

1 **Polychlorinated Biphenyls, Polychlorinated Dibenzo-*p*-dioxins, Polychlorinated Dibenzofurans,**
2 **Pesticides, and Diabetes in the Anniston Community Health Survey Follow-up (ACHS II)**

3
4 Pavuk M^a, Rosenbaum PF^b, Lewin MD^a, Serio TC^c, Rago P^c, Cave MC^d, Birnbaum LS^e

5

6 ^a Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and
7 Prevention (CDC), Atlanta, GA.

8 ^b SUNY Upstate Medical University, Syracuse, NY.

9 ^c ATSDR/CDC, Atlanta, GA - fellowship through Oak Ridge Institute for Science and Education
10 (ORISE).

11 ^d University of Louisville, Louisville, KY.

12 ^e NIEHS, Research Triangle Park, NC.

13

14

15 Corresponding author:

16 Paula Rosenbaum: email; rosenbap@upstate.edu

17 State University of New York Upstate Medical University

18 Department Public Health and Preventive Medicine

19 750 East Adams Street

20 Syracuse, NY 13210

21

22 Abbreviations: PCBs, polychlorinated biphenyls; PCDD, polychlorinated dibenzo-*p*-dioxins; PCDF,
23 polychlorinated dibenzofurans; TEQ, Dioxin toxic equivalent; p,p'- DDE, dichloro-diphenyl
24 dichloroethylene; TCDD, 2, 3, 7, 8-tetrachloro dibenzo-*p*-dioxin, β -HCCH, beta-
25 hexachlorocyclohexane; HCB, hexachlorobenzene.

26

27

28

29

30

31

32

33

34

35 **Abstract**

36 Dioxins and dioxin-like compounds measurements were added to polychlorinated biphenyls
37 (PCBs) and organochlorine pesticides to expand the exposure profile in a follow-up to the Anniston
38 Community Health Survey (ACHS II, 2014) and to study diabetes associations. Participants of ACHS I
39 (2005-2007) still living within the study area were eligible to participate in ACHS II. Diabetes status
40 (type-2) was determined by a doctor's diagnosis, fasting glucose ≥ 125 mg/dL, or being on any glycemic
41 control medication. Incident diabetes cases were identified in ACHS II among those who did not have
42 diabetes in ACHS I, using the same criteria. Thirty-five ortho-substituted PCBs, 6 pesticides, 7
43 polychlorinated dibenzo-*p*-dioxins (PCDD), 10 furans (PCDF), and 3 non-ortho PCBs were measured in
44 338 ACHS II participants. Dioxin toxic equivalents (TEQs) were calculated for all dioxin-like
45 compounds. Main analyses used logistic regression models to calculate odds ratios (OR) and 95%
46 confidence intervals (CI). In models adjusted for age, race, sex, BMI, total lipids, family history of
47 diabetes, and taking lipid lowering medication, the highest ORs for diabetes were observed for PCDD
48 TEQ: 3.61 (95% CI: 1.04, 12.46), dichloro-diphenyl dichloroethylene (p,p'-DDE): 2.07 (95% CI 1.08,
49 3.97), and *trans*-Nonachlor: 2.55 (95% CI 0.93, 7.02). The OR for sum 35 PCBs was 1.22 (95% CI:
50 0.58-2.57). To complement the main analyses, we used BKMR and g-computation models to evaluate
51 12 mixture components including 4 TEQs, 2 PCB subsets and 6 pesticides; suggestive positive
52 associations for the joint effect of the mixture were found but were not significant. These results add
53 support to earlier findings for diabetes associations with PCBs, PCDDs, *trans*-Nonachlor and p,p'-
54 DDE.

56 **Keywords:** Persistent organic pollutants, PCBs, Pesticides, Diabetes, Longitudinal study, Mixture
57 analysis, BKRM, g-computation

58

59

60

61 **1. Introduction**

62 The Swann Chemical Company (1929-1935) and Monsanto Company (1935-1971) operated a
63 production plant in Anniston, AL that manufactured polychlorinated biphenyls (PCBs) between 1929
64 and 1971. The facility produced all commercial and experimental Aroclor® mixtures, containing a
65 number of individual PCB congeners, accounting for about half of the total PCB production in US
66 (Erickson and Kaley, 2011). Elevated concentrations of PCBs have been previously reported in
67 Anniston residents (ATSDR 2000, Pavuk et al., 2014a) and environmental media (Hermanson et al.,
68 2003). Our previous report on PCB exposure and diabetes in Anniston residents from the Anniston
69 Community Health Survey (ACHS I) noted increased risk of diabetes for the sum of 35 ortho-substituted
70 PCBs in data collected from 2005-2007 (Silverstone et al., 2012). While we were not able to review and
71 verify the medical records, most of the diabetes was assumed to be type 2 diabetes based on late onset.
72 This risk was more pronounced in those younger than 55 years old (median age of the cohort) and in
73 females (Silverstone et al., 2012). Analyses with the toxicological/structure-activity subsets of PCB
74 congeners did not reveal additional information; dioxin-like PCB congeners were limited to mono-ortho
75 congeners that are highly correlated with other non-dioxin like PCBs and have weak affinity to the aryl-
76 hydrocarbon receptor (Ah-R) pathway (Gourronc et al., 2018; Larsson et al., 2015). We conducted a
77 follow-up study to ACHS I, ACHS II, in 2014, about 8 years after the baseline. The measurements of
78 serum polychlorinated dibenzo-*p*-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and
79 dioxin-like non-ortho PCBs (non-ortho-PCBs) were added to ACHS II to expand the exposure profile of
80 the Anniston cohort (Birnbaum et al., 2016).

82 Associations between exposure to PCBs and type 2 diabetes, along with other persistent organic
83 pollutants (POPs), have been studied extensively, and have been the subject of several in-depth reviews
84 (Lee et al., 2014; Lind et al., 2018; Taylor et al., 2013; Thayer et al, 2012). Strong associations between
85 various PCBs, dioxin congeners, and pesticides first reported in data from the National Health and

86 Nutrition Examination Survey (NHANES) databases by Lee et al. (2006, 2007, and corroborated by
87 Everett et al. (2007), gave impetus to a score of cross-sectional investigations around the world
88 evaluating metabolic disturbances related to diabetes and exposure to mostly non-dioxin like PCBs,
89 organochlorine pesticides, and other POPs such as polybrominated diphenyl ethers (PBDEs) (Airaksinen
90 et al., 2011; Arrebola et al., 2013; Everett and Thompson, 2012; Gasull et al., 2012; Han et al., 2019;
91 Henriquez-Hernandez et al., 2017; Huang et al., 2015; Kim et al., 2018; Marushka et al., 2018;
92 Nakamoto et al., 2013; Persky et al., 2012; Raffetti et al., 2018; Silverstone et al., 2012; Tanaka et al.,
93 2011). A smaller number of longitudinal studies have investigated the relationship between POPs and
94 diabetes incidence prospectively, with less consistent results (Berg et al., 2021; Charles et al., 2022; Lee
95 et al. 2010, 2011; Magliano et al., 2021; Rignell-Hydbom et al., 2009; Turyk et al., 2009, 2015; Suarez-
96 Lopez et al, 2015; Tornevi et al., 2019; Vasiliu et al., 2006; Wu et al., 2013; Zong et al., 2018). This
97 body of research was built on earlier investigations focused on the examination of the association
98 between 2, 3, 7, 8-tetrachloro dibenzo-p-dioxin (TCDD, prototypical “dioxin”) and diabetes in
99 occupational studies and veterans’ cohorts with higher than background exposures (Calvert et., 1999
100 Longnecker and Michalek 2000, Michalek and Pavuk 2008, Steenland et al., 1999, 2001; Vena et al.,
101 1998).

102 The potential mechanism of action has been elucidated in more detail for dioxin-like PCBs.
103 Exposure to PCBs 77 and 126 which are strong Ah-R agonists, resulted in impaired glucose and insulin
104 tolerance in mice on low and high fat diets (Baker et al., 2015). Human pre-adipocytes treated with PCB
105 126 had significantly reduced ability to fully differentiate (to adipocytes), downregulating transcription
106 factor PPAR- γ and late adipocyte differentiation genes (Gadupudi et al., 2015). Furthermore, exposure
107 to PCB 126 activated the pro-inflammatory response pathway, which is recognized as a causative factor
108 in the development of type 2 diabetes (Gourronc et al., 2018). A number of potential mechanisms
109 leading to insulin resistance for non-dioxin like PCBs have been investigated by Kim et al. (2019).

110 Traditional approaches to study multi-pollutant exposures are often limited due to potential
111 issues including, multicollinearity, model misspecification, and the inability to evaluate multiple
112 correlated exposures and pollutants as a single mixture in contrast to modeling associations with
113 individual chemical compounds/analytes (Gibson et al., 2019; Taylor et al., 2013). To address these
114 limitations, advanced statistical methods, such as the Bayesian Kernel Machine Regression (BKMR)
115 (Bobb et al., 2015, 2018) and quantile-based g-computation (g-comp) (Keil et al., 2020), have been
116 introduced to the field. BKMR is a semiparametric statistical method that can be employed to estimate
117 the overall mixture effect and individual chemical impact within a mixture on health outcomes,
118 exploring potential nonlinearity and non-additivity (Bobb et al., 2015, 2018). Quantile g-computation is a
119 causal inference method that uses a weighted quantile regression approach and can generate a marginal
120 structural estimate for the overall joint exposure effect on the change in the outcome (Snowden, 2011;
121 Keil et al, 2020). A growing number of epidemiologic studies have applied BKMR to evaluate the
122 effect of exposure to POPs, mostly per- and polyfluoroalkyl substances (PFAS) on gestational diabetes
123 and glucose homeostasis, thyroid function, or hypertensive disorders (Preston et al., 2020, 2022; Xu et
124 al., 2022; Zhang et al., 2022a). A few studies evaluated dioxin-like compounds and PCBs using mixture
125 methods studying various health outcomes such hyperuricemia, breast cancer, neurodevelopment
126 measures or cognitive function (Yim et al., 2022; Parada et al., 2021; Sasaki et al., 2023; Zhang et al.,
127 2022b).

128 In the present ACHS II study, we examined associations between diabetes and PCDDs, PCDFs,
129 and non-ortho PCBs, in addition to ortho-substituted PCBs and chlorinated pesticides. Cross sectional
130 associations with prevalent diabetes in the ACHS II sample (for dioxins, PCBs, and pesticides) were
131 examined as well as association with incident diabetes (for PCBs and pesticides) in members of the
132 Anniston cohort to further elucidate possible relationships between environmental exposures to POPs
133 and diabetes. Additionally, the broad exposure assessment results available in the Anniston cohort gave

134 us an impetus to also perform complementary Bayesian kernel machine regression (BKMR) and
135 quantile g-computation analyses to assess the joint POPs mixture effects and the relative importance of
136 mixture components on diabetes.

137

138 **2. Materials and methods**

139

140 *2.1 Study Design and Population*

141 Methods for the ACHS I and ACHS II have been described in detail in previous publications
142 (Pavuk et al., 2014b; Birnbaum et al., 2016). For the follow up study, all surviving participants of ACHS
143 I with PCB measurements were eligible to participate (n=765). Prior to enrollment, we were able to
144 ascertain that 114 participants had died; in addition, 69 participants were found to have moved outside
145 the study area. Of the remaining participants, 438 with a current address in the study area were
146 successfully contacted. Of these, a total of 359 enrolled as participants in the follow-up study (82%)
147 (Birnbaum et al., 2016). Sufficient volumes of sera for dioxin analyses were collected from 338
148 participants who have been included in the statistical analyses presented here. The participants also
149 provided a fasting blood sample for measurements of glucose, POPs, and lipid levels, and had their
150 height, weight, waist circumference, and blood pressure measured using a standardized protocol. During
151 the study office visit, demographic information, medical and family history, as well as self-reported
152 health behaviors and health conditions were recorded. Individual medications including glycemic
153 control medication (oral and injectable; name, dose, frequency) were recorded and verified by a nurse
154 (participants had to bring the medication to the study office).

155 Diabetes was defined as self-report of physician-diagnosed diabetes, or fasting glucose ≥ 125
156 mg/dL, or being on any glycemic control medication. Non-diabetes was defined as a fasting glucose
157 < 125 mg/dL and the absence of glycemic control medications. Reported diabetes was type II diabetes;

158 we could not verify medical records if any were type I. For the present analyses, we excluded
159 participants with prediabetes (glucose between 100 and 124mg/dL) to be consistent with reporting from
160 ACHS I (Silverstone et al. 2012). The studies were reviewed and approved by the appropriate
161 Institutional Review Boards.

162

163 *2.2 Laboratory Analyses*

164 The sera were isolated by centrifugation using red top vacutainer tubes and shipped on dry ice to
165 the Division of Laboratory Sciences at the CDC, National Center for Environmental Health (NCEH).
166 Participant samples were stored at -70°C. Serum samples were first measured for PCDD/F and non-
167 ortho PCBs based on published methodology (Turner et al. 1997) using 20 g of serum (median: 20g;
168 range: 2.5–20.7 g; 10th percentile: 14.0 g). The samples were then measured for ortho-PCBs and
169 pesticides according to published methodology (Sjödin et al., 2004; Jones et al., 2012) using 2g of
170 serum. Each analytical batch for ortho-PCBs/pesticides was defined as 24 unknowns, 3 quality controls,
171 and 3 method blanks, while for PCDD/F and non-ortho-PCBs, each analytical batch included 8
172 unknowns, 2 quality controls, and 2 method blanks. Measurements of target organohalogen compounds
173 were made by gas chromatography–isotope dilution high-resolution mass spectrometry. Serum total
174 lipids were calculated by the enzymatic “summation” method using triglyceride and total cholesterol
175 measurements (Bernert et al., 2007). The 2005 WHO Toxic Equivalency Factors (TEF) were used to
176 calculate the congeners’ toxic equivalency (TEQ) and total dioxin TEQ (Van den Berg et al., 2006).

177

178 *2.3 Statistical Analysis*

179 Statistical analyses were conducted using SAS System 9.4 (SAS Institute, Inc., Cary, NC), and
180 SPSS (IBM SPSS Statistics for Windows, Version 28.0, Armonk, NY: IBM Corp). Descriptive
181 statistics for demographic characteristics and exposure variables were calculated for those with diabetes,

182 prediabetes, or no diabetes; differences between groups were compared using a two-tailed t-test or one-
183 way ANOVA for continuous variables and chi-square tests for categorical variables. General linear
184 models were used to calculate geometric mean concentrations of the chemical exposures by diabetes
185 status with control for age, sex, race, BMI, smoking status and family history of diabetes. Spearman's
186 correlation coefficients were run for all exposure variables. As these POPs correlations were expected
187 to be high, we also conducted hierarchical cluster analysis (HCA), performed via ClustOfVar package in
188 R (Chavent et al., 2012). It provides hierarchical and k-means clustering of a set of variables. The center
189 of a cluster of variables is a synthetic variable which is the first principal component calculated by
190 PCAmix. The homogeneity of a cluster is defined as the squared correlation between the variables and
191 the center of the cluster.

