

1 **Profiling Overstory Survival Trends Following Varying Thinning and Burning**
2 **Disturbance Regimes in a Mixed Pine-Hardwood Forest in the US South**

3 **John Craycroft, Ph.D.^a**

4 **Callie Schweitzer, Ph.D.^{b*}**

5 **^a: ORISE Post-doctoral fellow, US Forest Service**

6 **^b: Research Forester, US Forest Service, 730-D Cook Ave, Huntsville, AL 35801. (256) 603-
7 0969. callie.schweitzer@usda.gov.**

8 ***: Corresponding author**

9

10 **Abstract.**

11 Prescribed burning as a silvicultural tool may be effective for achieving various management
12 objectives, yet some practitioners have concerns about inadvertently increasing overstory tree
13 mortality. Using extensive data from a long-term, ongoing study in northcentral Alabama, USA,
14 that systematically applies a variety of thinning and prescribed burning disturbances on mixed
15 pine-hardwood stands, we assess survival trends for different groups of trees. The primary
16 research question is whether more frequent prescribed burns adversely affects overstory survival
17 versus infrequent or no burns; secondary questions explore whether overstory survival trends
18 differ based on thinning level, species group, or size class. Interest is in broad groups of trees,
19 not individual tree survival or mortality; consequently, survival analysis methods are used,
20 including nonparametric Kaplan-Meier (KM) techniques for examining single grouping factors,
21 and parametric accelerated failure time models for analyzing simultaneous effects of multiple

22 covariates. Leveraging relatively recent methodological advances, the statistical techniques are
23 adjusted for interval censored data. KM survival curves showed that more frequent prescribed
24 fires did not result in differing survival trends. Also, trees in unthinned stands had the lowest 14-
25 year survival compared to thinned stands, oaks had the highest survival compared to pines and
26 the others species group, and the smallest size class of overstory trees had the lowest survival.
27 These results support managing transitional mixed pine-hardwoods using thinning and multiple
28 prescribed fires to restore specific species composition and structure.

29

30 **Introduction.**

31 Prescribed fire is widely used to achieve various forest management objectives (Brose, 2014;
32 Arthur *et al.*, 2015), including shifting the forest species mix, promoting regeneration of fire-
33 tolerant species, increasing diversity of wildlife habitat, and reducing hazardous fuels (Calkin *et*
34 *al.*, 2015; Keyser *et al.*, 2018). Yet, despite the variety of potential benefits, prescribed burns are
35 not without costs, including smoke production, carbon release, risk of escape, and unintended
36 tree mortality (Ager *et al.*, 2013; Calkin *et al.*, 2015; Mann *et al.*, 2020). A special concern is
37 whether prescribed burns are likely to have deleterious effects on overstory trees, which are
38 usually intended to be left intact and uninjured to maintain desired forest structure or preserve
39 future economic value (Mann *et al.*, 2020). A further question is whether repeated burns, as
40 opposed to a single burn, changes the survival prospects for overstory trees. Repeated prescribed
41 fire is used to create and maintain the structure and composition of open forest ecosystems, but
42 understanding about long-term effects on overstory tree mortality is lacking (Arthur *et al.*, 2015;
43 Keyser *et al.*, 2018).

44

45 Common high priority management goals in forests in the American South include restoring and
46 sustaining oak-pine (*Pinus* spp.) savannas, woodlands and forests for conservation of
47 biodiversity and viable populations of native flora and fauna (Dey *et al.*, 2017; Dey and
48 Schweitzer, 2018; Johnson *et al.*, 2019). Restoration activities that target shifting stand structure
49 and composition often include low-intensity prescribed fires applied to mature stands, with a
50 goal of altering light conditions in the understory and/or decreasing midstory stem density
51 (Hutchinson *et al.*, 2005; Vander Yacht *et al.*, 2017). However, management objectives
52 frequently cannot be achieved with a single burn for myriad reasons, including: a long history of
53 fire suppression; contemporary forest structure and composition; variations in fire intensities;
54 and vigorous sprouting of top-killed hardwood understories (Arthur *et al.*, 2021). Understories
55 with hardwood species will sprout following top-kill by fire, and the premise is that with
56 repeated fires, sprouting vigor will decrease or be eliminated (Hutchinson *et al.*, 2005; Brose *et*
57 *al.*, 2013; Arthur *et al.*, 2015; Schweitzer *et al.*, 2016; Waldrop *et al.*, 2016). Creating woodland
58 and savanna conditions with prescribed fire is predicated on long-term residual tree survival
59 under frequent fire (Dey *et al.*, 2017). The conundrum is that repeated fires are needed to create
60 these conditions, while repeated fires may also contribute to greater overstory tree wounding,
61 stress, and mortality.

62

63 Mortality associated with frequent fire occurs primarily on small trees (Arthur *et al.*, 2015;
64 Schweitzer *et al.*, 2016; Knapp *et al.*, 2017). Trees experience lower rates of fire induced
65 mortality as bark thickness – the fundamental trait conferring fire resistance (Babl *et al.*, 2020) –
66 increases. Bark thickness increases with stem size, and most overstory trees will have reached

67 the threshold bark thickness needed for cambium protection from the low- to moderate-intensity
68 fires typical of prescribed burns in the US South (Hengst and Dawson, 1994). Although most
69 large overstory trees remain visibly uninjured and undamaged from low-intensity dormant
70 season prescribed fires (Brose and Van Lear, 1998; Sutherland and Smith, 2000; Smith and
71 Sutherland, 2006; Mann *et al.*, 2020), there is potential to cause damage that may include
72 outright mortality or wounding of the lower bole that leads to loss of volume and value to the
73 most valuable part of the tree (Marschall *et al.*, 2014). Understanding long-term mortality trends
74 of overstory trees following repeated prescribed fires may be helpful for managers considering
75 this silvicultural tool.

76

77 Many studies involving fire in eastern upland systems are in hardwood-dominated forests, rather
78 than mixed pine-hardwood systems. Mortality effects have been studied in relationship to one to
79 four prescribed burns in undisturbed mature forests (Hutchinson *et al.*, 2005; Arthur *et al.*, 2015;
80 Keyser *et al.*, 2018); to multiple burns following midstory reductions (Waldrop *et al.*, 2016;
81 Iverson *et al.*, 2017); and to single burns following canopy-level reductions (Albrecht and
82 McCarthy, 2006; Brose, 2010; Holzmueller *et al.*, 2014). However, few studies have reported on
83 fire-induced mortality in managed mixed pine-hardwood systems (Clabo and Clatterbuck, 2015;
84 Schweitzer *et al.*, 2016, 2019). Moreover, much previous research has focused on the
85 establishment of mixed pine-hardwood forests (Waldrop, 1989; Steinbeck and Kuers, 1996),
86 while relatively less addresses the management of these systems (Willis *et al.*, 2019; Kenefic *et
87 al.*, 2021).

88

89 This paper profiles the survival experience of overstory trees (stems > 14.0 cm [5.5 in.] at 1.4 m
90 [4.5 ft.] above groundline; DBH) in a fire and thinning restoration study on the William F.
91 Bankhead National Forest (BNF) in northcentral Alabama, USA. The primary research question
92 is whether frequent prescribed burns affect the survival of overstory trees when compared to
93 infrequent burns or no burns. Important secondary questions are whether survival trends differ
94 according to degree of initial thinning, species group, or size class. We evaluate hypotheses that
95 increasing burn frequency does not lead to higher mortality a.) overall; b.) by thinning level; c.)
96 by species group; and d.) within size class (i.e., within size subcategories within the overstory
97 class). Additionally, we describe a regression-type model that is useful for estimating survival
98 quantiles (such as median survival) after controlling for certain commonly available covariates.
99 The model is useful for comparing how overstory trees with different characteristics or with
100 different site conditions may respond to varying frequencies of prescribed burns. Rather than a
101 point-in-time estimate of survival or death for an individual tree, the methodology presents
102 survival distributions over spans of time and for groups of trees sharing similar characteristics.

