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Abstract

Blue Horizontal Branch stars (BHBs) are ideal tracers to probe the global structure of the milky Way (MW), and
the increased size of the BHB star sample could be helpful to accurately calculate the MW’s enclosed mass and
kinematics. Large survey telescopes have produced an increasing number of astronomical images and spectra.
However, traditional methods of identifying BHBs are limited in dealing with the large scale of astronomical data.
A fast and efficient way of identifying BHBs can provide a more significant sample for further analysis and
research. Therefore, in order to fully use the various data observed and further improve the identification accuracy
of BHBs, we have innovatively proposed and implemented a Bi-level attention mechanism-based Transformer
multimodal fusion model, called Bi-level Attention in the Transformer with Multimodality (BATMM). The model
consists of a spectrum encoder, an image encoder, and a Transformer multimodal fusion module. The Transformer
enables the effective fusion of data from two modalities, namely image and spectrum, by using the proposed Bi-
level attention mechanism, including cross-attention and self-attention. As a result, the information from the
different modalities complements each other, thus improving the accuracy of the identification of BHBs. The
experimental results show that the F1 score of the proposed BATMM is 94.78%, which is 21.77% and 2.76%
higher than the image and spectral unimodality, respectively. It is therefore demonstrated that higher identification
accuracy of BHBs can be achieved by means of using data from multiple modalities and employing an efficient
data fusion strategy.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Classification (1907); Neural
networks (1933)

1. Introduction

Blue horizontal branch stars (BHBs) are metal-poor (Santucci
et al. 2015) A or B-type stars that burn helium in their cores
(Barbosa et al. 2022). The inadequate understanding of the
Galactic haloes’ aggregate masses, dimensions, and formation
history is primarily due to the inadequacy of extensive dynamic
tracer sets at sufficiently substantial radii (Clewley et al. 2005).
BHBs exhibit a luminosity that is both high and relatively
constant (Barbosa et al. 2022). Specifically, their luminosity
surpasses that of the majority of giant branch or Population II
main sequence stars, and they exhibit distinctive spectral features
that enable their identification (Smith et al. 2010). Due to their
predictable brightness, they are often employed as standard
candles to explore distant Galactic structures. Their use as tracers
is widely sought in the studies concerning the kinematics and

structural composition of our Galaxy (Vickers et al. 2021, 2012).
Due to the considerable age of BHBs (Dotter et al. 2010), BHBs
have become ideal for studying the structure of the older parts of
the Galaxy (Culpan et al. 2021). Many works focus on using a
growing sample of BHB halo tracers to probe the Milky Way’s
enclosed mass: Xue et al. (2008) used BHBs to derive precise
constraints on the masses of Galactic dark matter halos; Gnedin
et al. (2010) utilized 910 hypervelocity halo BHBs and blue
straggler stars to map 80 kpc of the mass profile; Utkin &
Dambis (2020) employed BHBs to simultaneously determine the
distance from the Sun to the center of motion of the halo velocity
field and a distance scale correction factor. In addition, BHBs
have been applied to study dynamical substructures and stellar
flows, anisotropy of the halo velocity distribution, etc. (Barbosa
et al. 2022).
However, the main problem of BHBs as tracers are their

relative sparsity compared to other tracers (e.g., turnoff stars)
(Smith et al. 2010). Therefore, it is necessary to identify an
increasing number of pure BHBs and thus obtain a more
extensive sample of BHBs, which helps make further, more
comprehensive studies of the Galaxy. The discrimination of
BHBs from their main-sequence counterparts poses a critical
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challenge in pursuing BHB identification (Culpan et al. 2021).
The presence of a polluting population of high surface-gravity
A-type stars and the blue stragglers makes identifying BHBs in
distant halos unfeasible (Clewley et al. 2005). Traditional
methods of identifying BHBs using spectroscopic data rely
heavily on fitting Balmer line profiles that distinguish stars
based on their surface gravity (Vickers et al. 2012, 2021). In
addition to spectroscopic data, photometric methods can
separate BHBs from other blue contaminants (Vickers et al.
2012). However, these traditional methods of identifying BHBs
have the disadvantage of complex identification steps requiring
more manual involvement. Furthermore, manual inspection has
a subjective element, and the results may be accurate only to
some extent.

As a result, the use of machine learning for the analysis and
identification of celestial objects has come a long way facing
the limitations of manual classification with respect to both
efficiency and accuracy when massive amounts of observa-
tional data are obtained. In recent years, machine learning
algorithms have also been applied to the identification of
BHBs. Smith et al. (2010) studied the performance of some
standard machine learning techniques (k-nearest neighbors,
kernel density estimation and support vector machines) in
identifying BHBs from photometric data. Vickers et al. (2021)
used the XGBoost algorithm to identify BHBs from candidates,
resulting in a BHB star catalog with a purity of about 86%.
Identifying BHBs using machine learning methods does not
require manual feature selection of the spectral data and can be
done directly based on information from the entire spectrum.
This can increase the spectral information used for classifica-
tion while reducing manual involvement and improving
classification efficiency, leading to more accurate classification
results. In addition to classifying objects with spectral data, we
can also classify objects using photometric images of the
objects. Sky survey telescopes like the Sloan Digital Sky
Survey (SDSS; York et al. 2000) already provide vast amounts
of photometric data. It would be impractical for both individual
researchers and the teams involved to examine all these images
manually (Dieleman et al. 2015). With the development of
deep learning (Lecun et al. 2015) techniques, convolutional
neural networks (CNNs) are widely used in computer vision.
Nowadays, more and more scientists also make use of CNNs
for celestial object detection. For example, Aniyan & Thorat
(2017) used CNNs to classify radio images of extended sources
on a morphological basis; Pasquet et al. (2019) applied CNNs
for photometric redshifts from SDSS images; Davies et al.
(2019) utilized CNNs to identify gravitational lensing in
astronomical images.

