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Highlights

Large interannual variability of ecosystem carbon fluxes at a semiarid savanna site

Flux variability governed by water availability metrics like precipitation and soil moisture
Positive trend in 19-year soil moisture and carbon uptake record

Models and satellites often capture less than half the variability in measured fluxes
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Abstract

Eddy covariance measurements of land-atmosphere energy, carbon, and water exchange now span
multiple decades at some sites, supporting an improved understanding of flux interannual variability
(IAV) and its ecophysiological and physical controls. Most eddy covariance IAV studies have focused on
temperate forest ecosystems, where carbon fluxes are large and flux records are longest — but also
where IAV is much lower than in dryland regions, which have been identified as an essential driver of
the trend and variability in the global terrestrial carbon sink. In this study, we leveraged 19 years of
continuous micrometeorological measurements at the AmeriFlux US-SRM mesquite savanna site in
southern Arizona, USA to quantify the IAV, trends, and drivers of carbon fluxes during the distinct spring
and summer growing seasons. We also assessed the ability of modern satellite and land surface models
to capture the IAV of seasonal water and carbon fluxes. Annual net ecosystem production (NEP) was
small and highly variable (23 +/- 64 gC m2yr?). Precipitation and associated measures of water
availability determined most of the variability in NEP, largely through their influence on annual and
seasonal gross ecosystem productivity (GEP) as opposed to ecosystem respiration (ER). Root-zone soil
moisture captured between 73% (spring) and 85% (summer) of GEP variability and between 73% (spring)
and 58% (summer) of ER variability. Throughout the study period, soil moisture and greenness increased
with associated increases in GEP, ER and NEP. These trends were strongly influenced by very productive
and wet summer growing seasons during the last two years, which were characterized by abundant
understory grass cover. Typically, less than half of the variability in growing season GEP and
evapotranspiration was captured by satellite-based estimates and land surface model simulations with
local site forcing and calibration, highlighting the ongoing utility of long-term datasets to support careful

model testing and improvement.
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1. Introduction

Drylands, classified as arid, semiarid, or subhumid, are defined as regions with high aridity where
potential evaporation exceeds precipitation for much of the year (Jenerette et al., 2012; Poulter et al.,
2014). Though low water availability limits the magnitude of carbon stocks and fluxes in drylands
relative to more humid regions, drylands play a dominant role in the trend and interannual variability
(IAV) of the global land carbon sink because their productivity is closely coupled to environmental
conditions, and they cover about 40% of the Earth’s terrestrial surface (Ahlstrém et al., 2015; Humphrey
et al., 2021; Poulter et al., 2014). Specifically, carbon flux variability tends to increase with site dryness
(Baldocchi et al., 2018; Biederman et al., 2017) as a result of increasing correlation with water
availability, which is typically more variable than the dominant controls on carbon exchange in more
mesic ecosystems. Furthermore, drylands are warming more rapidly than other regions (Huang et al.,
2017; L. Zhou et al., 2015); it is therefore vital to monitor dryland carbon and water fluxes and their
drivers with in-situ measurements as a means to assess and improve satellite and land surface models of
carbon and water exchange (Prentice et al., 2015; Running et al., 1999). Direct measurements of dryland
ecosystem fluxes using the eddy covariance method are an essential component of this task (Baldocchi,
2003), along with data collation, standardization, and sharing networks like AmeriFlux (Novick et al.,
2018 and highlighted in this special issue), OzFlux (Beringer et al., 2022) and FLUXNET (Pastorello et al.,
2020).

Continuous ecosystem flux measurements began in the 1980s and 1990s with the advent of improved
measurement equipment like smaller computers, sonic anemometers, and trace gas analyzers
(Baldocchi et al., 1988; Goulden et al., 1996; Shuttleworth, 1988). Associated flux site networks like
AmeriFlux coalesced in the 1990s, focused primarily on forested sites with temperate climates, as these
were geographically proximal to most flux researchers and represented large gross carbon fluxes (Novick
et al., 2018). At this time, drylands received very limited attention (Hastings et al., 2005; Hutley et al.,
2000; Unland et al., 1996), likely due to lack of funding and the widespread impression that they were
irrelevant to the global carbon cycle. Consequently, measurement of fluxes from dryland sites lagged
measurement of fluxes from more mesic sites by about a decade in the Americas (Fig. 1, left), despite
drylands making up roughly 30% of the AmeriFlux domain (North and South America). While there are

now multiple mesic forested and woodland sites with greater than two decades of data, only five



84  dryland sites in the AmeriFlux repository have 10-15 years of archived data, and only two have 16-20

85  vyears (Fig. 1, right).
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87 Figure 1. Number of dryland AmeriFlux sites by International Geosphere—Biosphere Programme
88 (IGBP) category, with data availability by year and by record length. Results are from an AmeriFlux
89 site search (https://ameriflux.lbl.gov/, accessed Nov. 20, 2022), with the following criteria: 1) mean
90 annual precipitation < 500 mm yr?, 2) excluding cropland, forest and wetland IGBP cover types. The
91 drop-off in data availability after 2017 is likely due to a lag between data collection and site operator
92 submission to the AmeriFlux network.

93 Robust examination of dryland carbon and water IAV and its drivers is a priority because atmospheric
94  inversions of net carbon dioxide (CO2) show substantial variation in the dryland terrestrial carbon sink
95 (Poulter et al., 2014; Zhang et al., 2018), and climate change is inducing trends in the drivers of water
96 and carbon fluxes (Ficklin and Novick, 2017; Friedlingstein et al., 2022). Furthermore, satellite and land
97  surface models (LSMs) within Earth system models often underestimate IAV (Keenan et al., 2012;
98 MacBean et al., 2021). To better understand the interannual variability and trends of dryland carbon
99  fluxes and their drivers, we used data from one of the longest dryland data records: a semiarid savanna

100  site in southern Arizona, USA. This site is located in the northern part of the North American Monsoon

101 region (Adams and Comrie, 1997) and is thus characterized by a dominant warm summer growing

102  season as well as a subdominant spring growing season in years with sufficient late fall/winter

103 precipitation.
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Using 19 years of continuous eddy covariance, soil, and meteorological measurements, our objectives
were to: 1) Investigate coupling between the interannual variability of hydrometeorological drivers and
ecosystem carbon fluxes, 2) Quantify trends in hydrometeorological drivers and ecosystem carbon
fluxes during both the spring and summer growing seasons, and 3) Assess the ability of modern land
surface and satellite models to reproduce the IAV of carbon and water fluxes at this site. While our
results are limited to one location, the magnitude and seasonal patterns of the site’s average water and
carbon exchange are similar to other semiarid shrubland and grassland sites in the Sonoran and
Chihuahuan desert regions of the greater North American Monsoon region (Anderson-Teixeira et al.,
2011; Biederman et al., 2017; Pérez-Ruiz et al., 2022; Scott et al., 2015) as well as to other warm dryland
sites that receive precipitation mainly in summer (e.g., parts of Australia, southern and Sahel regions of
Africa). Therefore, these results have broad implications for other semiarid savannas, grasslands and

shrublands.

