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Uncovering the physical contents of the nontrivial topology of quantum states is a critical problem in con-
densed matter physics. Here, we study the topological circular dichroism in chiral semimetals using linear re-
sponse theory and first-principles calculations. We show that, when the low-energy spectrum respects emergent
SO(3) rotational symmetry, topological circular dichroism is forbidden for Weyl fermions, and thus is unique
to chiral multifold fermions. This is a result of the selection rule that is imposed by the emergent symmetry
under the combination of particle-hole conjugation and spatial inversion. Using first-principles calculations,
we predict that topological circular dichroism occurs in CoSi for photon energy below about 0.2 eV. Our work
demonstrates the existence of a response property of unconventional fermions that is fundamentally different
from the response of Dirac and Weyl fermions, motivating further study to uncover other unique responses.

Introduction.— The interaction between chiral materials
and circularly polarized light is a topic of broad interest in
fundamental sciences [1-10]. Because chiral materials have
a definite left- or right-handed crystalline structure, they re-
spond differently to the left and right circularly polarized
light. Natural optical activity (i.e., optical rotation and circular
dichroism with time-reversal symmetry) and the circular pho-
togalvanic effect are such phenomena due to the light-helicity
dependence in the refractive index and DC photocurrent, re-
spectively.

The quantization of the circular photogalvanic effect in chi-
ral topological semimetals have gained attention recently [7—
9, 11-13]. In three-dimensional chiral crystals, a band-
crossing point carries a quantized magnetic monopole charge
in momentum space, which is the Chern number [14, 15].
While the magnetic monopoles appear in pairs in the Bril-
louin zone by the fermion doubling theorem [16], monopole
and anti-monopole are not at the same energy, in general, be-
cause there is no symmetry to relate them in chiral crystals.
The uncompensated monopole charge of a chiral fermion near
the Fermi level can manifest through physical responses. The
quantized circular photogalvanic effect is a rare example of
topological optical responses originating from the monopole
charge of a chiral fermion.

More recently, another topological optical phenomenon
was discovered in chiral topological semimetals [17, 18]. It
was proposed that linearly dispersing chiral fermions show
topological circular dichroism, where the helicity-dependent
absorption of light is determined only by universal quanti-
ties, including fundamental constants and the ratio between
the sample thickness and the light wavelength. While this dis-
covery provides another exciting example of topological opti-
cal responses, the results in Ref. [17, 18] need further inves-
tigation because they were derived from physical arguments
using Fermi’s Golden rule without rigorous derivations.

In this Letter, we investigate topological circular dichro-
ism in chiral topological semimetals using linear response
theory and first-principles calculations. Remarkably, we find
that topological circular dichroism does not appear for Weyl
fermions, which are chiral fermions with twofold degenerate

band-crossing points, and is thus unique to chiral multifold
fermions having three- or four-fold degenerate band-crossing
points. We also find differences in the magnitude and spectral
range of the quantized response for chiral multifold fermions
compared to the original proposal. We show that these new
features are mainly because of the selection rule imposed by
the symmetry under the combination of particle-hole conjuga-
tion and spatial inversion.

Unlike the quantized circular photogalvanic effect, topolog-
ical circular dichroism does not depend on the current relax-
ation time, which depends on materials. Instead, the topolog-
ical circular dichroism relies on isotropic linear dispersion.
To test our model analysis, we perform first-principles calcu-
lations of the circular dichroism for CoSi, a chiral threefold
semimetal with good linear dispersions per spin degrees of
freedom [19-23]. The result agrees well with model analysis,
showing approximate quantizations for photon energies below
about 0.2 eV.

Isotropic k dot p model.— We first consider the model
of isotropic chiral pseudospin-j fermions in three dimen-
sions [14, 20].

Hy(k) = —p+ xvk - J, (1)

where k is the wave vector, J is the pseudospin-j operator
satisfying the su(2) algebra because of isotropy. The sign x =
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FIG. 1. Topological circular dichroism by a chiral multifold
semimetal hosting a pseudospin-j fermion near the Fermi level.
Ir,/grs are the transmitted intensity for the left (L) and right (R)
handed light. N/ = 0, N1 = 1, and N3,5 = 3.
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FIG. 2. Band structure of pseudospin-j fermions described by
Eq. (). (@ j = 1/2. (b)j = 1. (¢) j = 3/2. The spectrum
has the same shape along k;—.,,,. because of isotropy. Arrows rep-
resent possible optical transition channels allowed by the selection
rule due to isotropy [19, 24]. Optical transitions with red x marks
are forbidden by the Pauli blocking with the chemical potential rep-
resented by the blue dashed line. C'P symmetry further constrains
that transitions between h = +1/2 bands (arrows with red triangles)
does not contribute to natural optical activity.