103

104 **Methods.**

105 The BNF is a 72,800-ha (180,000-ac) national forest located in northcentral Alabama. The
106 treatment stands, all located in the northern portion of the BNF, were selected so as to be similar
107 based on average stand age, composition, and size. They range in area from 8.9 to 18.6 ha (22 to
108 46 ac) and in age from 30 to 60 years old. The study sites are mixed pine-hardwood forests,
109 dominated by loblolly (*Pinus taeda* L.), with a smaller portion of Virginia (*P. virginiana* Mill.)
110 and shortleaf (*P. echinata* Mill.) pine. Upland oak species are common and include chestnut
111 (*Quercus prinus* L.), white (*Q. alba* L.), northern red (*Q. rubra* L.), scarlet (*Q. coccinea*

112 Munchh.), black, (*Q. velutina* Lam.) and southern red (*Q. falcata* Michx.) oaks. Other hardwoods
113 include yellow poplar (*Liriodendron tulipifera* L.), red maple (*Acer rubrum* L.), and black cherry
114 (*Prunus serotina* Ehrh.). Soil types are generally well-drained; nine soil series (Soil Survey
115 Staff) are represented, as follows: Muskingum (accounting for 29.9% of the tree sample size);
116 Enders (24.2%); Tidings-Bankhead (19.1%); Sipsey (7.7%); Pottsville (6.7%); Ruston (4.1%);
117 Linker (3.0%); Townley-Apison (2.7%); and Smithdale (2.6%).

118

119 Part of the original goal of the study was to test varying levels of management disturbances for
120 their effectiveness at shifting the species structure toward more hardwood dominance,
121 particularly oak (*Quercus* spp.) (USDA Forest Service, 2004). The nine treatment levels (eight
122 active treatments and one control) were the result of a 3x3 factorial design incorporating two
123 factors at three levels each. The three thinning levels were: no thinning, light thinning (target
124 residual basal area [BA] of 17.2 m²/ha [75 ft²/ac]), and heavy thinning (target residual BA of
125 11.5 m²/ha [50 ft²/ac]). Commercial thinning was conducted by marking from below the smaller
126 trees (14-15 cm DBH) and trees that appeared stressed, diseased, or damaged. Canopy trees in
127 the 15.2—30.5 cm (6—12 in.) DBH range were also removed to meet residual basal area targets.
128 Pine accounted for nearly 90 percent of the total reduction in stems, and all thinning treatments
129 were completed prior to burning (Schweitzer *et al.*, 2019). Prescribed burns occurred at three
130 frequencies: no burns, infrequent burns (once per nine years), and frequent burns (once per three
131 years). A total of 49 landscape-scale prescribed fires, usually encompassing multiple treatment
132 stands, were conducted over 14 years. The low- to moderate-severity prescribed fires all took
133 place during the dormant season from January through early April and used backing fires or strip
134 head fires to ensure that only surface fire occurred. Four replications (blocks) of the nine

135 treatment levels were initiated from 2006 to 2008, yielding 36 total treatment stands. Each
136 treatment stand was surveyed and marked with five permanent measurement plots of 0.08 ha (0.2
137 ac) each, with one centrally located and the other four positioned to capture the range of
138 conditions within each stand. All trees with DBH of 14.0 cm (5.5 in.) or greater were counted
139 and their locations recorded using GPS. Trees were measured before thinning and in the summer
140 following each prescribed burn. Except for dead and down trees, all surveyed trees, regardless of
141 treatment level received, were remeasured in the observation years for that block; hence, tree
142 observations occurred once every three years, consistent with the timing of the prescribed burns
143 for that block. The current analysis utilizes data through five burn cycles for all four blocks; thus,
144 frequently burned stands received five fires, while infrequently burned stands received two fires.
145 Further background on the study and analysis on other research questions may be found
146 elsewhere (Schweitzer *et al.*, 2016, 2019).

147

148 Measurements of DBH at the beginning of the study were used to place overstory trees into four
149 size classes, as follows: [14.0 cm, 19.1 cm); [19.1 cm, 24.1 cm); [24.1 cm, 29.2 cm); [29.2 cm
150 and greater) ([5.5 in., 7.5 in.); [7.5 in., 9.5 in.); [9.5 in., 11.5 in.); [11.5 in. and greater)), where
151 the “[*lower*, *upper*)” notation indicates that the interval includes the *lower* boundary but not the
152 *upper* boundary. For this analysis, the sample of trees consists of those overstory trees present
153 after thinning. Although additional trees grew into the overstory class during the study (and some
154 recorded trees grew into larger size classes from their starting class), this analysis fixes the size
155 classes as recorded at initial observation. Tree species were grouped into pines, oaks, and others
156 both to keep the number of comparison groups manageable analytically and because there was

157 special research interest in the survival experience of pines and oaks given the forest
158 management goal of transitioning from pine-dominant to mixed pine-hardwood.

159

160 Survival analysis refers to a class of methods directed at analyzing time-to-event data. While
161 these methods were developed in the biomedical research domain (Klein and Moeschberger,
162 2003), they have been applied in forestry and fire ecology, including in Woodall et al. (2005),
163 Moritz et al. (2009), Uzoh and Mori (2012), Morin et al. (2015), and Maringer et al. (2021).
164 Survival analysis methods are particularly suitable for the current work both because of the
165 nature of our underlying research questions (survival trends over spans of time, and for whole
166 groups rather than individual trees) and because of the structure of the empirical data. These
167 methods are indicated when the data consist of individual sample units for which the primary
168 outcome is a measure of time until some event (in this case, tree death) occurs. A further
169 characteristic of the data is the common occurrence of censoring, in which the exact event time is
170 not observed. Censoring may happen in one of several ways. In the archetypical case, known as
171 right censoring, the exact event time is not observed for a sample unit because either the study
172 ends or the sample unit drops out of the study without the event ever occurring. In left censoring,
173 all that is known about the event time is that it occurred before some specific observation time.
174 Finally, if an event is only known to have occurred between two specific time points, then the
175 unit is interval censored. Moritz et al. (2009) demonstrated that failing to account for censoring
176 may lead to biased parameter estimates. Since the trees in our sample were assessed for mortality
177 status every three years, those that died during the study are interval censored, while all that
178 survived are right censored. In this analysis, we use modified methodologies illustrated by
179 Gómez (2009) for interval censored data.

180

181 We first applied survival analysis considering only one factor at a time (burn level, thin level,
182 species, or size class). This provided insight into the association of these factors with long-term
183 survival marginally over all other variables and thus provided guidance for the multivariable
184 model building effort described below. We used the nonparametric Kaplan-Meier (KM) survival
185 estimator (Kaplan and Meier, 1958), with weighted log-rank tests modified for interval-censored
186 data (Gómez *et al.*, 2009) together with permutation tests (Fay and Shih, 1998) for determining
187 whether survival distributions for different groups varied by more than might be expected by
188 chance, using $\alpha = 0.05$ as the threshold for statistical significance. Next, we focused specifically
189 on studying interaction effects between burn level and the other three main grouping factors. To
190 do this, we constructed three separate accelerated failure time (AFT) models of the survival
191 times. The AFT model is a parametric, regression-like model used in survival analysis to enable
192 estimation of survival time distributions for groups conditional on included covariates. The AFT
193 model is a log-linear model, in which the natural logarithm of the survival time, T , is expressed
194 as a linear combination of the covariates and parameters and an error term:

195
$$Y = \ln T = \mu + \boldsymbol{\beta}' \mathbf{Z} + \sigma W,$$

196 where μ is a baseline log survival time, \mathbf{Z} is a matrix of covariate values for the observations, $\boldsymbol{\beta}$
197 is a vector of regression coefficients describing the relationships between the covariates and the
198 log survival time, σ is the scale parameter, and W is the error term distribution. A variety of
199 choices may be made for the distribution of event times, T , each of which implies a
200 corresponding distribution for the error term, W (Klein and Moeschberger, 2003; Gómez *et al.*,
201 2009). Three common choices are the Weibull, the log-logistic, and the log-normal distributions.
202 These imply, respectively, an extreme value distribution, a logistic distribution, and a normal

203 distribution for W . We tested each of these three choices and selected the best fitting model with
204 respect to the Akaike Information Criterion (AIC) statistic (Akaike, 1998). At this stage of the
205 analysis, where we were only concerned with studying interaction effects involving burn level,
206 the only explanatory variables used in the AFT models were the main effects and interaction
207 term for burn level and one of the other three factors.

