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Abstract 35 

 36 

Dioxins and dioxin-like compounds measurements were added to polychlorinated biphenyls 37 

(PCBs) and organochlorine pesticides to expand the exposure profile in a follow-up to the Anniston 38 

Community Health Survey (ACHS II, 2014) and to study diabetes associations. Participants of ACHS I 39 

(2005-2007) still living within the study area were eligible to participate in ACHS II. Diabetes status 40 

(type-2) was determined by a doctor’s diagnosis, fasting glucose ≥125 mg/dL, or being on any glycemic 41 

control medication. Incident diabetes cases were identified in ACHS II among those who did not have 42 

diabetes in ACHS I, using the same criteria. Thirty-five ortho-substituted PCBs, 6 pesticides, 7 43 

polychlorinated dibenzo-p-dioxins (PCDD), 10 furans (PCDF), and 3 non-ortho PCBs were measured in 44 

338 ACHS II participants. Dioxin toxic equivalents (TEQs) were calculated for all dioxin-like 45 

compounds. Main analyses used logistic regression models to calculate odds ratios (OR) and 95% 46 

confidence intervals (CI).  In models adjusted for age, race, sex, BMI, total lipids, family history of 47 

diabetes, and taking lipid lowering medication, the highest ORs for diabetes were observed for PCDD 48 

TEQ: 3.61 (95% CI: 1.04, 12.46), dichloro-diphenyl dichloroethylene (p,p’-DDE): 2.07 (95% CI 1.08, 49 

3.97), and trans-Nonachlor: 2.55 (95% CI 0.93, 7.02). The OR for sum 35 PCBs was 1.22 (95% CI: 50 

0.58-2.57). To complement the main analyses, we used BKMR and g-computation models to evaluate 51 

12 mixture components including 4 TEQs, 2 PCB subsets and 6 pesticides; suggestive positive 52 

associations for the joint effect of the mixture were found but were not significant. These results add 53 

support to earlier findings for diabetes associations with PCBs, PCDDs, trans-Nonachlor and p,p’- 54 

DDE. 55 

Keywords:  Persistent organic pollutants, PCBs, Pesticides, Diabetes, Longitudinal study, Mixture 56 

analysis, BKRM, g-computation 57 

 58 

 59 

 60 
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1. Introduction 61 

 62 

The Swann Chemical Company (1929-1935) and Monsanto Company (1935-1971) operated a 63 

production plant in Anniston, AL that manufactured polychlorinated biphenyls (PCBs) between 1929 64 

and 1971. The facility produced all commercial and experimental Aroclor® mixtures, containing a 65 

number of individual PCB congeners, accounting for about half of the total PCB production in US 66 

(Erickson and Kaley, 2011). Elevated concentrations of PCBs have been previously reported in 67 

Anniston residents (ATSDR 2000, Pavuk et al., 2014a) and environmental media (Hermanson et al., 68 

2003). Our previous report on PCB exposure and diabetes in Anniston residents from the Anniston 69 

Community Health Survey (ACHS I) noted increased risk of diabetes for the sum of 35 ortho-substituted 70 

PCBs in data collected from 2005-2007 (Silverstone et al., 2012). While we were not able to review and 71 

verify the medical records, most of the diabetes was assumed to be type 2 diabetes based on late onset. 72 

This risk was more pronounced in those younger than 55 years old (median age of the cohort) and in 73 

females (Silverstone et al., 2012). Analyses with the toxicological/structure-activity subsets of PCB 74 

congeners did not reveal additional information; dioxin-like PCB congeners were limited to mono-ortho 75 

congeners that are highly correlated with other non-dioxin like PCBs and have weak affinity to the aryl-76 

hydrocarbon receptor (Ah-R) pathway (Gourronc et al., 2018; Larsson et al., 2015).  We conducted a 77 

follow-up study to ACHS I, ACHS II, in 2014, about 8 years after the baseline. The measurements of 78 

serum polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and 79 

dioxin-like non-ortho PCBs (non-ortho-PCBs) were added to ACHS II to expand the exposure profile of 80 

the Anniston cohort (Birnbaum et al., 2016). 81 

Associations between exposure to PCBs and type 2 diabetes, along with other persistent organic 82 

pollutants (POPs), have been studied extensively, and have been the subject of several in-depth reviews 83 

(Lee et al., 2014; Lind et al., 2018; Taylor et al., 2013; Thayer et al, 2012). Strong associations between 84 

various PCBs, dioxin congeners, and pesticides first reported in data from the National Health and 85 
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Nutrition Examination Survey (NHANES) databases by Lee at al. (2006, 2007, and corroborated by 86 

Everett et al. (2007), gave impetus to a score of cross-sectional investigations around the world 87 

evaluating metabolic disturbances related to diabetes and exposure to mostly non-dioxin like PCBs, 88 

organochlorine pesticides, and other POPs such as polybrominated diphenyl ethers (PBDEs) (Airaksinen 89 

et al., 2011; Arrebola et al., 2013; Everett and Thompson, 2012; Gasull et al., 2012; Han et al., 2019; 90 

Henriquez-Hernandez et al., 2017; Huang et al., 2015; Kim et al., 2018; Marushka et al., 2018; 91 

Nakamoto et al., 2013; Persky et al., 2012; Raffetti et al., 2018; Silverstone et al., 2012; Tanaka et al., 92 

2011). A smaller number of longitudinal studies have investigated the relationship between POPs and 93 

diabetes incidence prospectively, with less consistent results (Berg et al., 2021; Charles et al., 2022; Lee 94 

et al. 2010, 2011; Magliano et al., 2021; Rignell-Hydbom et al., 2009; Turyk et al., 2009, 2015; Suarez-95 

Lopez et al, 2015; Tornevi et al., 2019; Vasiliu et al., 2006; Wu et al., 2013; Zong et al., 2018). This 96 

body of research was built on earlier investigations focused on the examination of the association 97 

between 2, 3, 7, 8-tetrachloro dibenzo-p-dioxin (TCDD, prototypical “dioxin”) and diabetes in 98 

occupational studies and veterans’ cohorts with higher than background exposures (Calvert et., 1999 99 

Longnecker and Michalek 2000, Michalek and Pavuk 2008, Steenland et al., 1999, 2001; Vena et al., 100 

1998).  101 

The potential mechanism of action has been elucidated in more detail for dioxin-like PCBs. 102 

Exposure to PCBs 77 and 126 which are strong Ah-R agonists, resulted in impaired glucose and insulin 103 

tolerance in mice on low and high fat diets (Baker et al., 2015). Human pre-adipocytes treated with PCB 104 

126 had significantly reduced ability to fully differentiate (to adipocytes), downregulating transcription 105 

factor PPAR-γ and late adipocyte differentiation genes (Gadupudi et al., 2015). Furthermore, exposure 106 

to PCB 126 activated the pro-inflammatory response pathway, which is recognized as a causative factor 107 

in the development of type 2 diabetes (Gourronc et al., 2018). A number of potential mechanisms 108 

leading to insulin resistance for non-dioxin like PCBs have been investigated by Kim et al. (2019).  109 
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Traditional approaches to study multi-pollutant exposures are often limited due to potential 110 

issues including, multicollinearity, model misspecification, and the inability to evaluate multiple 111 

correlated exposures and pollutants as a single mixture in contrast to modeling associations with 112 

individual chemical compounds/analytes (Gibson et al., 2019; Taylor et al., 2013). To address these 113 

limitations, advanced statistical methods, such as the Bayesian Kernel Machine Regression (BKMR) 114 

(Bobb et al., 2015, 2018) and quantile-based g-computation (g-comp) (Keil et al., 2020), have been 115 

introduced to the field. BKMR is a semiparametric statistical method that can be employed to estimate 116 

the overall mixture effect and individual chemical impact within a mixture on health outcomes, 117 

exploring potential nonlinearity and non-additivity (Bobb et al., 2015, 2018). Quantile g-computation is a 118 

causal inference method that uses a weighted quantile regression approach and can generate a marginal 119 

structural estimate for the overall joint exposure effect on the change in the outcome (Snowden, 2011; 120 

Keil et al, 2020).  A growing number of epidemiologic studies have applied BKMR to evaluate the 121 

effect of exposure to POPs, mostly per- and polyfluoroalkyl substances (PFAS) on gestational diabetes 122 

and glucose homeostasis, thyroid function, or hypertensive disorders (Preston et al., 2020, 2022; Xu et 123 

al., 2022; Zhang et al., 2022a). A few studies evaluated dioxin-like compounds and PCBs using mixture 124 

methods studying various health outcomes such hyperuricemia, breast cancer, neurodevelopment 125 

measures or cognitive function (Yim et al., 2022; Parada et al., 2021; Sasaki et al., 2023; Zhang et al., 126 

2022b).   127 

In the present ACHS II study, we examined associations between diabetes and PCDDs, PCDFs, 128 

and non-ortho PCBs, in addition to ortho-substituted PCBs and chlorinated pesticides.  Cross sectional 129 

associations with prevalent diabetes in the ACHS II sample (for dioxins, PCBs, and pesticides) were 130 

examined as well as association with incident diabetes (for PCBs and pesticides) in members of the 131 

Anniston cohort to further elucidate possible relationships between environmental exposures to POPs 132 

and diabetes.  Additionally, the broad exposure assessment results available in the Anniston cohort gave 133 
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us an impetus to also perform complementary Bayesian kernel machine regression (BKMR) and 134 

quantile g-computation analyses to assess the joint POPs mixture effects and the relative importance of 135 

mixture components on diabetes. 136 

 137 

2. Materials and methods 138 

 139 

2.1 Study Design and Population   140 

Methods for the ACHS I and ACHS II have been described in detail in previous publications 141 

(Pavuk et al., 2014b; Birnbaum et al., 2016). For the follow up study, all surviving participants of ACHS 142 

I with PCB measurements were eligible to participate (n=765). Prior to enrollment, we were able to 143 

ascertain that 114 participants had died; in addition, 69 participants were found to have moved outside 144 

the study area. Of the remaining participants, 438 with a current address in the study area were 145 

successfully contacted.  Of these, a total of 359 enrolled as participants in the follow-up study (82%) 146 

(Birnbaum et al., 2016). Sufficient volumes of sera for dioxin analyses were collected from 338 147 

participants who have been included in the statistical analyses presented here. The participants also 148 

provided a fasting blood sample for measurements of glucose, POPs, and lipid levels, and had their 149 

height, weight, waist circumference, and blood pressure measured using a standardized protocol. During 150 

the study office visit, demographic information, medical and family history, as well as self-reported 151 

health behaviors and health conditions were recorded. Individual medications including glycemic 152 

control medication (oral and injectable; name, dose, frequency) were recorded and verified by a nurse 153 

(participants had to bring the medication to the study office). 154 

Diabetes was defined as self-report of physician-diagnosed diabetes, or fasting glucose ≥125 155 

mg/dL, or being on any glycemic control medication. Non-diabetes was defined as a fasting glucose 156 

<125 mg/dL and the absence of glycemic control medications. Reported diabetes was type II diabetes; 157 
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we could not verify medical records if any were type I. For the present analyses, we excluded 158 

participants with prediabetes (glucose between 100 and 124mg/dL) to be consistent with reporting from 159 

ACHS I (Silverstone et al. 2012). The studies were reviewed and approved by the appropriate 160 

Institutional Review Boards.  161 

 162 

2.2 Laboratory Analyses 163 

The sera were isolated by centrifugation using red top vacutainer tubes and shipped on dry ice to 164 

the Division of Laboratory Sciences at the CDC, National Center for Environmental Health (NCEH). 165 

Participant samples were stored at −70℃. Serum samples were first measured for PCDD/F and non-166 

ortho PCBs based on published methodology (Turner et al. 1997) using 20 g of serum (median: 20g; 167 

range: 2.5−20.7 g; 10th percentile: 14:0 g). The samples were then measured for ortho-PCBs and 168 

pesticides according to published methodology (Sjödin et al., 2004; Jones et al., 2012) using 2g of 169 

serum. Each analytical batch for ortho-PCBs/pesticides was defined as 24 unknowns, 3 quality controls, 170 

and 3 method blanks, while for PCDD/F and non-ortho-PCBs, each analytical batch included 8 171 

unknowns, 2 quality controls, and 2 method blanks. Measurements of target organohalogen compounds 172 

were made by gas chromatography–isotope dilution high-resolution mass spectrometry. Serum total 173 

lipids were calculated by the enzymatic “summation” method using triglyceride and total cholesterol 174 

measurements (Bernert et al., 2007). The 2005 WHO Toxic Equivalency Factors (TEF) were used to 175 

calculate the congeners’ toxic equivalency (TEQ) and total dioxin TEQ (Van den Berg et al., 2006).  176 