Multimodal learning is a general method for building
artificial intelligence (AI) models that extract and correlate
information from multimodal data (Baltrusaitis et al. 2019).
Multimodal learning has been used in several areas (Khattar &
Quadri 2022), such as visual question answering, emotion

recognition, machine translation, cross-modal retrieval, and
speech recognition. With the development of large survey
telescopes, a massive amount of multi-source heterogeneous
astronomical data, such as spectral and photometric data of
astronomical objects, have been generated. These data can help
us realize the classification, identification, and other studies of
astronomical objects. However, existing techniques for classi-
fying and identifying celestial objects based on deep learning
often only use spectral or image data of celestial objects
independently, and techniques for classifying objects with data
from different modalities simultaneously through multimodal
learning are still being explored. How the different modalities
of astronomical data can complement each other to improve the
efficiency and accuracy of classifying and identifying astro-
nomical objects is the question that needs to be explored in this
paper.
In multimodal learning, multimodal fusion (Baltrusaitis et al.

2019) is a widely studied topic, and it is very important to
know how the information from different modalities can be
adequately fused. Atrey et al. (2010) explored that the fusion of
multiple modalities can provide complementary information
and improve the accuracy of the overall decision process. So
far researchers have proposed many methods to address this
kind of problem. In this paper, we propose and implement a Bi-
level attention mechanism-based Transformer multimodal
fusion model called BATMM, with which automatic and
efficient identification of BHBs can be achieved. The general
workflow of the method is shown in Figure 1. First, the spectral
and image data of objects are extracted by their respective
encoders to obtain the features of the individual modes,
followed by supervised training on the BHBs identification task
using the Transformer fusion module we build. We improve the
original self-attention mechanism in the Transformer by using
the Bi-level attention mechanism. The improved model
changes how the two modalities interact, which allows the
data from the different modalities to be fused more effectively,
thus improving the accuracy in detecting and identifying
BHBs. We verify the model’s performance by testing it on a
test set.
This paper is organized as follows: Section 2 introduces our

data sources. Section 3 illustrates the background of the current
Transformer-based multimodal fusion approach. Section 4
describes the specific method used in this paper to fuse spectra
and images. Section 5 shows our process for processing
spectral and image data. Sections 6 and 7 present the evaluation
metrics used for the experiments, the experimental results, the
ablation experiments, and the comparison experiments.
Section 8 discusses the experimental results, further model
improvements, etc. Finally, Section 9 provides a summary of
the paper.
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2. Data

The SDSS (York et al. 2000) is a very successful large sky
survey project, which performs imaging and spectroscopic
survey. Data Release 16 (DR16; Ahumada et al. 2020) includes
observations until 2018 August. It is the fourth data release of
SDSS and contains different kinds of data, e.g., images, spectra
and catalog data. DR16 keeps the version of DR13 (Albareti
et al. 2017) imaging.

Based on spectra from SDSS, Xue et al. (2008) reprocessed a
catalog of 10,224 BHB candidates through a dedicated hot star
pipeline, identified 2558 BHBs and found less than 10%
contamination, where the contaminants were mainly from
main-sequence A-type (MSA) stars, in particular, the blue
stragglers (BS). Xue et al. (2011) obtained a high probability
sample of 4985 BHBs from SDSS DR8.

The selection of samples used in this study is presented in
Table 1. The positive BHB sample is selected from Xue et al.
(2011), which is considered representative (Bird et al. 2021;
Vickers et al. 2021). In addition, we utilized negative samples
of BS and A-type stars, sourced from Xue et al. (2008), due to

their prevalent occurrence as primary contaminants employed
for BHBs identification. We labeled the selected negative
samples as non-BHBs. After collation, we select 4985 true
BHBs and 7378 non-BHBs.
Just for show, some spectra and their corresponding images

of BHBs and non-BHBs are described in Figures 2 and 3,
respectively.

3. Multimodal Fusion with the Transformer

Multimodal fusion is an important research direction in
multimodal machine learning. In technical terms, multimodal
fusion is the concept of integrating information from multiple

Figure 1. General workflow of the BATMM model.

Table 1
Our Sample

Label Type Catalog

BHBs BHBs Xue et al. (2011)
Non-BHBs BS/A-type stars Xue et al. (2008)

3
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Figure 2. Some spectra of BHBs and corresponding images. The x-axis is is the observed wavelength in units of Å and the y-axis shows the flux density ( fλ) in units of
10−17 erg s−1 cm−2 Å−1.

Figure 3. Some spectra of negative samples and their corresponding images. The x-axis is the observed wavelength in units of Å and the y-axis shows the flux density
( fλ) in units of 10−17 erg s−1 cm−2 Å−1.
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modalities, often with the goal of predictive classification or
regression (Baltrusaitis et al. 2019). There is a limit to how
much information a single modality can represent, so
researchers have been exploring ways to fuse information
from multiple modalities.

The Transformer (Vaswani et al. 2017) differs from complex
recurrent and convolutional neural networks in that the model
structure of the Transformer uses an encoder–decoder framework,
stacking multiple encoders and decoders to form the entire
network, which completely avoids the use of convolution and
recursion, and the entire network structure is composed entirely of
self-attention mechanisms. Self-attention is an attention mech-
anism that associates different sequence positions to compute a
uniform representation of the whole sequence. Compared with
RNN (Borkowski et al. 2022), self-attention can improve
parallelism and capture long-term dependencies better; compared
with CNN (Lecun et al. 1998), which can extract local features,
self-attention can model long-sequence remote relationships.