208

209 In the last stage of the analysis we again used the AFT approach, but this time attempted to
210 construct the most comprehensive, best fitting model while balancing that goal with the equally
211 important objective of interpretability. In other words, if a covariate or interaction term enhanced
212 model fit only trivially (in terms of AIC), we favored parsimony in the model and dropped that
213 term. Potential covariates included tree-level variables (size class, species group); plot-level
214 variables (South aspect [yes/no], Southern pine beetle [*Dendroctonus frontalis* Zimm.]
215 infestation [yes/no], average elevation, soil type, average plot slope); and stand-level variables
216 (block, burn level, thin level). After conducting variable selection, we used the best fitting model
217 to construct model-based survival curves for subgroups based on treatment factors, species, and
218 size, and to estimate median survival times for these groups. We used the acceleration factor
219 (AF), defined as the exponentiation of the estimated coefficient, β , to aid interpretation of the
220 AFT model parameters. The AF indicates how percentiles of survival times (such as the median
221 survival time) for the reference group change for trees with different values for the covariates.
222 AF values greater than one increase the survival times percentiles, while values less than one
223 decrease them. To take into account the hierarchical nature of the data (trees nested within plots,
224 plots nested within stands), we built the AFT model using a generalized estimating equation

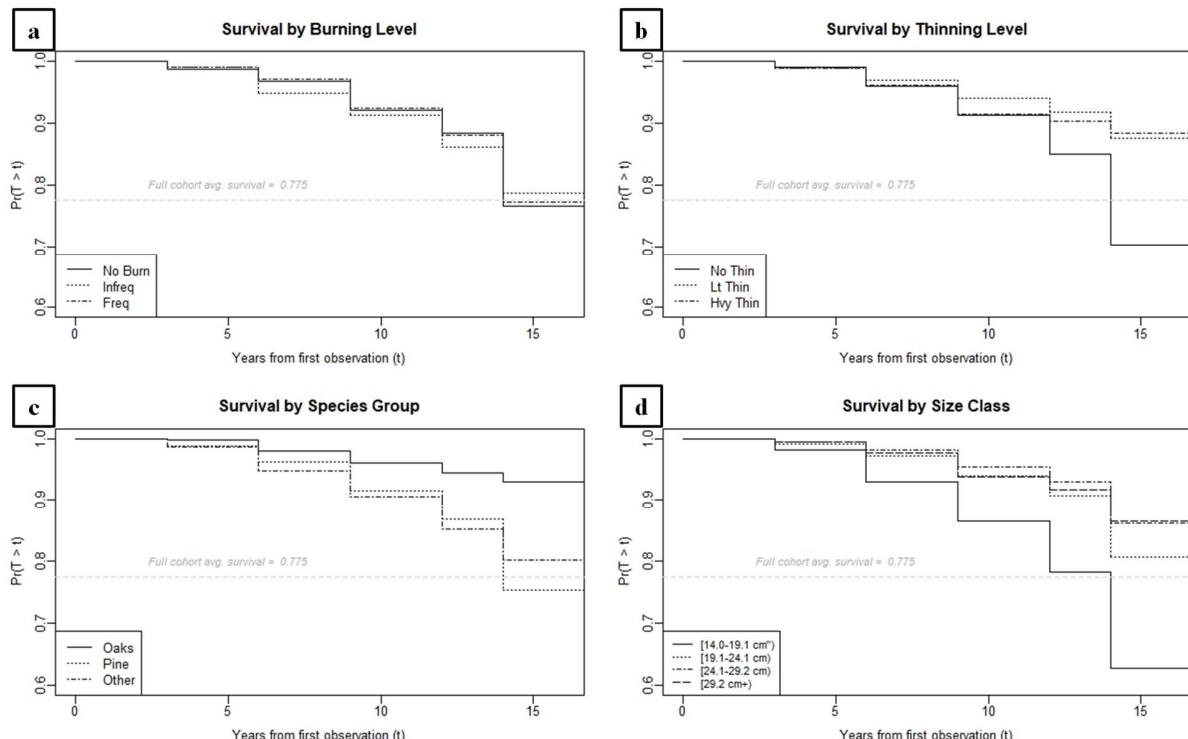
225 approach, with the 180 stand-specific plots identified as clusters, within which the individual
226 trees may have some correlation (Therneau, 2021).

227

228 Statistical analysis was conducted using R, version 4.1.1 (R Core Team, 2021), with particular
229 reliance on the survival (Therneau, 2021), interval (Fay and Shaw, 2010), and Icens (Gentleman
230 and Vandal, 2021) packages.

231

232 **Results.**


233 Prior to any treatment we recorded 10,241 overstory trees. Of these, 4,446 were harvested and 46
234 were knocked over in the thinning operations, leaving 5,749 trees included in this analysis. The
235 overall survival rate of these trees at 14 years after first observation was 77.5% (Table 1). The
236 first portion of the survival analysis focused on examining survival trends along single variables.
237 KM survival curves for groups of trees determined by burn level alone were extremely similar.
238 In other words, when not conditioning on any other tree or plot characteristics, there was no
239 indication of decreased overstory tree survival in plots receiving frequent burns relative to no
240 burns (Table 1a, Figure 1a). Trees in the no thin group had the lowest survival, while those in the
241 light and heavy thin groups had similar survival (Table 1b, Figure 1b). Oaks had higher overall
242 survival compared to pines and all other species (Table 1c, Figure 1c). The smallest size class of
243 overstory tree had the lowest survival, while there was very little difference between the largest
244 two size classes (Table 1d, Figure 1d).

245

Table 1. Overstory tree counts and deaths by time and grouping factors.

		TIME PERIOD												14-year Survival	
		Pre-cut	Cut/KO	T0	Died	T1	Died	T2	Died	T3	Died	T4	Died	T5	
TOTAL		10241	4492	5749	60	5689	156	5533	247	5286	254	5032	577	4455	77.5%
a. Burn level		3281	1473	1808	22	1786	36	1750	84	1666	68	1598	214	1384	76.5%
No burn		3458	1546	1912	19	1893	79	1814	70	1744	96	1648	143	1505	78.7%
Infreq.		3502	1473	2029	19	2010	41	1969	93	1876	90	1786	220	1566	77.2%
Frequent															
b. Thin level		3400	6	3394	34	3360	103	3257	161	3096	211	2885	501	2384	70.2%
No thin		3430	2088	1342	15	1327	25	1302	39	1263	31	1232	57	1175	87.6%
Light thin		3411	2398	1013	11	1002	28	974	47	927	12	915	19	896	88.5%
Heavy thin															
c. Species group		732	143	589	1	588	11	577	11	566	10	556	8	548	93.0%
Oaks		8729	4014	4715	53	4662	128	4534	217	4317	220	4097	547	3550	75.3%
Pine		780	335	445	6	439	17	422	19	403	24	379	22	357	80.2%
Other															
d. Size class (cm)		3602	1816	1786	34	1752	90	1662	117	1545	148	1397	278	1119	62.7%
[14.0 -- 19.1)		3024	1480	1544	13	1531	29	1502	51	1451	50	1401	154	1247	80.8%
[19.1 -- 24.1)		2168	838	1330	7	1323	17	1306	37	1269	33	1236	89	1147	86.2%
[24.1 -- 29.2)		1447	358	1089	6	1083	20	1063	42	1021	23	998	56	942	86.5%
[29.2+)															

248 Time T0 refers to after thinning and before first fire. T1,...,T5 refer to summer following Burn #1,...,#5. After 5 time
249 intervals, the Infrequent Burn treatments had received 2 fires (just before T1 and T4), while the Frequent Burn
250 treatments had received 5 fires. Trees counted at T5 are right censored; trees counted in the “Died” columns are
251 interval censored. Size classes were determined based upon Pre-cut DBH only.

254 **Figure 1. Overstory tree survival by single factors (burn level, thin level, species group, and size**
255 **class). The horizontal reference line in each plot at 0.775 indicates the average 14-year survival rate**
256 **for the full cohort of overstory trees in this study.**

257

258 The permutation tests used in conjunction with the weighted log-rank tests resulted in no
259 significant difference in the survival distributions for burn level groups ($p = 0.60$), while for thin
260 level, species group, and size class the tests were all significant ($p < 0.0001$ for each factor).

