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Abstract 31 

Eddy covariance measurements of land-atmosphere energy, carbon, and water exchange now span 32 

multiple decades at some sites, supporting an improved understanding of flux interannual variability 33 

(IAV) and its ecophysiological and physical controls. Most eddy covariance IAV studies have focused on 34 

temperate forest ecosystems, where carbon fluxes are large and flux records are longest – but also 35 

where IAV is much lower than in dryland regions, which have been identified as an essential driver of 36 

the trend and variability in the global terrestrial carbon sink. In this study, we leveraged 19 years of 37 

continuous micrometeorological measurements at the AmeriFlux US-SRM mesquite savanna site in 38 

southern Arizona, USA to quantify the IAV, trends, and drivers of carbon fluxes during the distinct spring 39 

and summer growing seasons. We also assessed the ability of modern satellite and land surface models 40 

to capture the IAV of seasonal water and carbon fluxes. Annual net ecosystem production (NEP) was 41 

small and highly variable (23 +/- 64 gC m-2 yr-1). Precipitation and associated measures of water 42 

availability determined most of the variability in NEP, largely through their influence on annual and 43 

seasonal gross ecosystem productivity (GEP) as opposed to ecosystem respiration (ER). Root-zone soil 44 

moisture captured between 73% (spring) and 85% (summer) of GEP variability and between 73% (spring) 45 

and 58% (summer) of ER variability. Throughout the study period, soil moisture and greenness increased 46 

with associated increases in GEP, ER and NEP. These trends were strongly influenced by very productive 47 

and wet summer growing seasons during the last two years, which were characterized by abundant 48 

understory grass cover. Typically, less than half of the variability in growing season GEP and 49 

evapotranspiration was captured by satellite-based estimates and land surface model simulations with 50 

local site forcing and calibration, highlighting the ongoing utility of long-term datasets to support careful 51 

model testing and improvement.   52 
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1. Introduction 53 

 54 

Drylands, classified as arid, semiarid, or subhumid, are defined as regions with high aridity where 55 

potential evaporation exceeds precipitation for much of the year (Jenerette et al., 2012; Poulter et al., 56 

2014). Though low water availability limits the magnitude of carbon stocks and fluxes in drylands 57 

relative to more humid regions, drylands play a dominant role in the trend and interannual variability 58 

(IAV) of the global land carbon sink because their productivity is closely coupled to environmental 59 

conditions, and they cover about 40% of the Earth’s terrestrial surface (Ahlström et al., 2015; Humphrey 60 

et al., 2021; Poulter et al., 2014). Specifically, carbon flux variability tends to increase with site dryness 61 

(Baldocchi et al., 2018; Biederman et al., 2017) as a result of increasing correlation with water 62 

availability, which is typically more variable than the dominant controls on carbon exchange in more 63 

mesic ecosystems. Furthermore, drylands are warming more rapidly than other regions (Huang et al., 64 

2017; L. Zhou et al., 2015); it is therefore vital to monitor dryland carbon and water fluxes and their 65 

drivers with in-situ measurements as a means to assess and improve satellite and land surface models of 66 

carbon and water exchange (Prentice et al., 2015; Running et al., 1999). Direct measurements of dryland 67 

ecosystem fluxes using the eddy covariance method are an essential component of this task (Baldocchi, 68 

2003), along with data collation, standardization, and sharing networks like AmeriFlux (Novick et al., 69 

2018 and highlighted in this special issue), OzFlux (Beringer et al., 2022) and FLUXNET (Pastorello et al., 70 

2020). 71 

 72 

Continuous ecosystem flux measurements began in the 1980s and 1990s with the advent of improved 73 

measurement equipment like smaller computers, sonic anemometers, and trace gas analyzers 74 

(Baldocchi et al., 1988; Goulden et al., 1996; Shuttleworth, 1988). Associated flux site networks like 75 

AmeriFlux coalesced in the 1990s, focused primarily on forested sites with temperate climates, as these 76 

were geographically proximal to most flux researchers and represented large gross carbon fluxes (Novick 77 

et al., 2018). At this time, drylands received very limited attention (Hastings et al., 2005; Hutley et al., 78 

2000; Unland et al., 1996), likely due to lack of funding and the widespread impression that they were 79 

irrelevant to the global carbon cycle. Consequently, measurement of fluxes from dryland sites lagged 80 

measurement of fluxes from more mesic sites by about a decade in the Americas (Fig. 1, left), despite 81 

drylands making up roughly 30% of the AmeriFlux domain (North and South America). While there are 82 

now multiple mesic forested and woodland sites with greater than two decades of data, only five 83 
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dryland sites in the AmeriFlux repository have 10-15 years of archived data, and only two have 16-20 84 

years (Fig. 1, right).  85 

 86 

Figure 1. Number of dryland AmeriFlux sites by International Geosphere–Biosphere Programme 87 