Considering the excellent results of Transformer, researchers
have started investigating the use of Transformers for multimodal
learning. The most significant advantage of the Transformer used
for multimodal learning is its inherent strength and scalability in
modeling various modalities and tasks (Xu et al. 2022). In the
multimodal Transformer, the interaction between the different
modalities is actually achieved through its internal attention
mechanism. Therefore, Transformer-based multimodal learning
can meet our needs for fusing multiple modalities.

4. Method

Spectral and photometric data are multimodal data: spectral
data of celestial objects may provide celestial parameter
measurement and are widely used by scientists to classify
and study celestial objects; photometric images of celestial
objects are easier to obtain than spectra and have very distinct
visual characteristics, which are more intuitive and vividly
helpful for the identification and classification of celestial
objects. How to complement the data of these two modalities
with each other and use the multifaceted and rich multimodal

fusion data to classify BHBs is the issue to be solved in this
paper. Transfer learning from representations of pre-trained
models has been studied in many fields (Kiela et al. 2019). In
this paper, we use an effective transfer learning strategy to
extract multimodal features of celestial objects from spectral
and image feature encoders as tokens input to a multimodal
Transformer and then use our constructed multimodal Trans-
former fusion model for the BHB star sample to identify BHBs.

4.1. Image Encoder

Our astronomical images are from SDSS in five bands: u, g,
r, i, z. We compare the five bands of data and align the five
bands to form a five-channel matrix, which is our image data.
We use residual neural network (ResNet; He et al. 2015) to
extract visual features from celestial image data. Upon input of
the image data into the encoder, a SENet Block (Hu et al. 2017)
is incorporated to capture the interdependence among the five
band photometric images. This is achieved by assigning
weights automatically to each band, which facilitates the
recognition of relevant image features by the model. At first, C
calculates the channel features for global average pooling
through Equation (1) where H and W represent the height and
width of the image respectively, then the features are passed
through two Fully Connected layers to model the correlation
between channels through Equation (2) and output Iw as the
weight of each band

C
H W

i j
1

Img , 1
i

H

j

W

1 1
åå=

´ = =

( ) ( )

I g C W, . 2w s= ( ( )) ( )

In this case, we extract the image features using only the
backbone part of ResNet-50 and then flatten the features along
the spatial dimension. The model structure diagram is shown in
Figure 4. The flattened features are defined as I= {I1,
I2,...,Ik} ä Rd, where k is the number of pixels features, and d
is the feature dimension of the pixel, which is set as 512
dimensions.

Figure 4. The workflow of image encoder.
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4.2. Spectrum Encoder

With the development of deep learning, CNNs are widely
used to extract meaningful features from data, and the models
applied for spectra have been shown to be effective for
classification (Kim & Brunner 2017). Compared to traditional
machine learning algorithms, deep learning techniques can
automatically learn the underlying features from large and
diverse data, eliminating the need for manual feature selection.
In addition, CNNs can utilize the whole spectral information,
thus avoiding the problems associated with human error when
selecting profile ranges and shapes, and allowing more spectral
data to be involved in classification and recognition (Vickers
et al. 2021).

VGG (Simonyan & Zisserman 2014) is a very classical
convolutional neural network classification architecture. The
VGG1D (VGG based on one-dimension) convolutional model
proposed in this paper is similar to the network structure of
VGG-19, with the significant difference that the convolutional
kernel we use is one-dimension so that the model can be
applied to extract the features of the spectrum. Furthermore, we
introduce a Self-attention Block to automatically assign
weights to each wavelength range of the spectrum. This
enhances the model’s ability to emphasize the more informa-
tive wavelength ranges for the classification of BHBs during
the training phase. Specifically, we need to cut the wavelength
range of the spectra into the same window of 4000–9000 Å,
thus ensuring that the spectral dimension of each object is 3522
dimensions. Following this step, the spectral data need to be
divided into uniform sections. Upon manual calibration, it has
been ascertained that the ideal sequence length for the encoding
procedure is seven. As illustrated in Equation (3), the 3522
dimensional spectral data is divided into seven equal segments
by manual adjustment, with the last data point rounded off. The
segments are then concatenated vertically to form a spectral
sequence of length 7, in which each segment possesses a
dimensionality of 503, thereby achieving an equilibrium
between expressiveness and manageability. The Q and K
matrices are computed from the spectral sequence, as
demonstrated in Equation (4), and the corresponding weights
Sw are subsequently derived. This intervention has resulted in
an enhanced effectiveness of the model during the training
phase. The network architecture diagram is displayed in
Figure 5

S S S S S S S S, , , , , , 31 2 3 4 5 6 7= { ˆ ˆ ˆ ˆ ˆ ˆ ˆ } ( )

S
W S W S

d
softmax . 4w

k

Q K
T

=
´

⎜ ⎟
⎛

⎝

⎞

⎠

( )
( )

We can adjust the pooling and fully connected layers of the
model after VGG1D to eventually map the extracted spectral
features to 512 dimensions. After the adjustment, we are able to
automatically extract the spectral features after feeding the

spectral data into the model, which can then be fed into the
subsequent Transformer network. The extracted spectral
features are defined as S= {S1, S2,K,Sk}ä Rd, where d is
also set as 512 dimensions.