261

262 The second portion of the analysis employed three separate AFT models to examin how burn
263 level interacted with other grouping factors to affect survival times. The interaction term in each
264 model was significant, although the p-values were near 0.05 (Table 2). The main effects of
265 thinning level, species group, and size class were also significant in each model, with p-values
266 much lower than 0.05 in each case. For Model 2 (testing the interaction of burn level with
267 species group), the main effect for burn level was also significant, with the p-value between 0.01
268 and 0.05; in the other two models, the burn level main effect was not statistically significant.

269

270

271

272

273

274

275

276

Table 2. Three AFT models examining interaction terms involving Burn level.

	MODEL 1: Burn Level * Thin Level			MODEL 2: Burn Level * Species Group			MODEL 3: Burn Level * Size Class		
	Variable	β	Sig.	Variable	β	Sig.	Variable	β	Sig.
	Infreq Burn	0.12		Infreq Burn	-0.54	*	Infreq Burn	0.00	
M. E.	Freq Burn	0.08		Freq Burn	-0.60	*	Freq Burn	-0.06	
	Light Thin	0.57 ****		Pine	-1.00 ****		[19.1, 24.1 cm)	0.17	**
	Heavy Thin	0.68 ****		Other	-0.76 **		[24.1, 29.2 cm)	0.31	**
							[29.2 cm +)	0.37	***
I. T.	Infreq + Light Thin	-0.40 **		Infreq + Pine	0.61	*	Infreq + [19.1, 24.1 cm)	0.17	
	Freq + Light Thin	-0.11		Freq + Pine	0.66	*	Freq + [19.1, 24.1 cm)	0.24	*
	Infreq + Heavy Thin	-0.32 *		Infreq + Other	0.48		Infreq + [24.1, 29.2 cm)	0.14	
	Freq + Heavy Thin	-0.45 *		Freq + Other	0.34		Freq + [24.1, 29.2 cm)	0.30	**
							Infreq + [29.2 cm +)	0.04	
							Freq Burn + [29.2 cm +)	0.24	

279 Parameter estimates in three different models. Each model incorporates Burn Level with one other main effect,
280 either Thin Level (Model 1), Species Group (Model 2), or Size Class (Model 3), and the interaction of those two
281 variables. Parameter estimates (β) greater than zero indicate an effect of increasing survival times, while values
282 less than zero decrease survival times relative to the reference group of No Burn, and either No Thin (Model 1) or
283 Oaks (Model 2) or the [14.0, 19.1 cm) size class (Model 3).

284 Sig.: Significance. ****: $p < 0.0001$; ***: $p < 0.001$; **: $p < 0.01$; *: $p < 0.05$.

285 M.E.: Main Effects; I.T.: Interaction Terms.

286

287 The last stage of the analysis explored the simultaneous effect of multiple grouping variables and
288 covariates, as well as interaction effects, on the survival times. The best model contained the
289 treatment factors burn level and thin level, and their interaction, as well as species group, size
290 class, and an indicator for presence of the Southern pine beetle (Table 3). Average plot elevation,
291 average slope percent, south facing aspect, and soil type were found to be nonsignificant as
292 explanatory variables. Additional interaction terms, such as those shown in Table 2, were tested
293 but did not substantially improve the model fit after the inclusion of the other covariates.

295 Relative to oaks and keeping all other factors constant, the AFT model estimates a 46% and 35%
 296 reduction in survival times for pines and other species, respectively. For size class, consistent
 297 with the one factor and two factor analyses earlier, each of the larger size classes was associated
 298 with increased survival times relative to the smallest size class used as the reference group. The
 299 increases were 39% for the second size class, and 57% for the largest two size classes. The
 300 presence of the southern pine beetle was associated with a 29% decrease¹ in survival times
 301 (Table 3, column AF).

302

303

Table 3. Results of AFT model.

Variable		β	z	Sig. level	AF
TRTMT. FACTORS	Light Thin	0.38	4.17	****	1.46
	Heavy Thin	0.44	4.09	****	1.56
	Infreq Burn	0.09	1.26		1.09
	Freq Burn	0.17	2.56	*	1.19
SPECIES GRP.	Pine	-0.61	-4.67	****	0.54
	Other	-0.43	-3.4	***	0.65
SIZE CLASS (cm)	[19.1 -- 24.1)	0.33	5.76	****	1.39
	[24.1 -- 29.2)	0.45	5.82	****	1.57
	[29.2+)	0.45	5.53	****	1.57
PLOT FACTORS	Beetle	-0.35	-3.99	***	0.71
INTERACTION	Light Thin + Infreq Burn	-0.29	-2.19	*	0.75
TERMS	Heavy Thin + Infreq Burn	-0.22	-1.78		0.80
	Light Thin + Freq Burn	-0.20	-1.65		0.82
	Heavy Thin + Freq Burn	-0.52	-3.32	***	0.59

Notes: Reference group = No Thin; No Burn; Oaks; [14.1 -- 19.1 cm]; No Beetle.

Sig. level: ****: p < 0.0001; ***: p < 0.001; **: p < 0.01; *: p < 0.05.

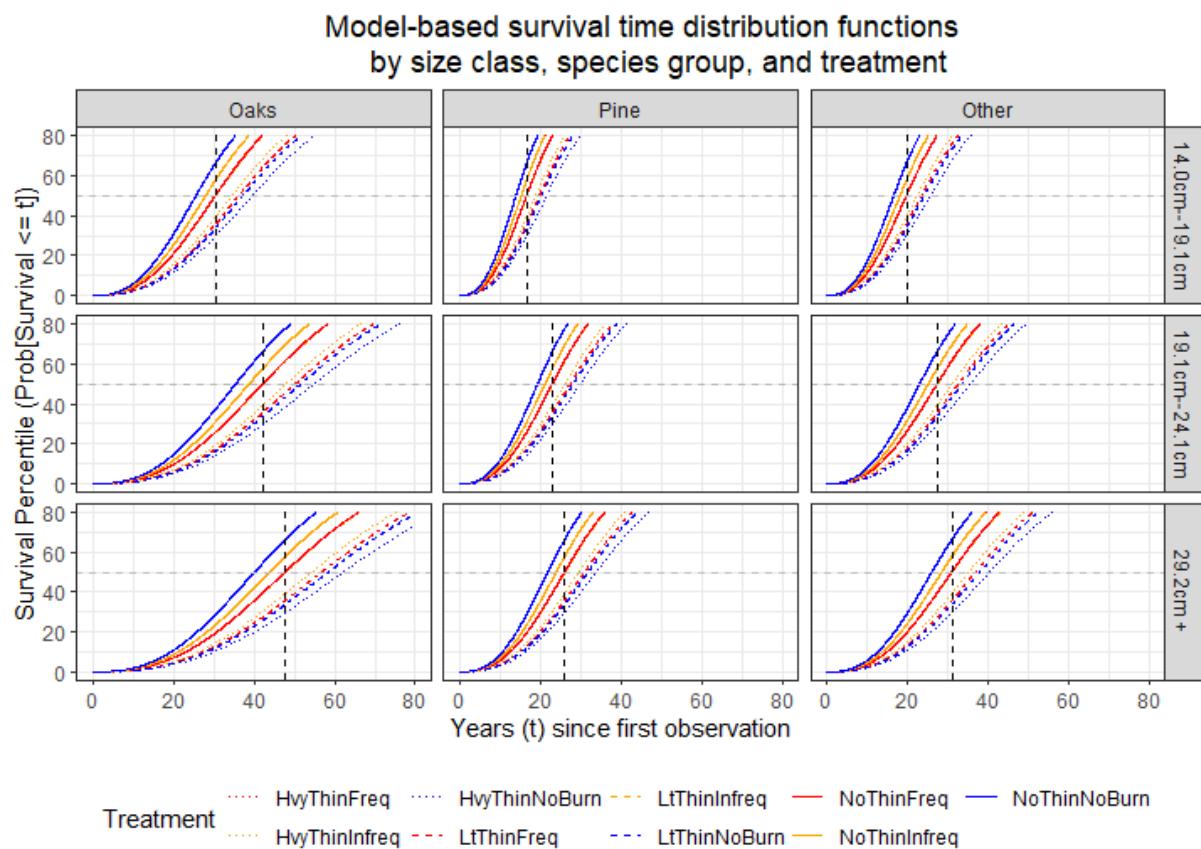
AF: Acceleration Factor = $\exp(\beta)$

304

¹ Note that pine beetle presence did not fully account for the lower survivorship of either unthinned stands (relative to light and heavy thinned stands) or pine (relative to the other species groups). Out of 180 plots, 8 were affected by the beetle. Repeating the analysis after excluding all 447 trees from these 8 plots resulted in estimated coefficients of: Light Thin $\beta = 0.42$ ($p < 0.001$); Heavy Thin $\beta = 0.50$ ($p < 0.001$); and Pine $\beta = -0.65$ ($p < 0.0001$). See Supplement for full details of this model.