41 determines the chirality. The energy eigenvalues are
E, (k) = —u + hwkh,, 2)

where the integer h,, = —j,...,j is the helicity quantum
number [Fig. 2]. The crossing point at k = 0 has (25 + 1)-
fold degeneracy. The band with helicity A carries the Chern
number ¢;, = —2xh on a closed surface that encloses the
node (i.e., the magnetic monopole charge in momentum space
defined by the Berry curvature), which serves as a topolog-
ical charge of the spin-j fermion. We have a Weyl fermion
for j = 1/2 and a chiral multifold fermion for a higher j.
In this model, optical transitions occur between adjacent en-
ergy levels only because of an optical selection rule imposed
by isotropy [19, 24]: for m # n, transition dipole moment
<1/)mk|6f‘|’t/Jnk> X (umk|J|unk> =0if hm 7’5 hn + 1.

Our model has symmetry TH (k)T = H(—k) under ef-
fective time reversal T that flips the pseudospin. Therefore,
the anomalous Hall effect is forbidden. However, natural op-
tical activity can arise from broken inversion symmetry.

Below we focus on isotropic spin-1 fermions because they
are more relevant to real materials but consider spin-3/2
fermions as well for completeness. In crystals, the topolog-
ical protection of multifold fermions require particular space
group symmetries. When spin-orbit coupling is negligible,
space groups 195-199 and 207-214 combined with time re-
versal symmetry can protect isotropic threefold fermions [14].
A topologically stable isotropic threefold fermion can also
appear in spin-orbit coupled antiferromagnets with type IV
magnetic space groups Pr213(198.11) Pr4332(212.62) and
Pr4,32(213.66) [25]. On the other hand, a threefold fermion
stabilized by other space group symmetries does not respect
full isotropy in the low-energy limit [14, 25]. Topologically
protected spin-3/2 fermions does not have isotropy unless fine
tuned [14]. Nevertheless, we do not exclude the possibility
of a fine-tuned isotropic spin-3/2 fermions and consider both
isotropic spin-1 and spin-3/2 fermions.

Topological circular dichroism from natural optical
activity.— In crystalline solids, natural optical activity is de-

scribed by the part of the optical conductivity that is linear
in photon momentum q [4]. Let us consider the expansion
ap(W, q) = Tap(W) + Tape(w)qe + O(¢?). In our model, the
refractive indices for light with left (L) and right (R) helicity
are

nL/R = \/1 + Xaz + (NOCUIyZ/2)2 + NOCnyz/27 3)

where X5 = 0ap(—icow) ! is the electric susceptibility, and
the light helicity is defined by the sign of q - :E* x E. For
q = |q/(0,0,1), L and R polarization vectors are respec-
tively L = (1,—4,0)/v2 and R = (1,i,0)/v/2. Because
of the isotropy in our model, Xz, and o, are the only non-
vanishing tensor components. The real and imaginary parts of
circular birefringence n;, — ng = poCo,y . is responsible for
the optical rotation and circular dichroism, respectively.

Natural optical activity has two contributions from the
Fermi sea and the Fermi surface, respectively [4, 5, 26]. The
formula for the Fermi sea part is [4]
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hw,,, —hw,, are the differences of the Fermi-Dirac distributions
and energy eigenvalues, respectively, v8, . = (V1|0 [Vni)
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e eape (Pmic| M€ 1h, ), and MEP™ is the spin magnetic
moment operator. The spin magnetic moment does not con-
tribute to the response in systems with negligible spin-orbit
coupling; we discuss its effect in spin-orbit coupled systems
below. The Fermi surface part is given by [5, 27]
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The effect of dissipation is included by the substitution w —
w+irh

In the clean limit where w7 — oo, the Fermi sea part is
purely imaginary and thus describes circular dichroism.
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FIG. 3. The imaginary part of 0, . of a pseudospin-j fermion. (a,b)
Spinless linearly dispersing fermion. (a) Fermi sea contribution crgyz
and (b) Fermi surface contribution afyz of the linearly dispersing
model in Eq. (1) without quadratic terms. While we take wrT — oo in
(a), we introduce a finite relaxation time in (b). We take p > 0 for all
plots. (c,d) Band structure and agyz with quadratic terms in Eq. (10).
pw=001leV, A=1.07a%eV, B = —1.72a% eV, C = 3.26a> eV,
and Aw = 1.79a eV, where @ = acosi/(27), acosi = 4.45 A is the
lattice constant of CoSi, i ! = 1 meV. The transparent plane in (c)
shows the Fermi level. The orange curve in (d) shows the isotropic
case (B = C' = 0 with other parameters kept unchanged) for com-
parison. (e,f) Band structure and ngz with spin-orbit coupling in
Eq. (11). w = 30a meV, A = 30 meV, and 7ir ~* = 10 meV. In
(), the spin part is due to spin magnetic moment, and the orbital part
refers to the other contributions.