4.3. Multimodal Fusion

We use a modified Transformer-based module for the fusion
of both image and spectral modalities at the feature level and
for the identification of BHBs. Compared with early fusion and
late fusion, our fusion strategy can achieve feature-level
interaction and enable a more adequate fusion of multi-
modality. The Transformer is currently shown to be compatible
with a wide range of modalities. The Transformer is, therefore,
compatible with this paper’s spectral and image modalities.
After obtaining the features of spectral and image pixels, we
combine the features of the two modalities to construct a
multimodal feature input sequence. We define two semantic
embedding vectors, SemS and SemI, to distinguish the spectral
and image modalities, which have values of 0 and 1,
respectively. We also add a special token [CLS] for learning
the joint classification features, respectively. Finally, the
Transformer’s multimodal feature input sequence is formulated
as follows:

I I S S i kSem , Sem , 1, 5i i i iI S= + = + Îˆ ˆ [ ] ( )

CLS I I I S S SInput , , ,..., , , ,..., . 6k k1 2 1 2= {[ ] ˆ ˆ ˆ ˆ ˆ ˆ } ( )

The Transformer’s internal self-attention associates different
positions of an input sequence to compute a uniform
representation of the whole sequence. However, in order to
make the model more applicable to our multimodal learning
task, we improve the attention mechanism within the
Transformer. We add a cross-attention mechanism that enables
the spectral information of a celestial body to be focused
differently on different regions of the image, resulting in a
representation of the image associated with the celestial body’s
spectrum. We use cross-attention because when identifying
BHBs by unimodality, the classification using the spectral
modality alone is much better than the classification using the
imaging modality, with approximately nearly 20% higher
classification accuracy, due to the low differentiation of color
features in the images. As a result, the two modalities are more
differentiated, showing “strong modality” and “weak modality”
respectively. If only the self-attention mechanism is used, it
will lead to the model over-focusing on the information of the
strong modality of the spectrum, resulting in less interaction
between the two modalities and thus not fully utilizing the
feature information of the weak modality of the image.
Therefore, we hope that by using the cross-attention mech-
anism, the features of the spectrum can be used to highlight the
features of the image regions associated with it, so as to
enhance image features, thereby making full use of the
information of the two modalities and improving the
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performance of the multimodal classification model through
more effective interaction and fusion of the two modalities.

As shown in Equation (7), we construct the query matrix
(WQI) from the feature vectors of the celestial image, the key
matrix (WKS) and the value matrix (WVS) from the feature
vectors of the spectrum, and then calculate the attention
between the spectrum and different regions in the image by the
query matrix and the key matrix. Among them, WQ, WK and
WV are three trainable weight parameters, S represents the
extracted spectral features, I represents the extracted image
features, and dk represents the output dimension of WKS. Then,
we have to use softmax normalization on the obtained attention
Across, so that the sum of the weights is 1. Next, the feature
representation of the image after cross-attention is obtained, as
shown in Equation (8)

A
W I W S

d
softmax 7

k
cross

Q K
T

=
´

⎜ ⎟
⎛

⎝

⎞

⎠

( )
( )

F A W S 8h cross V= ´ ( ) ( )
F F F Wconcat , , . 9cross 1 H cross= ( ) ( )

In practice, a multi-head cross-attention structure is often
used, where we fuse the cascaded outputs from multiple
attention sub-layers stacked in parallel through the projection
matrix Wcross as shown in Equation (9), where each head Fh is
calculated by Equation (8), h ä [1, H], and Wcross is a linear
projection matrix. By using the structure of the multi-head, it
enables the model to process information from multiple
representation subspaces simultaneously.

By performing cross-attention on the image modalities, we
can obtain a relevant spectrum representation of the image

features. As we can see from the way cross-attention is
computed, cross-attention computes the image modal features
under spectral conditions and is not able to perform cross-
modal attention globally, thus losing the contextual information
of both modalities. Therefore, after performing cross-attention
on the image, we further connect the self-attention module to
model the global feature representation of multiple modalities.
In the self-attention mechanism, the query, key, and value
vectors are generated for each token by multiplying the same
input matrix with three trainable weight matrices WK, WQ and
WV for all multimodal feature tokens. We can implement self-
attention according to Equations (10) and (11)

A
W M W M

d
softmax 10

k
self

Q K
T

=
´

⎜ ⎟
⎛

⎝

⎞

⎠

( )
( )

F A W M 11h self V= ´ ( ) ( )
F F F Wconcat , , 12self 1 H self= ( ) ( )

F FFFN 13out self= ( ) ( )

where M represents all multimodal inputs after cross-attention,
and dk represents the output dimension of WKM. Then, we have
to use softmax normalization on the obtained attention. Next,
the computed attention weights Aself are multiplied by the value
vectors WVM, and the feature representation Fself after self-
attention is obtained, as shown in Equation (11). Based on
Equation (12), we still use the multi-head attention mechanism
to calculate the final result. The final output is calculated by a
feed-forward neural network, where the FFN consists of a set
of fully connected layers with ReLU activation functions.
The multimodal fusion module is shown in Figure 6.

According to the previous section, we first obtain a multimodal

Figure 5. The workflow of VGG1D model.
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representation of the data using the image encoder and the
spectrum encoder and input the multimodal features into the
Transformer at the same time. In the Transformer’s attention
module, by using cross-attention and self-attention mechan-
isms, data from different modalities can complement each other
in terms of feature granularity, enabling feature-level fusion
with potential semantics. Compared to the unimproved
Transformer model, our feature-level fusion strategy allows
for sufficient interaction between the more disparate modal
features to form a unified representation of the fused
modalities.

In summary, the BATMM multimodal model we have built
consists of three components: an image encoder, a spectrum
encoder, and a modified Transformer multimodal fusion
module. First, we obtain the spectral and image feature
representations through the spectrum and image encoders, then
using a transfer learning strategy, the fusion module accepts the
features from the spectra and images as input and uses our
improved Transformer-based fusion model to perform deep
information interaction and fusion of the features from the two
modalities, thus improving the recognition performance of
BHB stars. The entire model structure is shown in Figure 7.