305 To interpret the effects of the active treatments versus the control, we must add the estimated
306 coefficients and exponentiate the result (or multiply the appropriate AF values). All the active
307 management treatments increased modeled survival times. The heavy thin, no burn treatment
308 was associated with the largest impact on modeled survival times, increasing the distributions
309 56% (Table 4). The lowest impact was found in the no thin, infrequent burn (+9%) and the heavy
310 thin, frequent burn (+10%) treatments. As burn frequency increased, AF values increased for no
311 thin treatments; decreased, for heavy thin treatments; and decreased then increased for light thin
312 treatments.

313 **Table 4. Acceleration factors for treatment levels.**


Thin Level	Burn Level		
	None	Infrequent	Frequent
None	1.00	1.09	1.19
Light	1.46	1.19	1.42
Heavy	1.56	1.36	1.10

314 Acceleration factors (AF) modify baseline survival functions. AF values greater than one increase expected survival
315 time, while values less than one decrease them. The reference group here is the no burn, no thin treatment. The
316 values shown in Table 4 incorporate both main and interaction effects from the AFT model in Table 3.
317

318
319 The AFT model enables us to estimate survival time distributions over an extended time range
320 and explore how those distibutions change by modifying one or more of the included covariates,
321 while leaving other covariates at their baseline, or reference group, settings (Figure 2). For
322 example, assuming no infestation of the pine beetle, the estimated median survival time (across
323 all treatment groups) for the largest oaks would be just less than 50 years from first observation,
324 while for the smallest overstory size class of pines the median survival time would be less than
325 20 years since first observation. The survival distributions are stretched to the right (indicating
326 longer survival) for oaks relative to pines and others, and for larger size classes relative to
327 smaller classes. Within a species group + size category, the spread of the survival distributions

328 for the nine treatments always follows the pattern shown in Table 4: The heavy thin, no burn
 329 treatment is always the rightmost curve (longest survival), while the no thin, no burn treatment is
 330 always the leftmost curve (shortest survival).

331

332

333 **Figure 2. Model-based distribution functions of survival times forecasted from AFT model in Table 3.** Each
 334 panel contains nine curves, although two pairs of curves overlap and are indistinguishable. Dotted line types
 335 are for heavy thin, dashed for light thin, solid for no thin. Blue curves are for no burn, orange for infrequent,
 336 red for frequent. Horizontal reference lines highlight 50th percentile of survival times. Intersecting vertical
 337 reference lines indicate the median survival time over all nine treatments shown in each panel. Vertical axes
 338 are cropped at the 80th percentile level to enable easier comparison of median survivals and because the AFT
 339 model is not intended to forecast the upper tails of the distributions. Interested readers may find the full,
 340 uncropped plots in the online Supplement file. Panels for third size class (24.1 cm—29.2 cm) are suppressed
 341 because they were virtually identical to those for the largest size class.

342

343 **Discussion.**

344 As part of the decision-making process for managing a forest for desired reproduction or a
345 specific woodland structure, forest managers have incomplete and sometimes conflicting
346 research outcomes to guide them regarding prescribed fire. Distilling responses of complex
347 systems and applying results to different systems contributes to these conflicts, as does the
348 scarcity of prescribed fire research over long time periods. In some systems, such as the mixed
349 pine-hardwoods examined here, the precise sequence and timing of treatments, including
350 prescribed fire, needed to achieve a specific stand composition and structure are not clearly
351 established. Prescribed fire is used in mixedwoods to reduce understory and midstory tree
352 density, but unintended overstory mortality, particularly as a result of repeated fires, is a highly
353 relevant concern. The analysis presented in this article relates the experience of a long-term
354 study in a mixedwoods system and provides insight into the ways overstory survival trends have
355 differed by frequency of prescribed burns, degree of prior thinning, species group, and size class.
356 We found that all active treatments (thinning and burning) were associated with increased
357 modeled survival times and that the absence of any management resulted in the lowest overstory
358 survival. When considering single factors, we found no change in overstory tree survival for
359 frequent fire compared to no fire, and oaks had higher overall survival compared to pines and
360 others. We also found that the smallest size class of trees had the lowest survival.

361

362 *Species + size class*

363 The three two-factor ATF models supported the single factor analysis when considering how
364 burn levels interacted with thinning, species groups, and sizes. Oaks had higher overall survival

365 compared to pines and others, and for all species, the smallest size classes had the lowest
366 survival. Compared to oaks in unburned stands, pines decreased in their forecast survival under
367 all burn levels, but less so for infrequent and frequent fire. Direct fire mortality depends not only
368 on fire behavior but also on the fire-adaptation protection traits of species, which vary among
369 species and within species depending on size and tree development. Resistance of trees to some
370 stressors (e.g., fire, or insects) increases with lignification, diameter, bark thickness and other
371 factors associated with age (Bova and Dickinson, 2005). Larger trees usually have thicker bark
372 and can withstand greater heating (Hare, 1965; Hengst and Dawson, 1994), with a critical bark
373 thickness needed to protect the cambium from injury (Lawes *et al.*, 2011; Hoffmann *et al.*,
374 2012). Thickness and insulation properties of the bark of southern pines contribute to its fire
375 resistance (Hare, 1961). Although oaks were found to be less resistant to fire than loblolly pine
376 (Hare, 1961), upland oak species, including white oak and northern red oak, were found to have
377 a linear relationship between bark thickness and DBH, and bark thickness was found to be a
378 good indicator of protection from lethal fire effects (Hengst and Dawson, 1994). In hardwoods,
379 Huddle and Pallardy (1996) found size-dependent mortality under annual fires for 40 years and
380 no thinning, with the smallest diameter oaks (up to 20.1 cm [7.9 in.] DBH) having low survival.
381 In the survival analysis conducted in this study, survival of overstory trees increased from pines,
382 to other species, to oaks; and as size class changed from the smallest overstory size class to the
383 larger size classes. These trends held regardless of burn level.

384

385 Although the AFT model presented in Table 3 does not include interaction terms between
386 species group and size class, we highlight that this was a subjective decision in the modeling
387 process. In our analyses, three out of six individual species group x size class interaction terms

388 had p-values slightly below or slightly above 0.05, our threshold for statistical significance (the
389 other three had p-values well above 0.05). This was dependent, of course, on other covariates
390 included in the model. We judged that the overall model fit was not enhanced enough to justify
391 the inclusion of the extra parameters, because interpretation of the size class and species group
392 main effects became more confusing. Nevertheless, though opting for interpretability over
393 complexity in this particular model, and in light of the research mentioned above, it remains
394 important when considering prescribed fire as a tool that both species and size factors be
395 considered in conjunction with each other.

396

397 Some research suggests that mortality of merchantable overstory trees is minimal under a regime
398 of repeated, low intensity, dormant season fires (Hutchinson *et al.*, 2005; Smith and Sutherland,
399 2006). Also, loss of value and volume to bole wounding and damage by decay and degrade are
400 minimal if damaged trees are harvested within 10 to 15 years of the fire (Marschall *et al.*, 2014;
401 Mann *et al.*, 2020). We found that within a species group and size category, the spread of the
402 survival time distributions for all treatments was always to the right of the control group
403 distribution, indicating longer survival times under active treatment scenarios. Estimated median
404 survival time for the largest oaks in stands with no treatment was approximately 40 years from
405 the first observation and increased by up to 20 years with thinning and fire. Compared to the
406 control group, for all species, heavy thinning alone increased survival time distributions by 56%,
407 heavy thinning with infrequent fire increased survival times by 36%, and heavy thinning with
408 frequent fire increased survival times by 10%. Our starting point of T0 is not the same as age
409 zero, and we are not predicting tree age at death. We assessed how the differences in grouping

410 factors and covariates affected survival times relative to other groups, and we found large oaks in
411 this study have the longest expected survival times.