 177 

2.3 Statistical Analysis 178 

Statistical analyses were conducted using SAS System 9.4 (SAS Institute, Inc., Cary, NC), and 179 

SPSS (IBM SPSS Statistics for Windows, Version 28.0, Armonk, NY: IBM Corp).  Descriptive 180 

statistics for demographic characteristics and exposure variables were calculated for those with diabetes, 181 
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prediabetes, or no diabetes; differences between groups were compared using a two-tailed t-test or one-182 

way ANOVA for continuous variables and chi-square tests for categorical variables. General linear 183 

models were used to calculate geometric mean concentrations of the chemical exposures by diabetes 184 

status with control for age, sex, race, BMI, smoking status and family history of diabetes. Spearman’s 185 

correlation coefficients were run for all exposure variables.  As these POPs correlations were expected 186 

to be high, we also conducted hierarchical cluster analysis (HCA), performed via ClustOfVar package in 187 

R (Chavent et al., 2012). It provides hierarchical and k-means clustering of a set of variables. The center 188 

of a cluster of variables is a synthetic variable which is the first principal component calculated by 189 

PCAmix. The homogeneity of a cluster is defined as the squared correlation between the variables and 190 

the center of the cluster. 191 

Unconditional logistic regression models were used to contrast diabetes status (diabetes, no 192 

diabetes) with the exposure variables. Chemical exposures included: six pesticides (hexachlorobenzene 193 

[HCB], β-HCCH, trans-Nonachlor, Oxychlordane, pp’-DDE, Mirex), the sum of 35 PCB congeners, 194 

total dioxin TEQ and its subcomponents (PCDD TEQ, PCDF TEQ, mono-ortho PCBs TEQ and non-195 

ortho PCBs TEQ). These summary exposure groups were created as follows, PCDD TEQ (sum of 7 196 

dibenzo-dioxin congeners: 2,3,7,8-TCDD, 1,2,7,8-PCDD, 1,2,3,4,7,8-HCDD, 1,2,3,6,7,8-HCDD, 197 

1,2,3,7,8,9-HCDD, 1,2,3,4,6,7,8-HCDD, OCDD), PCDF TEQ (sum of 10 dibenzo-furan congeners: 198 

2,3,7,8-TCDF, 1,2,3,7,8-PCDF, 2,3,4,7,8-PCDF, 1,2,3,4,7,8-HCDF, 1,2,3,6,7,8-HCDF, 1,2,3,7,8,9-199 

HCDF, 2,3,4,6,7,8-HCDF, 1,2,3,4,6,7,8-HCDF, 1,2,3,4,7,8,9-HCDF, OCDF), mono-ortho PCBs TEQ 200 

(sum of PCBs 105, 118, 156, 157, 167, and 189 ), non-ortho PCBs TEQ (sum of PCBs 81, 126, 169) 201 

(van den Berg et al., 2006). In addition to sum of PCBs, we used structure-activity groups based on the 202 

chlorine substitution. The subsets were the di-ortho, and the tri- and tetra- ortho PCB congeners, while 203 

the mono-ortho and non-ortho PCBs substituted groups were already included with the dioxin TEQs 204 

above.   For the individual congeners and pesticides, we used LOD/square root2 to substitute levels 205 
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below LOD (Hornung and Reed, 1990). For the main analysis, three logistic regression models were 206 

applied with co-variables selected based on the literature review of POPs and diabetes associations, and 207 

variables available in the Anniston study (Turyk et al., 2009, Lee et al., 2014; Zong et al., 2018). Model 208 

1 analyses were adjusted for basic demographic variables: age, race (African American or White), sex 209 

(female or male), and log-transformed total lipids. Model 2 was adjusted for additional covariables 210 

including, family history of diabetes (yes or no), lipid lowering medication (yes or no), current smoking 211 

status (yes or no), BMI (kg/m2 ), access to health insurance during last year (yes or no), and education 212 

(high school or less, more than high school). Model 3 was a more parsimonious model, with adjustment 213 

for age, race, BMI, lipid lowering drugs and family history of diabetes.  Appropriate covariables for 214 

model 3 were ascertained using a backwards stepwise procedure and a likelihood p-value for removal of 215 

0.10. Sum of PCBs, PCB groups, pesticides and all TEQ variables were modeled as whole weight 216 

variables and logarithmically transformed to base 10 (log 10). Odds ratios (OR) and 95% confidence 217 

intervals (CI) are presented for diabetes associations with exposure variables modeled as continuous 218 

variables (all exposure compounds). We also ran exploratory models stratified by sex (male, female) and 219 

race (African American, White), but reduced sample size has limited those inferences. Included 220 

covariables were identical to those in model 3, the parsimonious model described above. Interaction 221 

terms were assessed for the sum PCB and PCB/TEQ subgroups using the likelihood ratio p value for 222 

removal of > 0.10 in a backward stepwise procedure.  223 

Odds ratios for incident cases of diabetes versus non-diabetes group were calculated using the 224 

same regression models 1 and 2 as described above but using the exposure variables and time-sensitive 225 

covariates (e.g., current smoking) from the baseline ACHS rather than the follow-up study. Of the 37 226 

incident diabetes cases reported between the baseline and the follow up studies, 24 had nurse-verified 227 

use of glycemic medication (63.2%).  To complement the main statistical analyses, we used the 228 

Bayesian kernel machine regression (BKMR) to evaluate the joint and individual effects of exposure to 229 
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PCBs, dioxins and pesticides on the odds of diabetes and to estimate the relative contributions of 230 

different mixture components (Bobb et al., 2015, 2018). BKMR uses a kernel function to flexibly model 231 

both the overall joint effect of an exposure mixture and to estimate individual exposure-outcome 232 

associations. To determine the joint association, the algorithm subtracts the mean value of the outcome 233 

when the mixture concentrations are at the 25th percentile from the mean value of the outcome when the 234 

mixture concentrations are at the 75th percentile while holding the covariates constant (the percentiles 235 

are modifiable).  236 

Given the sample size for the main analyses (n=310), and large number of assessed exposures 237 

[dioxin-like compounds (20), PCBs (35), pesticides (6); for a total of 62 analytes] we elected to use the 238 

same structure-activity based dioxin TEQs and PCB groups as described above to reduce the number of 239 

exposure variables to 12. We have also used those groups in our hypertension outcomes analyses (Pavuk 240 

et al., 2019) and this strategy is similar to what was done in other studies assessing mixtures, e.g., Xu et 241 

al., 2022, Preston et al., 2022, as a way to maintain the robustness of the analytical method. Thus, we 242 

included the same two groups of non-dioxin-like PCBs: the di-ortho and tri- and tetra- ortho substituted 243 

PCBs, four TEQ groups: PCDD, PCDF, non-ortho, and mono-ortho PCB TEQs, as well as six 244 

individual pesticides (which do not have a common mode of toxicity) in BKMR analyses.  245 

Additionally, the variable selection option in BKMR was used to estimate posterior inclusion 246 

probabilities (PIPs) for each exposure to identify the relative importance of these mixture components to 247 

the overall mixture (Bobb et al., 2018). We used the hierarchical variable selection function, which is 248 

recommended in the presence of higher group correlations. For the dichotomous diabetes outcome 249 

(diabetes versus no diabetes), we used the probit extension of BKMR (Bobb et al., 2018).  Models were 250 

run for 50,000 iterations using the Markov chain Monte Carlo sampler. The model convergence was 251 

checked by visually inspecting trace plots. Possible nonlinearity in dose-response functions and 252 

interactions were also examined among the mixture component. Consistent with the main analyses, all 253 
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exposure variable concentrations were log10 transformed for the BKMR models due to sensitivity to 254 

extreme values. To facilitate comparability across the different statistical approaches we included the 255 

same set of covariates in all models.  256 

To investigate consistency of findings across different multipollutant approaches, we also 257 

employed quantile g-computation as a second complementary method (Snowden, 2011; Keil et al., 258 

2020). Quantile g-computation provides a single estimate of the overall marginal structural effect of the 259 

exposure mixture on the outcome and weights for the individual mixture components.  The weights 260 

represent the exposures’ relative contributions to the overall mixture effect. The positive and negative 261 

relative weights each sum to 1.0. The overall effect estimate (psi (ψ)) was computed for exposure to 262 

dioxins, PCBs, and pesticides mixture in relation to diabetes using a one-quantile change of all mixture 263 

components, assuming a Gaussian distribution. The mixture slope and overall model confidence bounds 264 

were iterated by 500 bootstraps; no boot option was used to obtain relative weights.  Prior knowledge 265 

from the BKMR, including possible nonlinearity or non-additivity, was fed to the quantile g-266 

computation if necessary. 267 

Mixture analyses were conducted using R (version 4.2.1; R Development Core Team) with the 268 

packages “bkmr,” for BKMR and “qgcomp,” for quantile g-computation; https://cran.r-269 

project.org/web/packages/qgcomp/).  270 

  271 

3. Results  272 

 273 

3.1 Study Population Demographics       274 

The demographic comparisons between diabetes, pre-diabetes, and participants with no diabetes 275 

are shown in Table 1. Participants with diabetes and pre-diabetes were older by 5 and 6 years compared 276 

to those with no diabetes. While 51% of the 2014 cohort was African American, 60.7% of those with 277 
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diabetes diagnoses were African American. Females represented most of the participants (72%), 278 

however, no major difference in the proportions of females with and without diabetes or pre-diabetes 279 

were noted. Glucose levels, as expected, were elevated in participants with diabetes and pre-diabetes as 280 

well as mean insulin. Significant differences by diabetes status were not observed for educational level 281 

or access to health insurance. There was a significantly higher proportion of positive family history 282 

reports of diabetes among participants with diabetes (78% vs 59%). Smoking status, total lipids, 283 

triglycerides, and total cholesterol were not significantly different across the three groups. There were 284 

significantly higher proportion of participants on lipid lowering medication among those with pre-285 

diabetes (61%) or diabetes (48%) compared to those without diabetes (31%). 286 

  287 

3.2 Geometric Means Comparison 288 

In Table 2, we compared geometric means of pesticides, major PCBs and dioxin-like chemical 289 

groups (sum of PCBs and summary TEQs) that were adjusted for age, sex, race, BMI, smoking status, 290 

and a family history of diabetes. Geometric means of studied chemicals and subgroups were, in general, 291 

higher in those with diabetes for all chemicals.  PCDD TEQ was significantly higher for those with 292 

diabetes compared to those without diabetes as were trans-Nonachlor and p,p’-DDE.  There were no 293 

significant differences for those with prediabetes relative to those without diabetes. All other studied 294 

chemical groups did not have significant differences by diabetic status (p values from 0.06 to 0.87). 295 

Table S1 provides similar results for the ACHS I cohort overall. The summed PCB levels were generally 296 

lower at time 2 (ACHS II) than at time 1, whereas the remaining PCB subgroups and pesticides changes 297 

did not fit a particular pattern. 298 

 299 

3.3 Logistic Regression Analyses 300 
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Table 3 summarizes the associations for prevalent diabetes in 2014 for the entire cohort using 301 

continuous exposure variables (PCBs, dioxin TEQ groups, and pesticides). In model 1, the odds ratio for 302 

sum of PCBs was 1.13 (95% CI: 0.56, 2.29) while the fully adjusted OR in model 2 was 1.22 (95% CI: 303 

0.58-2.57). Odds ratios for the PCB subsets (mono-ortho, di-ortho, and tri- and tetra-ortho) were similar, 304 

ranging from 1.09 to 1.39 with confidence intervals that all included the null. The model 3 results for the 305 

summary PCB and subgroups were similar to those observed in models 1 and 2. While the results for 306 