5. Data Processing

According to the extinction map from SFD98 (Schlegel et al.
1998), we computed the extinction values of each BHBs in five
bands (ugriz), employed statistical techniques to analyze the
extinction values for the u, g, r, i, and z bands, and found that a
significant proportion of objects in each band have extinction
values that are in proximity to 0.1. Thus, we may disregard the
correction values due to their trivial impact.

In order to ensure the validity of the data used for training
and ensure the proper training of the subsequent network and
accelerate the convergence of the model, we first need to pre-
process the acquired image data and the spectral data
separately. The number of samples in the unprocessed data
set, the number of pre-processed image samples and the
number of pre-processed spectral samples are listed in Table 2.

5.1. Image Processing

First, we enhance the quality of our BHBs image data set by
removing images with quality problems due to inaccurate band
alignment, etc., so that subsequent models can learn more
accurate and representative image features. After removing, we
need to normalize and standardize the remaining images in
order to speed up the training of the model. We can use
Equation (14) to normalize the pixel data of the image and
Equation (15) to standardize the data

I
I I

I I
14i

i min

max min
=

-
-

( )

I
I

15i
i m
s

=
- ( )

where Ii represents the pixel point to be processed, Imax is the
maximum value among all the pixel data, Imin is the minimum
value among all the pixel data, μ is our defined pixel mean and
σ is our defined pixel standard deviation, equal to the mean and
standard deviation values of the ImageNet database, respec-
tively. After normalization, the image pixel values are adjusted
to the interval [0, 1]. After standardization, the image pixel
values are transformed into a distribution of mean and standard
deviation values of the ImageNet database.

Figure 6. A Transformer encoder in the multimodal fusion module consists of cross-attention, self-attention, and feedforward layers.
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5.2. Spectrum Processing

Our spectral data also come from SDSS DR16. First, to be
able to feed the spectral data into our deep learning model for
subsequent training, we need to cut the wavelength range of the
spectra into the same window of 4000–9000Å, thus ensuring
that the spectral dimension of each object is 3522 dimensions.
In this process, some spectra have less than 3522 dimensions in
the wavelength range we divide, and cannot be used as part of
the data set for subsequent training, so we remove this part of
the spectra. At the same time, to ensure the one-to-one
correspondence between the spectra and the two modalities of
the images, we remove the images corresponding to the spectra
that need to be removed as well. After the deletion, our
multimodal data set has 4752 BHBs samples and 7280 non-
BHB samples, and the ratio of positive and negative samples is
about 65%.

Then, we need to pre-process the spectra for normalization
(Paoletti et al. 2018). Since the fluxes of the same spectral data
on different bands tend to have different scales, we first scale
the data to the same distribution by normalization measures.
We need to normalize the scaling of all valid spectral data using
the following Equation (16)

S
S S

S S
16i

i min

max min
=

-
-

( )

where Si is the spectral data to be processed, Smax is the
maximum value in that spectral data and Smin is the minimum
value in that spectral data. After this normalization process, all
the spectral data are scaled to the distribution of (0, 1], thus
ensuring that they can be trained effectively using the model we
built.

6. Experiment

We randomly take 70% of the samples for training, 20% for
validation, and 10% for testing. That is, to ensure the reliability
of our model’s performance, we divide the data set into a
training set and an independent test set, with the former
consisting of 90% of the data and the latter comprising the
remaining 10%. Specifically, the training set was utilized for
the training process, while the test set was kept separate for the
sole purpose of evaluating the model’s performance in an
unbiased manner.

Figure 7. Throughout our multimodal fusion process, this diagram depicts the entire detailed process of multimodal data from spectrum and image from the data input,
to the final output. First, the pre-processed multimodal data are fed separately into the encoder model for multimodal feature extraction. In this case, spectral features
are extracted from the spectral data by our defined VGG1D convolutional encoder, and image features are extracted from the image by the ResNet convolutional
model. We then feed the extracted features into our improved Transformer multimodal fusion network simultaneously, and by using the cross-attention and self-
attention modules, we can achieve a feature-level fusion with potential semantics between the two modalities, allowing sufficient interaction between the more
divergent modal features to form a fused one. Finally, a unified representation of the two modalities is formed after the feedforward layers. Finally, the fused features
are classified using a classifier to obtain the prediction results of the data.

Table 2
The Number of Samples in our Data Set Before and After Data Processing

Type Original
After Image
Processing

After Spectrum
Processing

BHBs 4985 4810 4752
Non-BHBs 7378 7378 7280
Total 12,363 12,188 12,032
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After extracting the features of spectra and images using the
encoder, the modified Transformer-based multimodal fusion
module described in Section 4.3 is used to combine the features
of both modalities. We define 8 layers of transformer blocks,
each with 8 attention heads, which are empirical values. For
large networks such as Transformer, the model is unstable in
the initial stage of training and can easily become difficult to
train. Specifically, we employ AdamW with an initial learning
rate of 1e-4 and weight decay of 5e-2 as the optimizer for the
Transformer. We still use the Cross-Entropy Loss Function and
a dynamically adjusted learning rate strategy to update the
model’s gradient. We first change the model’s hyper-
parameters on the validation set, then complete the model’s
training. Finally, the model is loaded with the saved optimal
model parameters and weights and tested on the defined
test set.

Our hardware and software experimental environments are
shown in Table 3 below. In order to speed up the processing of
image and spectral data, we use NVIDIA GeForce RTX 3070
graphics card to speed up the data, thus significantly reducing
the time required to train our model.

