak and hickory seedlings due to increased
light and reduced understory competition (Hutchinson et al., 2012). The probability of large oak
advance reproduction occurring is higher when overstory density is less than 13.8 m%/ha
(60ft*/ac) (Larsen et al., 1997), which is commensurate with the recommended tree density and
canopy cover reduction needed to achieve open woodlands (Dey et al., 2017). Sequencing a
regeneration prescription in these mixedwoods that aims at increasing the density and dominance
of oak requires phases of management over longer time periods that are anchored in some
overstory tree density retention. Modeled estimates support greater survival times for oaks

compared to pines and other species under such sequences in this system.
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Prescribed fire as a restoration tool

Adding to the conundrum of using prescribed fire is the history of its use in pine forests to
control unwanted hardwoods, including oak (Chen et al., 1975). Despite that history, today
prescribed fire is frequently “reintroduced” or “restored” to a forest specifically to favor oak over
other hardwoods (Brose, 2010, 2014; Arthur ef al., 2015). Yet even repeated low intensity fires
may be insufficient to promote oak competitiveness if not accompanied by canopy disturbance
(Iverson et al., 2008; Hutchinson et al., 2012). In these loblolly pine-hardwood mixtures on the
BNF, we know multiple fires coupled with overstory stem density reduction will be necessary to
move stands in a desired direction (Schweitzer et al., 2016, 2019). While the goal of prescribed
fire in this project is to target changes in the understory species, we have found that more than
three fires are needed to impact these contemporary forest tree species. For example, we have
documented that red maple continues to readily sprout even following five prescribed fires
(Schweitzer et al., 2019), and we attribute this to a lack of disturbance and mesophication
moving the understory towards red maple dominance. With this many fires, a concern over
impacts to overstory tree mortality is warranted. Longer survival for oaks compared to pines and
larger trees compared to smaller ones allows managers to use repeated fires in these systems to

achieve a desired composition and structure while maintaining needed canopy cover.

Conclusion.

The current study is unique for several reasons. It is a randomized controlled study employing
careful experimental design, rather than a retrospective or cross-sectional study. It is longitudinal

and has amassed at this point nearly two decades of empirical data, at plot-, stand-, time-, and
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fire-levels. For the current analysis, the sample size of over 5,700 trees is quite large, providing
strong insights into how survival trends vary among different groups. Frequent (once every three
years), low intensity burning does not appear to adversely affect overstory tree survival, even
after five burn cycles. Meanwhile, the non-thinned stands did experience lower survival
compared to the thinned stands. In the mixed pine-hardwood stands of this study, the overstory
pines have experienced moderately lower 14-year survival than the oaks. Consistent with many
other studies, the smallest trees experienced the greatest mortality, and this pattern did not appear
to be modified by the frequency of prescribed burns. Additionally, there was very little
difference in survival experience for the two largest size classes. This research adds to the body
of evidence supporting the idea that even fairly frequent (once every three years), low intensity,

controlled burns likely do not increase mortality in overstory trees.
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