(IGBP) category, with data availability by year and by record length. Results are from an AmeriFlux 88 

site search (https://ameriflux.lbl.gov/, accessed Nov. 20, 2022), with the following criteria:  1) mean 89 

annual precipitation < 500 mm yr-1, 2) excluding cropland, forest and wetland IGBP cover types. The 90 

drop-off in data availability after 2017 is likely due to a lag between data collection and site operator 91 

submission to the AmeriFlux network. 92 

Robust examination of dryland carbon and water IAV and its drivers is a priority because atmospheric 93 

inversions of net carbon dioxide (CO2) show substantial variation in the dryland terrestrial carbon sink 94 

(Poulter et al., 2014; Zhang et al., 2018), and climate change is inducing trends in the drivers of water 95 

and carbon fluxes (Ficklin and Novick, 2017; Friedlingstein et al., 2022). Furthermore, satellite and land 96 

surface models (LSMs) within Earth system models often underestimate IAV (Keenan et al., 2012; 97 

MacBean et al., 2021). To better understand the interannual variability and trends of dryland carbon 98 

fluxes and their drivers, we used data from one of the longest dryland data records: a semiarid savanna 99 

site in southern Arizona, USA. This site is located in the northern part of the North American Monsoon 100 

region (Adams and Comrie, 1997) and is thus characterized by a dominant warm summer growing 101 

season as well as a subdominant spring growing season in years with sufficient late fall/winter 102 

precipitation.  103 

 104 
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Using 19 years of continuous eddy covariance, soil, and meteorological measurements, our objectives 105 

were to: 1) Investigate coupling between the interannual variability of hydrometeorological drivers and 106 

ecosystem carbon fluxes, 2) Quantify trends in hydrometeorological drivers and ecosystem carbon 107 

fluxes during both the spring and summer growing seasons, and 3) Assess the ability of modern land 108 

surface and satellite models to reproduce the IAV of carbon and water fluxes at this site. While our 109 

results are limited to one location, the magnitude and seasonal patterns of the site’s average water and 110 

carbon exchange are similar to other semiarid shrubland and grassland sites in the Sonoran and 111 

Chihuahuan desert regions of the greater North American Monsoon region (Anderson-Teixeira et al., 112 

2011; Biederman et al., 2017; Pérez-Ruiz et al., 2022; Scott et al., 2015) as well as to other warm dryland 113 

sites that receive precipitation mainly in summer (e.g., parts of Australia, southern and Sahel regions of 114 

Africa). Therefore, these results have broad implications for other semiarid savannas, grasslands and 115 

shrublands.  116 

 117 

2. Site Description, Climatology, and Expected Results 118 

We used data collected from 2004 through 2022 at the Santa Rita Mesquite Savanna (Scott et al., 2009)  119 

(AmeriFlux site US-SRM, 31.822N, 110.867W, elevation: 1116 m). The site has a mix of low-statured 120 

trees with an understory of grasses, sub-shrubs, and succulents. The tree cover fraction, consisting 121 

mainly of velvet mesquite (Prosopis velutina), is ~30%, which is at the margin of the IGBP biome 122 

classifications for savanna (SAV) and woody savanna (WSA).  While mesquite is a facultative 123 

phreatophyte, there is no evidence that the trees access groundwater at this site where the water table 124 

is very deep (Potts et al., 2008). Perennial C4 bunchgrass and annual (Aristida spp., Digitaria californica, 125 

Muhlenbergia porteri, Bouteloua eriopoda, Eragrostis lehmanniana, Bouteloua aristidoides) cover ranges 126 

from 15-60% depending on summer rainfall, and scattered sub-shrub and succulent cover fractions are 127 

low (Vivoni et al., 2022). The bare soil fraction (20-50%) supports annual grasses and forbs when rainfall 128 

is sufficient. Soils are deep loamy sand. Principal topics for previous studies using flux data at this site 129 

include woody plant encroachment (Scott et al., 2015; Vivoni et al., 2022), tree versus grass competition 130 

(Barron-Gafford et al., 2017; Potts et al., 2008), ecohydrology and hydraulic redistribution (Lee et al., 131 

2018; Scott et al., 2008; Scott and Biederman, 2019), soil respiration (Barba et al., 2018; Cable et al., 132 

2012; Roby et al., 2019), carbon cycling (Biederman et al., 2017), and plant ecophysiology (Barron-133 

Gafford et al., 2013; Hamerlynck et al., 2012, 2010). In the following section, we set the stage for the 134 

current  study’s hypotheses and results concerning the interannual variability of the savanna’s two 135 

growing seasons by reviewing the seasonality of the site’s hydrometeorology and carbon fluxes. 136 
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With 19-years of data, we can define an increasingly robust hydrometeorological and carbon flux 137 

characterization of  the site. The climate at US-SRM is classified as semiarid and monsoonal with about 138 

55% of the annual precipitation falling in the warm summer months of July through September and 139 

approximately 30% in the more hydrologically variable and cooler winter months of November-February 140 