PCBs were not significantly associated with diabetes, the model 1 ORs for PCDD TEQ, total dioxin 307 

TEQ, p,p’-DDE, and trans-Nonachlor were elevated with the null value excluded from the CI. In the 308 

fully adjusted model 2, the highest ORs for diabetes showing statistical significance were for PCDD 309 

TEQ 3.61 (1.04, 12.46) and p,p’-DDE 2.07 (1.08, 3.97). In model 3, trans-Nonachlor and p,p’-DDE 310 

ORs remained significantly associated with diabetes  As shown in Table S2, increasing age, African 311 

American ethnicity/race, having a positive family history of diabetes, taking lipid lowering medication, 312 

and having an elevated BMI were significantly associated with prevalent diabetes in a fully adjusted 313 

model without chemical exposures.  314 

 315 

3.4 Exploratory Analyses with Stratified Groups 316 

Exploratory logistic regression models stratified by sex and race using continuous POP exposure 317 

variables were run with results presented in Table S3. Odds ratios for the sum of 35 PCBs were 4.23 318 

(95% CI: 1.10, 16.35) for Whites compared to 0.80 (95% CI: 0.35, 1.81) for African Americans. The 319 

highly chlorinated tri- and tetra-ortho PCB group OR also was significantly elevated in Whites at 7.76 320 

but with a very wide 95% CI: 1.95, 30.86. Interaction terms for both the sum PCB and highly 321 

chlorinated subgroup and race were not significant (p> 0.05) in their respective adjusted models. African 322 

Americans had elevated levels of p,p’-DDE relative to Whites, but the CI included the null.  For the sex 323 

specific analyses, ORs for p,p’-DDE were 2.16 (95% CI: 1.06, 4.41) for females compared to 0.94 (95% 324 
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CI: 0.22, 3.96) for males. The odds ratios for oxychlordane and trans-Nonachlor were higher for males 325 

than females, with significantly elevated ORs noted for trans-Nonachlor in males.   326 

 327 

3.5 Incident diabetes 328 

 There were 37 incident diabetes cases identified ‘post baseline’ out of 212 ‘at risk persons’ 329 

enrolled in the follow up study. Persons with diabetes at baseline and with pre-diabetes were excluded 330 

from these longitudinal analyses. Demographic characteristics and laboratory measurements for incident 331 

analyses are shown in Table S4; statistical significance was noted only for a family history of diabetes. 332 

In logistic regression modeling of incident diabetes (Table 4), the highest OR reported was for trans-333 

Nonachlor in Model 1 [1.28 (95% CI: 0.29, 5.61)]. The odds ratio for p,p’-DDE was above the null but 334 

non-significant  [1.12, (95% CI: 0.47, 2.72)]. Odds ratios for the sum of PCBs and the PCB subgroups 335 

were all below 1.0. None of the reported associations were statistically significant in the adjusted models 336 

1 and 2. 337 

 338 

3.6 Mixture Analysis 339 

Spearman’s correlation coefficients (Figure 1a) indicated that the exposures investigated in this 340 

study were highly correlated, especially among PCBs groups. The highest correlation coefficient was 341 

seen among the di-ortho and tri-tetra-ortho PCBs at 0.98.  The mono-ortho TEQ also was highly 342 

correlated with the tri-tetra-ortho PCBs (0.90), the di-ortho PCBs (0.95) as well as the non-ortho PCB 343 

TEQ at 0.88.  Among the pesticides, only trans-Nonachlor and oxychlordane showed a high correlation 344 

(0.80). The dioxins and furans were also highly correlated 0.84. Mirex was less correlated with other 345 

pesticides than it was with the tri-tetra and di-ortho PCBs (0.72 and 0.73, respectively).  The dioxin and 346 

furan TEQs generally showed mid-range correlations with both the pesticides and the PCB subgroups. 347 
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Because of the high correlations among the POPs, the 12 mixture components were grouped via 348 

hierarchical cluster analysis for use in the BKMR analyses (see Fig 1b). The group and individual 349 

conditional PIPs from the BKMR diabetes model are summarized in Table S5. Group 3 (PIP=0.74) 350 

included p,p’-DDE, PCDF TEQ, PCDD TEQ, HCB, and β-HCCH. Group 1 (PIP =0.46) was composed 351 

of all the PCB subgroups (di-ortho and tri-tetra-ortho PCBS, mono-ortho TEQ, and non-ortho PCB 352 

TEQ) plus Mirex while group 2 (PIP = 0.56) included trans-Nonachlor and Oxychlordane. For the joint 353 

effects on diabetes, the highest conditional PIPs were noted for trans-Nonachlor and Oxychlordane 354 

(0.50), p,p'- DDE (0.49), non-ortho PCB TEQ (0.39), and PCDD TEQ (0.28), indicating their relatively 355 

large influence within the mixture. The group PIPs were higher than the individual conditional PIPs 356 

suggesting additive effects of combining structure activity groups modulated by high correlation.  357 

As shown in Figure 2a, the overall diabetes BKMR analysis indicated that the 12 component 358 

POP mixture was positively associated with the prevalence of diabetes in ACHS II. The joint effect OR 359 

for diabetes was 1.40 with 95% CI (-1.13, 3.93), as exposure to the mixture of POPs increased from the 360 

25th to the 75th percentile. The BKMR model also explored potential interactive effect among the 12 361 

mixture components (Figure 2b). In those analyses, the associations of each dioxin TEQ and PCB group, 362 

and the individual pesticides with diabetes were mainly unchanged while holding the other components 363 

within the mixture at fixed percentiles, indicating no synergistic or multiplicative interactions.  364 

Univariate exposure-response curves from BKMR are depicted in Figure S1. For these single 365 

variable exposure plots, the strongest positive associations with diabetes were observed for p,p’-DDE, 366 

PCDD TEQ, the non-ortho PCB TEQ, and trans-Nonachlor. The exposures showing inverse 367 

associations with diabetes included Oxychlordane, β-HCCH, the di-ortho PCBs, and mono-ortho PCB 368 

TEQ. Little evidence of a nonlinear relationship was observed.   369 

Results from the quantile g-computation were similar to our overall diabetes BKMR results, 370 

suggesting a positive but non-significant association.  The overall marginal structural effect for each 371 
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quantile change in all mixture components was ψ = 0.28 (95% CI -0.15, 0.70; see Figure 3a). This value 372 

can also be interpreted as an OR of 1.32 (95% CI: -1.12, 3.76).  The scaled effect size in the positive 373 

direction had value of 1.78 while the scaled effect size in the negative direction was -1.47, somewhat 374 

smaller, given the overall positive association.   375 

The relative weights for 12 mixture components are shown in Figure 3b. Individual weights 376 

represent the relative contribution of each mixture component to the partial positive or negative scaled 377 

mixture effect. The relative weights are constrained to sum to 1 in each direction. The largest positive 378 

weight was assigned for tri- tetra-PCBs (0.37), followed by p,p’-DDE, trans-Nonachlor and PCDF TEQ 379 

(0.22, 0.18, and 0.09, respectively), whereas the di-ortho PCBs demonstrated the largest negative weight 380 

(0.65), followed by oxychlordane and β-HCCH. Given no evidence of nonlinearity or non-additivity 381 

shown from BKMR, we did not include any polynomial or interaction terms of exposures in the model. 382 

 383 

4. Discussion       384 

4.1 Short summary of findings 385 

In our study of an aging U.S. cohort equally representing African Americans and Whites, serum 386 

concentrations of p,p’-DDE, trans-Nonachlor, tri- tetra-PCBs, and PCDDs TEQs were significantly 387 

associated with a higher diabetes risk in single exposure logistic regression models. Age, race, family 388 

history of diabetes, and BMI were significant predictors of POP concentrations and diabetes status. 389 

Mixture effect analyses using BKMR and g-computation also provided suggestive evidence for a 390 

positive joint mixture effect of PCBs, dioxins, and pesticides. Several pesticides, including p,p’-DDE 391 

and trans-Nonachlor, along with PCDD TEQ and non-ortho PCB TEQ were assigned higher relative 392 

contributions to the overall mixture effects in both mixture analyses;  \a similar observation was made 393 

for the BKMR individual models in which the other exposures were fixed at a specific percentile. The 394 

mixture analyses identified several inverse associations with diabetes (e.g., di-ortho PCBs, 395 
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Oxychlordane, β-HCCH, mono-ortho PCB TEQ) not observed in the single exposure models, that likely 396 

decreased overall positive association of the mixture. 397 

 398 

4.2 Diabetes in ACHS 399 

In ACHS I, we found positive associations with prevalent diabetes between PCB groups and 400 

diabetes overall, among women, and those younger than 55 years old (Silverstone et al. 2012). In ACHS 401 

II, we found ORs for the sum of 35 PCBs to be similar (ACHS II OR=1.22) to what was observed in 402 

ACHS I (OR=1.23), but with no differences observed between men and women. Women had elevated 403 

odds of p,p’-DDE in both ACHS I and II while inverse associations for men in the follow-up study were 404 

observed for some TEQs, dioxin-like PCBs, and pesticides (β-HCCH, p,p’-DDE) but the confidence 405 

intervals were wide. More limited inferences can be made for men in ACHS II as the total male sample 406 

size was n=93 compared to n=245 for women.  The follow-up cohort demographic composition 407 

remained similar to that at baseline, however; 72% vs 70% were female, and 49% vs 54% were White, 408 

respectively (Silverstone et al., 2012). Median age increased from 55 to 61 years over the two studies 409 

(n=114 confirmed dead), and the prevalence of diabetes increased from 27% in ACHS I to almost 40% 410 

in ACHS II.  411 

As noted above, the sum 35 PCB ORs were similar in both ACHS I and II, with the null value 412 

included within the confidence interval. In ACHS II, the associations with PCBs (sum 35 and higher 413 

chlorinated tri- and tetra-ortho PCBs) were significantly elevated in Whites relative to African 414 

Americans (Table S3), although neither interaction term was statistically significant.  In the ACHS II 415 

analyses stratified by race (also excluding prediabetes) inferences were limited by the smaller sample 416 

size and wide confidence intervals.   417 

 418 

4.3 Studies Examining Association of POP Exposure and Diabetes Risk 419 
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Although PCB levels were several times higher in 2014 in ACHS II participants than in 420 

NHANES 2013-2014, PCDD/F levels were more similar to the US general population as characterized 421 

in NHANES (Yang et al., 2018). This is consistent with PCDD/PCDF concentrations found in Anniston 422 

residents primarily originating from background exposure, such as food (Health Canada 2006). Despite 423 

PCDD/PCDF levels being closer to the general U.S. population, one of the strongest associations noted 424 

between chemical exposures and diabetes in Anniston was found for this group of POPs, as opposed to 425 

sum of 35 PCBs, where associations were more modest. Lee at al. (2007) also observed elevated 426 

diabetes with PCDD and PCDF groups but to a lesser degree than pesticides, dioxin-like PCBs, and non-427 

dioxin-like PCBs in re-analyses of earlier NHANES data (Lee et al., 2006). The original 2006 Lee report 428 

presented data only for two PCDD congeners, hepta- and octa-dibenzo-p-dioxins (HpCDD, OCDD), 429 

which showed significant associations with diabetes. Odds ratios for organochlorine pesticides were 430 

elevated in both Lee studies, either as a group or, for individual pesticides (Lee at al., 2006, 2007). The 431 

strongest association was for DDE (p=0.02), but elevated ORs also were observed for trans-Nonachlor 432 

and oxychlordane (Lee et al., 2006). The ACHS II data show reasonable agreement with the NHANES 433 

findings given that the Anniston population has different demographic characteristics (median age 61 434 

years, half African American, about 70% female).   435 

Previous literature has shown that background dioxin concentrations can have a significant 436 

association with diabetes after adjusting for diabetes risk factors (Longnecker and Michalek, 2000). This 437 

is reflected in our ACHS II analysis of those with and without diabetes, where dioxins are significantly 438 

associated with diabetes; PCDD and total dioxin TEQ had ORs of 3.45 (95% CI: 1.07, 11.16) and 2.65 439 