7. Model Evaluation and Experimental Results

We first define the evaluation metrics for the model in
Section 7.1. We then show how well our multimodal fusion
model performs on the test set in Section 7.2. To demonstrate
the effectiveness of our improvements to the multimodal fusion
module, we perform ablation experiments in Section 7.3.
Finally, we compare results with several powerful baselines in
Section 7.4. To demonstrate the validity of multimodal
learning, we compare the performance of the multimodal
model with two unimodal models using only images and only
spectra; to show the superior performance of our proposed
multimodal fusion model, BATMM, we compare it with other
common and effective baseline models. To ensure the validity
and reliability of our experimental results and to reduce the
instability of the model performance due to random factors
during the training process, we run five times randomly and
calculate the average results with the standard deviation values
for each experimental task, thus greatly improve the reliability
of our model.

7.1. Evaluation Metrics

In this experiment, we use a confusion matrix to describe the
classification results based on the actual class of each object
and the classes predicted according to our model. Table 4
shows the confusion matrix, where each row of the confusion
matrix represents the real class, and each column represents the
predicted class. The positive and negative examples in this
paper represent the BHBs and non-BHBs, respectively. TP
denotes the number of true BHBs predicted as BHBs, FN
denotes the number of true BHBs incorrectly predicted as non-
BHBs and FP denotes the number of non-BHBs incorrectly
predicted as BHBs.
In this study, since BHBs recognition is a binary classifica-

tion problem, we use Precision, Recall, and F1 score, which are
commonly used in binary classification problems, to evaluate
the performance of the proposed method. Precision is the
proportion of all predicted positive samples that are true
positive; Recall is the proportion of all positive samples that are
correctly predicted as positive. Precision and Recall are defined
by using Equations (17) and (18), respectively. F1 score is
computed by Equation (19) and interpreted as the summed
average of Precision and Recall. Precision, Recall and F1 score
are metrics used to evaluate the performance of a model. The
larger Precision, Recall and F1 score of a model, the better
performance the model has

Precision
TP

TP FP
17=

+
( )

Recall
TP

TP FN
18=

+
( )

F1 2
Precision Recall

Precision Recall
. 19= ´

´
+

( )

For machine learning, the Receiver Operator Characteristic
(ROC) curves are widely used in binary classification problems
to evaluate the confidence of classifiers. In addition, P–R
curves are also used to evaluate the classification performance
of models. In the ROC curve, the x-axis is FPR and the y-axis is
TPR. FPR refers to the probability that actual negative samples
are incorrectly predicted as positive samples, defined as
Equation (20). TPR refers to the probability that the actual
positive samples are correctly predicted, defined as
Equation (21). In the P–R curve, the x-axis represents Recall
and the y-axis shows Precision. AUC is defined as the area
under the ROC curve. When AUC is closer to 1, the model has
better performance. The ROC curve is near the left upper angle
and the P–R curve is near the right upper angle, the model has
better classification accuracy

FPR
FP

FP TN
20=

+
( )

Table 3
Experimental Environment

Placements Configuration

GPU NVIDIA GeForce RTX 3070
Computer language Python
Python editor PyCharm
Function library Pytorch 1.10.0 CUDA 11.1
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TP FN
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7.2. Experimental Results

The final saved parameters and weights are loaded into the
model for evaluation. To evaluate the validity of our proposed
model, a pre-preserved and independent test set is utilized. This
test set is not used during the training phase. As shown in
Table 5, for the whole sample, Precision, Recall and F1 of our
model are 94.45%, 95.18% and 94.78%, respectively; for
BHBs, these metrics are 91.58%, 95.78% and 93.63%,
separately. The results all show that the BATMM model has
satisfactory classification performance.

We plot the ROC curve and PR curve for one of the times, as
shown in Figure 8. The P–R curves are plotted separately for
BHBs, non-BHBs and the whole sample. In the ROC curve,
AUC is 0.99, as well as the curve positions in the two curve
diagrams, which further indicates that the BATMM model has
an excellent performance.

By incorporating Slef-attention and SENet Block modules,
the encoder is able to dynamically allocate weights to various
features throughout the training phase. Figure 9 depicts the
encoders’ assigned weights. Upon examining the weights
assigned to the seven spectral wavelength ranges, it was
discovered that the blue range of spectra plays a more vital role
in classifying BHBs. Similarly, the analysis of the image
encoder weights for each band indicated that the u-band
photometry was crucial for the classification of BHBs,
contributing approximately 32%. Based on these results, we
can infer that the u-band or blue range of the spectra are pivotal
attributes that facilitate the differentiation of BHBs from other
stars. It is noteworthy that BHBs display a sharp and prominent
Balmer jump in this region. Therefore, a reasonable increase in
the weighting of these inputs can enhance the performance of
our model.

7.3. Ablation Study

To validate the effectiveness of the image and spectrum
encoders, we conduct a series of ablation experiments to
examine the impact of assigning weights to different
wavelength ranges of the spectrum and image on the
classification accuracy of the model. The experimental results
are shown in Table 6. Our findings indicate that the
incorporation of a Self-attention Block in the spectrum encoder

allows for distinct weights to be assigned to diverse wavelength
ranges, thereby enhancing the model’s classification accuracy.
Furthermore, the addition of the SENet Block to the images
results in improved classification performance, demonstrating
the effectiveness of the proposed encoder enhancements.
The Transformer can process the spectra after encoding

alone, then we verify whether the joining of image modalities is
helpful. When using Transformer to fuse multimodal data, we
assign one semantic embedding to the image and another to the
spectrum in order to distinguish the features of the two
modalities. Since the image is a weak modality compared to the
spectrum, in order to prevent the image from negatively
affecting the multimodal fusion and thus reducing the fusion
performance, and allowing the model to learn more effective
multimodal global features, we add the cross-attention module
to the Transformer internally to first obtain the image
representation related to the spectrum and then use self-
attention to obtain the global representation after multimodal
fusion. Therefore, to prove whether our improvements to
Transformer are effective, we perform an ablation study on the
incorporation of semantic embedding and cross-attention.
All experimental data sets and hyper-parameter configura-