192 Unconditional logistic regression models were used to contrast diabetes status (diabetes, no
193 diabetes) with the exposure variables. Chemical exposures included: six pesticides (hexachlorobenzene
194 [HCB], β -HCCH, *trans*-Nonachlor, Oxychlordane, pp'-DDE, Mirex), the sum of 35 PCB congeners,
195 total dioxin TEQ and its subcomponents (PCDD TEQ, PCDF TEQ, mono-ortho PCBs TEQ and non-
196 ortho PCBs TEQ). These summary exposure groups were created as follows, PCDD TEQ (sum of 7
197 dibenzo-dioxin congeners: 2,3,7,8-TCDD, 1,2,7,8-PCDD, 1,2,3,4,7,8-HCDD, 1,2,3,6,7,8-HCDD,
198 1,2,3,7,8,9-HCDD, 1,2,3,4,6,7,8-HCDD, OCDD), PCDF TEQ (sum of 10 dibenzo-furan congeners:
199 2,3,7,8-TCDF, 1,2,3,7,8-PCDF, 2,3,4,7,8-PCDF, 1,2,3,4,7,8-HCDF, 1,2,3,6,7,8-HCDF, 1,2,3,7,8,9-
200 HCDF, 2,3,4,6,7,8-HCDF, 1,2,3,4,6,7,8-HCDF, 1,2,3,4,7,8,9-HCDF, OCDF), mono-ortho PCBs TEQ
201 (sum of PCBs 105, 118, 156, 157, 167, and 189), non-ortho PCBs TEQ (sum of PCBs 81, 126, 169)
202 (van den Berg et al., 2006). In addition to sum of PCBs, we used structure-activity groups based on the
203 chlorine substitution. The subsets were the di-ortho, and the tri- and tetra- ortho PCB congeners, while
204 the mono-ortho and non-ortho PCBs substituted groups were already included with the dioxin TEQs
205 above. For the individual congeners and pesticides, we used LOD/square root2 to substitute levels

206 below LOD (Hornung and Reed, 1990). For the main analysis, three logistic regression models were
207 applied with co-variables selected based on the literature review of POPs and diabetes associations, and
208 variables available in the Anniston study (Turyk et al., 2009, Lee et al., 2014; Zong et al., 2018). Model
209 1 analyses were adjusted for basic demographic variables: age, race (African American or White), sex
210 (female or male), and log-transformed total lipids. Model 2 was adjusted for additional covariates
211 including, family history of diabetes (yes or no), lipid lowering medication (yes or no), current smoking
212 status (yes or no), BMI (kg/m^2), access to health insurance during last year (yes or no), and education
213 (high school or less, more than high school). Model 3 was a more parsimonious model, with adjustment
214 for age, race, BMI, lipid lowering drugs and family history of diabetes. Appropriate covariates for
215 model 3 were ascertained using a backwards stepwise procedure and a likelihood *p*-value for removal of
216 0.10. Sum of PCBs, PCB groups, pesticides and all TEQ variables were modeled as whole weight
217 variables and logarithmically transformed to base 10 (\log_{10}). Odds ratios (OR) and 95% confidence
218 intervals (CI) are presented for diabetes associations with exposure variables modeled as continuous
219 variables (all exposure compounds). We also ran exploratory models stratified by sex (male, female) and
220 race (African American, White), but reduced sample size has limited those inferences. Included
221 covariates were identical to those in model 3, the parsimonious model described above. Interaction
222 terms were assessed for the sum PCB and PCB/TEQ subgroups using the likelihood ratio *p* value for
223 removal of > 0.10 in a backward stepwise procedure.

224 Odds ratios for incident cases of diabetes versus non-diabetes group were calculated using the
225 same regression models 1 and 2 as described above but using the exposure variables and time-sensitive
226 covariates (e.g., current smoking) from the baseline ACHS rather than the follow-up study. Of the 37
227 incident diabetes cases reported between the baseline and the follow up studies, 24 had nurse-verified
228 use of glycemic medication (63.2%). To complement the main statistical analyses, we used the
229 Bayesian kernel machine regression (BKMR) to evaluate the joint and individual effects of exposure to

230 PCBs, dioxins and pesticides on the odds of diabetes and to estimate the relative contributions of
231 different mixture components (Bobb et al., 2015, 2018). BKMR uses a kernel function to flexibly model
232 both the overall joint effect of an exposure mixture and to estimate individual exposure-outcome
233 associations. To determine the joint association, the algorithm subtracts the mean value of the outcome
234 when the mixture concentrations are at the 25th percentile from the mean value of the outcome when the
235 mixture concentrations are at the 75th percentile while holding the covariates constant (the percentiles
236 are modifiable).

237 Given the sample size for the main analyses (n=310), and large number of assessed exposures
238 [dioxin-like compounds (20), PCBs (35), pesticides (6); for a total of 62 analytes] we elected to use the
239 same structure-activity based dioxin TEQs and PCB groups as described above to reduce the number of
240 exposure variables to 12. We have also used those groups in our hypertension outcomes analyses (Pavuk
241 et al., 2019) and this strategy is similar to what was done in other studies assessing mixtures, e.g., Xu et
242 al., 2022, Preston et al., 2022, as a way to maintain the robustness of the analytical method. Thus, we
243 included the same two groups of non-dioxin-like PCBs: the di-ortho and tri- and tetra- ortho substituted
244 PCBs, four TEQ groups: PCDD, PCDF, non-ortho, and mono-ortho PCB TEQs, as well as six
245 individual pesticides (which do not have a common mode of toxicity) in BKMR analyses.

246 Additionally, the variable selection option in BKMR was used to estimate posterior inclusion
247 probabilities (PIPs) for each exposure to identify the relative importance of these mixture components to
248 the overall mixture (Bobb et al., 2018). We used the hierarchical variable selection function, which is
249 recommended in the presence of higher group correlations. For the dichotomous diabetes outcome
250 (diabetes versus no diabetes), we used the probit extension of BKMR (Bobb et al., 2018). Models were
251 run for 50,000 iterations using the Markov chain Monte Carlo sampler. The model convergence was
252 checked by visually inspecting trace plots. Possible nonlinearity in dose-response functions and
253 interactions were also examined among the mixture component. Consistent with the main analyses, all

254 exposure variable concentrations were log10 transformed for the BKMR models due to sensitivity to
255 extreme values. To facilitate comparability across the different statistical approaches we included the
256 same set of covariates in all models.

257 To investigate consistency of findings across different multipollutant approaches, we also
258 employed quantile g-computation as a second complementary method (Snowden, 2011; Keil et al.,
259 2020). Quantile g-computation provides a single estimate of the overall marginal structural effect of the
260 exposure mixture on the outcome and weights for the individual mixture components. The weights
261 represent the exposures' relative contributions to the overall mixture effect. The positive and negative
262 relative weights each sum to 1.0. The overall effect estimate (ψ) was computed for exposure to
263 dioxins, PCBs, and pesticides mixture in relation to diabetes using a one-quantile change of all mixture
264 components, assuming a Gaussian distribution. The mixture slope and overall model confidence bounds
265 were iterated by 500 bootstraps; no boot option was used to obtain relative weights. Prior knowledge
266 from the BKMR, including possible nonlinearity or non-additivity, was fed to the quantile g-
267 computation if necessary.

268 Mixture analyses were conducted using R (version 4.2.1; R Development Core Team) with the
269 packages "bkmr," for BKMR and "qgcomp," for quantile g-computation; [https://cran.r-
270 project.org/web/packages/qgcomp/](https://cran.r-project.org/web/packages/qgcomp/)).

271

272 **3. Results**

273

274 *3.1 Study Population Demographics*

275 The demographic comparisons between diabetes, pre-diabetes, and participants with no diabetes
276 are shown in Table 1. Participants with diabetes and pre-diabetes were older by 5 and 6 years compared
277 to those with no diabetes. While 51% of the 2014 cohort was African American, 60.7% of those with

278 diabetes diagnoses were African American. Females represented most of the participants (72%),
279 however, no major difference in the proportions of females with and without diabetes or pre-diabetes
280 were noted. Glucose levels, as expected, were elevated in participants with diabetes and pre-diabetes as
281 well as mean insulin. Significant differences by diabetes status were not observed for educational level
282 or access to health insurance. There was a significantly higher proportion of positive family history
283 reports of diabetes among participants with diabetes (78% vs 59%). Smoking status, total lipids,
284 triglycerides, and total cholesterol were not significantly different across the three groups. There were
285 significantly higher proportion of participants on lipid lowering medication among those with pre-
286 diabetes (61%) or diabetes (48%) compared to those without diabetes (31%).

287

288 *3.2 Geometric Means Comparison*

289 In Table 2, we compared geometric means of pesticides, major PCBs and dioxin-like chemical
290 groups (sum of PCBs and summary TEQs) that were adjusted for age, sex, race, BMI, smoking status,
291 and a family history of diabetes. Geometric means of studied chemicals and subgroups were, in general,
292 higher in those with diabetes for all chemicals. PCDD TEQ was significantly higher for those with
293 diabetes compared to those without diabetes as were *trans*-Nonachlor and p,p'-DDE. There were no
294 significant differences for those with prediabetes relative to those without diabetes. All other studied
295 chemical groups did not have significant differences by diabetic status (*p* values from 0.06 to 0.87).
296 Table S1 provides similar results for the ACHS I cohort overall. The summed PCB levels were generally
297 lower at time 2 (ACHS II) than at time 1, whereas the remaining PCB subgroups and pesticides changes
298 did not fit a particular pattern.

299

300 *3.3 Logistic Regression Analyses*

301 Table 3 summarizes the associations for prevalent diabetes in 2014 for the entire cohort using
302 continuous exposure variables (PCBs, dioxin TEQ groups, and pesticides). In model 1, the odds ratio for
303 sum of PCBs was 1.13 (95% CI: 0.56, 2.29) while the fully adjusted OR in model 2 was 1.22 (95% CI:
304 0.58-2.57). Odds ratios for the PCB subsets (mono-ortho, di-ortho, and tri- and tetra-ortho) were similar,
305 ranging from 1.09 to 1.39 with confidence intervals that all included the null. The model 3 results for the
306 summary PCB and subgroups were similar to those observed in models 1 and 2. While the results for
307 PCBs were not significantly associated with diabetes, the model 1 ORs for PCDD TEQ, total dioxin
308 TEQ, p,p'-DDE, and *trans*-Nonachlor were elevated with the null value excluded from the CI. In the
309 fully adjusted model 2, the highest ORs for diabetes showing statistical significance were for PCDD
310 TEQ 3.61 (1.04, 12.46) and p,p'-DDE 2.07 (1.08, 3.97). In model 3, *trans*-Nonachlor and p,p'-DDE
311 ORs remained significantly associated with diabetes. As shown in Table S2, increasing age, African
312 American ethnicity/race, having a positive family history of diabetes, taking lipid lowering medication,
313 and having an elevated BMI were significantly associated with prevalent diabetes in a fully adjusted
314 model without chemical exposures.

315

316 *3.4 Exploratory Analyses with Stratified Groups*

317 Exploratory logistic regression models stratified by sex and race using continuous POP exposure
318 variables were run with results presented in Table S3. Odds ratios for the sum of 35 PCBs were 4.23
319 (95% CI: 1.10, 16.35) for Whites compared to 0.80 (95% CI: 0.35, 1.81) for African Americans. The
320 highly chlorinated tri- and tetra-ortho PCB group OR also was significantly elevated in Whites at 7.76
321 but with a very wide 95% CI: 1.95, 30.86. Interaction terms for both the sum PCB and highly
322 chlorinated subgroup and race were not significant ($p > 0.05$) in their respective adjusted models. African
323 Americans had elevated levels of p,p'-DDE relative to Whites, but the CI included the null. For the sex
324 specific analyses, ORs for p,p'-DDE were 2.16 (95% CI: 1.06, 4.41) for females compared to 0.94 (95%

325 CI: 0.22, 3.96) for males. The odds ratios for oxychlordane and *trans*-Nonachlor were higher for males
326 than females, with significantly elevated ORs noted for *trans*-Nonachlor in males.

327

328 *3.5 Incident diabetes*

329 There were 37 incident diabetes cases identified ‘post baseline’ out of 212 ‘at risk persons’
330 enrolled in the follow up study. Persons with diabetes at baseline and with pre-diabetes were excluded
331 from these longitudinal analyses. Demographic characteristics and laboratory measurements for incident
332 analyses are shown in Table S4; statistical significance was noted only for a family history of diabetes.
333 In logistic regression modeling of incident diabetes (Table 4), the highest OR reported was for *trans*-
334 Nonachlor in Model 1 [1.28 (95% CI: 0.29, 5.61)]. The odds ratio for p,p’-DDE was above the null but
335 non-significant [1.12, (95% CI: 0.47, 2.72)]. Odds ratios for the sum of PCBs and the PCB subgroups
336 were all below 1.0. None of the reported associations were statistically significant in the adjusted models
337 1 and 2.

338

339 *3.6 Mixture Analysis*

340 Spearman’s correlation coefficients (Figure 1a) indicated that the exposures investigated in this
341 study were highly correlated, especially among PCBs groups. The highest correlation coefficient was
342 seen among the di-ortho and tri-tetra-ortho PCBs at 0.98. The mono-ortho TEQ also was highly
343 correlated with the tri-tetra-ortho PCBs (0.90), the di-ortho PCBs (0.95) as well as the non-ortho PCB
344 TEQ at 0.88. Among the pesticides, only *trans*-Nonachlor and oxychlordane showed a high correlation
345 (0.80). The dioxins and furans were also highly correlated 0.84. Mirex was less correlated with other
346 pesticides than it was with the tri-tetra and di-ortho PCBs (0.72 and 0.73, respectively). The dioxin and
347 furan TEQs generally showed mid-range correlations with both the pesticides and the PCB subgroups.

348 Because of the high correlations among the POPs, the 12 mixture components were grouped via
349 hierarchical cluster analysis for use in the BKMR analyses (see Fig 1b). The group and individual
350 conditional PIPs from the BKMR diabetes model are summarized in Table S5. Group 3 (PIP=0.74)
351 included p,p'-DDE, PCDF TEQ, PCDD TEQ, HCB, and β -HCCH. Group 1 (PIP =0.46) was composed
352 of all the PCB subgroups (di-ortho and tri-tetra-ortho PCBS, mono-ortho TEQ, and non-ortho PCB
353 TEQ) plus Mirex while group 2 (PIP = 0.56) included *trans*-Nonachlor and Oxychlordane. For the joint
354 effects on diabetes, the highest conditional PIPs were noted for *trans*-Nonachlor and Oxychlordane
355 (0.50), p,p'- DDE (0.49), non-ortho PCB TEQ (0.39), and PCDD TEQ (0.28), indicating their relatively
356 large influence within the mixture. The group PIPs were higher than the individual conditional PIPs
357 suggesting additive effects of combining structure activity groups modulated by high correlation.