(95% CI (1.06, 6.62), respectively.   440 

Our findings also are generally consistent with previous prospective studies that demonstrated 441 

overall positive associations between POPs and diabetes risks (Lee et al. 2010, 2011; Rignell-Hydbom et 442 

al., 2009; Turyk et al., 2009; Vasiliu et al., 2006, Tornevi et al., 2019, Charles et al., 2022). While 443 
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individual PCB findings were less consistent, further agreement on p,p’- DDE and several other 444 

pesticides emerged. In a study of middle-aged U.S. women (Zong et al., 2018), plasma concentrations of 445 

dioxin-like mono-ortho PCBs, p,p’-DDE, HCB and β-HCCH were significantly associated with higher 446 

type 2 diabetes risk. Age, breastfeeding history, previous weight change, and concurrent BMI were 447 

strong predictors of plasma-POP concentrations.  HCB was also significantly associated with type 2 448 

diabetes in both cross-sectional and longitudinal assessments of matched case-control pairs in the 449 

Swedish Västerbotten Intervention Program diabetes sub-study.  Additionally, the cross-sectional 450 

analyses in that study found significantly elevated risks of diabetes with p,p’-DDE, the sum of dioxin 451 

like PCBs (congeners 118 and 156) as well as the sum of non-dioxin-like PCBs (Tornevi et al., 2019).  452 

In the longitudinal Tromsø Study from northern Norway, cis-nonachlor, cis-heptachlor epoxide and 453 

p,p’-DDT were each observed to have significant associations with diabetes at various time points 454 

across the study period (Charles et al., 2022). Results from the French D.E.S.I.R. cohort were similar to 455 

the Anniston incidence analyses; hazard ratios for their 200 incident diabetes cases did not differ 456 

significantly from one for organochlorine pesticides or PCBs (Magliano et al., 2021). 457 

A sex-specific association with diabetes was also noted between total serum-PCBs and incident 458 

diabetes among women, but not among men, from the Great Lakes area (Vasiliu et al., 2006), as well as 459 

in the baseline Anniston cohort (women OR=1.52; men OR=0.68) for PCBs. In the Anniston follow-up 460 

cross sectional analyses, ORs for p,p’-DDE but not PCBs were elevated in women.  A similar finding 461 

was reported in 471 fish consumers from the Great Lakes area where serum concentrations of p,p′-DDE, 462 

but not total PCBs, were associated with a higher diabetes risk (Turyk et al., 2009). In a cohort of 50–463 

59-year-old Swedish women, p,p′-DDE concentrations, but not PCB 153, were associated with diabetes 464 

after excluding cases diagnosed within the first 6 years after study start (Rignell-Hydbom et al., 2009) 465 

[4th vs. 1st quartile, OR 5.5 (95% CI: 1.2, 25)]. In a pilot study of 44 women with type 2 diabetes and 44 466 

matched controls from the Norwegian Women and Cancer Study, p,p’-DDE was found to be a 467 
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significant predictor of prevalent cases of type 2 diabetes (Berg et al., 2021). Both non-dioxin and 468 

dioxin-like PCBs (congeners not specified), along with cis-nonachlor were also associated with 469 

prevalent type 2 diabetes, but not incident cases in this pilot project.  Our prevalent diabetes results for 470 

p,p’-DDE were consistent with this study with a significant association with diabetes among women.  471 

Finally, in an elderly population in Sweden, Lee et al. reported that 6 to 11 out of the 19 472 

measured POPs showed positive trends towards increased diabetes risk (Lee et al., 2011). Additionally, 473 

a potentially non-linear association was observed for summed ranks of 31 POPs in young U.S. adults in 474 

the CARDIA study, including pp’-DDE (Lee et al., 2010). In the earlier meta-analysis of prospective 475 

studies (Wu et al., 2013), the sum of PCBs (OR=1.70) and HCB (OR=2.00) showed the strongest 476 

evidence with diabetes risk, with p,p’-DDE summary risk being more modest 1.25 (95% CI: 0.94, 1.66). 477 

PCBs were not divided into lower or higher chlorinated groups in that review. We also reported positive 478 

associations with trans-Nonachlor and oxychlordane in Anniston I cohort similar to results reported by 479 

Lee et al. (2010); only trans-Nonachlor was statistically significant in the ACHS II cohort. 480 

Some inconsistencies in previous studies regarding congener-specific PCB findings and specific 481 

pesticides could likely be explained by small sample sizes, insufficient adjustment for confounders, 482 

differential background exposure status, lack of lipid adjustment, varying individual POPs included in 483 

early investigations, or differences in other population characteristics that may affect POP retention in 484 

the body (Lee et al., 2014). Because many POPs are used in the same industrial processes and products, 485 

and ingestion of foods contaminated by POPs released and accumulated in the environment is the 486 

primary source of exposures, humans are typically exposed to similar POP mixtures (Lee et al., 2014; 487 

Pavuk et al., 2014a). Therefore, these studies collectively support an overall, pathogenic role of POP 488 

exposure in diabetes development, and different findings on individual POPs may be affected by 489 

persistence, retention in the body, and distribution among tissues (Birnbaum, 1985).  490 
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Our results suggest that a family history of diabetes remains an important risk factor and/or 491 

potential confounder of POPs on diabetes risk. Genetic susceptibility has been shown to play a key role 492 

in modifying the risk of environmental chemicals on diabetes (Franks, 2011). While several previous 493 

studies on diabetes have not accounted for family history of diabetes (Zong et al., 2018, Turyk et al., 494 

2009; Tornevi et al. 2019), one prospective cohort study in US women included family history of 495 

diabetes as an effect modifier, but specifically for gestational diabetes (Rahman et al., 2019). 496 

Studies have also suggested heterogeneous associations for PCBs by degree of chlorination, 497 

where heavily chlorinated PCBs were more likely to be associated with obesity, insulin resistance, lipid 498 

abnormalities, and diabetes (Lee et al., 2011, 2010). It is believed that the degree of chlorination is an 499 

important determinant for the toxicity of chlorinated POPs; those with a greater number of chlorine 500 

atoms persist longer in the environment and in the body and may be more toxic (Lee et al., 2010). While 501 

this pattern was not consistent across studies (Kim et al., 2014), it was present in Whites in the Anniston 502 

II cohort who showed higher chlorinated PCBs strongly related to diabetes (Table S3). 503 

4.4 Mixture Analyses  504 

We used two different statistical approaches to mixtures; our findings from the BKMR models 505 

were in good general agreement with the results from the quantile g-computation models. For the overall 506 

joint effect, both methods were suggestive of a modest positive association between diabetes and the 507 

mixture of dioxins, PCBs, and pesticides. The OR for joint effect on diabetes in BKMR was 1.40 (95% 508 

CI: -1.13, 3.93) and similar to the structural marginal effect estimate from the g-computation when 509 

interpreted as OR of 1.32 (95% CI: -1.12, 3.76). The magnitude of effect from each mixture model was 510 

generally lower than that observed in the single exposure logistic regression models likely due to the 511 

mixture analyses accounting for the negative associations not observed in single exposure models.  The 512 

identification of the relative importance of individual mixture components on the outcome was similar 513 

but differences were noted. As the summary statistics used were not the same, a direct comparison was 514 
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difficult. PCDD TEQ, p,p’-DDE, non-ortho PCBs, and trans-Nonachlor were the strongest contributors 515 

to the mixture effects in the BKRM model while the tri-tetra PCBs, p,p’-DDE, trans-Nonachlor, and 516 

PCDF TEQ were the top four in g-computation models. The hierarchical group PIPs showed stronger 517 

effects on diabetes in BKMR then individual conditional PIPs. We did not observe any major departures 518 

from linearity or strong suggestion of interactive effects in BKMR. No noticeable changes were seen in 519 

single exposure effects on diabetes when all other exposures were fixed at three different percentiles. 520 

The discrepancy in the rank of the most influential dioxin or PCB components between BKMR and 521 

quantile g-computation is likely attributable to variations in techniques for handling the presence of 522 

highly correlated exposures and smaller individual effects within these statistical methods. In the 523 

presence of highly correlated chemicals within a mixture, BKMR is likely to exclude some covariates 524 

from the correlated clusters, while quantile g-computation is still subject to multicollinearity and might 525 

provide relevant weights in different directions for the correlated exposures. We aimed to attenuate 526 

some of the higher correlations by using a-priori groupings based on structural and biological, as well as 527 

toxicological effects (Safe, 1997-1998; van den Berg et al., 2006).  528 

It has been argued that even if individual chemicals have small, clinically negligible effects, the 529 

joint effect could be significant and clinically relevant (Silva et al., 2002). The two mixture approaches 530 

showed that hierarchical groupings modulate simple additivity among highly correlated groups with 531 

similar and/or different toxicological properties as seen in this study and that of Yim et al., 2022.  The 532 

overall strengths of multiple methodological approaches were in the clear visualization of dose-response 533 

curves for the joint and individual effects, the agreement of the overall mixture effects using two 534 

approaches, and the evaluation of non-additivity and potential interactive effects.  535 

In contrast to BKMR, quantile g-computation can generate a single interpretable slope estimate 536 

for the overall effect a per quintile increase in all mixture components per change in the outcome. G-537 

computation also is insensitive to outliers because of quantization (Keil et al., 2020). As in other 538 
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traditional statistical methods, prior knowledge about nonlinearity and interactions must be known for 539 

accurate model specification. This can be assessed by using BKMR, as was done in the present study, 540 

making the use of the two methods complementary.  541 

Several recent studies have used BKMR with a focus on gestational diabetes and glycemic 542 

function with exposure to PFAS (Preston et al., 2020, Xu et al., Yu et al., 2021, Zhang et al., 2022a). 543 

The authors noted limited consistency in identifying which PFAS analytes contributed most to the joint 544 

mixture effects based on group and conditional PIPs across different study designs and populations. 545 

While methodologically relevant, direct comparisons with the present study are not feasible. Multiple 546 

statistical approaches, including G-computation and BKRM have been used in recent years to study 547 

various groups of chemicals from PCBs and dioxins to heavy metals, with a variety of health outcomes 548 

(e.g. Parada et al., 2021, Yim et al., 2022, Wu et al., 2023). To our knowledge this is the first study to 549 

examine diabetes in an adult cohort with exposures to a mixture of PCBs, dioxins, and organochlorine 550 

pesticides. 551 

 552 

4.5 Potential Mechanism of Action 553 

While the precise molecular mechanism has yet to be elucidated, experimental studies and 554 

animal models support a diabetogenic effect of POPs through adipogenesis (Tang-Peronard et al., 2011; 555 

Gadupudi et al., 2015; Janesick and Blumberg, 2016), gluconeogenesis (Gadupudi et al. 2016a-b), 556 

insulin resistance and β-cell dysfunction (Kim et al., 2014; Lee et al., 2008; Zhang et al., 2015), as well 557 

as lipid abnormalities (Lee et al., 2011 Robledo et al., 2015). Exposure to POPs of various classes, 558 

including PCBs, have been linked with activation of peroxisome proliferator-activated receptor-α 559 

(PPAR-α) (Shipley et al., 2004; Pyper et al., 2010) and receptor-γ (Janesick and Blumberg, 2016; 560 

Kamstra et al., 2014) among other nuclear receptors including LXR, FXR, CAR, PXR (Shi et al., 2019; 561 

Kublbeck et al., 2020; Wahlang et al., 2019). These are ligand-activated transcription factors involved in 562 
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gene expression, lipid metabolism, glucose homeostasis, and inflammation. Also, studies have 563 

demonstrated that sub-chronic exposure to POP-mixtures at low-doses similar to the background 564 

concentrations observed in human populations can induce mitochondrial dysfunction (Ruzzin et al., 565 

2010; López-Armada et al., 2013), which can lead to insulin resistance and secretory dysfunction of 566 

pancreatic β-cells (Shi et al., 2019; Szendroedi et al., 2012). Mitochondrial dysfunction also can trigger 567 

metabolic dysfunctions, such as insulin resistance leading to diabetes (Hotamisligil, 2006; Lim et al. 568 