For the model in Eq. (1), we obtain quantized values

2
0 ; €
Oabe = ZéachMX?)fh
0 Jj= 1/2v
X O(hw — [u]) i=1L

3[0(hw — 220y — O (hw —2|ul)] j =3/2,

The Chern num-
manifested in

where s, = p/|p| [Fig. 3(a)l.
ber origin of the quantization is
the expression of the nonvanishing value o9, =
—ispcajj€®(6h) 71 (14 v2;/v2j41) /(1 = va; /vaj41),
where cpj41 = —(2m)"1§dS - Fojy; = —2xj is the
outward Berry flux of the topmost band, i.e., band 2; + 1 [28].
We note that the velocity ratio takes a universal value inde-
pendent of material specifics, vo;/v2j41 = —1, 0 and 1/3 for
j =1/2,1, and 3/2, only when the effective Hamiltonian has
isotropy, which requires specific space group symmetries as
we discuss above.

The isotropic linearly dispersing Weyl fermion does not

show circular dichroism from the Fermi sea [42]. This is
because of the constraint from C' P symmetry that imposes
B = 0and v2,, + v, = 0 between C P-relatd states m
and n, where C' is particle-hole conjugation, and P is spatial
inversion [28]. The nontrivial circular dichroism of multifold
fermions is due to C'P-asymmetric optical excitations which
generate the net change of the orbital magnetic moment. This
favors the absorption of one particular circular polarization of
light to the other polarization.

Let us consider shining linearly polarized or unpolarized
light. Then, the incident intensity is the same for L/R he-
licity on average. The transmitted light intensity after prop-
agation of the distance d within the material is Iy, =
27 Iy| exp(2ming  rd/N)|* for L/ R helicity, where I is the
incident light intensity. The transmissive circular dichroism is
defined by

I, — In
Ch=—*—=———"=
Ir, + Ig

®)

= tanh (XSM 3

4N, 7 d >
where o = pgce? /2h is the fine structure constant.

In the clean limit, the Fermi surface part does not contribute
to the circular dichroism because it is real valued, where

e? 2 352(hw)?/2
OChe = CabeXg T 71— [W + fj} ., )
and f1/2 = fi = 0, and f3)2 = Tl = 3(hw)?/8]/[n? —
(hw)? /4] But this contributes to the circular dichroism when
there is a finite relaxation and is proportional to 7—!. Fig-
ure 3(b) shows the case with 27~ = 0.01 .

Effect of quadratic dispersion and spin-orbit coupling.— To
see the effect of O(k?) terms, we consider H = Hy + H; of
a threefold fermion with an additional quadratic Hamiltonian

allowed by octahedral symmetry:

Xk? —2Ck?  Bhyk. Bk,
H, = Bkyk.  Xk*—2Ck?  Bk,k, ,
Bk, Bk,k,  Xk? —20k>

(10)

where X = A+ 2C/3, and J = {—Xg, A5, — A7} for Hp, and
\; 18 the Gell-Mann matrix [13].

Figure 3(c) shows the band structure with quadratic terms
included. We take © = 0.1 eV and the model parameters
for CoSi derived in Ref. [13], which are A = 1.07a% eV, B =
—1.72a% eV, C = 3.26a2 eV, and Aiv = 1.79a eV, where & has
the dimension of length (& = acosi/2m, where acosi = 4.45
A is the lattice constant of CoSi).

When the quadratic terms are included, the value of
Im(c?,,) deviates from the quantized plateau [Fig. 3(d)].
The deviation originates from the momentum dependence of
the velocities of bands [28], and the effect of selection-rule-
breaking transitions is negligible (less than 1 %). Therefore,
an isotropic quadratic dispersion that preserves the selection
rule can lead to a comparable deviation from the quantization
[orange curve in Fig. 3(d)].



@
£
B

== Fermi sea-orbital \5 == Fermi sea-orbital

Fermi surface-orbital E -0.5F Fermi surface-orbital
==+ Fermi sea-spin
05k A1k Fermi surface-spin
1 1 1 1 1 I )
0.01 0.1 0.2 0.3 0.4 0.01 0.1 0.2 0.3 0.4
o (eV) P (eV)

FIG. 4. Ab-initio calculations for threefold semimetal CoSi based
on density functional theory. (a,b) Band structure. (a) without and
(b) with spin-orbit coupling. The insets show the band structure near
the I' point. The horizontal green dashed line denotes the chemical
potential used for computing the agyz and afyz. (c,d) The imaginary
parts of Fermi sea (agyz) and Fermi-surface (afyz) contributions (c)
without and (d) with spin-orbit coupling. AT ~! = 1 meV.