358 As shown in Figure 2a, the overall diabetes BKMR analysis indicated that the 12 component
359 POP mixture was positively associated with the prevalence of diabetes in ACHS II. The joint effect OR
360 for diabetes was 1.40 with 95% CI (-1.13, 3.93), as exposure to the mixture of POPs increased from the
361 25th to the 75th percentile. The BKMR model also explored potential interactive effect among the 12
362 mixture components (Figure 2b). In those analyses, the associations of each dioxin TEQ and PCB group,
363 and the individual pesticides with diabetes were mainly unchanged while holding the other components
364 within the mixture at fixed percentiles, indicating no synergistic or multiplicative interactions.

365 Univariate exposure-response curves from BKMR are depicted in Figure S1. For these single
366 variable exposure plots, the strongest positive associations with diabetes were observed for p,p'-DDE,
367 PCDD TEQ, the non-ortho PCB TEQ, and *trans*-Nonachlor. The exposures showing inverse
368 associations with diabetes included Oxychlordane, β -HCCH, the di-ortho PCBs, and mono-ortho PCB
369 TEQ. Little evidence of a nonlinear relationship was observed.

370 Results from the quantile g-computation were similar to our overall diabetes BKMR results,
371 suggesting a positive but non-significant association. The overall marginal structural effect for each

372 quantile change in all mixture components was $\psi = 0.28$ (95% CI -0.15, 0.70; see Figure 3a). This value
373 can also be interpreted as an OR of 1.32 (95% CI: -1.12, 3.76). The scaled effect size in the positive
374 direction had value of 1.78 while the scaled effect size in the negative direction was -1.47, somewhat
375 smaller, given the overall positive association.

376 The relative weights for 12 mixture components are shown in Figure 3b. Individual weights
377 represent the relative contribution of each mixture component to the partial positive or negative scaled
378 mixture effect. The relative weights are constrained to sum to 1 in each direction. The largest positive
379 weight was assigned for tri- tetra-PCBs (0.37), followed by p,p'-DDE, *trans*-Nonachlor and PCDF TEQ
380 (0.22, 0.18, and 0.09, respectively), whereas the di-ortho PCBs demonstrated the largest negative weight
381 (0.65), followed by oxychlordane and β -HCCH. Given no evidence of nonlinearity or non-additivity
382 shown from BKMR, we did not include any polynomial or interaction terms of exposures in the model.

383

384 **4. Discussion**

385 *4.1 Short summary of findings*

386 In our study of an aging U.S. cohort equally representing African Americans and Whites, serum
387 concentrations of p,p'-DDE, *trans*-Nonachlor, tri- tetra-PCBs, and PCDDs TEQs were significantly
388 associated with a higher diabetes risk in single exposure logistic regression models. Age, race, family
389 history of diabetes, and BMI were significant predictors of POP concentrations and diabetes status.
390 Mixture effect analyses using BKMR and g-computation also provided suggestive evidence for a
391 positive joint mixture effect of PCBs, dioxins, and pesticides. Several pesticides, including p,p'-DDE
392 and *trans*-Nonachlor, along with PCDD TEQ and non-ortho PCB TEQ were assigned higher relative
393 contributions to the overall mixture effects in both mixture analyses; a similar observation was made
394 for the BKMR individual models in which the other exposures were fixed at a specific percentile. The
395 mixture analyses identified several inverse associations with diabetes (e.g., di-ortho PCBs,

396 Oxychlordane, β -HCCH, mono-ortho PCB TEQ) not observed in the single exposure models, that likely
397 decreased overall positive association of the mixture.

398

399 *4.2 Diabetes in ACHS*

400 In ACHS I, we found positive associations with prevalent diabetes between PCB groups and
401 diabetes overall, among women, and those younger than 55 years old (Silverstone et al. 2012). In ACHS
402 II, we found ORs for the sum of 35 PCBs to be similar (ACHS II OR=1.22) to what was observed in
403 ACHS I (OR=1.23), but with no differences observed between men and women. Women had elevated
404 odds of p,p'-DDE in both ACHS I and II while inverse associations for men in the follow-up study were
405 observed for some TEQs, dioxin-like PCBs, and pesticides (β -HCCH, p,p'-DDE) but the confidence
406 intervals were wide. More limited inferences can be made for men in ACHS II as the total male sample
407 size was n=93 compared to n=245 for women. The follow-up cohort demographic composition
408 remained similar to that at baseline, however; 72% vs 70% were female, and 49% vs 54% were White,
409 respectively (Silverstone et al., 2012). Median age increased from 55 to 61 years over the two studies
410 (n=114 confirmed dead), and the prevalence of diabetes increased from 27% in ACHS I to almost 40%
411 in ACHS II.

412 As noted above, the sum 35 PCB ORs were similar in both ACHS I and II, with the null value
413 included within the confidence interval. In ACHS II, the associations with PCBs (sum 35 and higher
414 chlorinated tri- and tetra-ortho PCBs) were significantly elevated in Whites relative to African
415 Americans (Table S3), although neither interaction term was statistically significant. In the ACHS II
416 analyses stratified by race (also excluding prediabetes) inferences were limited by the smaller sample
417 size and wide confidence intervals.

418

419 *4.3 Studies Examining Association of POP Exposure and Diabetes Risk*

420 Although PCB levels were several times higher in 2014 in ACHS II participants than in
421 NHANES 2013-2014, PCDD/F levels were more similar to the US general population as characterized
422 in NHANES (Yang et al., 2018). This is consistent with PCDD/PCDF concentrations found in Anniston
423 residents primarily originating from background exposure, such as food (Health Canada 2006). Despite
424 PCDD/PCDF levels being closer to the general U.S. population, one of the strongest associations noted
425 between chemical exposures and diabetes in Anniston was found for this group of POPs, as opposed to
426 sum of 35 PCBs, where associations were more modest. Lee et al. (2007) also observed elevated
427 diabetes with PCDD and PCDF groups but to a lesser degree than pesticides, dioxin-like PCBs, and non-
428 dioxin-like PCBs in re-analyses of earlier NHANES data (Lee et al., 2006). The original 2006 Lee report
429 presented data only for two PCDD congeners, hepta- and octa-dibenz-p-dioxins (HpCDD, OCDD),
430 which showed significant associations with diabetes. Odds ratios for organochlorine pesticides were
431 elevated in both Lee studies, either as a group or, for individual pesticides (Lee et al., 2006, 2007). The
432 strongest association was for DDE ($p=0.02$), but elevated ORs also were observed for *trans*-Nonachlor
433 and oxychlordane (Lee et al., 2006). The ACHS II data show reasonable agreement with the NHANES
434 findings given that the Anniston population has different demographic characteristics (median age 61
435 years, half African American, about 70% female).

436 Previous literature has shown that background dioxin concentrations can have a significant
437 association with diabetes after adjusting for diabetes risk factors (Longnecker and Michalek, 2000). This
438 is reflected in our ACHS II analysis of those with and without diabetes, where dioxins are significantly
439 associated with diabetes; PCDD and total dioxin TEQ had ORs of 3.45 (95% CI: 1.07, 11.16) and 2.65
440 (95% CI (1.06, 6.62), respectively.

441 Our findings also are generally consistent with previous prospective studies that demonstrated
442 overall positive associations between POPs and diabetes risks (Lee et al. 2010, 2011; Rignell-Hydbom et
443 al., 2009; Turyk et al., 2009; Vasiliu et al., 2006, Tornevi et al., 2019, Charles et al., 2022). While

444 individual PCB findings were less consistent, further agreement on p,p'-DDE and several other
445 pesticides emerged. In a study of middle-aged U.S. women (Zong et al., 2018), plasma concentrations of
446 dioxin-like mono-ortho PCBs, p,p'-DDE, HCB and β -HCH were significantly associated with higher
447 type 2 diabetes risk. Age, breastfeeding history, previous weight change, and concurrent BMI were
448 strong predictors of plasma-POP concentrations. HCB was also significantly associated with type 2
449 diabetes in both cross-sectional and longitudinal assessments of matched case-control pairs in the
450 Swedish Västerbotten Intervention Program diabetes sub-study. Additionally, the cross-sectional
451 analyses in that study found significantly elevated risks of diabetes with p,p'-DDE, the sum of dioxin
452 like PCBs (congeners 118 and 156) as well as the sum of non-dioxin-like PCBs (Tornevi et al., 2019).
453 In the longitudinal Tromsø Study from northern Norway, *cis*-nonachlor, *cis*-heptachlor epoxide and
454 p,p'-DDT were each observed to have significant associations with diabetes at various time points
455 across the study period (Charles et al., 2022). Results from the French D.E.S.I.R. cohort were similar to
456 the Anniston incidence analyses; hazard ratios for their 200 incident diabetes cases did not differ
457 significantly from one for organochlorine pesticides or PCBs (Magliano et al., 2021).

458 A sex-specific association with diabetes was also noted between total serum-PCBs and incident
459 diabetes among women, but not among men, from the Great Lakes area (Vasiliu et al., 2006), as well as
460 in the baseline Anniston cohort (women OR=1.52; men OR=0.68) for PCBs. In the Anniston follow-up
461 cross sectional analyses, ORs for p,p'-DDE but not PCBs were elevated in women. A similar finding
462 was reported in 471 fish consumers from the Great Lakes area where serum concentrations of p,p'-DDE,
463 but not total PCBs, were associated with a higher diabetes risk (Turyk et al., 2009). In a cohort of 50–
464 59-year-old Swedish women, p,p'-DDE concentrations, but not PCB 153, were associated with diabetes
465 after excluding cases diagnosed within the first 6 years after study start (Rignell-Hydbom et al., 2009)
466 [4th vs. 1st quartile, OR 5.5 (95% CI: 1.2, 25)]. In a pilot study of 44 women with type 2 diabetes and 44
467 matched controls from the Norwegian Women and Cancer Study, p,p'-DDE was found to be a

468 significant predictor of prevalent cases of type 2 diabetes (Berg et al., 2021). Both non-dioxin and
469 dioxin-like PCBs (congeners not specified), along with *cis*-nonachlor were also associated with
470 prevalent type 2 diabetes, but not incident cases in this pilot project. Our prevalent diabetes results for
471 p,p'-DDE were consistent with this study with a significant association with diabetes among women.

472 Finally, in an elderly population in Sweden, Lee et al. reported that 6 to 11 out of the 19
473 measured POPs showed positive trends towards increased diabetes risk (Lee et al., 2011). Additionally,
474 a potentially non-linear association was observed for summed ranks of 31 POPs in young U.S. adults in
475 the CARDIA study, including pp'-DDE (Lee et al., 2010). In the earlier meta-analysis of prospective
476 studies (Wu et al., 2013), the sum of PCBs (OR=1.70) and HCB (OR=2.00) showed the strongest
477 evidence with diabetes risk, with p,p'-DDE summary risk being more modest 1.25 (95% CI: 0.94, 1.66).
478 PCBs were not divided into lower or higher chlorinated groups in that review. We also reported positive
479 associations with *trans*-Nonachlor and oxychlordane in Anniston I cohort similar to results reported by
480 Lee et al. (2010); only *trans*-Nonachlor was statistically significant in the ACHS II cohort.

481 Some inconsistencies in previous studies regarding congener-specific PCB findings and specific
482 pesticides could likely be explained by small sample sizes, insufficient adjustment for confounders,
483 differential background exposure status, lack of lipid adjustment, varying individual POPs included in
484 early investigations, or differences in other population characteristics that may affect POP retention in
485 the body (Lee et al., 2014). Because many POPs are used in the same industrial processes and products,
486 and ingestion of foods contaminated by POPs released and accumulated in the environment is the
487 primary source of exposures, humans are typically exposed to similar POP mixtures (Lee et al., 2014;
488 Pavuk et al., 2014a). Therefore, these studies collectively support an overall, pathogenic role of POP
489 exposure in diabetes development, and different findings on individual POPs may be affected by
490 persistence, retention in the body, and distribution among tissues (Birnbaum, 1985).

491 Our results suggest that a family history of diabetes remains an important risk factor and/or
492 potential confounder of POPs on diabetes risk. Genetic susceptibility has been shown to play a key role
493 in modifying the risk of environmental chemicals on diabetes (Franks, 2011). While several previous
494 studies on diabetes have not accounted for family history of diabetes (Zong et al., 2018, Turyk et al.,
495 2009; Tornevi et al. 2019), one prospective cohort study in US women included family history of
496 diabetes as an effect modifier, but specifically for gestational diabetes (Rahman et al., 2019).

497 Studies have also suggested heterogeneous associations for PCBs by degree of chlorination,
498 where heavily chlorinated PCBs were more likely to be associated with obesity, insulin resistance, lipid
499 abnormalities, and diabetes (Lee et al., 2011, 2010). It is believed that the degree of chlorination is an
500 important determinant for the toxicity of chlorinated POPs; those with a greater number of chlorine
501 atoms persist longer in the environment and in the body and may be more toxic (Lee et al., 2010). While
502 this pattern was not consistent across studies (Kim et al., 2014), it was present in Whites in the Anniston
503 II cohort who showed higher chlorinated PCBs strongly related to diabetes (Table S3).

504 *4.4 Mixture Analyses*

505 We used two different statistical approaches to mixtures; our findings from the BKMR models
506 were in good general agreement with the results from the quantile g-computation models. For the overall
507 joint effect, both methods were suggestive of a modest positive association between diabetes and the
508 mixture of dioxins, PCBs, and pesticides. The OR for joint effect on diabetes in BKMR was 1.40 (95%
509 CI: -1.13, 3.93) and similar to the structural marginal effect estimate from the g-computation when
510 interpreted as OR of 1.32 (95% CI: -1.12, 3.76). The magnitude of effect from each mixture model was
511 generally lower than that observed in the single exposure logistic regression models likely due to the
512 mixture analyses accounting for the negative associations not observed in single exposure models. The
513 identification of the relative importance of individual mixture components on the outcome was similar
514 but differences were noted. As the summary statistics used were not the same, a direct comparison was

515 difficult. PCDD TEQ, p,p'-DDE, non-ortho PCBs, and *trans*-Nonachlor were the strongest contributors
516 to the mixture effects in the BKRM model while the tri-tetra PCBs, p,p'-DDE, *trans*-Nonachlor, and
517 PCDF TEQ were the top four in g-computation models. The hierarchical group PIPs showed stronger
518 effects on diabetes in BKMR than individual conditional PIPs. We did not observe any major departures
519 from linearity or strong suggestion of interactive effects in BKMR. No noticeable changes were seen in
520 single exposure effects on diabetes when all other exposures were fixed at three different percentiles.
521 The discrepancy in the rank of the most influential dioxin or PCB components between BKMR and
522 quantile g-computation is likely attributable to variations in techniques for handling the presence of
523 highly correlated exposures and smaller individual effects within these statistical methods. In the
524 presence of highly correlated chemicals within a mixture, BKMR is likely to exclude some covariates
525 from the correlated clusters, while quantile g-computation is still subject to multicollinearity and might
526 provide relevant weights in different directions for the correlated exposures. We aimed to attenuate
527 some of the higher correlations by using *a-priori* groupings based on structural and biological, as well as
528 toxicological effects (Safe, 1997-1998; van den Berg et al., 2006).