2009, 2010; Shen et al., 2011).  569 

The common cellular mechanism of dioxin-like compounds is the action of the aryl hydrocarbon 570 

receptor (AhR) (Budinsky et al., 2014). Based on the potencies of dioxin-like compounds to activate 571 

various AhR-dependent endpoints, a toxic equivalence factor (TEF) approach for the risk assessment of 572 

mixtures was established, with the most toxic component (2,3,7, 8-TCDD, TEF = 1) as a reference. The 573 

TEQ is then computed as the sum of the concentrations of individual dioxin or PCB isomers multiplied 574 

by their TEFs (Van den Berg et al., 2006). We used this methodology to characterize exposure in 575 

ACHS-II for hypertension outcomes (Pavuk at al., 2019, Yang et al., 2018) and in the present study. 576 

 577 

4.6 Strengths and weaknesses  578 

Notable strengths of this present study include follow up data in a well characterized cohort 579 

comprised of approximately 50% African Americans. The cohort was also of middle to lower socio-580 

economic status and education. We were able to expand the exposure profile in ACHS II to include 581 

PCDDs, PCDFs and non-ortho PCBs.  While the sample size was generally adequate, inferences in some 582 

stratified analyses were limited by loss to follow up (e.g., death, moved out of the area). Selection bias, 583 

if any, had only minor effect on racial or sex composition of the follow-up sample which remained 584 

similar to the baseline. We collected comprehensive questionnaire and extensive biomarker data that 585 

allowed for control of a variety of confounding variables, including family history of diabetes.  586 
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Despite a relatively modest sample size in the follow-up, large number of participants in our 587 

study population had diabetes (almost 40%). However, for the incidence diabetes, we may have been 588 

underpowered to detect modest associations between POPs and diabetes even with eight years of follow 589 

up and with cohort median age over 60 years old (37 incidence cases; n=212 at risk in incidence analysis 590 

vs n=338 in prevalence analyses). We were unable to conclusively verify type II diabetes via medical 591 

record review and assumed late onset diabetes based on reported age of diagnosis.  592 

Nonetheless, most of the POPs in our analysis have relatively long biological half-lives in 593 

humans and therefore these measures likely represent an individual’s exposure over years (Megson et 594 

al., 2013, Patterson et al., 2009).  The Anniston cohort is based at one of the two former PCB production 595 

sites in the United States. PCB concentrations are substantially higher in this cohort than they are in 596 

NHANES participants, and closer to occupational exposures (Pavuk et al., 2014). Dioxins were only 597 

modestly elevated (Yang et al., 2018) compared to NHANES, while the pesticide levels were 598 

comparable to concentrations measured during the corresponding time period in NHANES (Rosenbaum 599 

et al., 2017).  600 

Additionally, capturing higher than average levels of these legacy POPs may have increased our 601 

ability to detect subtle associations between these mixture components and our outcome. Finally, the 602 

Anniston cohort population consists of approximately equal frequencies of non-Hispanic White 603 

individuals and African Americans, living in a small town in south-eastern Alabama, an area with 604 

generally middle to lower educational attainment and socioeconomic status. From this perspective, the 605 

ACHS cohort and may be more generalizable with respect to diabetes risk factors than some other high-606 

socioeconomic status cohorts. However, the underlying biological mechanisms linking exposure to the 607 

dioxin/PCB/pesticide mixture with diabetes are unlikely to differ in other populations as these 608 

compounds are detected in all developed economies.  609 
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We evaluated associations with diabetes, which we assessed via reported physician diagnosis, 610 

clinical laboratory measurements of glucose and insulin, and detailed nurse-verified glycemic 611 

medication review. The use of BKMR allowed us to model both individual and joint effects of exposure 612 

to pesticides, PCBs and dioxins on (type-2) diabetes, visually assessing exposure–response functions 613 

and examining potential interactions among different mixture components. In addition, we used quantile 614 

g-computation to assess the robustness of our BKMR results and found that results were quite similar 615 

across methodologies, especially for the overall joint mixture effects.  616 

 617 

5. Conclusions 618 

Our follow-up study results add to the body of literature that has researched associations between 619 

exposure to PCBs, other POPs, and diabetes. We found elevate odds ratios for, p,p’-DDE, trans-620 

Nonachlor, some PCBs, and PCDDs TEQ for prevalent diabetes, but those was attenuated for the 621 

incident diabetes in single exposure logistic regression models. We observed positive overall joint 622 

effects of the PCBs, dioxins, and pesticide mixture on diabetes with BKMR (OR of 1.40) and quantile g 623 

computation (OR of 1.32), although neither reached statistical significance. Both mixture methods were 624 

in general agreement in identifying the strongest components, however the magnitude of effect was 625 

generally lower than that seen in the single exposure regression models. Future studies should further 626 

examine the joint effects of exposure to POPs mixtures and build on this work by incorporating repeated 627 

exposure and outcome measures. 628 

 629 

Acknowledgements 630 

We would like to thank all the study participants. The data collection for the baseline study 631 

(ACHS) was supported by a grant from ATSDR to Jacksonville State University (5U50TS473215). The 632 

data collection for the follow up study (ACHS II) was supported by the National Cancer Institute (NCI) 633 



 

27 

 

through interagency agreements with the Centers for Disease Control and Prevention (CDC) (11-AT1-634 

001-00; IAA#: 12-AT-12-ANNISTON and 200-2013-M-57311) and by ATSDR. Funding for this 635 

project was also provided by the Intramural Program of the NCI as well as R35ES028373, 636 

P30ES030283, P42ES023716, R21ES031510, R01ES032189, and P20GM113226. We would also like 637 

to acknowledge Andreas Sjödin, Richard Jones, Wayman Turner and Donald Patterson Jr. (formerly) at 638 

the National Center for Environmental Health, Division of Laboratory Sciences, for their expert 639 

chemical analyses for this study. This research was supported in part by an appointment to the Research 640 

Participation Program at the Centers for Disease Control and Prevention administered by the Oak Ridge 641 

Institute for Science and Education (ORISE) through an interagency agreement between the U.S. 642 

Department of Energy and ATSDR.  643 

 644 

Disclaimer: The contents of this publication are solely the responsibility of the authors and do not 645 

necessarily represent ATSDR’s, CDC’s or NIH’s official views.  646 

Full Disclosure:  LSB is an expert defense witness in some dioxin litigation. 647 

 648 

Author Contributions:   649 

M Pavuk; Conceptualization, Methodology, Supervision, Writing - original draft, reviewing and editing.   650 

PF Rosenbaum; Formal analysis, Data curation, Methodology, Writing - reviewing and editing.  651 

MD Lewin; Formal Analysis, Visualization.  652 

TC Serio; Data curation, Formal analysis, Methodology, Visualization, Writing - reviewing and editing.  653 

P Rago; Visualization, Formal analysis. 654 

M Cave; Writing - reviewing and editing.    655 

LS Birnbaum; Conceptualization, Methodology, Writing- reviewing and editing.             656 

 657 



 

28 

 

 658 

6. References 659 

 660 

Airaksinen R, Rantakokko P, Eriksson JG, Blomstedt P, Kajantie E, Kiviranta H. Association between type 2 661 

diabetes and exposure to persistent organic pollutants. Diabetes Care 2011:34, 1972–1979. 662 

 663 

Arrebola JP, Pumarega J, Gasull M, Fernandez MF, Martin-Olmedo P, Molina- Molina JM, et al., 2013. Adipose 664 

tissue concentrations of persistent organic pollutants and prevalence of type 2 diabetes in adults from southern 665 

Spain. Environ Res 2013; 122; 31–37. 666 

 667 

ATSDR (Agency for Toxic Substances and Disease Registry). Health Consultation: Evaluation of soil, blood & 668 

air data from Anniston, Alabama. Monsanto Company, Anniston, Calhoun County, Alabama. CERCLIS No. 669 

ALD004019048, 2000. U.S. Department of Health and Human Services, Atlanta. 670 

Baker NA, Shoemaker R, English V, Larian N, Sunkara M, Morris AJ et al. Effects of Adipocyte Aryl 671 

Hydrocarbon Receptor Deficiency on PCB-Induced Disruption of Glucose Homeostasis in Lean and Obese Mice. 672 

Environ Health Perspect 2015; 123(10):944-50. 673 

 674 

Berg V, Charles D, Bergdahl IA, Nøst TH, Sandanger TM, Tornevi A et al. Pre- and post-diagnostic blood 675 

profiles of chlorinated persistent organic pollutants and metabolic markers in type 2 diabetes mellitus cases and 676 

controls; a pilot study. Environ Res 2021; 195:110846. doi: 10.1016/j.envres.2021.110846. Epub 2021 Feb 9. 677 

  678 

Bernert JT, Turner WE, Patterson Jr. DG, Needham LL. Calculation of serum “total lipid” concentrations for the 679 

adjustment of persistent organohalogen toxicant measurements in human samples. Chemosphere 2007; 68(5): 680 

824-31.  681 

 682 

Birnbaum LS. The role of structure in the disposition of halogenated aromatic xenobiotics. Environ Health 683 

Perspect 1985; 61:11-20. PMID: 2998745. 684 

 685 

Birnbaum LS, Dutton ND, Cusack C, Mennemeyer ST, Pavuk M. Anniston community health survey: Follow-up 686 

and dioxin analyses (ACHS-II)—methods. Environ Sci Pollut Res Int 2016; 23(3):2014-21. 687 

doi: 10.1007/s11356-015-4684-3 688 

 689 

Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, et al. Bayesian kernel machine 690 

regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015; 16(3):493-508. PMID: 691 

25532525. 692 

 693 

Bobb JF, Claus Henn B, Valeri L, Coull BA. Statistical software for analyzing the health effects of multiple 694 

concurrent exposures via Bayesian kernel machine regression. Environ Health. 2018;17(1):67. PMID: 30126431. 695 

 696 

Budinsky RA, Schrenk D, Simon T, Van den Berg M, Reichard JF, Silkworth JB, Aylward LL, Brix A, 697 

Gasiewicz T, Kaminski N, Perdew G, Starr TB, Walker NJ, Rowlands JC. Mode of action and dose-response 698 

framework analysis for receptor-mediated toxicity: The aryl hydrocarbon receptor as a case study. Crit Rev 699 

Toxicol. 2014;44(1):83-119. PMID: 24245878. 700 

 701 

Calvert GM, Sweeney MH, Deddens J, Wall DK. Evaluation of diabetes mellitus, serum glucose, and thyroid 702 

function among United States workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Occup Environ Med 1999; 703 

56(4):270-6. PMID: 10450245. 704 

 705 



 

29 

 

Center for Disease Control and Prevention. National Health and Nutrition Examination Survey. NHANES 2013-706 

2014. https://wwwn.cdc.gov/Nchs/Nhanes/ContinuousNhanes/Overview.aspx?BeginYear=2013 707 

Charles D, Berg V, Nøst TH, Bergdahl IA, Huber S, Ayotte P et al. Longitudinal changes in concentrations of 708 

persistent organic pollutants (1986-2016) and their associations with type 2 diabetes mellitus. Environ Res 2022 709 

Mar; 204 (Pt B):112129. doi: 10.1016/j.envres.2021.112129. Epub 2021 Sep 28. 710 

Chavent, M., Liquet, B., Kuentz, V., Saracco, J. ClustOfVar: An R Package for the Clustering of Variables. 711 

Journal of Statistical Software. 2012. Vol. 50, pp. 1-16. 712 

Erickson MD, Kaley RG 2nd. Applications of polychlorinated biphenyls. Environ Sci Pollut Res Int 2011; 713 

18(2):135-51. 714 

Everett CJ, Frithsen IL, Diaz VA, Koopman RJ, Simpson WM Jr, Mainous AG 3rd. Association of a 715 

polychlorinated dibenzo-p-dioxin, a polychlorinated biphenyl, and DDT with diabetes in the 1999-2002 National 716 

Health and Nutrition Examination Survey. Environ Res 2007; 103(3):413-8. 717 

 718 

Everett CJ, Thompson OM. Associations of dioxins, furans and dioxin-like PCBs with diabetes and pre-diabetes: 719 

is the toxic equivalency approach useful? Environ Res 2012; 118: 107–111. 720 

 721 

Franks PW, Gene x environment interactions in Type 2 Diabetes. Curr Diab Rep 2011; 11:552-561. doi 722 