412

413 *Influence of thinning*

414 Management activities often are necessary to create desired stand conditions, and the decision to
415 withhold disturbance also has consequences on stand dynamics. In our model-based survival
416 time distribution functions, the heavy thin, no burn treatment was always the rightmost curve
417 (longest survival), while the no thin, no burn treatment was always the leftmost curve (shortest
418 survival). Higher mortality rates are found in stands having higher densities (Oliver and Larson,
419 1990). Stand dynamics in intentionally undisturbed stands include a period of density-dependent
420 tree mortality driven by increased competition as stands age and grow (Oliver, 1980; Peet and
421 Christensen, 1987). The experience in this study was consistent with those observations;
422 overstory mortality was highest in non-thinned stands, most likely due to stress-induced
423 competition. For example, Southern pine beetle infestations were highest in the unthinned stands;
424 out of eight plots affected with outbreaks, six were in unthinned stands (the other two were in
425 lightly thinned stands). A predisposition to Southern pine beetle attack due to high stand density
426 can be mitigated with thinning (Ku *et al.*, 1980; Burkhart *et al.*, 1986). In the no thin treatment
427 pine had significantly lower survival compared to the oaks and other species groups. In both the
428 light and heavy thinned stands, the other species group had the lowest survival, while oaks again
429 had the highest.

430

431 The three non-thinned treatments had similar survival probabilities regardless of burn frequency,
432 most likely because the low intensity fires had negligible impact on overstory trees across all
433 species groups. Light thin treatments had slightly lower survival after 14 years when infrequently
434 burned, while survival rates for the no burn and frequent burn treatments were similar. The lower
435 survival in light thin stands with infrequent burns may have been due to fire behavior
436 differences, related to fuel load, while this behavior may have been altered (lessened) in the
437 heavy thin frequent burn treatments as fuel loadings were kept in balance (Schweitzer and Dey,
438 2021).

439

440 Because low to moderate intensity dormant season fires, the type most used by forest managers,
441 are limited in the size of tree (e.g., less than 10.2 cm [4 in.] DBH) that can be topkilled in the
442 short term, dual disturbance of canopy-level density reduction and multiple fires normally are
443 required for regeneration or for woodland creation (Dey *et al.*, 2017). The intent of these
444 disturbances is to increase and maintain understory light levels to stimulate oak-pine
445 reproduction development and recruitment; reduce dense horizontal and vertical structure;
446 prevent dominance by red maple and other non-desirable competitive species; and to increase
447 cover of native woodland flora (Reich *et al.*, 1990; Kruger and Reich, 1997; Brose and Van Lear,
448 1998; Arthur *et al.*, 2012; Kinkead *et al.*, 2013). These conditions are also desired when
449 developing and sustaining woodlands (Dey *et al.*, 2017). Survival time distributions showed that
450 the estimated median survival time for oaks was 25-62 years since the first observation and
451 increased with stem size. For all oak sizes, higher survival times were estimated under thinning
452 and burning treatments. Multiple fires are used to create desirable understory conditions for
453 woodlands, and maintaining overstory density to provide understory light conditions conducive

454 to key indicator species is crucial (Dey *et al.*, 2017). Thus, retaining larger oaks under a frequent
455 fire regime is warranted, as these oaks will have comparable survival to a thin-only regime with
456 the added benefit of restoring desirable understory vegetation.

457

458 Variable responses of forests to prescribed burning, thinning and their combination may be
459 attributed to myriad site factors that impact reproduction responses to disturbance (McEwan *et*
460 *al.*, 2011; Hutchinson *et al.*, 2012; Brose *et al.*, 2013; Keyser *et al.*, 2018). A shelterwood-burn
461 prescription may work in systems that have adequate sizes and numbers of advance oak-pine
462 reproduction (Brose and Van Lear, 1998; Brose *et al.*, 1999; Dey and Fan, 2009; Brose, 2010),
463 while also creating open canopy conditions that mimic woodland structure. The interaction of
464 disturbances may be paramount. For example, after repeated fires had greatly reduced the
465 dominance of shade-tolerant saplings, small gaps caused by drought-induced mortality of
466 overstory trees facilitated the development of large oak and hickory seedlings due to increased
467 light and reduced understory competition (Hutchinson *et al.*, 2012). The probability of large oak
468 advance reproduction occurring is higher when overstory density is less than 13.8 m²/ha
469 (60ft²/ac) (Larsen *et al.*, 1997), which is commensurate with the recommended tree density and
470 canopy cover reduction needed to achieve open woodlands (Dey *et al.*, 2017). Sequencing a
471 regeneration prescription in these mixedwoods that aims at increasing the density and dominance
472 of oak requires phases of management over longer time periods that are anchored in some
473 overstory tree density retention. Modeled estimates support greater survival times for oaks
474 compared to pines and other species under such sequences in this system.

475

476

477 *Prescribed fire as a restoration tool*

478 Adding to the conundrum of using prescribed fire is the history of its use in pine forests to
479 control unwanted hardwoods, including oak (Chen *et al.*, 1975). Despite that history, today
480 prescribed fire is frequently “reintroduced” or “restored” to a forest specifically to favor oak over
481 other hardwoods (Brose, 2010, 2014; Arthur *et al.*, 2015). Yet even repeated low intensity fires
482 may be insufficient to promote oak competitiveness if not accompanied by canopy disturbance
483 (Iverson *et al.*, 2008; Hutchinson *et al.*, 2012). In these loblolly pine-hardwood mixtures on the
484 BNF, we know multiple fires coupled with overstory stem density reduction will be necessary to
485 move stands in a desired direction (Schweitzer *et al.*, 2016, 2019). While the goal of prescribed
486 fire in this project is to target changes in the understory species, we have found that more than
487 three fires are needed to impact these contemporary forest tree species. For example, we have
488 documented that red maple continues to readily sprout even following five prescribed fires
489 (Schweitzer *et al.*, 2019), and we attribute this to a lack of disturbance and mesophication
490 moving the understory towards red maple dominance. With this many fires, a concern over
491 impacts to overstory tree mortality is warranted. Longer survival for oaks compared to pines and
492 larger trees compared to smaller ones allows managers to use repeated fires in these systems to
493 achieve a desired composition and structure while maintaining needed canopy cover.

494

495 **Conclusion.**

496 The current study is unique for several reasons. It is a randomized controlled study employing
497 careful experimental design, rather than a retrospective or cross-sectional study. It is longitudinal
498 and has amassed at this point nearly two decades of empirical data, at plot-, stand-, time-, and

499 fire-levels. For the current analysis, the sample size of over 5,700 trees is quite large, providing
500 strong insights into how survival trends vary among different groups. Frequent (once every three
501 years), low intensity burning does not appear to adversely affect overstory tree survival, even
502 after five burn cycles. Meanwhile, the non-thinned stands did experience lower survival
503 compared to the thinned stands. In the mixed pine-hardwood stands of this study, the overstory
504 pines have experienced moderately lower 14-year survival than the oaks. Consistent with many
505 other studies, the smallest trees experienced the greatest mortality, and this pattern did not appear
506 to be modified by the frequency of prescribed burns. Additionally, there was very little
507 difference in survival experience for the two largest size classes. This research adds to the body
508 of evidence supporting the idea that even fairly frequent (once every three years), low intensity,
509 controlled burns likely do not increase mortality in overstory trees.

510

511 **Acknowledgements.**

512 We thank USFS Forest Technicians Ryan Sisk and Matt Zirbel for their diligent data collection
513 through the duration of this study. We also thank Fire Management Officer Kerry Clark, as well
514 as USFS personnel at the Bankhead National Forest for incorporating the study stands into their
515 prescribed burns on the schedule required by the study. This research was supported in part by an
516 appointment to the United States Forest Service (USFS) Research Participation Program
517 administered by the Oak Ridge Institute for Science and Education (ORISE) through an
518 interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department
519 of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-
520 SC0014664. All opinions expressed in this paper are the authors' and do not necessarily reflect
521 the policies and views of USDA, DOE, or ORAU/ORISE.