2. Site Description, Climatology, and Expected Results

We used data collected from 2004 through 2022 at the Santa Rita Mesquite Savanna (Scott et al., 2009)
(AmeriFlux site US-SRM, 31.822N, 110.867W, elevation: 1116 m). The site has a mix of low-statured
trees with an understory of grasses, sub-shrubs, and succulents. The tree cover fraction, consisting
mainly of velvet mesquite (Prosopis velutina), is ~30%, which is at the margin of the IGBP biome
classifications for savanna (SAV) and woody savanna (WSA). While mesquite is a facultative
phreatophyte, there is no evidence that the trees access groundwater at this site where the water table
is very deep (Potts et al., 2008). Perennial C4 bunchgrass and annual (Aristida spp., Digitaria californica,
Muhlenbergia porteri, Bouteloua eriopoda, Eragrostis lehmanniana, Bouteloua aristidoides) cover ranges
from 15-60% depending on summer rainfall, and scattered sub-shrub and succulent cover fractions are
low (Vivoni et al., 2022). The bare soil fraction (20-50%) supports annual grasses and forbs when rainfall
is sufficient. Soils are deep loamy sand. Principal topics for previous studies using flux data at this site
include woody plant encroachment (Scott et al., 2015; Vivoni et al., 2022), tree versus grass competition
(Barron-Gafford et al., 2017; Potts et al., 2008), ecohydrology and hydraulic redistribution (Lee et al.,
2018; Scott et al., 2008; Scott and Biederman, 2019), soil respiration (Barba et al., 2018; Cable et al.,
2012; Roby et al., 2019), carbon cycling (Biederman et al., 2017), and plant ecophysiology (Barron-
Gafford et al., 2013; Hamerlynck et al., 2012, 2010). In the following section, we set the stage for the
current study’s hypotheses and results concerning the interannual variability of the savanna’s two

growing seasons by reviewing the seasonality of the site’s hydrometeorology and carbon fluxes.
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With 19-years of data, we can define an increasingly robust hydrometeorological and carbon flux
characterization of the site. The climate at US-SRM is classified as semiarid and monsoonal with about
55% of the annual precipitation falling in the warm summer months of July through September and
approximately 30% in the more hydrologically variable and cooler winter months of November-February
(Fig. 2). The foresummer months of May-June were reliably hot and dry while precipitation in the fall
months of September and October was occasionally augmented by tropical disturbances. The
seasonality of precipitation and air temperature gave rise to bimodal patterns of soil volumetric water
content (VWC) and plant greenness (as quantified by the Enhanced Vegetation Index, EVI, Fig. 2). Soil
moisture peaked in winter when atmospheric and plant water demand was low, declined to the annual
minimum in the foresummer, then increased again during the monsoon before decreasing in the fall
(though not as completely or reliably as in the foresummer). Legacy VWC from wet fall periods
sometimes persisted until spring. Soil water in the 0-30 cm rootzone for many of the understory plants
(mainly grasses) dried faster and more profoundly than 0-130 cm soil water, which was likely more
representative of the deeper soil volume accessible to overstory trees. Spring green-up was dominated
by mesquite trees leafing out in early April regardless of winter/spring precipitation, whereas increased
summer greening was due to understory grasses and, occasionally, additional mesquite leaf-flush in
years with abundant precipitation (Steiner, 2022). In the fall, greenness decreased as most understory
grasses began to brown in September, whereas mesquite trees retained their leaves until the cold

winter storms.
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Figure 2. The 2004-2022 weekly mean (+/- 1 standard deviation) precipitation (P), air temperature (Ta),
soil volumetric water content (VWC) at 0-1.3 m and 0-0.3 m depths, and MODIS enhanced vegetation
index (EVI).

The seasonality of site meteorology and plant phenology led to bimodal patterns of land-atmosphere
CO; and water exchanges (Fig. 3). The average net CO, uptake (NEP) tended to be slightly negative from
November through April and positive for a shorter spring and longer summer period. Bimodality was
strongest for gross ecosystem productivity (GEP) with clear spring and summer peaks, whereas peaks in
ecosystem respiration (ER) were less pronounced and broader. Evapotranspiration (ET) seasonality was
more unimodal, like ER, but less reduced in winter. GEP peaks lagged 1-2 weeks behind both ET and ER.
Based on the clear delineation of the two growing seasons as shown by the GEP climatology, we
examined the contribution and controls on the IAV of ecosystem carbon exchange in two growing
seasons with an equal number of months: the “spring” growing season from January-June and the
“summer” growing season from July - December. While there were a few years when the spring GEP
continued into June or summer precipitation occurred during the last weeks of June, results were
insensitive to whether June was included in the spring or summer total seasons because of the small
amounts of carbon exchange and precipitation in June relative to the peak growing season months.

Overall, we characterized a lower magnitude, but highly variable, spring period, and a higher magnitude,



174  but slightly less variable (relative to the means), summer period of physiological activity in this

175 ecosystem.
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177 Figure 3. 2004-2022 weekly mean +/- 1 standard deviation of net ecosystem production (NEP),

178  ecosystem respiration (ER), evapotranspiration (ET), and gross ecosystem productivity (GEP).

179 Our expected results are born out of shorter-term studies at this site or in this region. For the first

180 objective, any hydrometeorological forcing or flux that can quantify water availability (precipitation, soil
181 moisture, and evapotranspiration) should be closely related to gross ecosystem productivity (GEP) and
182  ecosystem respiration (ER) (Biederman et al., 2016). Because of the close coupling of GEP and ER, net
183 ecosystem production (NEP) should also be tightly linked to water and driven by changes in GEP

184 (Biederman et al., 2017, 2016). In addition, we hypothesized that NEP would be more sensitive to water
185 during the spring growing season than during the summer, based on results in other shrublands across
186  the southwestern US showing higher springtime ratios of GEP/ER for a given amount of water

187 (Biederman et al., 2018; Pérez-Ruiz et al., 2022; Petrie et al., 2015). For the second objective, we

188  anticipated that the high interannual variability of precipitation drives equally high or even higher

189  variability in carbon fluxes, which will make it difficult to identify significant C flux trends (Baldocchi et
190 al., 2018). Still, because the site lies within the region experiencing among the most severe

191 “megadrought” conditions since at least 800 CE (Williams et al., 2022), we expected that the associated

192 high temperatures, vapor pressure deficit, and precipitation deficits (especially in the winter) may have
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caused structural vegetation changes (e.g., declining cover and leaf area index [LAI], death of plants)
that leads to persistent ecosystem carbon loss (Roby et al., 2020; Schwalm et al., 2012; Scott et al.,
2015). For the third objective, we anticipated that satellite-based models will underestimate the
variability of carbon and water fluxes but that newer products that incorporate an improved
representation of moisture stress will better capture the IAV. Likewise, a calibrated land surface model
(LSM) should predict carbon and water flux IAV better than a model that uses standard parameter sets

as in global simulations (MacBean et al., 2021; Mahmud et al., 2021).