10.1007/s11892-0224-9. 723 

 724 

Gadupudi G, Gourronc FA, Ludewig G, Robertson LW, Klingelhutz AJ. PCB126 inhibits adipogenesis of human 725 

preadipocytes. Toxicol In Vitro 2015; 29(1):132-41.  doi: 10.1016/j.tiv.2014.09.015. 726 

 727 

Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ, Robertson LW. PCB126-Induced Disruption in 728 

Gluconeogenesis and Fatty Acid Oxidation Precedes Fatty Liver in Male Rats. Toxicol Sci. 2016a Jan; 149(1):98-729 

110. doi: 10.1093/toxsci/kfv215. 730 

 731 

Gadupudi GS, Klingelhutz AJ, Robertson LW. Diminished Phosphorylation of CREB Is a Key Event in the 732 

Dysregulation of Gluconeogenesis and Glycogenolysis in PCB126 Hepatotoxicity. Chem Res Toxicol 2016b; 733 

29(9):1504-9. doi: 10.1021/acs.chemrestox.6b00172 734 

 735 

Gasull M, Pumarega J, Téllez-Plaza M, Castell C, Tresserras R, Lee DH et al. Blood concentrations of persistent 736 

organic pollutants and prediabetes and diabetes in the general population of Catalonia. Environ Sci Technol 2012 737 

Jul 17; 46(14):7799-810. 738 

 739 

Gibson EA, Goldsmith J, Kioumourtzoglou MA. Complex Mixtures, Complex Analyses: an Emphasis on 740 

Interpretable Results. Curr Environ Health Rep. 2019;6(2):53-61. PMID: 31069725; PMCID: PMC6693349. 741 

 742 

Gourronc FA, Robertson LW, Klingelhutz AJ. A delayed proinflammatory response of human preadipocytes to 743 

PCB126 is dependent on the aryl hydrocarbon receptor. Environ Sci Pollut Res Int 2018; 25(17), 16481–16492. 744 

 745 

Han X, Meng L, Li Y, Li A, Turyk ME, Yang R et al. Associations between the exposure to persistent organic 746 

pollutants and type 2 diabetes in East China: A case-control study. Chemosphere 2019; 241:125030. 747 

doi:10.1016/j.chemosphere.2019.125030  748 

 749 

Health Canada (2006). Dioxins and Furans. http://www.hc-sc.gc.ca/hl-vs/iyh-vsv/environ/dioxin-eng.php 750 

 751 

Hermanson MH, Scholten CA, Compher K. Variable air temperature response of gas-phase atmospheric 752 

polychlorinated biphenyls near a former manufacturing facility. Environ Sci Technol 2003; 37:4038–42. 753 



 

30 

 

 754 

Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444(7121), 860–867. 755 

 756 

Henrique-Hernandez LA, Luzardo OP, Valeron PF, Zumbado M, Serra-Majem L, Camacho M et al. Persistent 757 

organic pollutants and risk of diabetes and obesity on healthy adults: Results from a cross-sectional study in 758 

Spain. Sci. Total Environ 2017; 607-608, 1096-1102.  759 

 760 

Hornung RW and Reed LD: Estimation of average concentration in the presence of nondetectable values. Appl 761 

Occup Environ Hyg 1990; 5:46–51 762 

 763 

Huang CY, Wu CL, Yang YC, Chang JW, Kuo YC, Cheng YY, et al. Association between dioxin and diabetes 764 

mellitus in an endemic area of exposure in Taiwan: a population-based study. Medicine 2015; 94, e1730. 765 

 766 

Janesick A S, & Blumberg B. Obesogens: an emerging threat to public health. Am J Obstet Gyn 2016; 214(5), 767 

559–565. https://doi.org/10.1016/j.ajog.2016.01.182 768 

 769 

Jones R, Edenfield E, Anderson S, Zhang Y, Sjödin A. Semi-automated extraction and cleanup method for 770 

measuring persistent organic pollutants in human serum. Organohalogen Compd. 2012; 74, 97–98. 771 

 772 

Kamstra JH, Hruba E, Blumberg B, et al. Transcriptional and epigenetic mechanisms underlying enhanced in 773 

vitro adipocyte differentiation by the brominated flame retardant BDE-47. Environ Sci Technol.  2014; 774 

48(7):4110-4119. 775 

 776 

Keil AP, Buckley JP, O’ Brien KM, Ferguson KK, Zhao S; White AJ. A Quantile-Based g-computation approach 777 

to addressing the effects of exposure mixtures. Environ Health Perspect 2020; 128(4):047004-1 to 10. doi: 778 

10.1289/EHP5838 779 

 780 

Kim MJ, Pelloux V, Guyot E, Tordjman J, Linh-Chi B, Chevallier A et al. Inflammatory pathway genes belong to 781 

major targets of persistent organic pollutants in adipose cells. Environ Health Perspect 2014; 120(4):508–514.  782 

 783 

Kim S, Cho Y, Lee I, Kim W, Won S, Ku J,et al. Prenatal exposure to persistent organic pollutants and 784 

methylation of LINE-1 and imprinted genes in placenta: a CHECK cohort study. Environ. Int 2018;119: 398-406. 785 

 786 

Kim YA, Park JB, Woo MS, Lee SY, Kim HY, Yoo YH. Persistent Organic Pollutant-Mediated Insulin 787 

Resistance. Int J Environ Res Public Health. 2019, Feb 3; 16(3):448. doi: 10.3390/ijerph16030448. 788 

PMID: 30717446. 789 

 790 

Kublbeck J, Niskanen J, Honkakoski P. Metabolism-Disrupting chemicals and the Constitutive Androstane 791 

Receptor CAR.  Cells 2020; 9, 2306; doi: 10.3390/cells9102306 792 

 793 

Larsson M, van den Berg M, Brenerová P, van Duursen MBM, van Ede KI, Lohr C, Luecke-Johansson S, et al. 794 

Consensus Toxicity Factors for Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, and Biphenyls Combining in 795 

Silico Models and Extensive in Vitro Screening of AhR-Mediated Effects in Human and Rodent Cells.  Chem Res 796 

in Toxicol. 2015; 28 (4), 641-650 DOI: 10.1021/tx500434j 797 

 798 

Lee DH, Lee IK, Song K, Steffes M, Toscano W, Baker BA,  et al. A strong dose-response relation between 799 

serum concentrations of persistent organic pollutants and diabetes: results from the National Health and 800 

Examination Survey 1999-2002. Diabetes Care 2006, July; 29(7):1638-44. 801 

 802 



 

31 

 

Lee DH, Lee IK, Jin SH, Steffes M, Jacobs DR Jr. Association between serum concentrations of persistent 803 

organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition 804 

Examination Survey 1999-2002. Diabetes Care 2007; 30(3):622-8. PMID: 17327331. 805 

 806 

Lee DH, Steffes MW, Sjödin A, Jones RS, Needham LL, Jacobs Jr. DR. Low dose of some persistent organic 807 

pollutants predicts type 2 diabetes: a nested case–control study. Environ Health Perspect 2010; 118, 1235. 808 

 809 

Lee DH, Lind PM, Jacobs DR Jr, Salihovic S, van Bavel B, Lind L. Polychlorinated biphenyls and organochlorine 810 

pesticides in plasma predict development of type 2 diabetes in the elderly: the prospective investigation of the 811 

vasculature in Uppsala Seniors (PIVUS) study. Diabetes Care 2011, Aug; 34(8):1778-84. 812 

 813 

Lee D-H, Porta M, Jacobs DR Jr, Vandenberg LN. Chlorinated persistent organic pollutants, obesity and Type 2 814 

Diabetes. Endocrine Reviews 2014; 35(4):557-601. 815 

 816 

Lim S, Ahn SY, Song IC, Chung MH, Jang HC, Park KS,  et al. Chronic exposure to the herbicide, atrazine, 817 

causes mitochondrial dysfunction and insulin resistance. PLoS One 2009; 4(4):e5186. PMID: 19365547. 818 

Lind PM, Lind L. Endocrine-disrupting chemicals, and risk of diabetes: an evidence-based review. Diabetologia. 819 

2018; 61(7):1495-150. PMID: 29744538 820 

Longnecker MP, Michalek JE. Serum dioxin level in relation to diabetes mellitus among Air Force veterans with 821 

background levels of exposure. Epidemiology 2000; 11(1): 44-48. 822 

 823 

López-Armada MJ, Riveiro-Naveira RR, Vaamonde-Arcía C, Valcárcel-Ares MN. Mitochondrial dysfunction and 824 

the inflammatory response. Mitochondrion 2013; 13:106–118. 825 

 826 

Magliano DJ, Loh VHY, Harding JL, Botton J, Shaw JE. Persistent organic pollutants and diabetes: a review of 827 

the epidemiological evidence. Diabetes Metab 2014, Feb; 40(1):1-14 828 

Magliano DJ, Rancière F, Slama R, Roussel R, Kiviranta H, Coumoul X, et al. for D.E.S.I.R. Study Group. 829 

Exposure to persistent organic pollutants and the risk of type 2 diabetes: a case-cohort study. Diabetes Metab 830 

2021 Sep; 47(5):101234. doi: 10.1016/j.diabet.2021.101234. Epub 2021 Jan 27.  831 

Marushka L, Hu X, Batal M, Sadik T, Schwartz H, Ing A, et al. The Relationship between Persistent Organic 832 

Pollutants Exposure and Type 2 Diabetes among First Nations in Ontario and Manitoba, Canada: A Difference in 833 

Difference Analysis. Int J Environ Res Public Health 2018, Mar 17; 15(3):539. 834 

Megson, D., O'Sullivan, G., Comber, S., Worsfold, P.J., Lohan, M.C., Edwards, M.R., et al. Elucidating the 835 

structural properties that influence the persistence of PCBs in humans using the National Health and Nutrition 836 

Examination Survey (NHANES) dataset. Sci. Total Environ.2013; 461–462, 99–107. 837 

 838 

Michalek JE and Pavuk M. Diabetes and cancer in veterans of Operation Ranch Hand after adjustment for 839 

calendar period, days of spraying, and time spent in Southeast Asia. J Occup Environ Med 2008; 50(3):330-40. 840 

 841 

Nakamoto M, Arisawa K, Uemura H, Katsuura S, Takami H, Sawachika F et al. Association between blood levels 842 

of PCDDs/PCDFs/dioxin-like PCBs and history of allergic and other diseases in the Japanense population. Int. 843 

Arch Occup Environ Health 2013; 86, 849-859. 844 

 845 

Parada H Jr, Benmarhnia T, Engel LS, Sun X, Tse CK, Hoh E, et al. A Congener-specific and Mixture Analysis 846 

of Plasma Polychlorinated Biphenyl Levels and Incident Breast Cancer. Epidemiology. 2021;32(4):499-507. 847 

PMID: 33788793. 848 



 

32 

 

Patterson Jr., D.G.,Wong, L.Y., Turner,W.E., Caudill, S.P., Dipietro, E.S., McClure, P.C., et al.. Levels in the 849 

U.S. population of those persistent organic pollutants (2003–2004) included in the Stockholm Convention or in 850 

other Long-Range Transboundary Air Pollution Agreements. Environ. Sci. Technol.2009; 43 (4), 1211–1218. 851 

Pavuk M, Olson JR, Sjödin A, et al. Serum concentration of polychlorinated biphenyls (PCBs) in participants of 852 

the Anniston Community Health Survey. Sci Total Environ 2014a; 473-474:286-97.  853 

Pavuk M, Olson JR, Wattigney WA, Dutton ND, Sjödin A, Shelton C, et al and Anniston Environmental Health 854 

Research Consortium. Predictors of serum polychlorinated biphenyl concentrations in Anniston residents. Sci 855 