tions are the same as before, and the experimental results are
shown in Table 7. Compared with using Transformer alone to
process the spectra, the classification performance of the model
has no significant variation after adding the images without the
cross-attention module, and it may even be reduced. Based on
both spectra and images, the performance of the model is
improved when adding semantic embedding or the cross-
attention module, and the classification performance of the
model is further improved when adding semantic embedding
and the cross-attention module, which demonstrates the validity
of the model improvement using cross-attention. Thus, the
contribution of cross-attention to the recognition of BHBs is
verified by obtaining the image representation related to the
spectra and then performing multimodal fusion, which enables

Table 4
Confusion Matrix

Predicted as Positive Examples Predicted as Negative Examples

True positive examples TP FN
True negative examples FP TN

Table 5
Experimental Results of the BATMM Model

Type Precision(% ± σ) Recall(% ± σ ) F1 Score(%±σ)

BHBs 91.58 ± 0.95 95.78 ± 0.19 93.63 ± 0.52
Non-BHBs 97.33 ± 0.19 94.59 ± 0.48 95.94 ± 0.25
ALL 94.45 ± 0.45 95.18 ± 0.29 94.78 ± 0.38
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more efficient interaction and fusion of the two modalities to
improve the classification performance.

7.4. Model Comparison and Analysis of Results

For the BATMM multimodal fusion model, we first compare
the classification performance with the unimodal model to
prove the superior performance of our proposed multimodal
learning strategy for the identification of BHBs. Second, we
also compare it with other efficient fusion strategies. To ensure
the validity of the comparison results, the simple linear

classifier is used for each baseline during classification. We
detail each comparison model below. The comparison results
are shown in Table 8 and Figure 10.

7.4.1. Image-only

We use a pre-trained model of ResNet-50 and pool the
model output at the end of the model to generate a 512
dimensional feature vector for each image, and then apply a
linear classifier to classify the image data.

Figure 8. The ROC curve (left panel) and P–R curve (right panel).

Figure 9. The weights assigned by the encoders.

Table 6
The Results of Ablation Experiments for Different Models

Modality Model Precision (% ± σ) Recall (% ± σ) F1 Score (% ± σ)

Spectrum VGG1D 91.15 ± 1.08 91.05 ± 1.41 91.00 ± 1.12
+ self-attention 92.18 ± 0.39 91.93 ± 0.51 92.02 ± 0.20

Image ResNet 72.58 ± 1.09 72.60 ± 1.09 72.57 ± 1.09
+ SENet Block 72.96 ± 1.25 73.12 ± 0.88 73.01 ± 1.10
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7.4.2. Spectrum-only

We utilize the VGG1D convolutional model proposed to
acquire spectral features. Then a 512 dimensional representa-
tion vector is generated for each spectrum by pooling
operations and mapping of fully connected layers, and a linear
classifier is performed for classification. We compare our
proposed model with other models used for the identification of
BHBs. Previous studies in the field of BHBs identification
using machine learning have primarily utilized support vector
machines (SVMs; Smith et al. 2010) and XGBoost (Vickers
et al. 2021) models, with XGBoost exhibiting a superior
recognition accuracy in comparison.

7.4.3. Early Add

In practice, the early add is a simple and effective way of
multimodal fusion, with the advantage of low complexity
(Gavrilyuk et al. 2020). We sum the feature vectors generated
for each spectrum and image with Spectrum-only and Image-
only, resulting in a 512 dimensional feature vector, which we
treat as a multimodal feature vector, and use a linear classifier
for classification.

7.4.4. Early Concat

For multimodal methods, concatenation is often used as an
essential baseline (Sun et al. 2019; Shi et al. 2022). We
concatenate the feature vectors generated for each spectrum and
image with Spectrum-only and Image-only using a concate-
nated feature dimension of 1024 dimensions and then use a
linear classifier for classification.

7.4.5. VGG1D

CNNs are very powerful in feature extraction. We first
concatenate the spectral and image feature vectors to produce a
multimodal feature encoding with a dimension of 1024, then
feed it into the VGG1D convolutional network we have built to
extract multimodal features and realize the classification task
with these extracted features.

As indicated in Table 8, comparing Early Add, Early Concat,
VGG1D, and our proposed BATMM multimodal models with
the Spectrum-only and Image-only unimodal models, it is seen
that the F1 scores of our multimodal models after fusing
spectral and image information are higher than those of the two
unimodal models. In particular, our proposed BATMM multi-
modal classifier has F1 score of 94.78%, which is 2.76% and
21.77% higher than the two unimodal models respectively. It is
also noticed that there is a difference between the classification
performance using only images and only spectra, and the
performance with only spectra is much better than that with
only images, mainly because spectra have more abundant
information (e.g., spectral line strength and width, different
continuum shapes) than images and the main features of images
(e.g., color, edges, and luminosity) vary less between positive
and negative samples. In contrast, we obtain better classifica-
tion results by fusing spectral and image information to
complement each other. As a result, it is further proved that the
accuracy of classification and recognition of BHB stars through
multimodal learning is effectively improved.
Our proposed model was compared to previous models,

namely SVM and XGBoost, that have utilized machine
learning techniques for BHB identification. The results in
Table 8 showed that our model outperformed both SVM and
XGBoost models, both in the case of using only spectral data
through the VGG1D model and multimodal data, implying that
our proposed model has superior performance.
As shown in Figure 10, comparing the proposed BATMM

model through the fusion strategies with Early Add, Early
Concat, and VGG1D, the BATMM classifier shows the best
performance in terms of Precision, Recall and F1 score, which
indicates that the performance of multimodal classification
models may be improved by implementing a potential feature-
level interaction between two modalities through the Transfor-
mer and introducing an attention mechanism that enables fuller
fusion between the features of the more divergent modalities.