3. Methodology

Ecosystem Flux and Meteorological Measurements

The eddy covariance technique was used to measure ecosystem-scale CO,, water vapor, and energy
fluxes. Instrumentation on a 7 m tall scaffolding tower measured all variables needed to quantify 30-min
averages of NEP, ET, air temperature (Ta), vapor pressure deficit (VPD), air pressure, photosynthetically
active radiation (PAR), incoming and outgoing shortwave and longwave radiation, and precipitation (P).
NEP is an ecosystem-centered metric of net CO, exchange; a positive value represents a net uptake and
a negative value indicates a net release of CO, by the ecosystem. A specific instrumental bias in the
sensitivity of each open-path infrared gas analyzer used at the site (IRGA, LI-7500, Li-Cor Inc) was
discovered using side-by-side tests with other open-path and closed-path IRGAs. To correct for this bias
and to ensure comparability across periods when different analyzers were deployed, we multiplied the
30-minute vertical wind and CO; density covariance by a bias correction factor determined individually
for each IRGA through comparison with a closed-path analyzer (for more information see Scott et al.,

2015)

The prevalence of data gaps in the meteorological data was low, usually less than 1% of all the 30-
minute periods in each year. Except for P and PAR, these data were not gap-filled to compute annual
and seasonal averages. The site has redundant precipitation gauges on separate dataloggers and
another rain gauge is less than 1 km away. Differences in annual totals between the paired gauges were
less than ~10 mm or 3%. In the case of failed primary gauge measurements, data from the other site
gauge was used so that precipitation sums were gap-free. Missing PAR data, essential to partitioning and
gap-filling fluxes, were either filled with a relationship using site-measured incoming solar radiation or

PAR data from a nearby site (AmeriFlux site US-SRG, 5 km away).
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The flux data were filtered for spikes, instrument malfunctions, and poor quality (representing ~7 — 11%
of the ET and NEP data). The rejection criteria used to filter data included rain events, out-of-range
signals, and spikes with variability of CO,, water vapor , and/or sonic temperature greater than 2
standard deviations from the yearly mean. Daily ET was calculated by filling the gaps in the 30-minute
data using 14-day moving-average look-up tables of ET and incoming PAR, averaged over 100-pmol m

st intervals (Falge et al., 2001) and separated into morning (before 12 pm) and afternoon periods.

We partitioned NEP into gross ecosystem production (GEP) and ecosystem respiration (ER) by first
eliminating NEP data when the friction velocity, u*, was less than 0.15 m s. We then fit an exponential
function of air temperature to the remaining nighttime NEP data over a moving ~5 day window
(Reichstein et al., 2005) with varying window sizes to ensure that data from pre-storm (dry) periods
were not grouped together with post-storm data; this step was necessary because precipitation events
have been shown to result in immediate respiration pulses that change the relationship between
temperature and nighttime NEP, equivalent to ER (Roby et al., 2020). The resultant exponential
functions were used to fill missing nighttime NEP data and to model daytime ER. Missing daytime NEP
values were filled using a second-order polynomial of incoming PAR, fit to separately to morning and
afternoon data in a 5-day moving window. Finally, we calculated GEP as GEP = ER + NEP where GEP and

ER are always greater than or equal to zero.

To examine the trade-off between carbon uptake and water loss, we calculated water use efficiency in a
variety of ways (Knauer et al., 2017). At the ecosystem scale, the amount of gross productivity per unit
of total water evaporated was defined as WUE. = GEP/ET (gC kg*H,0) for the summer growing season
(Jul-Dec), for the peak growing months (Aug-Sep), and for peak August days when light and soil water
were non-limiting (daily average PAR > 250 umol m?2 s and VWCop30cm > 0.06 cm? cm™3), focusing on the
summer when most of the plants were actively photosynthesizing. Non-limiting light and soil thresholds
were determined by plotting GEP:VWC or GEP:PAR and visually identifying where the relationships
plateaued. For a more plant-centric metric that accounts for VPD limitations on stomatal conductance,
we also quantified the underlying WUE, WUE, = GEP* VPDY?/ET (S. Zhou et al., 2015). We averaged 30-
min values of WUE, under non-limiting light and soil water conditions (PAR > 800 pmol m2 s and VWCs.
30em > 0.06 cm? cm3), and only when evaporative losses were small (at least two days after rain). Results

were comparable when including only data three or four days after rain.

Root-zone Volumetric Soil Water Content

10
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Root-zone volumetric soil water content (VWC, cm3-water cm3-soil) was measured with time-domain
measurement probes (CS616, Campbell Scientific) installed at 2.5-5, 5-10, 15-20, 25-30, 45-50, 65-70,
95-100, and 125-130 cm depths. One inter-canopy profile was located ~10 m to the east of the flux
tower below bunchgrasses and bare soil, and another under-tree profile was located under a nearby
large (~5 m diameter crown) mesquite tree canopy about one-half the distance between the tree bole
and crown edge. The under-tree profile lacked a probe at the 125-130 cm depth. We converted probe
output to VWC using a second-order polynomial that was developed in the laboratory using soil from
the site. Total 0-30 cm and 0-130 cm soil VWC for the two locations was determined by multiplying VWC
at each depth by the thickness of each soil layer (7.5, 7.5, 7.5, and 7.5 cm or 7.5, 10, 15, 20, 25, 30, and
15 cm from shallow to deep, respectively), summing, and then dividing by the total depths. For the
under-tree profile, we assumed that soil VWC at the 125-130 cm depth was equal to the 95-100 cm
depth. We estimated site-average VWC using a weighted average of the profiles based on the tree-
canopy fraction (0.30). While some studies have suggested that soil water potential may be a better
metric to quantify ecosystem/plant available water (e.g., Novick et al., 2022), it is not commonly
available and was not measured at this site, and VWC is commonly used to explain water and carbon

flux variation (e.g., Kurc and Small, 2007; Vivoni et al., 2008).
Remote Sensing Flux Products

We evaluated site measurements of carbon and water fluxes against one vegetation index and seven
satellite-based models that apply various approaches to estimate ET and GEP using radiance/reflectance
data. Brief summaries of their spatial and temporal scales, along with the model approach and inputs
are included below. We note that model products of GEP are often called gross primary production

(GPP), which is equivalent to GEP.

1. MODIS Enhanced Vegetation Index (EVl, MOD13Q1; Huete et al., 2002): 0.25 km spatial resolution,
16-day temporal resolution, operational 2000-present. EVI is derived from atmospherically-
corrected surface reflectance in the red, near-infrared, and blue wavebands. EVI minimizes canopy-
soil variations and improves sensitivity over dense vegetation conditions relative to the normalized
difference vegetation index (NDVI). Downloaded as 8.25 x 8.25 km subset centered on the tower
(ORNL DAAC, 2018 https://doi.org/10.3334/ORNLDAAC/1567). A 3 x 3 pixel-area was averaged

around the pixel containing the site.

11
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MODIS ET (MOD16A2GF; Mu et al. 2011): 0.5 km spatial resolution, 8-day temporal resolution,
operational 2000-present. Based on the Penman-Monteith model, where potential
evapotranspiration is reduced under temperature and moisture stress. Remotely-sensed (RS) inputs
are land cover, LAI, albedo, and the fraction of incident PAR absorbed by the canopy (FPAR);
meteorological inputs are solar radiation, air pressure, Ta, and humidity (from GMAO reanalysis
data).