Total Environ 2014b; 496:624-634. 856 

Persky V, Piorkowski J, Turyk M, Freels S, Chatterton R, Dimos J, et al. Polychlorinated biphenyl exposure, 857 

diabetes, and endogenous hormones: a cross sectional study in men previously employed at a capacitor 858 

manufacturing plant. Environ Health 2012; 11-57. 859 

Preston EV, Webster TF, Claus Henn B, McClean MD, Gennings C, Oken E,  et al. Prenatal exposure to per- and 860 

polyfluoroalkyl substances and maternal and neonatal thyroid function in the Project Viva Cohort: A mixtures 861 

approach. Environ Int. 2020;139:105728. PMID: 32311629. 862 

Preston EV, Hivert MF, Fleisch AF, Calafat AM, Sagiv SK, Perng W et al. Early-pregnancy plasma per- and 863 

polyfluoroalkyl substance (PFAS) concentrations and hypertensive disorders of pregnancy in the Project Viva 864 

cohort. Environ Int. 2022; 165:107335. PMID: 35696844. 865 

Pyper SR, Viswakarma N, Yu S, Reddy JK. PPARalpha: energy combustion, hypolipidemia, inflammation and 866 

cancer. Nucl Recept Signal 2010; 8: e002. 867 

Rahman ML, Zhang C, Smarr MM, Lee S, Honda M, Kannan K, et al. Persistent organic pollutants and 868 

gestational diabetes: A multi-center prospective cohort study of healthy US women. Environ Int 2019; 124: 249-869 

258.  870 

Raffetti E, Donato F, Speziani F, Scarcella C, Gaia A, Magoni M. Polychlorinated biphenyls (PCBs) exposure 871 

and cardiovascular, endocrine, and metabolic diseases: a population-based cohort study in a North Italian highly 872 

polluted area. Environ Int 2018; 20:215–222. 873 

Rignell-Hydbom A, Lidfeldt J, Kiviranta H, Rantakokko P, Samsioe G, Agardh CD, et al. Exposure to p,p'-DDE: 874 

a risk factor for type 2 diabetes. PLoS One. 2009; 4(10):e7503. PMID: 19838294. 875 

Robins JM. Data, design, and background knowledge in etiologic inference. Epidemiology 2001; 12(3): 313-320. 876 

 877 

Robledo CA, Mendola P, Yeung E, Mannisto T, Sundaram R, Liu D, et al. Preconception and early pregnancy air 878 

pollution exposures and risk of gestational diabetes mellitus. Environ Res 2015; 137: 316-322. 879 

https://doi.org/10.1016/j.envres.2014.12.020  880 

 881 

Rosenbaum PF, Weinstock RS, Silverstone AE, Sjodin A, Pavuk M. Metabolic syndrome is associated with  882 

exposure to organochlorine pesticides in Anniston, AL, United States. Environ International 2017; 108:11-21. 883 

http://dx.doi.org/10.1016/j.envint.2017.07.017 884 

 885 

Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, et al. Persistent organic pollutant exposure 886 

leads to insulin resistance syndrome. Environ Health Perspect 2010; 118: 465–471 887 

 888 



 

33 

 

Safe S. Limitations of the toxic equivalency factor approach for risk assessment of TCDD and related compounds. 889 

Teratog Carcinog Mutagen. 1997-1998;17(4-5):285-304. 890 

 891 

Sasaki N, Jones LE, Morse GS, Carpenter DO, On Behalf Of The Akwesasne Task Force On The Environment. 892 

Mixture Effects of Polychlorinated Biphenyls (PCBs) and Three Organochlorine Pesticides on Cognitive Function 893 

in Mohawk Adults at Akwesasne. Int J Environ Res Public Health. 2023;20(2):1148. PMID: 36673903. 894 

 895 

Shen K, Shen C, Yu J, Yu C, Chen L, Shi D, Chen Y. PCB congeners induced mitochondrial dysfunction in Vero 896 

cells. J Hazard Material 2011; 185 (1): 24-28. 897 

 898 

Shipley JM, Hurst CH, Tanaka SS, DeRoos FL, Butenhoff JL, Seacat AM, et al. Trans-Activation of PPARa and 899 

Induction of PPARa Target Genes by Perfluorooctane-Based Chemicals. Toxicol Sci 2004; 80 (1): 151-160. 900 

 901 

Shi H, Jan J, Hardesty JE, Falkner CK, Prough RA, Balamurugan AN, et al. (2019). Polychlorinated biphenyl 902 

exposures differentially regulate hepatic metabolism and pancreatic function; Implications for nonalcoholic 903 

steatohepatitis and diabetes. Toxicol Appl Pharmacol. 2019, January 15; 363: 22–33. 904 

doi:10.1016/j.taap.2018.10.011. 905 

 906 

Silva E, Rajapakse N, Kortenkamp A. Something from "nothing"--eight weak estrogenic chemicals combined at 907 

concentrations below NOECs produce significant mixture effects. Environ Sci Technol. 2002;36(8):1751-6. 908 

PMID: 11993873. 909 

 910 

Silverstone AE, Rosenbaum PF, Weinstock RS, Bartell SM, Foushee HR, Shelton C et al. Polychlorinated 911 

biphenyl (PCB) exposure and diabetes: results from the Anniston Community Health Survey. Environ Health 912 

Perspect 2012; 120(5): 727-32.  913 

Sjödin A., Jones RS, Lapeza CR,  Focant JP, McGahee EE 3rd, Patterson DG, Jr. Semiautomated high-throughput 914 

extraction and cleanup method for the measurement of polybrominated diphenyl ethers, polybrominated 915 

biphenyls, and polychlorinated biphenyls in human serum. Anal. Chem 2004; 76: 1921-27. 916 

Snowden JM, Rose S, Mortimer KM. Implementation of G-computation on a simulated data set: demonstration of 917 

a causal inference technique. Am J Epidemiol. 2011; 173(7):731-8. PMID: 21415029. 918 

 919 

Steenland K, Piacitelli L, Deddens J, Fingerhut M, Chang LI. Cancer, heart disease, and diabetes in workers 920 

exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Natl Cancer Inst 1999, May 5; 91(9): 779-86. 921 

 922 

Steenland K, Calvert G, Ketchum N, Michalek J. Dioxin, and diabetes mellitus: an analysis of the combined 923 

NIOSH and Ranch Hand data. Occup Environ Med. 2001 Oct; 58(10): 641-8.  924 

 925 

Suarez-Lopez JR, Lee DH, Porta M, Steffes MW, Jacobs DR Jr. Persistent organic pollutants in young adults and 926 

changes in glucose related metabolism over a 23-year follow-up. Environ Res. 2015; 137:485-94.  927 

 928 

Suarez-Lopez JR, Clemesha CG, Porta M, Gross MD, Lee DH. Organochlorine pesticides and polychlorinated 929 

biphenyls (PCBs) in early adulthood and blood lipids over a 23-year follow-up. Environ Toxicol Pharmacol 2019; 930 

66:24-35.  931 

 932 

Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat 933 

Rev Endocrinol 2012; 8: 92–103. 934 

 935 

Tanaka T, Morita A, Kato M, Hirai T, Mizoue T, Terauchi Y, et al. Congener specific polychlorinated biphenyls 936 

and the prevalence of diabetes in the Saku Control Obesity Program. Endocrin J 2011; 58: 589–596. 937 



 

34 

 

 938 

Tang-Péronard JL, Andersen HR, Jensen TK, Heitmann BL. Endocrine-disrupting chemicals, and obesity 939 

development in humans: a review. Obes Rev. 2011; 12(8): 622-36. 940 

 941 

Taylor KW, Novak RF, Anderson HA, Birnbaum L, Blystone C, Devito M, et al. Evaluation of the association 942 

between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology 943 

program workshop review. Environ Health Perspect.  2013; 121(7): 774-783.  944 

 945 

Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemical in diabetes and obesity: a 946 

National Toxicology Program workshop review. Environ Health Perspect 2012; 120(6):779-89. 947 

 948 

Tornevi A, Sommar J, Rantakokko P, Akesson A, Donat-Vargas C, Kiviranta H,  et al. Chlorinated persistent 949 

organic pollutants and type 2 diabetes- A population-based study with pre- and post- diagnostic plasma samples. 950 

Environ Res 2019; 174:35-45. doi: 10.1016/j.envres.2019.04.017. Epub 2019 Apr 19. 951 

 952 

Turner W, DiPietro E, Lapeza C, Green V, Gill J, Patterson DG, Jr. Organohalogen Compounds 1997; 31: 26-31. 953 

 954 

Turyk M, Anderson H, Knobeloch L, Imm P, Persky V. Organochlorine Exposure and Incidence of Diabetes in a 955 

Cohort of Great lakes Sport Fish Consumers. Environ Health Perspect 2009: 117:1076-1082. 956 

 957 

Turyk M, Fantuzzi G, Persky V, Freels S, Lambertino A, Pini M, et al. (2015). Persistent organic pollutants and 958 

biomarkers of diabetes risk in a cohort of Great Lakes sport caught fish consumers. Environ Res. 2015; 140: 335-959 

44. doi: 10.1016/j.envres.2015.03.037. 960 

 961 

Van den Berg M, Birnbaum LS, Denison M, DeVito M, Farland W, Feeley M, et al. The 2005 World Health 962 

Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like 963 

compounds. Toxicol Sci 2006; 93: 223-41. 964 

 965 

Vasiliu O, Cameron L, Gardiner J, DeGuire P, Karmaus W. Polybrominated Biphenyls, Polychlorinated 966 

Biphenyl, Body Weight, and Incidence of Adult-Onset Diabetes Mellitus. Epidemiology 2006; 17(4):352-359. 967 

Vena J, Boffetta P, Becher H, Benn T, Bueno-de-Mesquita HB, Coggon D, et al.  Exposure to dioxin and 968 

nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol 969 

production workers and sprayers.   Environ Health Perspect 1998; 106 Suppl 2(Suppl 2):645-53. 970 

 971 

Wahlang B; Hardesty JE, Jin J; Cameron Falkner K; Cave MC. Polychlorinated biphenyls and nonalcoholic fatty 972 

liver disease. Curr Opin Toxicol 2019: 21–28.. 973 

 974 

Warraich HJ, Rana JS. Dyslipidemia in diabetes mellitus and cardiovascular disease. Cardiovasc Endocrinol 975 

2017; 6(1):27-32 976 

 977 

Wood, S. (2006). Generalized Additive Models: An Introduction with R. CRC Press.Wu H, Bertrand KA, Choi 978 

AL, Hu FB, Laden F, Grandjean P, et al. Persistent organic pollutants, and type 2 diabetes: a prospective analysis 979 

in the nurses' health study and meta-analysis. Environ Health Perspect 2013; 121(2):153-61.  980 

 981 

Wu L, Cui F, Zhang S, Ding X, Gao W, Chen L, et al. Associations between multiple heavy metals 982 

exposure and neural damage biomarkers in welders: A cross-sectional study. Sci Total Environ. 2023; 983 

869:161812. PMID: 36706997. 984 

 985 

Xu C, Zhang L, Zhou Q, Ding J, Yin S, Shang X, et al. Exposure to per- and polyfluoroalkyl substances as a risk 986 

factor for gestational diabetes mellitus through interference with glucose homeostasis. Sci Total Environ. 2022; 987 

838(Pt 4):156561. PMID: 35691348. 988 



 

35 

 

 989 

Yang E, Pavuk M, Sjodin A, Lewin M, Jones R, Olson J, et al. Exposure of dioxin-like chemicals in participants 990 

of the Anniston community health survey follow-up. Sci. Total Environ 2018; 637-638, 881-891. 991 

 992 

Yim G, Minatoya M, Kioumourtzoglou MA, Bellavia A, Weisskopf M, Ikeda-Araki A, et al. The associations of 993 

prenatal exposure to dioxins and polychlorinated biphenyls with neurodevelopment at 6 Months of age: Multi-994 

pollutant approaches. Environ Res. 2022; 209:112757. PMID: 35065939. 995 

 996 

Yu G, Jin M, Huang Y, Aimuzi R, Zheng T, Nian M, et al. Shanghai Birth Cohort Study. Environmental exposure 997 

to perfluoroalkyl substances in early pregnancy, maternal glucose homeostasis and the risk of gestational diabetes: 998 

A prospective cohort study. Environ Int. 2021; 156:106621. PMID: 33984575. 999 

 1000 

Zhang S, Wu T, Chen M, Guo Z, Yang Z, Zuo Z, et al. Chronic Exposure to Aroclor 1254 Disrupts Glucose 1001 

Homeostasis in Male Mice via Inhibition of the Insulin Receptor Signal Pathway. Environ Sci Technol 2015; 18 1002 

49(16):10084-92. 1003 

 1004 

Zhang YT, Zeeshan M, Su F, Qian ZM, Dee Geiger S, Edward McMillin S, et al. Associations between both 1005 

legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The Isomers of C8 health 1006 

project in China. Environ Int. 2022a; 158:106913. PMID: 34624590. 1007 

 1008 

Zhang F, Wang H, Cui Y, Zhao L, Song R, Han M, et al. Association between mixed dioxin exposure and 1009 

hyperuricemia in U.S. adults: A comparison of three statistical models. Chemosphere. 2022b; 303(Pt 3):135134. 1010 

PMID: 35644240. 1011 

 1012 

Zong G, Valvi D, Coull B, Göen T, Hu FB, Nielsen F, et al. Persistent organic pollutants, and risk of type 2 1013 

diabetes: A prospective investigation among middle-aged women in Nurses' Health Study II. Environ Int 2018; 1014 

114:334-342. 1015 

 1016 



 

 

Figure 1.  a. Spearman Correlation Coefficients. b. Hierarchical clustering showing 3 mixture component- 

groups for BKMR modeling.  