529 It has been argued that even if individual chemicals have small, clinically negligible effects, the
530 joint effect could be significant and clinically relevant (Silva et al., 2002). The two mixture approaches
531 showed that hierarchical groupings modulate simple additivity among highly correlated groups with
532 similar and/or different toxicological properties as seen in this study and that of Yim et al., 2022. The
533 overall strengths of multiple methodological approaches were in the clear visualization of dose-response
534 curves for the joint and individual effects, the agreement of the overall mixture effects using two
535 approaches, and the evaluation of non-additivity and potential interactive effects.

536 In contrast to BKMR, quantile g-computation can generate a single interpretable slope estimate
537 for the overall effect a per quintile increase in all mixture components per change in the outcome. G-
538 computation also is insensitive to outliers because of quantization (Keil et al., 2020). As in other

539 traditional statistical methods, prior knowledge about nonlinearity and interactions must be known for
540 accurate model specification. This can be assessed by using BKMR, as was done in the present study,
541 making the use of the two methods complementary.

542 Several recent studies have used BKMR with a focus on gestational diabetes and glycemic
543 function with exposure to PFAS (Preston et al., 2020, Xu et al., Yu et al., 2021, Zhang et al., 2022a).
544 The authors noted limited consistency in identifying which PFAS analytes contributed most to the joint
545 mixture effects based on group and conditional PIPs across different study designs and populations.
546 While methodologically relevant, direct comparisons with the present study are not feasible. Multiple
547 statistical approaches, including G-computation and BKRM have been used in recent years to study
548 various groups of chemicals from PCBs and dioxins to heavy metals, with a variety of health outcomes
549 (e.g. Parada et al., 2021, Yim et al., 2022, Wu et al., 2023). To our knowledge this is the first study to
550 examine diabetes in an adult cohort with exposures to a mixture of PCBs, dioxins, and organochlorine
551 pesticides.

552

553 *4.5 Potential Mechanism of Action*

554 While the precise molecular mechanism has yet to be elucidated, experimental studies and
555 animal models support a diabetogenic effect of POPs through adipogenesis (Tang-Peronard et al., 2011;
556 Gadupudi et al., 2015; Janesick and Blumberg, 2016), gluconeogenesis (Gadupudi et al. 2016a-b),
557 insulin resistance and β -cell dysfunction (Kim et al., 2014; Lee et al., 2008; Zhang et al., 2015), as well
558 as lipid abnormalities (Lee et al., 2011 Robledo et al., 2015). Exposure to POPs of various classes,
559 including PCBs, have been linked with activation of peroxisome proliferator-activated receptor- α
560 (PPAR- α) (Shipley et al., 2004; Pyper et al., 2010) and receptor- γ (Janesick and Blumberg, 2016;
561 Kamstra et al., 2014) among other nuclear receptors including LXR, FXR, CAR, PXR (Shi et al., 2019;
562 Kublbeck et al., 2020; Wahlang et al., 2019). These are ligand-activated transcription factors involved in

563 gene expression, lipid metabolism, glucose homeostasis, and inflammation. Also, studies have
564 demonstrated that sub-chronic exposure to POP-mixtures at low-doses similar to the background
565 concentrations observed in human populations can induce mitochondrial dysfunction (Ruzzin et al.,
566 2010; López-Armada et al., 2013), which can lead to insulin resistance and secretory dysfunction of
567 pancreatic β -cells (Shi et al., 2019; Szendroedi et al., 2012). Mitochondrial dysfunction also can trigger
568 metabolic dysfunctions, such as insulin resistance leading to diabetes (Hotamisligil, 2006; Lim et al.
569 2009, 2010; Shen et al., 2011).

570 The common cellular mechanism of dioxin-like compounds is the action of the aryl hydrocarbon
571 receptor (AhR) (Budinsky et al., 2014). Based on the potencies of dioxin-like compounds to activate
572 various AhR-dependent endpoints, a toxic equivalence factor (TEF) approach for the risk assessment of
573 mixtures was established, with the most toxic component (2,3,7, 8-TCDD, TEF = 1) as a reference. The
574 TEQ is then computed as the sum of the concentrations of individual dioxin or PCB isomers multiplied
575 by their TEFs (Van den Berg et al., 2006). We used this methodology to characterize exposure in
576 ACHS-II for hypertension outcomes (Pavuk et al., 2019, Yang et al., 2018) and in the present study.
577

578 *4.6 Strengths and weaknesses*

579 Notable strengths of this present study include follow up data in a well characterized cohort
580 comprised of approximately 50% African Americans. The cohort was also of middle to lower socio-
581 economic status and education. We were able to expand the exposure profile in ACHS II to include
582 PCDDs, PCDFs and non-ortho PCBs. While the sample size was generally adequate, inferences in some
583 stratified analyses were limited by loss to follow up (e.g., death, moved out of the area). Selection bias,
584 if any, had only minor effect on racial or sex composition of the follow-up sample which remained
585 similar to the baseline. We collected comprehensive questionnaire and extensive biomarker data that
586 allowed for control of a variety of confounding variables, including family history of diabetes.

587 Despite a relatively modest sample size in the follow-up, large number of participants in our
588 study population had diabetes (almost 40%). However, for the incidence diabetes, we may have been
589 underpowered to detect modest associations between POPs and diabetes even with eight years of follow
590 up and with cohort median age over 60 years old (37 incidence cases; n=212 at risk in incidence analysis
591 vs n=338 in prevalence analyses). We were unable to conclusively verify type II diabetes via medical
592 record review and assumed late onset diabetes based on reported age of diagnosis.

593 Nonetheless, most of the POPs in our analysis have relatively long biological half-lives in
594 humans and therefore these measures likely represent an individual's exposure over years (Megson et
595 al., 2013, Patterson et al., 2009). The Anniston cohort is based at one of the two former PCB production
596 sites in the United States. PCB concentrations are substantially higher in this cohort than they are in
597 NHANES participants, and closer to occupational exposures (Pavuk et al., 2014). Dioxins were only
598 modestly elevated (Yang et al., 2018) compared to NHANES, while the pesticide levels were
599 comparable to concentrations measured during the corresponding time period in NHANES (Rosenbaum
600 et al., 2017).

601 Additionally, capturing higher than average levels of these legacy POPs may have increased our
602 ability to detect subtle associations between these mixture components and our outcome. Finally, the
603 Anniston cohort population consists of approximately equal frequencies of non-Hispanic White
604 individuals and African Americans, living in a small town in south-eastern Alabama, an area with
605 generally middle to lower educational attainment and socioeconomic status. From this perspective, the
606 ACHS cohort and may be more generalizable with respect to diabetes risk factors than some other high-
607 socioeconomic status cohorts. However, the underlying biological mechanisms linking exposure to the
608 dioxin/PCB/pesticide mixture with diabetes are unlikely to differ in other populations as these
609 compounds are detected in all developed economies.

610 We evaluated associations with diabetes, which we assessed via reported physician diagnosis,
611 clinical laboratory measurements of glucose and insulin, and detailed nurse-verified glycemic
612 medication review. The use of BKMR allowed us to model both individual and joint effects of exposure
613 to pesticides, PCBs and dioxins on (type-2) diabetes, visually assessing exposure-response functions
614 and examining potential interactions among different mixture components. In addition, we used quantile
615 g-computation to assess the robustness of our BKMR results and found that results were quite similar
616 across methodologies, especially for the overall joint mixture effects.

617

618 **5. Conclusions**

619 Our follow-up study results add to the body of literature that has researched associations between
620 exposure to PCBs, other POPs, and diabetes. We found elevated odds ratios for, p,p'-DDE, trans-
621 Nonachlor, some PCBs, and PCDDs TEQ for prevalent diabetes, but those were attenuated for the
622 incident diabetes in single exposure logistic regression models. We observed positive overall joint
623 effects of the PCBs, dioxins, and pesticide mixture on diabetes with BKMR (OR of 1.40) and quantile g
624 computation (OR of 1.32), although neither reached statistical significance. Both mixture methods were
625 in general agreement in identifying the strongest components, however the magnitude of effect was
626 generally lower than that seen in the single exposure regression models. Future studies should further
627 examine the joint effects of exposure to POPs mixtures and build on this work by incorporating repeated
628 exposure and outcome measures.

629

630 **Acknowledgements**

631 We would like to thank all the study participants. The data collection for the baseline study
632 (ACHS) was supported by a grant from ATSDR to Jacksonville State University (5U50TS473215). The
633 data collection for the follow up study (ACHS II) was supported by the National Cancer Institute (NCI)

634 through interagency agreements with the Centers for Disease Control and Prevention (CDC) (11-AT1-
635 001-00; IAA#: 12-AT-12-ANNISTON and 200-2013-M-57311) and by ATSDR. Funding for this
636 project was also provided by the Intramural Program of the NCI as well as R35ES028373,
637 P30ES030283, P42ES023716, R21ES031510, R01ES032189, and P20GM113226. We would also like
638 to acknowledge Andreas Sjödin, Richard Jones, Wayman Turner and Donald Patterson Jr. (formerly) at
639 the National Center for Environmental Health, Division of Laboratory Sciences, for their expert
640 chemical analyses for this study. This research was supported in part by an appointment to the Research
641 Participation Program at the Centers for Disease Control and Prevention administered by the Oak Ridge
642 Institute for Science and Education (ORISE) through an interagency agreement between the U.S.
643 Department of Energy and ATSDR.

644

645 **Disclaimer:** The contents of this publication are solely the responsibility of the authors and do not
646 necessarily represent ATSDR's, CDC's or NIH's official views.

647 Full Disclosure: LSB is an expert defense witness in some dioxin litigation.

648

649 Author Contributions:

650 M Pavuk; Conceptualization, Methodology, Supervision, Writing - original draft, reviewing and editing.

651 PF Rosenbaum; Formal analysis, Data curation, Methodology, Writing - reviewing and editing.

652 MD Lewin; Formal Analysis, Visualization.

653 TC Serio; Data curation, Formal analysis, Methodology, Visualization, Writing - reviewing and editing.

654 P Rago; Visualization, Formal analysis.

655 M Cave; Writing - reviewing and editing.

656 LS Birnbaum; Conceptualization, Methodology, Writing- reviewing and editing.

657

659 **6. References**

660

661 Airaksinen R, Rantakokko P, Eriksson JG, Blomstedt P, Kajantie E, Kiviranta H. Association between type 2
 662 diabetes and exposure to persistent organic pollutants. *Diabetes Care* 2011;34, 1972–1979.

663

664 Arrebola JP, Pumarega J, Gasull M, Fernandez MF, Martin-Olmedo P, Molina- Molina JM, et al., 2013. Adipose
 665 tissue concentrations of persistent organic pollutants and prevalence of type 2 diabetes in adults from southern
 666 Spain. *Environ Res* 2013; 122; 31–37.

667

668 ATSDR (Agency for Toxic Substances and Disease Registry). Health Consultation: Evaluation of soil, blood &
 669 air data from Anniston, Alabama. Monsanto Company, Anniston, Calhoun County, Alabama. CERCLIS No.
 670 ALD004019048, 2000. U.S. Department of Health and Human Services, Atlanta.

671

672 Baker NA, Shoemaker R, English V, Larian N, Sunkara M, Morris AJ et al. Effects of Adipocyte Aryl
 673 Hydrocarbon Receptor Deficiency on PCB-Induced Disruption of Glucose Homeostasis in Lean and Obese Mice.
 674 *Environ Health Perspect* 2015; 123(10):944-50.

675

676 Berg V, Charles D, Bergdahl IA, Nøst TH, Sandanger TM, Tornevi A et al. Pre- and post-diagnostic blood
 677 profiles of chlorinated persistent organic pollutants and metabolic markers in type 2 diabetes mellitus cases and
 678 controls; a pilot study. *Environ Res* 2021; 195:110846. doi: 10.1016/j.envres.2021.110846. Epub 2021 Feb 9.

679

680 Bernert JT, Turner WE, Patterson Jr. DG, Needham LL. Calculation of serum “total lipid” concentrations for the
 681 adjustment of persistent organohalogen toxicant measurements in human samples. *Chemosphere* 2007; 68(5):
 682 824-31.

683

684 Birnbaum LS. The role of structure in the disposition of halogenated aromatic xenobiotics. *Environ Health
 685 Perspect* 1985; 61:11-20. PMID: 2998745.

686

687 Birnbaum LS, Dutton ND, Cusack C, Mennemeyer ST, Pavuk M. Anniston community health survey: Follow-up
 688 and dioxin analyses (ACHS-II)—methods. *Environ Sci Pollut Res Int* 2016; 23(3):2014-21.
 doi: 10.1007/s11356-015-4684-3

689

690 Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, et al. Bayesian kernel machine
 691 regression for estimating the health effects of multi-pollutant mixtures. *Biostatistics*. 2015; 16(3):493-508. PMID:
 692 25532525.

693

694 Bobb JF, Claus Henn B, Valeri L, Coull BA. Statistical software for analyzing the health effects of multiple
 695 concurrent exposures via Bayesian kernel machine regression. *Environ Health*. 2018;17(1):67. PMID: 30126431.

696

697 Budinsky RA, Schrenk D, Simon T, Van den Berg M, Reichard JF, Silkworth JB, Aylward LL, Brix A,
 698 Gasiewicz T, Kaminski N, Perdew G, Starr TB, Walker NJ, Rowlands JC. Mode of action and dose-response
 699 framework analysis for receptor-mediated toxicity: The aryl hydrocarbon receptor as a case study. *Crit Rev
 700 Toxicol.* 2014;44(1):83-119. PMID: 24245878.

701

702 Calvert GM, Sweeney MH, Deddens J, Wall DK. Evaluation of diabetes mellitus, serum glucose, and thyroid
 703 function among United States workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Occup Environ Med* 1999;
 704 56(4):270-6. PMID: 10450245.

705

706 Center for Disease Control and Prevention. National Health and Nutrition Examination Survey. NHANES 2013-
707 2014. <https://www.cdc.gov/Nchs/Nhanes/ContinuousNhanes/Overview.aspx?BeginYear=2013>

708 Charles D, Berg V, Nøst TH, Bergdahl IA, Huber S, Ayotte P et al. Longitudinal changes in concentrations of
709 persistent organic pollutants (1986-2016) and their associations with type 2 diabetes mellitus. Environ Res 2022
710 Mar; 204 (Pt B):112129. doi: 10.1016/j.envres.2021.112129. Epub 2021 Sep 28.

711 Chavent, M., Liquet, B., Kuentz, V., Saracco, J. ClustOfVar: An R Package for the Clustering of Variables.
712 Journal of Statistical Software. 2012. Vol. 50, pp. 1-16.

713 Erickson MD, Kaley RG 2nd. Applications of polychlorinated biphenyls. Environ Sci Pollut Res Int 2011;
714 18(2):135-51.

715 Everett CJ, Frithsen IL, Diaz VA, Koopman RJ, Simpson WM Jr, Mainous AG 3rd. Association of a
716 polychlorinated dibenzo-p-dioxin, a polychlorinated biphenyl, and DDT with diabetes in the 1999-2002 National
717 Health and Nutrition Examination Survey. Environ Res 2007; 103(3):413-8.