MODIS GEP (MOD17A2GF; Running et al., 2004): 0.5 km spatial resolution, 8-day temporal
resolution, operational 2000-present. Based on a light-use efficiency (LUE) model with
“environmental stress” scalars that reduce photosynthesis below a biome-specific minimum
temperature threshold and above a VPD threshold. RS inputs are FPAR and land cover;
meteorological inputs are PAR, VPD, and Ta (GMAO).

SMAP GEP (SMAP LAC; Jones et al., 2017): 9 km spatial resolution, daily temporal resolution,
operational 2015-present. GEP is simulated using a LUE model with “environmental stress” scalars
that reduce photosynthesis below a biome-specific minimum temperature threshold, below a soil
moisture threshold, above a VPD threshold, and when the ground is frozen. RS inputs are land cover,
FPAR, surface and rootzone soil moisture, freeze/thaw status, and surface temperature;
meteorological inputs are solar radiation, minimum Ta, and VPD (GEOS-5 Forward Processing
system).

GLEAM ET (Martens et al., 2017; Miralles et al., 2011): 0.25° (~30 km) spatial resolution, daily
temporal resolution, available 2003-2021. ET is modeled as a function of potential evaporation
(Priestley-Taylor), rainfall interception (Gash analytical model) and a cover-dependent stress factor,
which is a function of microwave VOD and root zone soil moisture (calculated via a multi-layer water
balance algorithm).

GLASS ET (Liang et al., 2021; Yao et al., 2014): 1 km spatial resolution, 8-day temporal resolution,
available 2000-2018. A Bayesian fusion of five process-based or semiempirical algorithms: the
MODIS ET algorithm (MOD16), the revised remote-sensing-based Penman-Monteith algorithm (RRS-
PM), the Priestley-Taylor algorithm of the Jet Propulsion Lab (PT-JPL), a modified satellite-based
Priestley-Taylor algorithm, and the Semiempirical Penman LE Algorithm of the University of
Maryland.

GLASS GEP (Liang et al., 2021): 0.5 km spatial resolution, 8-day temporal resolution, available 2000-
2020. Based on a revised Eddy Covariance-Light Use Efficiency (EC-LUE) model (Yuan et al., 2019), in

which GEP is a function of direct and diffuse radiation, down-regulated based on Ta, VPD, and

12
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atmospheric CO; concentration. Inputs are GIMMS3g NDVI (to estimate FPAR) and MERRA GMAOQO
Ta, VPD, and PAR.

8. FluxSat v2.0 GEP (Joiner and Yoshida, 2020): 0.05° (~6 km) spatial resolution, daily temporal
resolution, operational 2000-2020. GEP is upscaled by training a neural network to predict
FLUXNET2015 GEP based on MODIS 7-band surface reflectance [MCD43C4] and top-of-atmosphere

PAR, estimated as a function of the solar zenith angle.

The spatial resolutions of the satellite model estimates (0.25 - 9 km except for GLEAM ET, which is ~30
km) differ substantially from the footprint of the flux measurements, which have an average source area
extending to approximately 200 m from the tower (and a range of ~100 - 1000 m, depending on
atmospheric and surface conditions; Chu et al., 2021; Schmid, 1997). However, both spatial and
temporal factors increase the comparability of the measurements and model estimates. The mesquite
savanna around the flux tower extends for several kilometers in all directions around the site. While
those distances span changes in soils, tree/grass percentages, stand age, and meteorology — most
notably summer precipitation associated with spatially-discrete convective thunderstorm cells —we
expect that the influence of forcing variability is considerably reduced when aggregating flux data
seasonally (Goodrich et al., 2008). Also, satellite spectral indices (e.g., EVI) should integrate how
precipitation, stand characteristics, and soils might affect vegetation productivity, effectively de-
emphasizing the relevance of any single driver. A previous remote sensing study, based on this site and
others in the lower elevation monsoon region, compared relationships of flux tower GEP with EVI and
the Photochemical Reflectance Index (PRI) averaged over 3 km and 0.5 degree spatial scales, and found
nearly identical temporal correlations at fine and coarse scales (Smith et al., 2018). Similarly, we found
that the 16-day EVI data used in this study (3 x 3 0.25-km pixels centered on the tower pixel) was highly
correlated with the average of the entire 8 x 8 km subset (R?2= 0.95). Thus, satellite estimates derived
from products at scales less than ~10 km (i.e., all except GLEAM) should capture the variability in the site

conditions as sampled by eddy covariance.

Land Surface Model (LSM)

Carbon and water fluxes in LSMs are derived from process-based equations (e.g., leaf phenology,
photosynthesis, respiration, stomatal conductance, and vertical soil moisture diffusion; Blyth et al.,
2021) with fixed values (parameters) dependent on broadly defined plant functional types (PFTs) or soil

texture. In this study, LSM estimates came from the ORCHIDEE v2.2 terrestrial biosphere model
13
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(ORganizing Carbon and Hydrology In Dynamic EcosystEms; Dufresne et al., 2013; Krinner et al., 2005),
which forms the land component of the French Institute Pierre Simon Laplace (IPSL) Earth system model.
While there are many LSMs, MacBean et al. (2021) showed that all LSMs in the TRENDY v7 model
intercomparison fail to capture variability in annual gross and net carbon fluxes. Across 12 sites in the
Southwestern US, LSM gross and net CO; flux IAV and mean annual net carbon uptake were
considerably underestimated by all TRENDY models. Teckentrup et al. (2021) reported similar results in
TRENDY v8 across Australian FLUXNET sites, and Fawcett et al. (2022) demonstrated that TRENDY
models have considerable biases in GPP and aboveground biomass across dryland regions globally. Here,
we compared eddy covariance ET and GEP with site-scale ORCHIDEE simulations in land only mode,
forced with site-measured meteorology, PFT fractional cover, and soil texture class. We applied
ORCHIDEE with and without optimizing carbon and water cycle related parameters; parameters of the
optimized version were calibrated against measured ET (Mahmud et al., 2023). Model outputs for both
simulations (default and calibrated parameters) were available only from 2004 — 2012 due to an earlier

termination of the modeling studies.

4. Results
Precipitation and Carbon Fluxes

For the 2004 - 2022 study period (Fig. 4), mean annual precipitation (P) was 360 +/- 103 mm (standard
deviation) with 82 +/- 43 mm in the spring (January - July) and 277 +/- 85 mm in the summer growing
season (July - December). In general, the first half of the US-SRM data record experienced drier springs
and summers than the latter half. The study period overlaps the 21st-century “megadrought” across the
western U.S. (Williams et al., 2022), which was indeed drier than the previous 30-yr (1974-2003) mean
precipitation of 112 mm (spring), 295 mm (summer), and 407 mm (annual). However, the longer
precipitation record for the Santa Rita Experimental Range from 1937-2003 reveals spring, summer, and
annual averages (97 mm, 280 mm, 377 mm, respectively) only slightly higher than the current study
period. The driest growing seasons during the current study were the spring of 2006 and the summer of

2020, and the wettest seasons were the spring and summer of 2018 (Fig. S1).
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Figure 4. a) Annual precipitation (P) partitioned into spring and summer growing seasons with 2004-
2022 average spring and annual totals indicated with dashed lines. b) Monthly Standardized
Precipitation Index (SPI, 3-month) with dashed lines at -1.5 and 1.5 to indicate drought or pluvial

conditions, respectively.