REFERENCES

522
523
524 Ager, A.A., Vaillant, N.M., McMahan, A., 2013. Restoration of fire in managed forests: a model to
525 prioritize landscapes and analyze tradeoffs. *Ecosphere* 4, 1-19.
526 Akaike, H., 1998. Information theory and an extension of the maximum likelihood principle. In, Selected
527 papers of hirotugu akaike. Springer, pp. 199-213.
528 Albrecht, M.A., McCarthy, B.C., 2006. Effects of prescribed fire and thinning on tree recruitment
529 patterns in central hardwood forests. *Forest Ecology and Management* 226, 88-103.
530 Arthur, M.A., Alexander, H.D., Dey, D.C., Schweitzer, C.J., Loftis, D.L., 2012. Refining the oak-fire
531 hypothesis for management of oak-dominated forests of the eastern United States. *Journal of Forestry*
532 110, 257-266.
533 Arthur, M.A., Blankenship, B.A., Schörgendorfer, A., Loftis, D.L., Alexander, H.D., 2015. Changes in stand
534 structure and tree vigor with repeated prescribed fire in an Appalachian hardwood forest. *Forest*
535 *Ecology and Management* 340, 46-61.
536 Arthur, M.A., Varner, J.M., Lafon, C.W., Alexander, H.D., Dey, D.C., Harper, C.A., Horn, S.P., Hutchinson,
537 T.F., Keyser, T.L., Lashley, M.A., 2021. Fire ecology and management in eastern broadleaf and
538 Appalachian forests. In, *Fire Ecology and Management: Past, Present, and Future of US Forested*
539 *Ecosystems*. Springer, pp. 105-147.
540 Babl, E., Alexander, H.D., Siegert, C.M., Willis, J.L., 2020. Could canopy, bark, and leaf litter traits of
541 encroaching non-oak species influence future flammability of upland oak forests? *Forest Ecology and*
542 *Management* 458, 117731.
543 Bova, A.S., Dickinson, M.B., 2005. Linking surface-fire behavior, stem heating, and tissue necrosis.
544 *Canadian Journal of Forest Research* 35, 814-822.
545 Brose, P., Van Lear, D., Cooper, R., 1999. Using shelterwood harvests and prescribed fire to regenerate
546 oak stands on productive upland sites. *Forest Ecology and management* 113, 125-141.
547 Brose, P.H., 2010. Long-term effects of single prescribed fires on hardwood regeneration in oak
548 shelterwood stands. *Forest Ecology and Management* 260, 1516-1524.
549 Brose, P.H., 2014. Development of prescribed fire as a silvicultural tool for the upland oak forests of the
550 eastern United States. *Journal of Forestry* 112, 525-533.
551 Brose, P.H., Dey, D.C., Phillips, R.J., Waldrop, T.A., 2013. A meta-analysis of the fire-oak hypothesis: does
552 prescribed burning promote oak reproduction in eastern North America? *Forest Science* 59, 322-334.
553 Brose, P.H., Van Lear, D.H., 1998. Responses of hardwood advance regeneration to seasonal prescribed
554 fires in oak-dominated shelterwood stands. *Canadian Journal of Forest Research* 28, 331-339.
555 Burkhardt, H.E., Haney Jr, H.L., Newberry, J.D., Leuschner, W.A., Morris, C.L., Reed, D.D., 1986. Evaluation
556 of thinning for reduction of losses from southern pine beetle attack in loblolly pine stands. *Southern*
557 *Journal of Applied Forestry* 10, 105-108.
558 Calkin, D.E., Thompson, M.P., Finney, M.A., 2015. Negative consequences of positive feedbacks in US
559 wildfire management. *Forest Ecosystems* 2.
560 Chen, M.-Y., Hodgkins, E.J., Watson, W., 1975. Prescribed burning for improving pine production and
561 wildlife habitat in the hilly coastal plain of Alabama.
562 Clabo, D.C., Clatterbuck, W.K., 2015. Site preparation techniques for the establishment of mixed pine-
563 hardwood stands: 22-year results. *Forest Science* 61, 790-799.
564 Dey, D., Schweitzer, C.J., 2018. A Review on the Dynamics of Prescribed Fire, Tree Mortality, and Injury
565 in Managing Oak Natural Communities to Minimize Economic Loss in North America. *Forests* 9, 461.
566 Dey, D.C., Fan, Z., 2009. A review of fire and oak regeneration and overstory recruitment. In, In:
567 Hutchinson, Todd F., ed. *Proceedings of the 3rd fire in eastern oak forests conference; 2008 May 20-22;*
568 *Carbondale, IL. Gen. Tech. Rep. NRS-P-46. Newtown Square, PA: US Department of Agriculture, Forest*
569 *Service, Northern Research Station: 2-20.*

570 Dey, D.C., Kabrick, J.M., Schweitzer, C.J., 2017. Silviculture to Restore Oak Savannas and Woodlands.
571 Journal of Forestry 115, 202-211.

572 Fay, M.P., Shaw, P.A., 2010. Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data:
573 The interval R Package. Journal of Statistical Software 36, 1-34.

574 Fay, M.P., Shih, J.H., 1998. Permutation tests using estimated distribution functions. Journal of the
575 American Statistical Association 93, 387-396.

576 Gentleman, R., Vandal, A., 2021. Iicens: NPMLE for Censored and Truncated Data. In.

577 Gómez, G., Calle, M.L., Oller, R., Langohr, K., 2009. Tutorial on methods for interval-censored data and
578 their implementation in R. Statistical Modelling 9, 259-297.

579 Hare, R.C., 1961. Heat effects on living plants. USDA, Forest Service, Southern Forest Experiment Station,
580 Occasional paper 183.

581 Hare, R.C., 1965. Contribution of bark to fire resistance of southern trees. Journal of Forestry 63, 248-
582 251.

583 Hengst, G.E., Dawson, J.O., 1994. Bark properties and fire resistance of selected tree species from the
584 central hardwood region of North America. Canadian Journal of Forest Research 24, 688-696.

585 Hoffmann, W.A., Geiger, E.L., Gotsch, S.G., Rossatto, D.R., Silva, L.C., Lau, O.L., Haridasan, M., Franco,
586 A.C., 2012. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire
587 govern the distribution of tropical biomes. Ecology letters 15, 759-768.

588 Holzmueller, E.J., Groninger, J.W., Ruffner, C.M., 2014. Facilitating oak and hickory regeneration in
589 mature central hardwood forests. Forests 5, 3344-3351.

590 Huddle, J.A., Pallardy, S.G., 1996. Effects of long-term annual and periodic burning on tree survival and
591 growth in a Missouri Ozark oak-hickory forest. Forest Ecology and Management 82, 1-9.

592 Hutchinson, T.F., Sutherland, E.K., Yaussy, D.A., 2005. Effects of repeated prescribed fires on the
593 structure, composition, and regeneration of mixed-oak forests in Ohio. Forest Ecology and Management
594 218, 210-228.

595 Hutchinson, T.F., Yaussy, D.A., Long, R.P., Rebbeck, J., Sutherland, E.K., 2012. Long-term (13-year) effects
596 of repeated prescribed fires on stand structure and tree regeneration in mixed-oak forests. Forest
597 Ecology and Management 286, 87-100.

598 Iverson, L.R., Hutchinson, T.F., Peters, M.P., Yaussy, D.A., 2017. Long-term response of oak-hickory
599 regeneration to partial harvest and repeated fires: influence of light and moisture. Ecosphere 8, e01642.

600 Iverson, L.R., Hutchinson, T.F., Prasad, A.M., Peters, M.P., 2008. Thinning, fire, and oak regeneration
601 across a heterogeneous landscape in the eastern U.S.: 7-year results. Forest Ecology and Management
602 255, 3035-3050.

603 Johnson, P.S., Shifley, S.R., Rogers, R., Dey, D.C., Kabrick, J.M., 2019. The ecology and silviculture of oaks.
604 Cabi.

605 Kaplan, E.L., Meier, P., 1958. Nonparametric estimation from incomplete observations. Journal of the
606 American statistical association 53, 457-481.

607 Kenefic, L.S., Kabrick, J.M., Knapp, B.O., Raymond, P., Clark, K.L., D'Amato, A.W., Kern, C.C., Vickers, L.A.,
608 Dey, D.C., Rogers, N.S., 2021. Mixedwood silviculture in North America: the science and art of managing
609 for complex, multi-species temperate forests. Canadian Journal of Forest Research 51, 921-934.