718 Everett CJ, Thompson OM. Associations of dioxins, furans and dioxin-like PCBs with diabetes and pre-diabetes:
719 is the toxic equivalency approach useful? Environ Res 2012; 118: 107-111.

720 Franks PW, Gene x environment interactions in Type 2 Diabetes. Curr Diab Rep 2011; 11:552-561. doi
721 10.1007/s11892-0224-9.

722 Gadupudi G, Gourronc FA, Ludewig G, Robertson LW, Klingelhutz AJ. PCB126 inhibits adipogenesis of human
723 preadipocytes. Toxicol In Vitro 2015; 29(1):132-41. doi: 10.1016/j.tiv.2014.09.015.

724 Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ, Robertson LW. PCB126-Induced Disruption in
725 Gluconeogenesis and Fatty Acid Oxidation Precedes Fatty Liver in Male Rats. Toxicol Sci. 2016a Jan; 149(1):98-
726 110. doi: 10.1093/toxsci/kfv215.

727 Gadupudi GS, Klingelhutz AJ, Robertson LW. Diminished Phosphorylation of CREB Is a Key Event in the
728 Dysregulation of Gluconeogenesis and Glycogenolysis in PCB126 Hepatotoxicity. Chem Res Toxicol 2016b;
729 29(9):1504-9. doi: 10.1021/acs.chemrestox.6b00172

730 Gasull M, Pumarega J, Téllez-Plaza M, Castell C, Tresserras R, Lee DH et al. Blood concentrations of persistent
731 organic pollutants and prediabetes and diabetes in the general population of Catalonia. Environ Sci Technol 2012
732 Jul 17; 46(14):7799-810.

733 Gibson EA, Goldsmith J, Kioumourtzoglou MA. Complex Mixtures, Complex Analyses: an Emphasis on
734 Interpretable Results. Curr Environ Health Rep. 2019;6(2):53-61. PMID: 31069725; PMCID: PMC6693349.

735 Gourronc FA, Robertson LW, Klingelhutz AJ. A delayed proinflammatory response of human preadipocytes to
736 PCB126 is dependent on the aryl hydrocarbon receptor. Environ Sci Pollut Res Int 2018; 25(17), 16481-16492.

737 Han X, Meng L, Li Y, Li A, Turyk ME, Yang R et al. Associations between the exposure to persistent organic
738 pollutants and type 2 diabetes in East China: A case-control study. Chemosphere 2019; 241:125030.
739 doi:10.1016/j.chemosphere.2019.125030

740 Health Canada (2006). Dioxins and Furans. <http://www.hc-sc.gc.ca/hl-vs/iyh-vsv/environ/dioxin-eng.php>

741 Hermanson MH, Scholten CA, Compher K. Variable air temperature response of gas-phase atmospheric
742 polychlorinated biphenyls near a former manufacturing facility. Environ Sci Technol 2003; 37:4038-42.

754
755 Hotamisligil GS. Inflammation and metabolic disorders. *Nature* 2006; 444(7121), 860–867.
756
757 Henrique-Hernandez LA, Luzardo OP, Valeron PF, Zumbado M, Serra-Majem L, Camacho M et al. Persistent
758 organic pollutants and risk of diabetes and obesity on healthy adults: Results from a cross-sectional study in
759 Spain. *Sci. Total Environ* 2017; 607-608, 1096-1102.
760
761 Hornung RW and Reed LD: Estimation of average concentration in the presence of nondetectable values. *Appl
762 Occup Environ Hyg* 1990; 5:46–51
763
764 Huang CY, Wu CL, Yang YC, Chang JW, Kuo YC, Cheng YY, et al. Association between dioxin and diabetes
765 mellitus in an endemic area of exposure in Taiwan: a population-based study. *Medicine* 2015; 94, e1730.
766
767 Janesick A S, & Blumberg B. Obesogens: an emerging threat to public health. *Am J Obstet Gyn* 2016; 214(5),
768 559–565. <https://doi.org/10.1016/j.ajog.2016.01.182>
769
770 Jones R, Edenfield E, Anderson S, Zhang Y, Sjödin A. Semi-automated extraction and cleanup method for
771 measuring persistent organic pollutants in human serum. *Organohalogen Compd*. 2012; 74, 97–98.
772
773 Kamstra JH, Hruba E, Blumberg B, et al. Transcriptional and epigenetic mechanisms underlying enhanced in
774 vitro adipocyte differentiation by the brominated flame retardant BDE-47. *Environ Sci Technol*. 2014;
775 48(7):4110-4119.
776
777 Keil AP, Buckley JP, O' Brien KM, Ferguson KK, Zhao S; White AJ. A Quantile-Based g-computation approach
778 to addressing the effects of exposure mixtures. *Environ Health Perspect* 2020; 128(4):047004-1 to 10. doi:
779 10.1289/EHP5838
780
781 Kim MJ, Pelloux V, Guyot E, Tordjman J, Linh-Chi B, Chevallier A et al. Inflammatory pathway genes belong to
782 major targets of persistent organic pollutants in adipose cells. *Environ Health Perspect* 2014; 120(4):508–514.
783
784 Kim S, Cho Y, Lee I, Kim W, Won S, Ku J, et al. Prenatal exposure to persistent organic pollutants and
785 methylation of LINE-1 and imprinted genes in placenta: a CHECK cohort study. *Environ. Int* 2018;119: 398-406.
786
787 Kim YA, Park JB, Woo MS, Lee SY, Kim HY, Yoo YH. Persistent Organic Pollutant-Mediated Insulin
788 Resistance. *Int J Environ Res Public Health*. 2019, Feb 3; 16(3):448. doi: 10.3390/ijerph16030448.
789 PMID: 30717446.
790
791 Kublbeck J, Niskanen J, Honkakoski P. Metabolism-Disrupting chemicals and the Constitutive Androstane
792 Receptor CAR. *Cells* 2020; 9, 2306; doi: 10.3390/cells9102306
793
794 Larsson M, van den Berg M, Brenerová P, van Duursen MBM, van Ede KI, Lohr C, Luecke-Johansson S, et al.
795 Consensus Toxicity Factors for Polychlorinated Dibenz-p-dioxins, Dibenzofurans, and Biphenyls Combining in
796 Silico Models and Extensive in Vitro Screening of AhR-Mediated Effects in Human and Rodent Cells. *Chem Res
797 in Toxicol*. 2015; 28 (4), 641-650 DOI: 10.1021/tx500434j
798
799 Lee DH, Lee IK, Song K, Steffes M, Toscano W, Baker BA, et al. A strong dose-response relation between
800 serum concentrations of persistent organic pollutants and diabetes: results from the National Health and
801 Examination Survey 1999-2002. *Diabetes Care* 2006, July; 29(7):1638-44.
802

803 Lee DH, Lee IK, Jin SH, Steffes M, Jacobs DR Jr. Association between serum concentrations of persistent
804 organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition
805 Examination Survey 1999-2002. *Diabetes Care* 2007; 30(3):622-8. PMID: 17327331.

806

807 Lee DH, Steffes MW, Sjödin A, Jones RS, Needham LL, Jacobs Jr. DR. Low dose of some persistent organic
808 pollutants predicts type 2 diabetes: a nested case-control study. *Environ Health Perspect* 2010; 118, 1235.

809

810 Lee DH, Lind PM, Jacobs DR Jr, Salihovic S, van Bavel B, Lind L. Polychlorinated biphenyls and organochlorine
811 pesticides in plasma predict development of type 2 diabetes in the elderly: the prospective investigation of the
812 vasculature in Uppsala Seniors (PIVUS) study. *Diabetes Care* 2011, Aug; 34(8):1778-84.

813

814 Lee D-H, Porta M, Jacobs DR Jr, Vandenberg LN. Chlorinated persistent organic pollutants, obesity and Type 2
815 Diabetes. *Endocrine Reviews* 2014; 35(4):557-601.

816

817 Lim S, Ahn SY, Song IC, Chung MH, Jang HC, Park KS, et al. Chronic exposure to the herbicide, atrazine,
818 causes mitochondrial dysfunction and insulin resistance. *PLoS One* 2009; 4(4):e5186. PMID: 19365547.

819 Lind PM, Lind L. Endocrine-disrupting chemicals, and risk of diabetes: an evidence-based review. *Diabetologia*.
820 2018; 61(7):1495-150. PMID: 29744538

821 Longnecker MP, Michalek JE. Serum dioxin level in relation to diabetes mellitus among Air Force veterans with
822 background levels of exposure. *Epidemiology* 2000; 11(1): 44-48.

823

824 López-Armada MJ, Riveiro-Naveira RR, Vaamonde-Arcía C, Valcárcel-Ares MN. Mitochondrial dysfunction and
825 the inflammatory response. *Mitochondrion* 2013; 13:106-118.

826

827 Magliano DJ, Loh VHY, Harding JL, Botton J, Shaw JE. Persistent organic pollutants and diabetes: a review of
828 the epidemiological evidence. *Diabetes Metab* 2014, Feb; 40(1):1-14

829

830 Magliano DJ, Rancière F, Slama R, Roussel R, Kiviranta H, Coumoul X, et al. for D.E.S.I.R. Study Group.
831 Exposure to persistent organic pollutants and the risk of type 2 diabetes: a case-cohort study. *Diabetes Metab*
2021 Sep; 47(5):101234. doi: 10.1016/j.diabet.2021.101234. Epub 2021 Jan 27.

832 Marushka L, Hu X, Batal M, Sadik T, Schwartz H, Ing A, et al. The Relationship between Persistent Organic
833 Pollutants Exposure and Type 2 Diabetes among First Nations in Ontario and Manitoba, Canada: A Difference in
834 Difference Analysis. *Int J Environ Res Public Health* 2018, Mar 17; 15(3):539.

835 Megson, D., O'Sullivan, G., Comber, S., Worsfold, P.J., Lohan, M.C., Edwards, M.R., et al. Elucidating the
836 structural properties that influence the persistence of PCBs in humans using the National Health and Nutrition
837 Examination Survey (NHANES) dataset. *Sci. Total Environ.* 2013; 461-462, 99-107.

838

839 Michalek JE and Pavuk M. Diabetes and cancer in veterans of Operation Ranch Hand after adjustment for
840 calendar period, days of spraying, and time spent in Southeast Asia. *J Occup Environ Med* 2008; 50(3):330-40.

841

842 Nakamoto M, Arisawa K, Uemura H, Katsuura S, Takami H, Sawachika F et al. Association between blood levels
843 of PCDDs/PCDFs/dioxin-like PCBs and history of allergic and other diseases in the Japanese population. *Int.*
844 *Arch Occup Environ Health* 2013; 86, 849-859.

845

846 Parada H Jr, Benmarhnia T, Engel LS, Sun X, Tse CK, Hoh E, et al. A Congener-specific and Mixture Analysis
847 of Plasma Polychlorinated Biphenyl Levels and Incident Breast Cancer. *Epidemiology*. 2021;32(4):499-507.
848 PMID: 33788793.

849 Patterson Jr., D.G., Wong, L.Y., Turner, W.E., Caudill, S.P., Dipietro, E.S., McClure, P.C., et al.. Levels in the
850 U.S. population of those persistent organic pollutants (2003–2004) included in the Stockholm Convention or in
851 other Long-Range Transboundary Air Pollution Agreements. *Environ. Sci. Technol.* 2009; 43 (4), 1211–1218.

852 Pavuk M, Olson JR, Sjödin A, et al. Serum concentration of polychlorinated biphenyls (PCBs) in participants of
853 the Anniston Community Health Survey. *Sci Total Environ* 2014a; 473-474:286-97.

854 Pavuk M, Olson JR, Wattigney WA, Dutton ND, Sjödin A, Shelton C, et al and Anniston Environmental Health
855 Research Consortium. Predictors of serum polychlorinated biphenyl concentrations in Anniston residents. *Sci*
856 *Total Environ* 2014b; 496:624-634.

857 Persky V, Piorkowski J, Turyk M, Freels S, Chatterton R, Dimos J, et al. Polychlorinated biphenyl exposure,
858 diabetes, and endogenous hormones: a cross sectional study in men previously employed at a capacitor
859 manufacturing plant. *Environ Health* 2012; 11-57.

860 Preston EV, Webster TF, Claus Henn B, McClean MD, Gennings C, Oken E, et al. Prenatal exposure to per- and
861 polyfluoroalkyl substances and maternal and neonatal thyroid function in the Project Viva Cohort: A mixtures
862 approach. *Environ Int.* 2020;139:105728. PMID: 32311629.

863 Preston EV, Hivert MF, Fleisch AF, Calafat AM, Sagiv SK, Perng W et al. Early-pregnancy plasma per- and
864 polyfluoroalkyl substance (PFAS) concentrations and hypertensive disorders of pregnancy in the Project Viva
865 cohort. *Environ Int.* 2022; 165:107335. PMID: 35696844.

866 Pyper SR, Viswakarma N, Yu S, Reddy JK. PPARalpha: energy combustion, hypolipidemia, inflammation and
867 cancer. *Nucl Recept Signal* 2010; 8: e002.

868 Rahman ML, Zhang C, Smarr MM, Lee S, Honda M, Kannan K, et al. Persistent organic pollutants and
869 gestational diabetes: A multi-center prospective cohort study of healthy US women. *Environ Int* 2019; 124: 249-
870 258.

871 Raffetti E, Donato F, Speziani F, Scarella C, Gaia A, Magoni M. Polychlorinated biphenyls (PCBs) exposure
872 and cardiovascular, endocrine, and metabolic diseases: a population-based cohort study in a North Italian highly
873 polluted area. *Environ Int* 2018; 20:215–222.

874 Rignell-Hydbom A, Lidfeldt J, Kiviranta H, Rantakokko P, Samsioe G, Agardh CD, et al. Exposure to p,p'-DDE:
875 a risk factor for type 2 diabetes. *PLoS One.* 2009; 4(10):e7503. PMID: 19838294.

876 Robins JM. Data, design, and background knowledge in etiologic inference. *Epidemiology* 2001; 12(3): 313-320.

877 Robledo CA, Mendola P, Yeung E, Mannisto T, Sundaram R, Liu D, et al. Preconception and early pregnancy air
878 pollution exposures and risk of gestational diabetes mellitus. *Environ Res* 2015; 137: 316-322.
880 <https://doi.org/10.1016/j.envres.2014.12.020>

881 Rosenbaum PF, Weinstock RS, Silverstone AE, Sjodin A, Pavuk M. Metabolic syndrome is associated with
882 exposure to organochlorine pesticides in Anniston, AL, United States. *Environ International* 2017; 108:11-21.
883 <http://dx.doi.org/10.1016/j.envint.2017.07.017>

884 Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, et al. Persistent organic pollutant exposure
885 leads to insulin resistance syndrome. *Environ Health Perspect* 2010; 118: 465–471

886

887

888

889 Safe S. Limitations of the toxic equivalency factor approach for risk assessment of TCDD and related compounds.
890 *Teratog Carcinog Mutagen.* 1997-1998;17(4-5):285-304.