The interannual variability in precipitation at this savanna ecosystem translates to high variability in
both gross and net carbon fluxes (Fig. 5). The ecosystem was a net sink for atmospheric CO; in twelve of
the nineteen years, with the driest years generally resulting in negative NEP. Annually, NEP averaged 23
+/- 64 gC m™. Annual NEP was lowest in 2017, which had both a dry spring and summer, and highest in
2016 (wet spring and average summer, Fig. S1). Mean annual GEP was 372 +/- 122 gC m? and mean
annual ER was 349 +/- 73 gC m™2. Seasonally, spring periods were characterized by lower gross fluxes
(GEP =82 +/- 60, ER = 104 +/- 28 gC m?) and typically negative NEP (-22 +/- 37 gC m) in contrast to
higher gross fluxes (GEP = 290 +/- 117, ER = 245 +/- 68) and positive NEP for summer periods (45 +/- 58
gC m2). Annual GEP was more variable than ER with coefficients of variation equal to 33% and 21%,
respectively, and was even more variable than P (CV = 29%). The only seasonal gross flux that was

significantly correlated with annual NEP was summer GEP (R? = 0.49, p < 0.01).
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Figure 5. Annual, spring (Jan-Jun), and summer (Jul-Dec) growing season ecosystem respiration (ER,

blue), gross ecosystem productivity (GEP, green), and net ecosystem production (NEP, black).

Variation in summer and annual NEP was explained largely by precipitation (summer R? = 0.82, annual R?
= 0.65; Fig. 6, Table 1). However, variability in spring NEP was poorly explained by spring P (R2= 0.29)
due to previously unutilized fall (October — December) precipitation stored as soil moisture that

contributes to spring productivity (Scott and Biederman, 2019). Thus, spring NEP was more correlated
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with precipitation when October — December rainfall was included in the regression (R? = 0.80).
Recognizing the effects of non-negligible storage between years, we defined a hydrological or water

year with a start and end that occurs when storage is minimal, which at this site occurs most reliably in

June (Fig. 2). Redefining annual P and NEP in water years improved their annual relationship (R? = 0.78,

Fig. 6).
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precipitation and net ecosystem production (NEP).

In addition to precipitation, much of the variance in seasonal and annual NEP could also be explained by

soil moisture (0-130 cm, though fits were only slightly worse for 0-30 cm) and greenness (Table 1).

Annual P, soil VWC, and EVI typically explained less variance in NEP than seasonal values because spring

and summer slopes and/or offsets were often season specific. We therefore explored the drivers of GEP

and ER at the seasonal scale. To simplify presentation, we show results using VWC as the water

availability metric because of its direct physical ties to plant photosynthesis and plant/soil respiration.

Table 1. Linear regression coefficients with slope (m), offset (b), and coefficients of determination (R?)

for spring, summer, and annual NEP predicted by P, VWC, and EVI.
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NEP predicted by m b R?
P spring 0.47 -60.16 0.29
summer 0.62 -126.64 0.82
annual 0.50 -158.33 0.65
VWCO0-130 cm| spring 2481.01 -185.13 0.70
summer | 5669.81 -332.37 0.69
annual 6016.01 -375.15 0.51
EVI spring 10.61 -266.68 0.58
summer 10.26 -303.01 0.71
annual 8.40 -456.92 0.47

Drivers of Seasonal Productivity and Respiration

Soil moisture explained much of the variation in both spring (R? = 0.85) and summer (R? =0.73) GEP and
ER (R?=0.73 and 0.58, respectively, Fig. 7) and typically explained more of the variation than P (not
shown). Slopes were greater for GEP than ER, indicating that soil moisture control on seasonal NEP was
primarily driven by its effects on GEP. However, regression slopes were lower in spring than summer,
implying that ecosystem metabolism was less sensitive to the same soil water status in spring than in
summer. This was not due to averaging of elevated spring VWC values across the mainly dormant parts
of spring (Jan-Feb, Figs. 2&3); the slopes of VWC regressions from March — June were similar to slopes of

regressions from the entire January — June period (not shown).

Considering unexplained (by VWC) seasonal GEP variance (Fig. 7), GEP residuals were not significantly
correlated with VPD or Ta in spring, but were correlated with VPD in summer (R2=0.17, p = 0.08). Ta
was correlated with ER residuals in spring (R = 0.31, p = 0.01) but not with VPD or Ta in summer. Annual
predictive power increased for both GEP (R? from 0.55 to 0.74) and ER (R? from 0.37 to 0.59) when

separate seasonal regressions with VWC were used instead of annual values (Fig. 7).
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Figure 7. The relationship between soil volumetric water content (VWC, 0-1.3 m) and gross ecosystem

productivity (GEP) or ecosystem respiration (ER). Spring values are shown in blue, summer in red.

Temporal Trends

Longer flux tower records allow for the detection of trends in water and carbon fluxes. We used the
non-parametric Mann-Kendall T (ranging from -1 to 1) to determine the degree to which trends were
present in the data, where t = 1 indicates a monotonically increasing trend and t = -1 indicates a
monotonically decreasing trend. Over the period of record (2004-2022), there were positive trends in
spring ER and annual NEP, GEP, and ER, but no significant changes (p > 0.10) in ET (Table 2). Over the
same period, concentrations of atmospheric CO;increased 2.58 ppm/yr, 49 ppm, or about 13% (data not
shown), which may partly explain increases in GEP and NEP without an associated increase in ET due to
increased plant water use efficiency (Walker et al., 2021). However, annual P, VWC (both depths), and

EVI also increased (Table 2), as did spring and summer VWC for 0-0.3 m depth and spring EVI.

able 2. 2004 — 2022 trend results for the spring, summer
and annual site meteorology and fluxes. Numbers indicate

Mann-Kendall T values, with bold values denoting
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statistically significant increases (+ 1) at p < 0.10(*) and p <
0.05(**).

Spring Summer Year
P 0.18 0.26 0.29*
Ta 0.29* 0.10 0.25
\VPD 0.24 0.11 0.05
VWC 0-1.3m 0.42** 0.25 0.45**
VWC 0-0.3m 0.45* 0.36** 0.52**
EVI 0.31* 0.25 0.35**
NEP 0.23 0.17 0.32*
GEP 0.25 0.19 0.35%*
ER 0.31* 0.27 0.29*
ET 0.15 0.12 0.18

448

449 Focusing in on the summer growing season when there is maximum plant photosynthesis, ecosystem
450  water use efficiency (WUE) and underlying water use efficiency (WUE,) computed over various times
451  and conditions were highly variable (Fig. 8), with decreases in dry years and increases in wet years.