610 Keyser, T.L., McDaniel, V.L., Klein, R.N., Drees, D.G., Burton, J.A., Forder, M.M., 2018. Short-term stem
611 mortality of 10 deciduous broadleaved species following prescribed burning in upland forests of the
612 Southern US. International Journal of Wildland Fire 27, 42.

613 Kinkead, C.O., Kabrick, J.M., Stambaugh, M.C., Grabner, K.W., 2013. Changes to oak woodland stand
614 structure and ground flora composition caused by thinning and burning. In, In: Miller, Gary W.; Schuler,
615 Thomas M.; Gottschalk, Kurt W.; Brooks, John R.; Grushecky, Shawn T.; Spong, Ben D.; Rentch, James S.,
616 eds. Proceedings, 18th Central Hardwood Forest Conference; 2012 March 26-28; Morgantown, WV;

617 Gen. Tech. Rep. NRS-P-117. Newtown Square, PA: US Department of Agriculture, Forest Service,
618 Northern Research Station: 373-383., pp. 373-383.

619 Klein, J.P., Moeschberger, M.L., 2003. Survival analysis: techniques for censored and truncated data.
620 Springer.

621 Knapp, B.O., Hullinger, M.A., Kabrick, J.M., 2017. Effects of fire frequency on long-term development of
622 an oak-hickory forest in Missouri, USA. *Forest Ecology and Management* 387, 19-29.

623 Kruger, E.L., Reich, P.B., 1997. Responses of hardwood regeneration to fire in mesic forest openings. I.
624 Post-fire community dynamics. *Canadian Journal of Forest Research* 27, 1822-1831.

625 Ku, T.T., Sweeney, J.M., Shelburne, V.B., 1980. Site and stand conditions associated with southern pine
626 beetle outbreaks in Arkansas—a hazard-rating system. *Southern Journal of Applied Forestry* 4, 103-106.

627 Larsen, D.R., Metzger, M.A., Johnson, P.S., 1997. Oak regeneration and overstory density in the Missouri
628 Ozarks. *Canadian Journal of Forest Research* 27, 869-875.

629 Lawes, M.J., Adie, H., Russell-Smith, J., Murphy, B., Midgley, J.J., 2011. How do small savanna trees avoid
630 stem mortality by fire? The roles of stem diameter, height and bark thickness. *Ecosphere* 2, 1-13.

631 Mann, D.P., Wiedenbeck, J.K., Dey, D.C., Saunders, M.R., 2020. Evaluating economic impacts of
632 prescribed fire in the Central Hardwood Region. *Journal of Forestry* 118, 275-288.

633 Maringer, J., Hacket-Pain, A., Ascoli, D., Garbarino, M., Conedera, M., 2021. A new approach for
634 modeling delayed fire-induced tree mortality. *Ecosphere* 12, e03458.

635 Marschall, J.M., Guyette, R.P., Stambaugh, M.C., Stevenson, A.P., 2014. Fire damage effects on red oak
636 timber product value. *Forest Ecology and Management* 320, 182-189.

637 McEwan, R.W., Dyer, J.M., Pederson, N., 2011. Multiple interacting ecosystem drivers: toward an
638 encompassing hypothesis of oak forest dynamics across eastern North America. *Ecography* 34, 244-256.

639 Morin, A.A., Albert-Green, A., Woolford, D.G., Martell, D.L., 2015. The use of survival analysis methods
640 to model the control time of forest fires in Ontario, Canada. *International Journal of Wildland Fire* 24,
641 964-973.

642 Moritz, M.A., Moody, T.J., Miles, L.J., Smith, M.M., de Valpine, P., 2009. The fire frequency analysis
643 branch of the pyrostatistics tree: sampling decisions and censoring in fire interval data. *Environmental
644 and Ecological Statistics* 16, 271-289.

645 Oliver, C.D., 1980. Forest development in North America following major disturbances. *Forest ecology
646 and management* 3, 153-168.

647 Oliver, C.D., Larson, B.C., 1990. Forest stand dynamics. *Biological resource management series*. In:
648 McGraw-Hill, New York.

649 Peet, R.K., Christensen, N.L., 1987. Competition and tree death. *Bioscience* 37, 586-595.

650 R Core Team, 2021. R: A language and environment for statistical computing. In: R Foundation for
651 Statistical Computing, Vienna, Austria.

652 Reich, P.B., Abrams, M.D., Ellsworth, D.S., Kruger, E.L., Tabone, T.J., 1990. Fire affects ecophysiology and
653 community dynamics of central Wisconsin oak forest regeneration. *Ecology* 71, 2179-2190.

654 Schweitzer, C., Dey, D.C., 2021. Coproducing science on prescribed fire, thinning, and vegetation
655 dynamics on a National Forest in Alabama. *Fire Management Today* 79, 43-51.

656 Schweitzer, C.J., Dey, D.C., Wang, Y., 2016. Hardwood-pine mixedwoods stand dynamics following
657 thinning and prescribed burning. *Fire Ecology* 12, 85-104.

658 Schweitzer, C.J., Dey, D.C., Wang, Y., 2019. White oak (*Quercus alba*) response to thinning and
659 prescribed fire in Northcentral Alabama mixed pine-hardwood forests. *Forest Science* 65, 758-766.

660 Smith, K.T., Sutherland, E.K., 2006. Resistance of eastern hardwood stems to fire injury and damage.
661 Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web
662 Soil Survey. Available online at the following link: <http://websoilsurvey.sc.egov.usda.gov/>. Accessed on:
663 03/01/2022.

664 Steinbeck, K., Kuers, K., 1996. Development of pine-hardwood mixtures following clearcutting on two
665 upland sites in the Georgia Piedmont: 10 year results. *Southern Journal of Applied Forestry* 20, 203-208.

666 Sutherland, E.K., Smith, K., 2000. Resistance is not futile: the response of hardwoods to fire-caused
667 wounding. In, In: Yaussy, Daniel A., comp. 2000. *Proceedings: workshop on fire, people, and the central*
668 *hardwoods landscape; 2000 March 12-14; Richmond, KY.* Gen. Tech. Rep. NE-274. Newtown Square, PA:
669 US Department of Agriculture, Forest Service, Northeastern Research Station: 111-115., pp. 111-115.

670 Therneau, T.M., 2021. A Package for Survival Analysis in R. In.

671 USDA Forest Service, 2004. Revised land and resource management plan: National Forests in Alabama.
672 In: Region, U.F.S.S. (Ed.), Atlanta, GA, p. 330.

673 Uzoh, F.C.C., Mori, S.R., 2012. Applying survival analysis to managed even-aged stands of ponderosa
674 pine for assessment of tree mortality in the western United States. *Forest Ecology and Management*
675 285, 101-122.

676 Vander Yacht, A.L., Barrioz, S.A., Keyser, P.D., Harper, C.A., Buckley, D.S., Buehler, D.A., Applegate, R.D.,
677 2017. Vegetation response to canopy disturbance and season of burn during oak woodland and savanna
678 restoration in Tennessee. *Forest Ecology and Management* 390, 187-202.

679 Waldrop, T.A., 1989. *Proceedings of Pine-Hardwood Mixtures: A Symposium on Management and*
680 *Ecology of the Type.* Gen. Tech. Rep. SE-58. Asheville, NC: US Department of Agriculture, Forest Service,
681 Southeastern Forest Experiment Station. 271 p. 58.

682 Waldrop, T.A., Hagan, D.L., Simon, D.M., 2016. Repeated Application of Fuel Reduction Treatments in
683 the Southern Appalachian Mountains, USA: Implications for Achieving Management Goals. *Fire Ecology*
684 12, 28-47.

685 Willis, J.L., Gordon, J.S., Tanger, S., Blazier, M.A., Self, A.B., Brodbeck, A., 2019. Managing mixed stands:
686 Reassessing a forgotten stand type in the southeastern United States. *Forests* 10, 751.

687 Woodall, C.W., Grambsch, P.L., Thomas, W., 2005. Applying survival analysis to a large-scale forest
688 inventory for assessment of tree mortality in Minnesota. *Ecological Modelling* 189, 199-208.

689