The effect of spin-orbit coupling is twofold. One is the
spin-orbit splitting of the band struture, and the other is con-
tribution from the spin magnetic moment. The former effect is
absent in the case where Eq. (1) is realized in the presence of
spin-orbit coupling. Here, we consider the case of a threefold
fermion realized in each spin sector in the absence of spin-
orbit coupling, with application to CoSi in mind. In this case,
the spin-orbit coupling up to linear order in & is given by

Hsoc =s- (wk+ AJ), (11D
where s;—; , . is the spin Pauli matrix. For a threefold (per
spin) fermion, this splits the sixfold (including spin) degener-
acy into fourfold and twofold degenerate points by § Esoc =
3A [Fig. 3(e)]. Figure 3(f) shows that the circular dichriosm
approaches to the quantized value as the photon energy be-
comes larger than § Egoc. The effect of spin magnetic mo-
ment is negligible in the quantized regime.

Chiral threefold semimetal CoSi. We now turn the dis-
cussion towards material-specific DFT-based calculations to
test our model analysis. We focus on the transition metal
monosilicide family of materials CoSi, which crystalizes in
the B20 cubic structure [43, 44]. The crystal structure is chi-
ral, and it belongs to the P23 space group (SG198); it lacks
an inversion, mirror, and roto-inversion symmetry. The struc-
tural chirality and the octahedral symmetries lead to various
types of multifold fermions in these systems [43—46]. Specif-
ically, in the absence of spin-orbit interaction, CoSi host a
threefold degenerate nodal point at the zone center and double
Weyl fermion state at the corner of the cubic BZ [Fig. 4(a)].

We compute Im(c0,.) for CoSi using the Wannier
function-based tight-binding model [see Supplemental Ma-
terial for details]. The chemical potential (indicated by the

green dashed line) is set to be slightly above the threefold de-
generate crossing point to ensure full occupancy of the flat
band around the I"-point. The tuning of the chemical potential
has been experimentally achieved recently in RhSi via Ni dop-
ing [47]. As shown in Fig. 4(c), the calculated Im(c?, ) re-
sults strongly support our low energy model analysis. Specif-
ically, we found that in CoSi, the Im(c?J,,) starts from a fi-
nite value for low photon energy and it 'quickly approaches
the quantized value e?/3h, developing a plateau-like region
for 50 < hw < 200 meV. In this region, the optical transitions
involving the threefold fermion around the I' point plays the
important role. The small deviation from the quantized value
is attributed to the presence of quadratic band dispersion, and
it supports our model analysis. For Aw 2 200 meV, the opti-
cal transitions involving the states around the R point become
important, and consequently, the Im(agyz) changes sign, as it
strongly deviates from the quantized value. For comparison,
we also compute the Fermi surface contribution Im(ag’yz) for
CoSi, which was studied in a previous work [11]. In géneral,
Im(c§,.) is smaller compared to the Im(0?,.), and its value
depends strongly on the relaxation time, and in the clean limit
wT > 1. This Fermi surface contribution should be negligible
in the quantized region.

We further consider the effect of spin-orbit coupling in
Fig. 4(b,d). In consistent with model analysis, approximate
quantization of Im(agyz) still holds true even after including
the effect of spin-orbit coupling, and the spin magnetic mo-
ment contributes negligibly compared to the orbital part in the
plateau region.

We also explored other material candidates in this fam-
ily, including RhSi, and PtAl (see Supplemental Material [48,
49]). Our analysis suggests that in the absence of spin-orbit
coupling, the approximate quantization of Im(agyz) holds
true both in RhSi and PtAl. However, due to the presence of
large spin-orbit coupling in these compounds, the Im(c?, )
deviates from the quantized value. Interestingly, this devia-
tion is still approximately within 10 % for RhSi and 20 %
for PtAl, despite the spin-orbit coupling being signficantly
stronger compared to CoSi.

Conclusion.— Our analysis establishes that topological cir-
cular dichroism is the unique feature of multifold fermions in
the k dot p regime. Thin films will be ideal for an observation
of this effect because transmitted light intensity is exponen-
tially suppressed in bulk samples. Topological circular dichro-
ism is similar to the quantized absorption in graphene [50]
because it requires linear dispersion. The quantization is ex-
pected to be robust as long as photon energy is much larger
than thermal energy. However, disorder and interaction effects
can give deviations from quantized optical responses [51, 52],
in contrast to the quantum Hall effect. We leave detailed anal-
ysis of these effects for future studies.
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