452  There were no significant trends in either metric at any time or condition analyzed, but there were clear
453 increases in the summers of 2021 and 2022 as the ecosystem was released from the severe drought that

454  lasted from the 2020 summer through the 2021 spring.
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Figure 8. Mean daily ecosystem water use efficiency (WUEe = GEP/ET) for the summer growing season,
the months of August — September, and peak, non-water limiting, and non-light limiting conditions in
August. Also shown is the mean underlying water use efficiency (WUE, = GEP* VPDY?/ET) under optimal
(see Methods) growth conditions in August. Missing years indicate that there were no values with

optimal conditions.
Satellite and Land Surface Models

We examined whether state-of-the-art models can reproduce the seasonal and annual variability of the
measurements. Here, we focused on two key variables: GEP for the fundamental role it plays in the IAV
of NEP, and ET as a metric of site water availability that can also be estimated using satellite data and
associated models. While ET is a flux, rather than an ecosystem state variable, it has previously been
shown to be an excellent predictor (explaining more variance than P and VWC) of carbon fluxes at this

and other dryland sites (Biederman et al., 2016; Scott et al., 2015; Scott and Biederman, 2019).

Models of seasonal ET (0.5 km MODIS, 30 km GLEAM, 1 km GLASS, default and optimized ORCHIDEE)
differed substantially in their agreement with site measurements (Fig. 9). Satellite model regression
slopes ranged from 0.27 to 0.71 for spring and from 0.10 to 0.61 for summer. Biases in the seasonal

magnitudes were largest for MODIS, while GLASS had very little variability from year to year (slope =
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0.27 for spring; 0.10 for summer). In spring, the ORCHIDEE LSM tended to underestimate ET at low
values and overestimate at high values; in summer, ORCHIDEE slopes were 0.64 and 0.89 for default and

optimized simulations, respectively.
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Figure 9. Measured and modeled spring and summer growing season evapotranspiration (ET, mm)
totals. The 1:1 line is dashed and the colored lines represent best-fit regressions. ORCHIDEE simulation

results are for default (Orch) and optimized (Orch,) parameters.

The IAV of GEP was underestimated by all models, as demonstrated by measured vs. modeled GEP
regression slopes substantially <1 for all models in both seasons (slopes ranged 0.31 — 0.55 in spring and
0.36 —0.71 in summer; Fig. 10). In most cases, GEP was overestimated in spring (values above the
dashed 1:1 line) and underestimated in summer (values below). This resulted in compensating errors
when determining mean annual sums, but also indicated a failure to capture even the general bimodal
seasonal pattern of GEP at this site (Fig. 3) with substantially lower values in spring and higher values in
summer. Optimization of ORCHIDEE carbon and water cycle parameters using ET as a constraint
improved the slope and underestimation of summer GEP but did not notably improve spring

simulations.
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Figure 10. Measured vs. modeled spring and summer growing season gross ecosystem productivity
(GEP, gC m?) totals. ORCHIDEE simulation results are for default (Orch) and optimized (Orch,)

parameters.
5. Discussion

Short-term ecosystem flux studies are useful for understanding the magnitudes and seasonality of the
fluxes at a site, but their conclusions are constrained by the meteorological and ecosystem conditions
during the study period. As site records lengthen, it is possible to resolve flux means, variability, and
trends, as well as environmental drivers of those flux quantities, with higher confidence (Figs. 2 and 3).
As we celebrate the 25th anniversary of AmeriFlux, data records for sites are beginning to span one and
even two decades. Here, we were able to constrain longer-term processes using 19 years of

micrometeorological measurements at a semiarid savanna site.

Long-term monitoring is essential to capture dryland ecosystem response to interannual climatic
variability and decadal climate shifts like long-term drought. In general, the first half of the US-SRM
record experienced drier springs and summers than the latter half, corresponding to the “turn-of-the-
21% century” drought, which was associated with large reductions in carbon uptake throughout the
western U.S. (Cayan et al., 2010; Schwalm et al., 2012). As drought conditions continued into the 2010’s,
the 21st-century “megadrought” emerged across the southwestern U.S. (Williams et al., 2022), and site
conditions were indeed drier than the previous 30-year means. However, they were only slightly drier

than the longer-term precipitation record at the site. This result highlights that defining the period for
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determining average or baseline climatic conditions, as well as ecosystem responses, may affect what is

seen as normal versus anomalous in a changing climate (Milly et al., 2008).

One of the ways that megadrought status is assessed is by using cumulative 0-2 m soil moisture
anomalies from a bucket-type water balance model forced with climate data, where anomalies are
defined as differences from long-term climatological soil moisture values (Williams et al., 2022). This
may be a good metric to describe cumulative drought stress for human systems like agriculture and
water supply that have large amounts of water storage (e.g., groundwater basins, man-made
reservoirs), but it is not appropriate for quantifying the water status of dryland ecosystems that may
experience some seasonal storage/carryover of water (e.g., spring moisture adding to summer growth,
or late fall/ winter moisture for spring growth) but not from year to year. For example, every June at US-
SRM, the soil moisture storage was drawn down so there would be little or no hydrological memory of
previous year’s precipitation. Still, ecosystem carbon cycle legacies can result from shifts in precipitation
(decadal-scale droughts and pluvials) as carbon stocks (e.g., aboveground/belowground biomass, soil
carbon) adjust over longer timescales. Carbon cycling trajectories following disturbance are well-studied
in forested ecosystems using chronosequences (Fu et al., 2017), but much less is known about them in
dryland ecosystems, though some results suggest that adjustments may be more rapid (years, rather

than decades; Ma et al., 2016; Scott et al., 2015).
Below, we discuss whether our results support our specific hypotheses:

1) Investigate coupling between the interannual variability of hydrometeorological drivers and

ecosystem carbon fluxes

As expected, water availability was the dominant driver of carbon cycling in this savanna. The ecosystem
carbon fluxes at US-SRM rapidly responded to variations in precipitation (CV = 29%), with plants quickly
adding leaf area and accumulating biomass in years of abundance and quickly decreasing carbon uptake
in dry years (Figs. 4 and 5). As expected for dryland regions, the large interannual variability of P and
associated root zone soil moisture led to a large variability in NEP (mean = 23 +/- 64 gC m™ yr?, Fig. 6,
Table 1). Other long-term flux studies at mesic forested sites have shown similar variability (standard
deviation = ~50 — 100 gC m2yrl), but with considerably higher means (~100 — 500 gC m~2 yr?; Beringer
et al., 2022; Desai et al., 2022; Finzi et al., 2020). Throughout the lower elevation sites in the
southwestern U.S. and northwestern Mexico region, Biederman et al. (2017) found that about half of

the 25 flux sites analyzed pivoted between annual net carbon loss during dry years and carbon gain
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during wet years, especially in the lower monsoon region (Fig. 6; Scott et al., 2015). The NEP of dryland
sites on other continents (e.g., Australia and Spain) similarly pivoted depending on P, showing that
carbon exchanges are resilient to the frequent drought and pluvial cycles experienced in these regions
(EI-Madany et al., 2020; Tarin et al., 2020). While a strong relationship between total summer P and NEP
may be surprising given the well-known precipitation pulse-driven responses characteristic of
thunderstorm-driven drylands (Huxman et al., 2004), we note that summer P totals were closely related
to the amount of rainfall occurring in the larger, more biologically-significant pulse events (P > 10 mm
day, Fig. S2), which stimulate and sustain GEP increases to a greater degree than ER (Roby et al., 2022).
Thus, summer P totals reflected the number and amount of these less frequent but disproportionately

important pulse events.