891

892 Sasaki N, Jones LE, Morse GS, Carpenter DO, On Behalf Of The Akwesasne Task Force On The Environment.
893 Mixture Effects of Polychlorinated Biphenyls (PCBs) and Three Organochlorine Pesticides on Cognitive Function
894 in Mohawk Adults at Akwesasne. *Int J Environ Res Public Health.* 2023;20(2):1148. PMID: 36673903.

895

896 Shen K, Shen C, Yu J, Yu C, Chen L, Shi D, Chen Y. PCB congeners induced mitochondrial dysfunction in Vero
897 cells. *J Hazard Material* 2011; 185 (1): 24-28.

898

899 Shipley JM, Hurst CH, Tanaka SS, DeRoos FL, Butenhoff JL, Seacat AM, et al. Trans-Activation of PPAR α and
900 Induction of PPAR α Target Genes by Perfluorooctane-Based Chemicals. *Toxicol Sci* 2004; 80 (1): 151-160.

901

902 Shi H, Jan J, Hardesty JE, Falkner CK, Prough RA, Balamurugan AN, et al. (2019). Polychlorinated biphenyl
903 exposures differentially regulate hepatic metabolism and pancreatic function; Implications for nonalcoholic
904 steatohepatitis and diabetes. *Toxicol Appl Pharmacol.* 2019, January 15; 363: 22-33.
905 doi:10.1016/j.taap.2018.10.011.

906

907 Silva E, Rajapakse N, Kortenkamp A. Something from "nothing"--eight weak estrogenic chemicals combined at
908 concentrations below NOECs produce significant mixture effects. *Environ Sci Technol.* 2002;36(8):1751-6.
909 PMID: 11993873.

910

911 Silverstone AE, Rosenbaum PF, Weinstock RS, Bartell SM, Foushee HR, Shelton C et al. Polychlorinated
912 biphenyl (PCB) exposure and diabetes: results from the Anniston Community Health Survey. *Environ Health
913 Perspect* 2012; 120(5): 727-32.

914 Sjödin A., Jones RS, Lapeza CR, Focant JP, McGahee EE 3rd, Patterson DG, Jr. Semiautomated high-throughput
915 extraction and cleanup method for the measurement of polybrominated diphenyl ethers, polybrominated
916 biphenyls, and polychlorinated biphenyls in human serum. *Anal. Chem* 2004; 76: 1921-27.

917 Snowden JM, Rose S, Mortimer KM. Implementation of G-computation on a simulated data set: demonstration of
918 a causal inference technique. *Am J Epidemiol.* 2011; 173(7):731-8. PMID: 21415029.

919

920 Steenland K, Piacitelli L, Deddens J, Fingerhut M, Chang LI. Cancer, heart disease, and diabetes in workers
921 exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. *J Natl Cancer Inst* 1999, May 5; 91(9): 779-86.

922

923 Steenland K, Calvert G, Ketchum N, Michalek J. Dioxin, and diabetes mellitus: an analysis of the combined
924 NIOSH and Ranch Hand data. *Occup Environ Med.* 2001 Oct; 58(10): 641-8.

925

926 Suarez-Lopez JR, Lee DH, Porta M, Steffes MW, Jacobs DR Jr. Persistent organic pollutants in young adults and
927 changes in glucose related metabolism over a 23-year follow-up. *Environ Res.* 2015; 137:485-94.

928

929 Suarez-Lopez JR, Clemesha CG, Porta M, Gross MD, Lee DH. Organochlorine pesticides and polychlorinated
930 biphenyls (PCBs) in early adulthood and blood lipids over a 23-year follow-up. *Environ Toxicol Pharmacol* 2019;
931 66:24-35.

932

933 Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. *Nat
934 Rev Endocrinol* 2012; 8: 92-103.

935

936 Tanaka T, Morita A, Kato M, Hirai T, Mizoue T, Terauchi Y, et al. Congener specific polychlorinated biphenyls
937 and the prevalence of diabetes in the Saku Control Obesity Program. *Endocrin J* 2011; 58: 589-596.

938

939 Tang-Péronard JL, Andersen HR, Jensen TK, Heitmann BL. Endocrine-disrupting chemicals, and obesity
 940 development in humans: a review. *Obes Rev.* 2011; 12(8): 622-36.

941

942 Taylor KW, Novak RF, Anderson HA, Birnbaum L, Blystone C, Devito M, et al. Evaluation of the association
 943 between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology
 944 program workshop review. *Environ Health Perspect.* 2013; 121(7): 774-783.

945

946 Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemical in diabetes and obesity: a
 947 National Toxicology Program workshop review. *Environ Health Perspect* 2012; 120(6):779-89.

948

949 Tornevi A, Sommar J, Rantakokko P, Akesson A, Donat-Vargas C, Kiviranta H, et al. Chlorinated persistent
 950 organic pollutants and type 2 diabetes- A population-based study with pre- and post- diagnostic plasma samples.
 951 *Environ Res* 2019; 174:35-45. doi: 10.1016/j.envres.2019.04.017. Epub 2019 Apr 19.

952

953 Turner W, DiPietro E, Lapeza C, Green V, Gill J, Patterson DG, Jr. *Organohalogen Compounds* 1997; 31: 26-31.

954

955 Turyk M, Anderson H, Knobeloch L, Imm P, Persky V. Organochlorine Exposure and Incidence of Diabetes in a
 956 Cohort of Great lakes Sport Fish Consumers. *Environ Health Perspect* 2009; 117:1076-1082.

957

958 Turyk M, Fantuzzi G, Persky V, Freels S, Lambertino A, Pini M, et al. (2015). Persistent organic pollutants and
 959 biomarkers of diabetes risk in a cohort of Great Lakes sport caught fish consumers. *Environ Res.* 2015; 140: 335-
 960 44. doi: 10.1016/j.envres.2015.03.037.

961

962 Van den Berg M, Birnbaum LS, Denison M, DeVito M, Farland W, Feeley M, et al. The 2005 World Health
 963 Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like
 964 compounds. *Toxicol Sci* 2006; 93: 223-41.

965

966 Vasiliu O, Cameron L, Gardiner J, DeGuire P, Karmaus W. Polybrominated Biphenyls, Polychlorinated
 967 Biphenyl, Body Weight, and Incidence of Adult-Onset Diabetes Mellitus. *Epidemiology* 2006; 17(4):352-359.

968

969 Vena J, Boffetta P, Becher H, Benn T, Bueno-de-Mesquita HB, Coggon D, et al. Exposure to dioxin and
 970 nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol
 971 production workers and sprayers. *Environ Health Perspect* 1998; 106 Suppl 2(Suppl 2):645-53.

972

973 Wahlang B; Hardesty JE, Jin J; Cameron Falkner K; Cave MC. Polychlorinated biphenyls and nonalcoholic fatty
 974 liver disease. *Curr Opin Toxicol* 2019: 21-28..

975

976 Warraich HJ, Rana JS. Dyslipidemia in diabetes mellitus and cardiovascular disease. *Cardiovasc Endocrinol*
 977 2017; 6(1):27-32

978

979 Wood, S. (2006). *Generalized Additive Models: An Introduction with R*. CRC Press.Wu H, Bertrand KA, Choi
 980 AL, Hu FB, Laden F, Grandjean P, et al. Persistent organic pollutants, and type 2 diabetes: a prospective analysis
 981 in the nurses' health study and meta-analysis. *Environ Health Perspect* 2013; 121(2):153-61.

982

983 Wu L, Cui F, Zhang S, Ding X, Gao W, Chen L, et al. Associations between multiple heavy metals
 984 exposure and neural damage biomarkers in welders: A cross-sectional study. *Sci Total Environ.* 2023;
 985 869:161812. PMID: 36706997.

986

987 Xu C, Zhang L, Zhou Q, Ding J, Yin S, Shang X, et al. Exposure to per- and polyfluoroalkyl substances as a risk
 988 factor for gestational diabetes mellitus through interference with glucose homeostasis. *Sci Total Environ.* 2022;
 838(Pt 4):156561. PMID: 35691348.

989

990 Yang E, Pavuk M, Sjodin A, Lewin M, Jones R, Olson J, et al. Exposure of dioxin-like chemicals in participants
991 of the Anniston community health survey follow-up. *Sci. Total Environ* 2018; 637-638, 881-891.

992

993 Yim G, Minatoya M, Kioumourtzoglou MA, Bellavia A, Weisskopf M, Ikeda-Araki A, et al. The associations of
994 prenatal exposure to dioxins and polychlorinated biphenyls with neurodevelopment at 6 Months of age: Multi-
995 pollutant approaches. *Environ Res.* 2022; 209:112757. PMID: 35065939.

996

997 Yu G, Jin M, Huang Y, Aimuzi R, Zheng T, Nian M, et al. Shanghai Birth Cohort Study. Environmental exposure
998 to perfluoroalkyl substances in early pregnancy, maternal glucose homeostasis and the risk of gestational diabetes:
999 A prospective cohort study. *Environ Int.* 2021; 156:106621. PMID: 33984575.

1000

1001 Zhang S, Wu T, Chen M, Guo Z, Yang Z, Zuo Z, et al. Chronic Exposure to Aroclor 1254 Disrupts Glucose
1002 Homeostasis in Male Mice via Inhibition of the Insulin Receptor Signal Pathway. *Environ Sci Technol* 2015; 18
1003 49(16):10084-92.

1004

1005 Zhang YT, Zeeshan M, Su F, Qian ZM, Dee Geiger S, Edward McMillin S, et al. Associations between both
1006 legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The Isomers of C8 health
1007 project in China. *Environ Int.* 2022a; 158:106913. PMID: 34624590.

1008

1009 Zhang F, Wang H, Cui Y, Zhao L, Song R, Han M, et al. Association between mixed dioxin exposure and
1010 hyperuricemia in U.S. adults: A comparison of three statistical models. *Chemosphere.* 2022b; 303(Pt 3):135134.
1011 PMID: 35644240.

1012

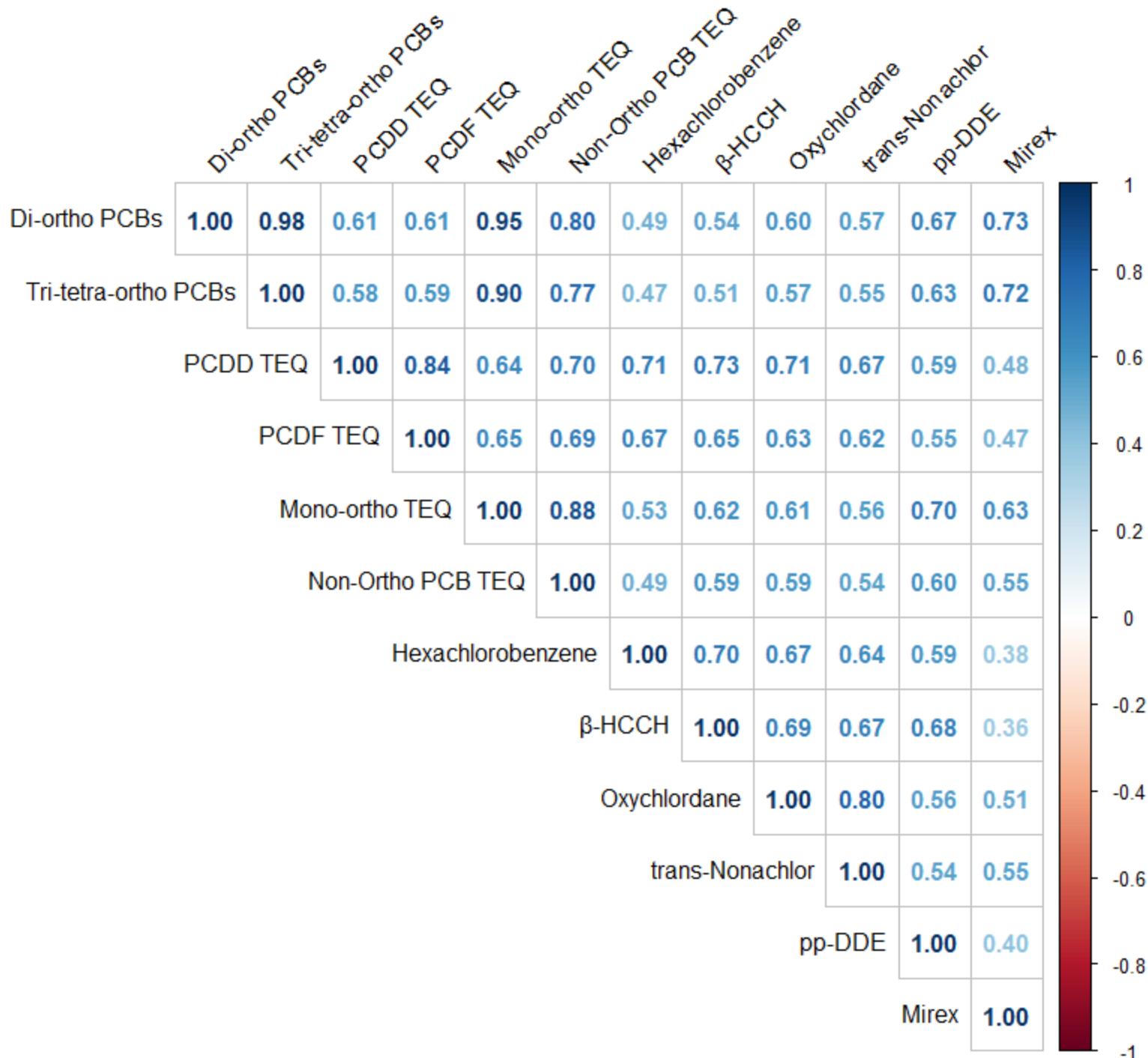
1013 Zong G, Valvi D, Coull B, Göen T, Hu FB, Nielsen F, et al. Persistent organic pollutants, and risk of type 2
1014 diabetes: A prospective investigation among middle-aged women in Nurses' Health Study II. *Environ Int* 2018;
1015 114:334-342.