8. Discussion

The experimental results show that the proposed BATMM
multimodal fusion model has superior performance compared
to unimodal classification models and other multimodal
classification models. Therefore our model can be used to
identify BHBs more accurately. With deep learning algorithms,
we can automate the classification of celestial objects with
higher accuracy when faced with large amounts of astronom-
ical data, thus freeing us from the tedious steps of manual
identification of BHBs.
Our multimodal model uses the transfer learning strategy

where the multimodal fusion module and the feature extraction
module do not have to be trained simultaneously, thus allowing
flexibility to replace encoders for better results when more
powerful encoders for images or spectra are available. In

Table 7
The Results of Ablation Experiments of Transformer (Sem refers to Semantic

Embedding, CA represents Cross-attention)

Model Precision(% ± σ) Recall(% ± σ) F1 Score(% ± σ)

Transformer(with
spectrum)

93.84 ± 0.22 93.78 ± 0.11 93.80 ± 0.06

+ Image 93.66 ± 0.67 93.50 ± 0.69 93.58 ± 0.69
+ Image + Sem 93.73 ± 0.39 94.23 ± 0.12 93.95 ± 0.17
+ Image + CA 94.27 ± 0.83 94.45 ± 0.83 94.35 ± 0.83
+ Image + Sem

+
CA(BATMM)

94.45 ± 0.45 95.18 ± 0.29 94.78 ± 0.38
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addition, our model is well scalable and can be easily extended
to other applications for identifying and classifying target
objects. Given the limitations of supervised learning, when our
model needs to be applied to the classification task of other
celestial objects, we need to reacquire the multimodal data set
corresponding to the images and spectra of the objects and
retrain the model using the new data set. When dealing with
different data, we also need to consider the datas character-
istics, so we can suggest other strategies to improve the model
and make it more customizable.

For both modalities, we can do a further fine-grained
alignment. For example, we can add a comparison learning
strategy in a subsequent improvement. Before the modalities
are fused, we first realize the alignment between the different
modalities through contrast learning to further close the
distance between the two modalities, so that the different
modalities can interact more fully at a fine-grained level in the
process of multimodal fusion. We can also explore other ways
to improve the Transformer’s attention mechanism to make it
more applicable to a wide range of multimodal learning tasks.

In contemporary times, large survey telescopes generate
copious amounts of celestial data. Simultaneously, the
immense quantity of data requiring analysis and processing

presents a considerable challenge. Consequently, the develop-
ment of accurate and efficient deep learning models for the
automated examination and study of celestial objects is a topic
deserving of ongoing investigation. Enhancements in the
precision and dependability of these models can be achieved
by combining heterogeneous, multi-source, and multimodal
data, thereby optimizing the utilization of the abundant celestial
observational data available. As such, it is essential to consider
the expansion of these models. In addition to the dual
modalities of image and spectral data for celestial entities,
efforts should be made to integrate information from additional
modalities, as well as combine data from different wavelengths
or telescopes.

9. Conclusion

We introduce the BATMM multimodal learning model
designed for BHBs identification, comprising three modules:
the spectrum encoder, the image encoder, and the Transformer
multimodal fusion module. To improve the identification
accuracy of BHBs using image and spectral features, we
allocate distinct weights to each feature and find that the blue
range of the spectrum and u-band of the image are crucial.
Furthermore, we incorporate a cross-attention mechanism in
the Transformer multimodal fusion module, enhancing the
attention ability of the original model based on the character-
istics of the two modalities. Our proposed model is thus more
suitable for multimodal classification tasks.
Based on spectra and images, various models are compared,

of which our proposed BATMM model shows its superiority
and achieves 94.45% Precision, 95.18% Recall and 94.78% F1
score on the test set. The results show that our proposed
multimodal learning strategy has excellent performance and
significantly improves the classification accuracy compared to
unimodal models. Moreover, the BATMM fusion model
performs better than other multimodal fusion strategies. In
addition, the effectiveness of our improvements is demon-
strated through ablation experiments. Finally, the BATMM
multimodal learning model can be used to automatically
identify BHBs, which can help construct a larger sample of

Table 8
Performance Comparison of the Improved BATMM Model and the Other Models

Input Model Precision (% ± σ) Recall (% ± σ) F1 Score (% ± σ)

Image-only ResNet 72.96 ± 1.25 73.12 ± 0.88 73.01 ± 1.10

Spectrum-only SVM 75.80 ± 0.49 89.41 ± 0.32 82.04 ± 0.33
XGBoost 84.46 ± 0.38 88.91 ± 0.53 86.63 ± 0.19
VGG1D 92.18 ± 0.39 91.93 ± 0.51 92.02 ± 0.20

Multimodal Early Add 92.59 ± 0.34 91.99 ± 0.24 92.25 ± 0.25
Early Concat 93.12 ± 0.70 92.49 ± 0.76 92.77 ± 0.72
VGG1D 94.15 ± 0.61 93.81 ± 0.59 93.96 ± 0.57
BATMM 94.45 ± 0.45 95.18 ± 0.29 94.78 ± 0.38

Figure 10. Comparison of multimodal fusion methods.
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BHBs and help study the Galaxy even further. This model may
also be applied to other classification problems faced in
astronomy utilizing multimodal data.
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