Given that the variability of GEP (CV=33%) was higher than that of ER (CV=21%), NEP variations were
principally driven by GEP as hypothesized. The annual variability of NEP from dryland flux sites at other
sites in the southwestern U.S. is similarly explained by GEP variability (Biederman et al., 2017). Out of all
seasonal flux totals at US-SRM, only summer GEP was correlated with annual NEP, indicating that the
summer growing season was a key determinant of the annual carbon balance. In this savanna,
phenocam measures of separate tree and grass greenness responses indicate that summertime
greenness is dominated by the C4 grass understory rather than the C3 trees (Steiner, 2022). While
greenness from satellites and phenocams can be less coupled to productivity at hourly to weekly
timescales because of strong stomatal regulation in response to soil and atmospheric dryness, the
monthly-to-annual greenness tends to approximate GEP (Browning et al., 2017; Ma et al., 2013; Yan et
al., 2019). Studies of flux IAV across precipitation gradients have shown similarly variable GEP and ER at
other semiarid grassland and shrubland sites (Biederman et al. 2017) that decrease considerably at

wetter, forested sites (mean GEP CV = 0.13 and mean ER CV = 0.12, Baldocchi et al., 2018).

The savanna showed different carbon flux responses to variations in water availability during the spring
and summer growing seasons (Figs. 6 and 7). The precipitation pivot point (P = 96 mm where NEP = 0)
tended to be higher than the mean spring P (82 mm), such that only wetter-than-normal springs had net
carbon gains (Fig. 6), contrary to our hypothesis that spring NEP would be more responsive to P due to
decreased ER relative to GEP. The opposite was true for summer (pivot point = 217 mm P, average = 277
mm P), such that most summers were characterized by positive NEP. During both growing seasons, soil
moisture explained much of the variability in GEP and ER, but there was lower GEP and ER for a given

VWOC in spring than in summer (Fig. 7). This may be associated with the reduced activity of the
25
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understory C4 grasses in spring compared to summer (Cable, 1975; Kemp, 1983; Steiner, 2022).
Conversely, the relatively higher influence of C3 trees on spring GEP is likely why spring productivity at
the savanna was less water use efficient than summer (mean spring WUE. = 0.70 vs. 1.17 for summer).
This reduced WUE contrasts with C3-dominated shrubland sites in the region, which have a propensity
for higher NEP in spring than summer due to consistent WUE and less ER relative to GEP in spring

(Biederman et al., 2018; Pérez-Ruiz et al., 2022).

2) Quantify trends in hydrometeorological drivers and ecosystem carbon fluxes during the spring and

summer growing seasons

Even with nearly two decades of data, we hypothesized that the high variability in water availability, the
dominant driver of carbon flux IAV at this site, would make it difficult to identify trends over the 19-year
record. However, we found statistically significant increases in Ta, VWC, and EVI in spring, VWC in
summer, and in annual P, VWC and EVI (Table 2), which both influence and are influenced by water and
carbon fluxes. Spring ER increased significantly during 2004-2022 in accord with increased temperatures
and near-surface soil moisture. Soil moisture is a primary control of soil respiration in drylands, and has
been shown to both explain substantial variability in efflux rates and regulate the temperature response
of soil respiration at this site (Roby et al., 2022, 2019). Also, small positive, but non-significant, trends in
spring and summer GEP, ER, and NEP contributed to significant increases in annual GEP, ER, and NEP
over the study period. These trends were likely driven by changes in precipitation (regression line slope
of 5.5 mm yrl) transmitted through soil moisture. Generally, the early years of monitoring were drier
with lower fluxes, while the later years were wetter with higher fluxes (Fig. 4 and 5).Thus, we found little
evidence that the southwestern US megadrought conditions continued into the later half of the
monitoring period nor that it caused ecosystem structural changes (e.g., plant mortality and dieback
resulting in less soil carbon inputs and plant matter decay) that could lead to persistent carbon loss from
the savanna (Huang et al., 2018; Throop and Archer, 2007). Plant cover surveys suggest that such a
structural adjustment for both woody and grass cover happened in the decade preceding the start of

flux tower monitoring (Fig. S3) with large decreases in cover following the wet 1980’s and early 1990’s.

There was considerable variability in the trade-off between productivity and evapotranspiration (i.e.,
WUE) of the savanna, especially during the last three years. All WUE metrics were dramatically reduced
during the record summer drought in 2020 (Fig. 4), but subsequently responded to abundant summer
rains and increased to their highest levels in 2021 and 2022 (Fig. 8). It is likely that this dramatic
rebound, or ‘whiplash’ (Swain et al., 2018), was driven by increasing LAl and GEP associated with
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flourishing understory grasses and mesquite trees in 2021 and 2022 and captured by increasing EVI.
Nearby long-term vegetation transects showed a doubling in grass basal cover and a 10% increase in
tree/shrub canopy cover from measurements prior to the 2020 summer drought (Fig. S3). This
abundance led to noticeable decreases in bare soil cover that altered the amount of GEP relative to the

ET during this season (Figs. 8 and S4).

Applying the Scott and Biederman (2017) approach to estimate long-term abiotic evaporation (E) at US-
SRM prior to 2021, we found an average summer E/ET ratio of 0.32 (or, [transpiration, T]/ET = 0.68).
However, 2021 and (especially) 2022 did not conform to the close relationship between GEP and ET in
prior summers (Fig. S4); there was lower soil evaporative loss relative to ET during these years. Reasons
for this could include increased cover acting as a mulch (less E) and/or improved scavenging of soil
moisture due to more surface roots (more grass T). Furthermore, across dryland sites, increased water
availability leads to higher WUE,, in part due to increased LAl that increases T/ET (Scott et al., 2015).
Thus, the trends in carbon fluxes at US-SRM are likely due to increasing plant water availability
supporting more leaf area, rather than changes in leaf-level water use efficiency associated with carbon
dioxide fertilization, as found for forested flux sites in the northeast U.S. (Keenan et al., 2013). We
expect that changes in leaf-level water use efficiency (i.e., carbon fertilization) might be harder to detect
in drylands at the ecosystem scale, even more so than they are in north-central U.S. forests (Desai et al.,
2022), because of drylands’ greater proportion of abiotically-driven processes (E, heterotrophic ER) to
biotically-driven processes (T, autotrophic ER, GEP) in the composite fluxes (ET and NEP, Wang et al.,
2021).