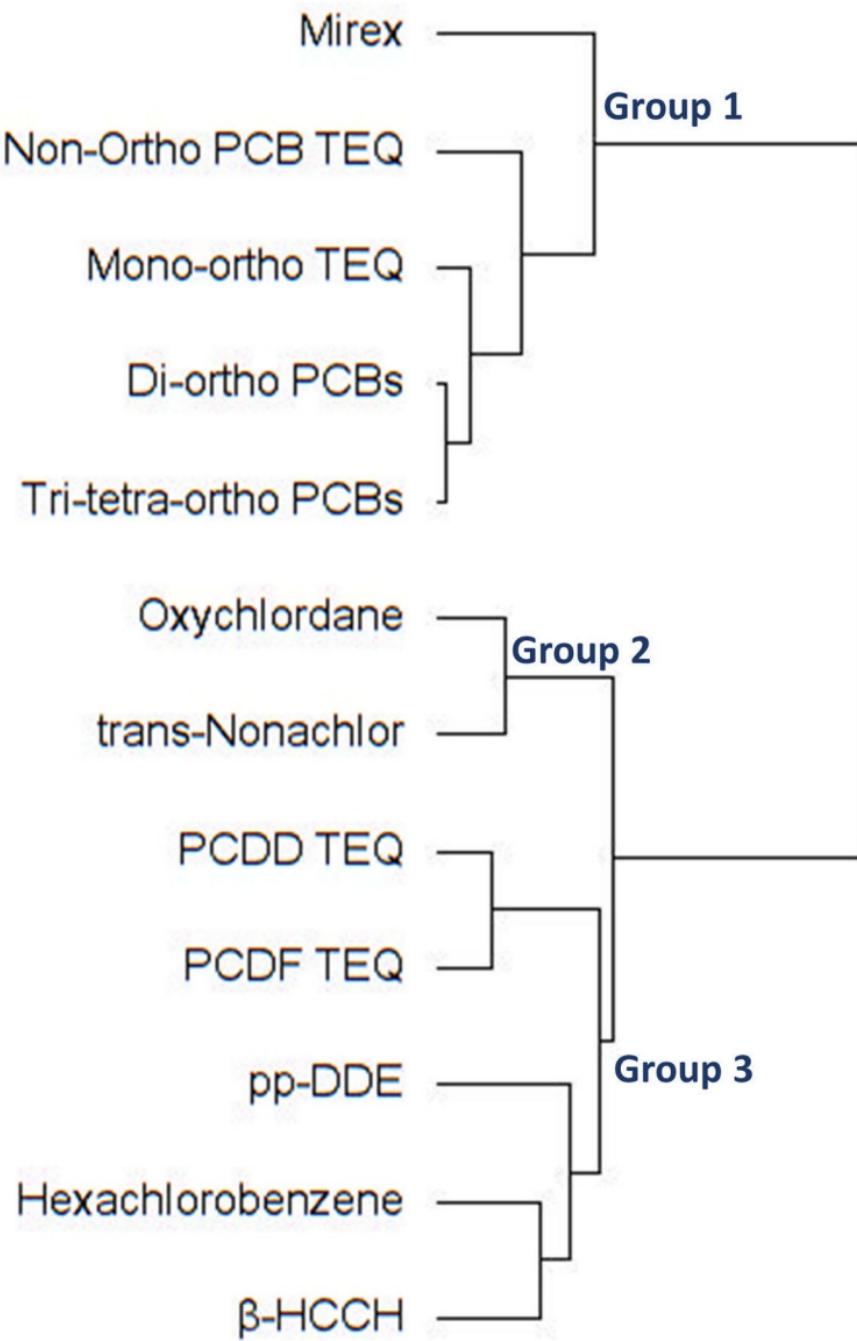
1016

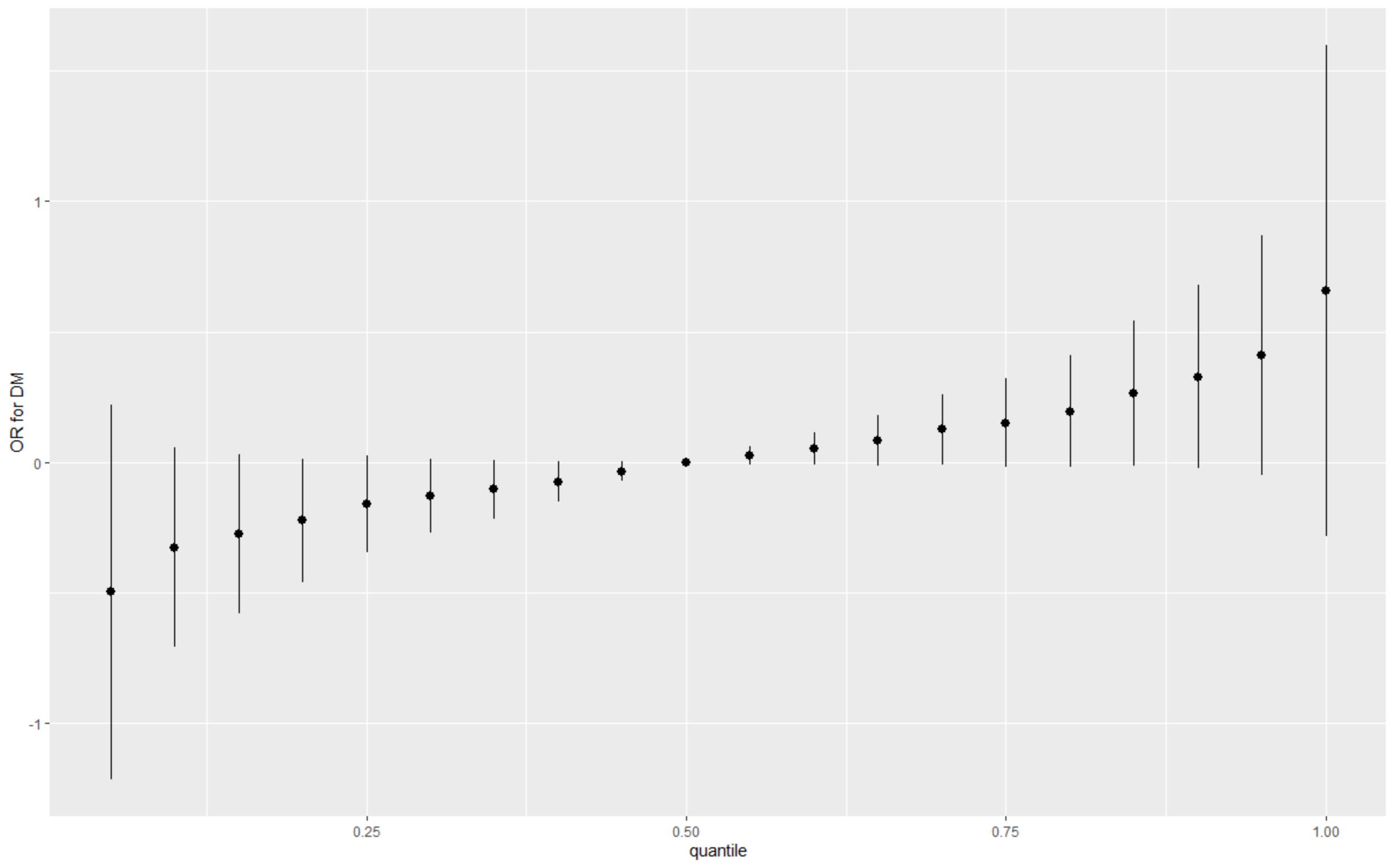
Figure 1. a. Spearman Correlation Coefficients. b. Hierarchical clustering showing 3 mixture component-groups for BKMR modeling.

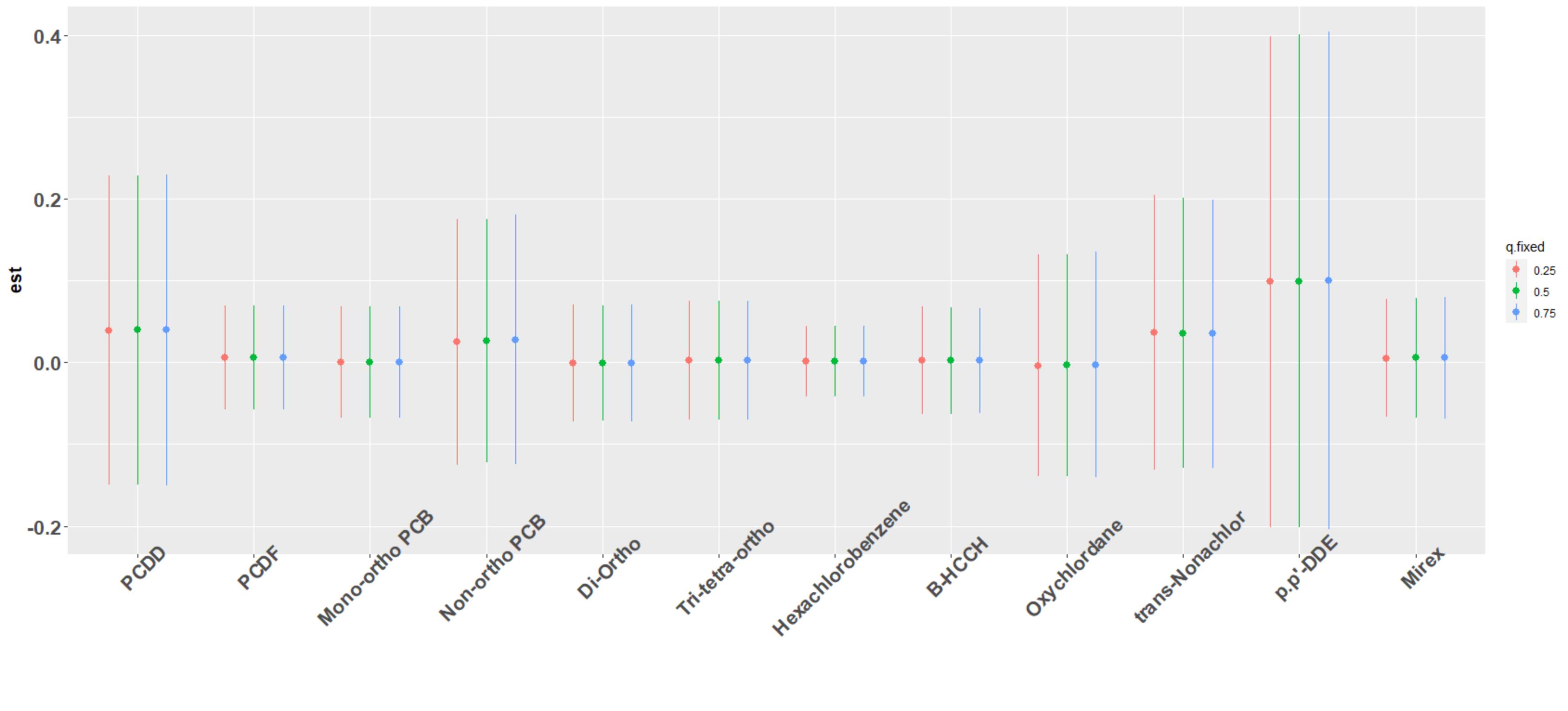
Figure 2. BKMR results for diabetes, ACHS II: a. The overall joint effects. b. Single variable effects consistent with no interaction and no additivity when holding all other components to a fixed quantile.

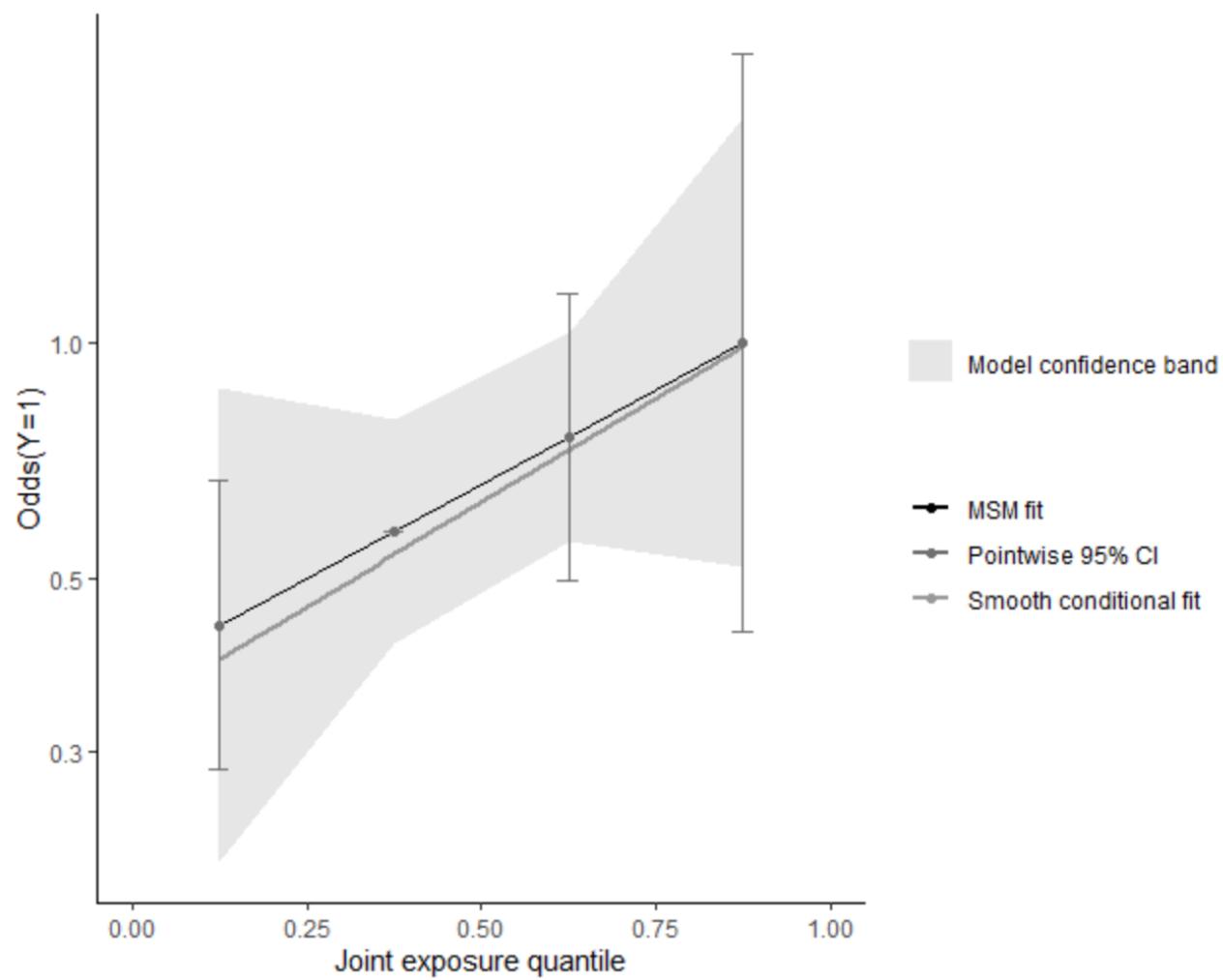
Figure 3. Quantile G computation, ACHS II a. Slope and 95% confidence bands for joint effects of mixture components on diabetes; MSM is marginal structural model. The overall effect was $\Psi=0.28$ (95% CI: -0.15, 0.70). b. Relative weights - positive weights are more influential in the overall mixture.