 

 

Figure 2. BKMR results for diabetes, ACHS II:   a. The overall joint effects.   b. Single variable effects 

consistent with no interaction and no additivity when holding all other components to a fixed quantile. 

 

Figure 3.  Quantile G computation, ACHS II   a. Slope and 95% confidence bands for joint effects of 

mixture components on diabetes; MSM is marginal structural model.  The overall effect was Ψ=0.28 

(95% CI: -0.15, 0.70).  b. Relative weights - positive weights are more influential in the overall mixture.  
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Table 1. Demographic and clinical characteristics (mean (SD) or n (percent)) of participants in ACHS II (2014) 3 

 4 

Characteristic No Diabetes 

(n=175) 

Pre-diabetes 

(n=28) 

Diabetes 

(n=135) 

p-value 

Age in years 60.21 (13.2) a 66.79 (14.2) 65.06 (11.8)  0.0010 

Female 125 (71.4%) 19 (67.9%) 101 (74.8%) 0.6818 

African Americans 83 (47.4%) b 7 (25.0%) 82 (60.7%) 0.0011 

Years residing in Anniston 49.48 (16.1) a 54.43 (17.8)  54.27 (17.0)  0.0298 

Lifetime alcohol use (12 or more 

alcoholic drinks in lifetime) 

123 (70.3%) 19 (67.9%) 88 (65.2%) 0.6447 

Smoking status (currently smoking) 41 (23.4%) 6 (21.4%) 24 (17.8%) 0.4795 

Family history of diabetes 104 (59.4%) b 18 (64.3%) 105 (77.8%) 0.0028 

Physical activity (physically active 

in last month) 

76 (43.4%) 8 (28.6%) 45 (33.3%) 0.1064 

Education level (more than high 

school) 

63 (36.0%) 8 (28.6%) 48 (35.5%) 0.7423 

Healthcare access (had health 

insurance last year) 

153 (87.4%) b 28 (100%) 126 (93.3%) 0.0434 

Annual income (>$25,000) 52 (29.7%) b 12 (42.9%)  25 (18.5%)  0.0099 

BMI – kg/m2 30.92 (7.69) 30.69 (5.83) 32.78 (9.02) 0.1098 

Girth (inches) 40.64 (5.89) a 42.41 (6.21)  43.35 (6.26)  0.0006 

Glucose level (mg/dL) 81.29 (9.80) a 107.45 (6.81)  131.15 (73.98) <0.0001 

Insulin (UI/ml) 355.9 (445.64) a 554.2 (531.9) 465.5 (516.48) 0.0411 

Total lipid (mg/dL) 623.39 (140.87) 639.51 (163.9) 618.8 (170.9) 0.8127 

Total triglyceride (mg/dL) 121.34 (76.48) 153.11 (100.32) 141.59 (96.81) 0.0538 

Glycemic meds 0 (0%) b 0 (0%) 78 (56.78%) <0.0001 

Lipid lowering meds 54 (30.86%) b 17 (60.71%) 65 (48.15%) 0.0006 

Variables with missing values: Girth (3: 2 African American, 1 White).  5 
a p < 0.05 using the one-way ANOVA test 6 
b p < 0.05 comparing participants with no diabetes, pre-diabetes, and diabetes using Chi-square test of 7 

independence 8 
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Table 2. Geometric means (95% confidence intervals (CI)) by diabetes status, adjusted for age, sex, race, BMI, 11 

smoking status, and family history of diabetes in general linear modelsa.  12 

 13 

Chemical Groups No Diabetes (n=175) Pre-Diabetes 

(n=28) 

Diabetes (n=135) Total (n=338) 

Sum of PCBs Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) 

Whole Weightc (pg/g) 2754 (2393, 3169) 2443 (1803, 3311) 2897 (2460, 3419) 2691 (2338, 3090) 

PCB Subsets     

Di-Ortho 2051 (1771, 2365) 1737 (1270, 2371) 2103 (1778, 2494) 1958 (1694, 2259) 

Tri-tetra-ortho 741.3 (635.3, 862.9) 668.3 (479.7, 928.9) 803.5 (672.9, 961.6) 736.2 (632.4, 855.0) 

Summary TEQs 

(pg/g) 

    

PCDD 50.93 (46.34, 55.84) 52.23 (42.65, 63.82) 57.54 (51.64, 64.26)b 53.45 (48.75, 58.61) 

PCDF 13.55 (12.30, 14.96) 14.22 (11.53, 17.53) 14.45 (12.91, 16.18) 14.09 (12.79, 15.48) 

Mono-ortho PCB   8.37 ( 7.19,  9.77)  7.14 (  5.11,  9.95)   8.83 ( 7.37, 10.56) 8.09 (6.95, 9.41) 

Non-ortho PCB 19.18 (15.92, 23.17) 18.54 (12.27, 28.05) 20.84 (16.90, 25.76) 19.49 (16.18, 23.55) 

Total Dioxin  97.94 (87.49, 109.6) 103.0 (80.53, 131.8) 111.2 (97.49, 127.1) 103.9 (92.89, 116.4) 

Pesticides     

Hexachlorobenzene 50.58 (47.42, 53.95) 49.77 (43.25, 57.27) 52.60 (48.74, 56.75) 50.93 (47.86, 54.32) 

Β-HCCH 39.81 (34.75, 45.70) 43.95 (32.73, 59.15) 42.85 (36.55, 50.23) 42.16 (36.89, 48.30) 

Oxychlordane 109.1 (98.62, 121.1) 123.3 (99.31, 153.1) 119.9 (106.6, 134.8) 117.2 (106.2, 129.7) 

trans-Nonachlor 198.1 (176.1, 222.8) 253.5 (197.6, 325.0) 234.4 (204.6, 269.1)b 227.5 (203.2, 255.2) 

p,p’-DDE 1541 (1309, 1815) 1258 (881.0, 1794) 2004 (1655, 2432)b 1573 (1336, 1849) 

Mirex 64.41 (56.10, 73.96) 67.92 (50.35, 91.52) 72.11 (61.37, 84.72) 68.07 (59.42,78.16) 
a All variables were log transformed. Summed totals, PCBS and TEQS, do not include substitutions for <LOD 14 

while the individual pesticides include substitutions. 15 
b
p - value ≤ 0.05 in comparison of participants with diabetes to those without diabetes. There were no significant 16 

differences in the comparisons of prediabetes to no diabetes.  17 
c Contains 35 congeners. 18 
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Table 3. Odds Ratios (OR) and 95% Confidence Intervals (CI) of diabetes prevalence (excluding prediabetes) of 20 

ACHS II participants (2014). 21 

 22 

Chemical Groups nb OR (95% CI)c  OR (95% CI) d OR (95% CI)e 

  Model 1 Model 2 Model 3 

Summary TEQs      

PCDD 135/309 3.45 (1.07, 11.16) 3.61 (1.04, 12.46) 2.86 (0.98, 8.36) 

PCDF 135/308 1.66 (0.56, 4.96) 1.70 (0.55, 5.30) 1.65 (0.58, 4.65) 

Mono-ortho PCB 135/310 1.36 (0.72, 2.57) 1.23 (0.63, 2.40) 1.21 (0.65, 2.28) 

Non-ortho PCB 133/288 1.51 (0.86, 2.64) 1.23 (0.67, 2.25) 1.19 (0.69, 2.06) 

Total Dioxin  135/310 2.65 (1.06, 6.62) 2.24 (0.85, 5.89) 2.01 (0.85, 4.77) 

PCB Groupings      

Sum 35 PCBsa 135/310 1.13 (0.56, 2.29) 1.22 (0.58, 2.57) 1.28 (0.64, 2.57) 

Mono-ortho PCB 135/310 1.38 (0.72, 2.67) 1.26 (0.63, 2.51) 1.24 (0.65, 2.36) 

Di-ortho PCB 135/310 1.09 (0.56, 2.14) 1.14 (0.56, 2.34) 1.15 (0.58, 2.26) 

Tri, tetra-ortho PCB 134/309 1.22 (0.63, 2.34) 1.39 (0.69, 2.80) 1.39 (0.72, 2.68) 

Pesticides     

Hexachlorobenzene 134/308 2.05 (0.38, 11.10) 1.84 (0.31, 11.12) 1.65 (0.37, 7.30) 

β-HCCH 135/310 1.74 (0.88, 3.43) 1.25 (0.60, 2.62) 1.17 (0.61, 2.22) 

Oxychlordane 133/302 2.08 (0.75, 5.83) 1.85 (0.62, 5.54) 1.75 (0.67, 4.60) 

trans-Nonachlor 125/287 3.04 (1.17, 7.92) 2.55 (0.93, 7.02) 2.64 (1.04, 6.71) 

p,p’-DDE 134/309 2.13 (1.16, 3.91) 2.07 (1.08, 3.97) 2.15 (1.23, 3.70) 

Mirex 135/310 1.33 (0.65, 2.71) 1.60 (0.73, 3.52) 1.57 (0.77, 3.21) 
 23 
a PCB sum contains 35 congeners. The Pesticides, PCB sums/groupings and TEQs were all log10 transformed.  24 

 b n=participants with diabetes/total (excluding pre-diabetes) 25 
c Model 1 adjusted for age, sex, race, and total lipid 26 
d Model 2 adjusted for age, sex, race, BMI, family history of diabetes; smoking status, education, health care access, 27 

lipid lowering drugs, and total lipid. 28 
e Model 3 adjusted for age, race, BMI, lipid lowering drugs, family history of diabetes for all models except p,p’-29 

DDE (all listed variables except race included in that model). 30 
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Table 4. OR (95% CI) of diabetes incidence (excluding prediabetes and diabetes diagnosis in ACHS I) in 33 

participants from ACHS II (2014).  34 

Chemicalsa 

Whole Weight 

 bDiabetes/ 

Total 

Model 1 OR (95% CI) c Model 2 OR (95% CI) d 

Sum 35 PCBs 37/212 0.44 (0.14, 1.42) 0.46 (0.13, 1.58) 

Mono-ortho PCBs 37/212 0.43 (0.14, 1.32) 0.35 (0.10, 1.16) 

Di-ortho PCBs 37/212 0.43 (0.14, 1.36) 0.41 ( 0.12, 1.42) 

Tri- tetra-ortho 

PCBs 

37/212 0.47 (0.16, 1.36) 0.53 (0.17, 1.60) 

Pesticides    

p,p’-DDE 37/212 1.12 (0.47, 2.72) 0.98 (0.37, 2.61) 

trans-Nonachlor 37/209 1.28 (0.29, 5.61) 1.13 (0.24, 5.44) 
 35 
a The PCB sums and Pesticides were all log10 transformed.   [Smoking variable was from the baseline in ACHS I, 36 

all other covariables from time 2]. 37 
b Number participants with incident diabetes/total (excluding diabetes at baseline and pre-diabetes). 38 
c Model 1 adjusted for age, sex, race, and total lipid. 39 
d Model 2 adjusted for age, sex, race, total lipid, BMI, family history of diabetes; smoking status, education, health 40 

care access, and lipid lowering drugs. 41 
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