3) Assess the ability of modern land surface and satellite models to reproduce the IAV of carbon and

water fluxes

Satellite and LSM estimates of ET, GEP, and NEP are routinely used to assess water and carbon cycle
trends and variability, as well as their responses to climatic change and extreme weather events. They
have also been used to identify key regions driving the response of the biosphere to anthropogenic
change, and they have identified drylands as hotspots for carbon sink variability (Ahlstrom et al., 2015;
Poulter et al., 2014). Satellite models are typically assessed globally with a large compilation of site data
from data products like FLUXNET2015 (Pastorello et al., 2020) and are thus shown to work across sites
(spatially) rather than through time (e.g., Jones et al., 2017; Liang et al., 2021; Running et al., 2004).
Correspondence between models and measurements at locations through time is comparatively less
well-studied.

27



633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

650
651
652
653
654
655
656
657
658

659
660
661
662
663

While considerable effort has been expended to develop satellite-based estimates of ET, especially for
agricultural and forestry applications (Anderson et al., 2011; Melton et al., 2022), dryland ET variability is
often underestimated (Biederman et al., 2017; Dannenberg et al., 2023). Yet, dryland ET represents an
integrated measure of ecosystem water availability, and explains a large part of dryland carbon flux
variability (Biederman et al., 2016). Of the satellite models we examined, GLEAM (30 km resolution)
more closely matched the range of tower-observed ET variability during both growing seasons (Fig. 9,
slopes of 0.71 and 0.61) than MODIS (0.5 km, slopes of 0.49 and 0.47) or GLASS (1 km, slopes of 0.47 and
0.10). This was unexpected given GLEAM’s coarse spatial resolution relative to the tower footprint, but
it may highlight the importance of particular variables and processes — namely soil water availability and
plant water use — for controlling dryland ET. Unlike MODIS and GLASS, GLEAM includes vegetation
optical depth, which is directly related to plant water status and water use strategies (e.g., Konings and
Gentine, 2017). It also includes estimates of soil moisture, which drive variability in dryland surface
conductance (e.g., Novick et al., 2016). The severe underestimation of ET IAV by GLASS may be
associated with the weighted-average approach (reduces variance compared to the individual model
estimates that compose the ensemble) and its tuning based on the global FLUXNET network, which was
dominated largely by temperate flux sites (Yao et al., 2014). MODIS ET also underestimated ET in both

seasons, which may be associated with its lack of an explicit soil moisture control (Brust et al., 2021).

The ORCHIDEE model (local meteorology with default parameters) captured over 80% of variation in ET.
Parameter optimization improved the slope of the summer regression line from 0.64 to 0.89 but did not
improve the slope or bias for the spring (Fig. 9). Together, these results corroborate previous
suggestions that diverse mechanisms for plant water uptake, transport, storage, and loss by multiple
plant functional types (e.g., trees versus grasses) require more realistic representation in models
(MacBean et al., 2021; Whitley et al., 2017). Dryland-specific plant photosynthetic and water use traits
(e.g., Barron-Gafford et al., 2012) and improvement of phenology modules are also likely to improve
model-data mismatches, and can be used to test the validity of calibrated parameters (Mahmud et al.,

2021; Teckentrup et al., 2021).

As with ET, satellite models underestimated the IAV of GEP (Fig. 10), capturing only 40 to 53% of spring
and summer variability. Moreover, the models did not reproduce US-SRM’s bimodal growing season:
nearly all the spring estimates were biased high, and many of the summer estimates were biased low.
This result suggests that static model parameterizations were unable to accommodate structurally and

functionally variable ecosystems. For example, the LUE models (SMAP, GLASS, and MODIS) include
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biome-specific (but temporally unchanging) parameterizations for “optimal” LUE and
temperature/water stress scalar functions. For a pulse-driven semiarid savanna, where the fractional
covers of annual and perennial grasses vary seasonally and interannually depending on water status,
static LUE and scalar functions may not be sufficient (Chang et al., 2020). Further, only SMAP includes
soil moisture as a potential water stress down-regulator for optimal LUE, despite the fundamental
relevance of soil moisture, rather than VPD, in dryland ecosystem functioning (Novick et al. 2016).
Finally, it is notable that Wang et al. (2022) found significant seasonal biases in the ability of optical
reflectance—on which all the satellite-based models examined here are partly based—to track dryland
GEP. They report overestimation of GEP prior to the peak growing season and underestimation after,

which increased as woody plant cover increased.

The ORCHIDEE model did a much poorer job of simulating the IAV of GEP relative to ET; however,
optimizing for ET did result in improvements. As a result, more work is required to explore whether
parameter calibration is responsible for model structural errors (Mahmud et al., 2021). For example,
processes that are important for dryland carbon and water cycling, such as biological soil crust activity,

are omitted from this and other LSMs (Osborne et al., 2022).

Flux datasets spanning one to two decades afford new opportunities to assess the capability of satellite
models and LSMs to predict the interannual variability of land-atmosphere water and carbon fluxes.
Model testing focused on site-scale variability is a particularly promising avenue for model development
because site-scale comparisons are focused on the temporal patterns often obscured by cross-site
comparisons. While key uncertainties in measured fluxes include lack of energy balance closure and NEP
partitioning, we expect that these are more relevant to flux means than their variability (Baldocchi,
2008; Baldocchi et al., 2018; Lasslop et al., 2010). Thus, model testing focused on site variability may
effectively diagnose model formulation and parameterization errors, leading to improved confidence in

modeling study conclusions (Keenan and Williams, 2018).
6. Conclusions

The high 1AV of both net and gross CO; fluxes was very closely related to water availability at the US-
SRM savanna, which was mainly dependent on recent precipitation, with little long-term storage to
buffer periods of water scarcity. Specifically, the NEP, GEP, and ER rapidly responded to interseasonal
and interannual variability in water availability with no identifiable hydrological memory. We also found

that climatic variability, even during this relatively short period, was significant with generally drier
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conditions in the first half of the monitoring period and wetter conditions in the latter half. In addition,
there were large whiplashes in the precipitation record; for example, from record summer and winter
drought in 2020 to abundant rains in 2021 that may have induced ecosystem structural changes that
altered WUE. With the easing of the turn-of-the-21% century drought, there were positive trends in
annual P and seasonal and annual VWC, and the ecosystem responded with positive trends in CO; fluxes.
While the longer flux record allowed for a more robust characterization of the flux IAV and its controls,
the multi-scale episodic nature of water inputs to this savanna and other dryland regions make it
difficult to identify a stable or stationary period on which to base firm conclusions about mean

ecosystem flux behavior.

As AmeriFlux reaches its milestone 25 year, we celebrate that ecosystem flux research continues to
add analytical facets that refine understanding of ecosystem function. In this case, we leveraged 19
years of continuous flux data to focus on a more robust quantification of IAV and decadal-scale
variability as well as to identify trends due to both short-term disturbances and long-term climatic and
structural change. In this way, continuous datasets are especially critical to understanding and
predicting ecosystem dynamics at dryland sites where the variability of fluxes makes it difficult to
guantify mean responses. Although modern satellite estimates and LSMs are essential tools for
understanding IAV of the terrestrial carbon sink, these models performed poorly at US-SRM. As a result,
the cuttent study highlights the advantage of using long-term datasets to resolve model-data

disagreements, especially for the purpose of capturing seasonal to annual variability.
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