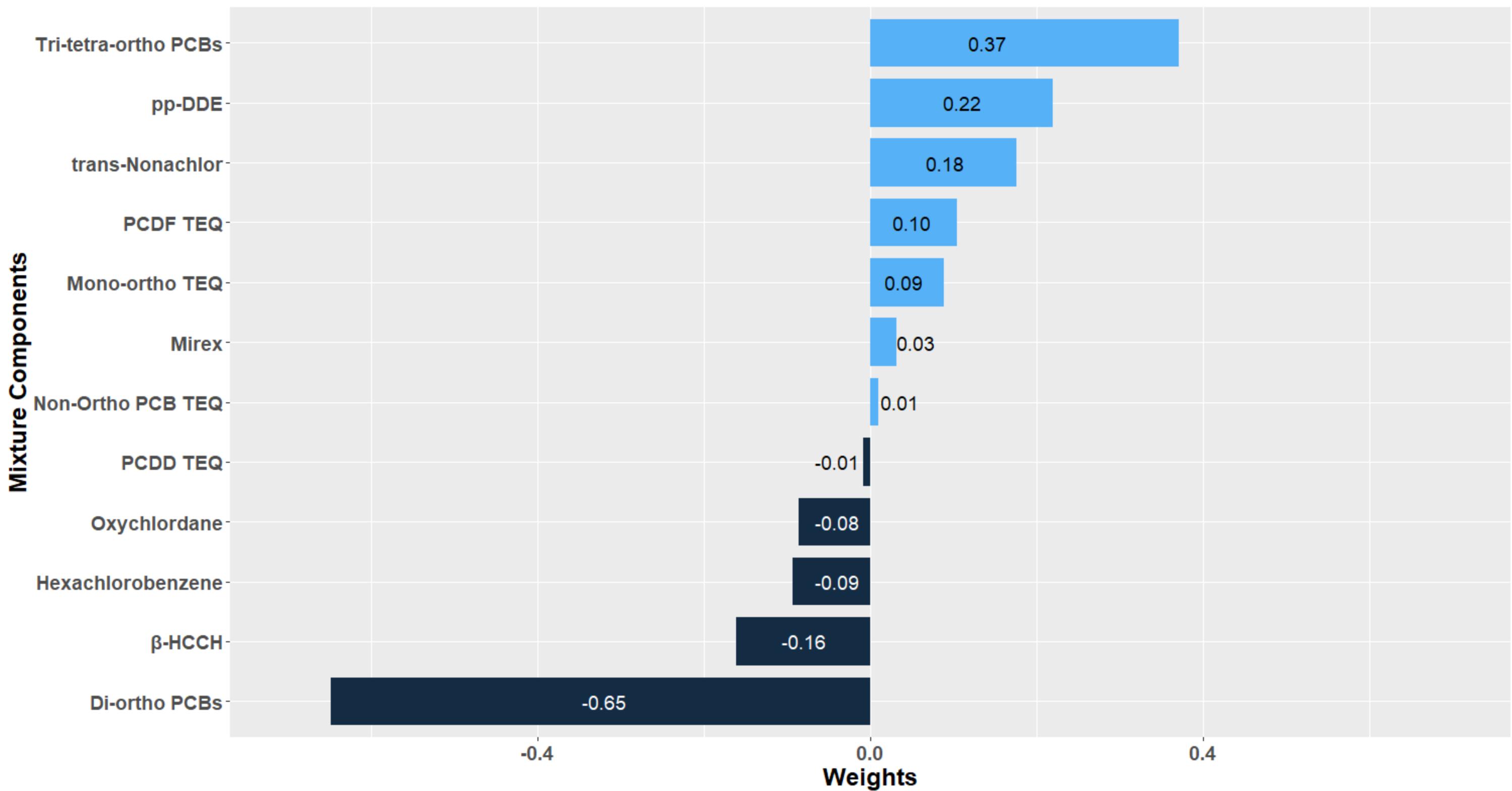












1
2
3
4
Tables

Table 1. Demographic and clinical characteristics (mean (SD) or n (percent)) of participants in ACHS II (2014)

Characteristic	No Diabetes (n=175)	Pre-diabetes (n=28)	Diabetes (n=135)	p-value
Age in years	60.21 (13.2) ^a	66.79 (14.2)	65.06 (11.8)	0.0010
Female	125 (71.4%)	19 (67.9%)	101 (74.8%)	0.6818
African Americans	83 (47.4%) ^b	7 (25.0%)	82 (60.7%)	0.0011
Years residing in Anniston	49.48 (16.1) ^a	54.43 (17.8)	54.27 (17.0)	0.0298
Lifetime alcohol use (12 or more alcoholic drinks in lifetime)	123 (70.3%)	19 (67.9%)	88 (65.2%)	0.6447
Smoking status (currently smoking)	41 (23.4%)	6 (21.4%)	24 (17.8%)	0.4795
Family history of diabetes	104 (59.4%) ^b	18 (64.3%)	105 (77.8%)	0.0028
Physical activity (physically active in last month)	76 (43.4%)	8 (28.6%)	45 (33.3%)	0.1064
Education level (more than high school)	63 (36.0%)	8 (28.6%)	48 (35.5%)	0.7423
Healthcare access (had health insurance last year)	153 (87.4%) ^b	28 (100%)	126 (93.3%)	0.0434
Annual income (>\$25,000)	52 (29.7%) ^b	12 (42.9%)	25 (18.5%)	0.0099
BMI – kg/m ²	30.92 (7.69)	30.69 (5.83)	32.78 (9.02)	0.1098
Girth (inches)	40.64 (5.89) ^a	42.41 (6.21)	43.35 (6.26)	0.0006
Glucose level (mg/dL)	81.29 (9.80) ^a	107.45 (6.81)	131.15 (73.98)	<0.0001
Insulin (UI/ml)	355.9 (445.64) ^a	554.2 (531.9)	465.5 (516.48)	0.0411
Total lipid (mg/dL)	623.39 (140.87)	639.51 (163.9)	618.8 (170.9)	0.8127
Total triglyceride (mg/dL)	121.34 (76.48)	153.11 (100.32)	141.59 (96.81)	0.0538
Glycemic meds	0 (0%) ^b	0 (0%)	78 (56.78%)	<0.0001
Lipid lowering meds	54 (30.86%) ^b	17 (60.71%)	65 (48.15%)	0.0006

5 Variables with missing values: Girth (3: 2 African American, 1 White).

6 ^a p < 0.05 using the one-way ANOVA test

7 ^b p < 0.05 comparing participants with no diabetes, pre-diabetes, and diabetes using Chi-square test of
8 independence

10
11
12
13**Table 2.** Geometric means (95% confidence intervals (CI)) by diabetes status, adjusted for age, sex, race, BMI, smoking status, and family history of diabetes in general linear models^a.

Chemical Groups	No Diabetes (n=175)	Pre-Diabetes (n=28)	Diabetes (n=135)	Total (n=338)
Sum of PCBs	Mean (95% CI)	Mean (95% CI)	Mean (95% CI)	Mean (95% CI)
Whole Weight ^c (pg/g)	2754 (2393, 3169)	2443 (1803, 3311)	2897 (2460, 3419)	2691 (2338, 3090)
PCB Subsets				
Di-Ortho	2051 (1771, 2365)	1737 (1270, 2371)	2103 (1778, 2494)	1958 (1694, 2259)
Tri-tetra-ortho	741.3 (635.3, 862.9)	668.3 (479.7, 928.9)	803.5 (672.9, 961.6)	736.2 (632.4, 855.0)
Summary TEQs (pg/g)				
PCDD	50.93 (46.34, 55.84)	52.23 (42.65, 63.82)	57.54 (51.64, 64.26) ^b	53.45 (48.75, 58.61)
PCDF	13.55 (12.30, 14.96)	14.22 (11.53, 17.53)	14.45 (12.91, 16.18)	14.09 (12.79, 15.48)
Mono-ortho PCB	8.37 (7.19, 9.77)	7.14 (5.11, 9.95)	8.83 (7.37, 10.56)	8.09 (6.95, 9.41)
Non-ortho PCB	19.18 (15.92, 23.17)	18.54 (12.27, 28.05)	20.84 (16.90, 25.76)	19.49 (16.18, 23.55)
Total Dioxin	97.94 (87.49, 109.6)	103.0 (80.53, 131.8)	111.2 (97.49, 127.1)	103.9 (92.89, 116.4)
Pesticides				
Hexachlorobenzene	50.58 (47.42, 53.95)	49.77 (43.25, 57.27)	52.60 (48.74, 56.75)	50.93 (47.86, 54.32)
B-HCCH	39.81 (34.75, 45.70)	43.95 (32.73, 59.15)	42.85 (36.55, 50.23)	42.16 (36.89, 48.30)
Oxychlordane	109.1 (98.62, 121.1)	123.3 (99.31, 153.1)	119.9 (106.6, 134.8)	117.2 (106.2, 129.7)
<i>trans</i> -Nonachlor	198.1 (176.1, 222.8)	253.5 (197.6, 325.0)	234.4 (204.6, 269.1) ^b	227.5 (203.2, 255.2)
p,p'-DDE	1541 (1309, 1815)	1258 (881.0, 1794)	2004 (1655, 2432) ^b	1573 (1336, 1849)
Mirex	64.41 (56.10, 73.96)	67.92 (50.35, 91.52)	72.11 (61.37, 84.72)	68.07 (59.42, 78.16)

14 ^a All variables were log transformed. Summed totals, PCBS and TEQS, do not include substitutions for <LOD
15 while the individual pesticides include substitutions.16 ^b *p* - value ≤ 0.05 in comparison of participants with diabetes to those without diabetes. There were no significant
17 differences in the comparisons of prediabetes to no diabetes.18 ^c Contains 35 congeners.

19

20 **Table 3.** Odds Ratios (OR) and 95% Confidence Intervals (CI) of diabetes prevalence (excluding prediabetes) of
 21 ACHS II participants (2014).

22

Chemical Groups	n ^b	OR (95% CI) ^c Model 1	OR (95% CI) ^d Model 2	OR (95% CI) ^e Model 3
Summary TEQs				
PCDD	135/309	3.45 (1.07, 11.16)	3.61 (1.04, 12.46)	2.86 (0.98, 8.36)
PCDF	135/308	1.66 (0.56, 4.96)	1.70 (0.55, 5.30)	1.65 (0.58, 4.65)
Mono-ortho PCB	135/310	1.36 (0.72, 2.57)	1.23 (0.63, 2.40)	1.21 (0.65, 2.28)
Non-ortho PCB	133/288	1.51 (0.86, 2.64)	1.23 (0.67, 2.25)	1.19 (0.69, 2.06)
Total Dioxin	135/310	2.65 (1.06, 6.62)	2.24 (0.85, 5.89)	2.01 (0.85, 4.77)
PCB Groupings				
Sum 35 PCBs ^a	135/310	1.13 (0.56, 2.29)	1.22 (0.58, 2.57)	1.28 (0.64, 2.57)
Mono-ortho PCB	135/310	1.38 (0.72, 2.67)	1.26 (0.63, 2.51)	1.24 (0.65, 2.36)
Di-ortho PCB	135/310	1.09 (0.56, 2.14)	1.14 (0.56, 2.34)	1.15 (0.58, 2.26)
Tri, tetra-ortho PCB	134/309	1.22 (0.63, 2.34)	1.39 (0.69, 2.80)	1.39 (0.72, 2.68)
Pesticides				
Hexachlorobenzene	134/308	2.05 (0.38, 11.10)	1.84 (0.31, 11.12)	1.65 (0.37, 7.30)
β-HCCH	135/310	1.74 (0.88, 3.43)	1.25 (0.60, 2.62)	1.17 (0.61, 2.22)
Oxychlordane	133/302	2.08 (0.75, 5.83)	1.85 (0.62, 5.54)	1.75 (0.67, 4.60)
<i>trans</i> -Nonachlor	125/287	3.04 (1.17, 7.92)	2.55 (0.93, 7.02)	2.64 (1.04, 6.71)
p,p'-DDE	134/309	2.13 (1.16, 3.91)	2.07 (1.08, 3.97)	2.15 (1.23, 3.70)
Mirex	135/310	1.33 (0.65, 2.71)	1.60 (0.73, 3.52)	1.57 (0.77, 3.21)

23

24 ^a PCB sum contains 35 congeners. The Pesticides, PCB sums/groupings and TEQs were all log₁₀ transformed.

25

26 ^b n=participants with diabetes/total (excluding pre-diabetes)

27

28 ^c Model 1 adjusted for age, sex, race, and total lipid

29

30 ^d Model 2 adjusted for age, sex, race, BMI, family history of diabetes; smoking status, education, health care access,
 31 lipid lowering drugs, and total lipid.

^e Model 3 adjusted for age, race, BMI, lipid lowering drugs, family history of diabetes for all models except p,p'-
 DDE (all listed variables except race included in that model).

32
33
34

Table 4. OR (95% CI) of diabetes **incidence** (excluding prediabetes and diabetes diagnosis in ACHS I) in participants from ACHS II (2014).

Chemicals^a Whole Weight	^bDiabetes/ Total	Model 1 OR (95% CI)^c	Model 2 OR (95% CI)^d
Sum 35 PCBs	37/212	0.44 (0.14, 1.42)	0.46 (0.13, 1.58)
Mono-ortho PCBs	37/212	0.43 (0.14, 1.32)	0.35 (0.10, 1.16)
Di-ortho PCBs	37/212	0.43 (0.14, 1.36)	0.41 (0.12, 1.42)
Tri- tetra-ortho PCBs	37/212	0.47 (0.16, 1.36)	0.53 (0.17, 1.60)
Pesticides			
p,p'-DDE	37/212	1.12 (0.47, 2.72)	0.98 (0.37, 2.61)
<i>trans</i> -Nonachlor	37/209	1.28 (0.29, 5.61)	1.13 (0.24, 5.44)

35

^a The PCB sums and Pesticides were all log₁₀ transformed. [Smoking variable was from the baseline in ACHS I, all other covariables from time 2].

36

^b Number participants with incident diabetes/total (excluding diabetes at baseline and pre-diabetes).

37

^c Model 1 adjusted for age, sex, race, and total lipid.

38

^d Model 2 adjusted for age, sex, race, total lipid, BMI, family history of diabetes; smoking status, education, health care access, and lipid lowering drugs.

39

40

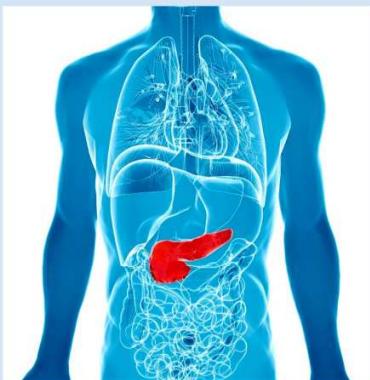
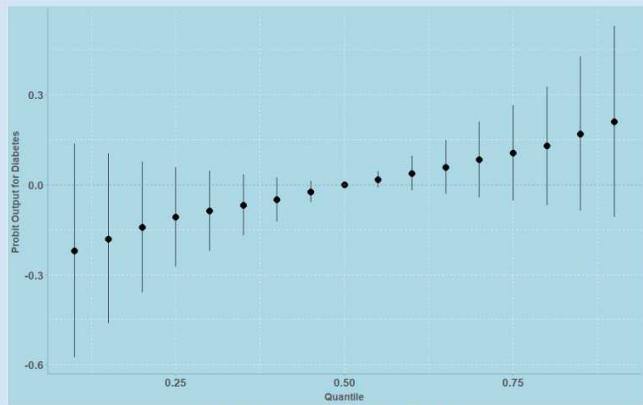
41

42

43

44

Diabetes and Exposure to PCBs, Dioxins, and Pesticides in Anniston Cohort



Joint mixture effects (95% CI)

- Logistic regression -> Single exposure models
- BKMR and G comp -> Evaluation of mixtures and increase robustness