(Fig. 2). The foresummer months of May-June were reliably hot and dry while precipitation in the fall 141 

months of September and October was occasionally augmented by tropical disturbances. The 142 

seasonality of precipitation and air temperature gave rise to bimodal patterns of soil volumetric water 143 

content (VWC) and plant greenness (as quantified by the Enhanced Vegetation Index, EVI, Fig. 2). Soil 144 

moisture peaked in winter when atmospheric and plant water demand was low, declined to the annual 145 

minimum in the foresummer, then increased again during the monsoon before decreasing in the fall 146 

(though not as completely or reliably as in the foresummer). Legacy VWC from wet fall periods 147 

sometimes persisted until spring. Soil water in the 0-30 cm rootzone for many of the understory plants 148 

(mainly grasses) dried faster and more profoundly than 0-130 cm soil water, which was likely more 149 

representative of the deeper soil volume accessible to overstory trees. Spring green-up was dominated 150 

by mesquite trees leafing out in early April regardless of winter/spring precipitation, whereas increased 151 

summer greening was due to understory grasses and, occasionally, additional mesquite leaf-flush in 152 

years with abundant precipitation (Steiner, 2022). In the fall, greenness decreased as most understory 153 

grasses began to brown in September, whereas mesquite trees retained their leaves until the cold 154 

winter storms. 155 
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 156 

Figure 2. The 2004-2022 weekly mean (+/- 1 standard deviation) precipitation (P), air temperature (Ta), 157 

soil volumetric water content (VWC) at 0-1.3 m and 0-0.3 m depths, and MODIS enhanced vegetation 158 

index (EVI).   159 

The seasonality of site meteorology and plant phenology led to bimodal patterns of land-atmosphere 160 

CO2 and water exchanges (Fig. 3). The average net CO2 uptake (NEP) tended to be slightly negative from 161 

November through April and positive for a shorter spring and longer summer period. Bimodality was 162 

strongest for gross ecosystem productivity (GEP) with clear spring and summer peaks, whereas peaks in 163 

ecosystem respiration (ER) were less pronounced and broader. Evapotranspiration (ET) seasonality was 164 

more unimodal, like ER, but less reduced in winter. GEP peaks lagged 1-2 weeks behind both ET and ER. 165 

Based on the clear delineation of the two growing seasons as shown by the GEP climatology, we 166 

examined the contribution and controls on the IAV of ecosystem carbon exchange in two growing 167 

seasons with an equal number of months: the “spring” growing season from January-June and the 168 

“summer” growing season from July - December. While there were a few years when the spring GEP 169 

continued into June or summer precipitation occurred during the last weeks of June, results were 170 

insensitive to whether June was included in the spring or summer total seasons because of the small 171 

amounts of carbon exchange and precipitation in June relative to the peak growing season months. 172 

Overall, we characterized a lower magnitude, but highly variable, spring period, and a higher magnitude, 173 
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but slightly less variable (relative to the means), summer period of physiological activity in this 174 

ecosystem.  175 

 176 

Figure 3. 2004-2022 weekly mean +/- 1 standard deviation of net ecosystem production (NEP), 177 

ecosystem respiration (ER), evapotranspiration (ET), and gross ecosystem productivity (GEP). 178 

Our expected results are born out of shorter-term studies at this site or in this region. For the first 179 

objective, any hydrometeorological forcing or flux that can quantify water availability (precipitation, soil 180 

moisture, and evapotranspiration) should be closely related to gross ecosystem productivity (GEP) and 181 

ecosystem respiration (ER) (Biederman et al., 2016). Because of the close coupling of GEP and ER, net 182 

ecosystem production (NEP) should also be tightly linked to water and driven by changes in GEP 183 

(Biederman et al., 2017, 2016). In addition, we hypothesized that NEP would be more sensitive to water 184 

during the spring growing season than during the summer, based on results in other shrublands across 185 

the southwestern US showing higher springtime ratios of GEP/ER for a given amount of water 186 

(Biederman et al., 2018; Pérez-Ruiz et al., 2022; Petrie et al., 2015). For the second objective, we 187 

anticipated that the high interannual variability of precipitation drives equally high or even higher 188 

variability in carbon fluxes, which will make it difficult to identify significant C flux trends (Baldocchi et 189 

al., 2018). Still, because the site lies within the region experiencing among the most severe 190 

“megadrought” conditions since at least 800 CE (Williams et al., 2022), we expected that the associated 191 

high temperatures, vapor pressure deficit, and precipitation deficits (especially in the winter) may have 192 
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caused structural vegetation changes (e.g., declining cover and leaf area index [LAI], death of plants) 193 

that leads to persistent ecosystem carbon loss (Roby et al., 2020; Schwalm et al., 2012; Scott et al., 194 

2015). For the third objective, we anticipated that satellite-based models will underestimate the 195 

variability of carbon and water fluxes but that newer products that incorporate an improved 196 

representation of moisture stress will better capture the IAV. Likewise, a calibrated land surface model 197 

(LSM) should predict carbon and water flux IAV better than a model that uses standard parameter sets 198 

as in global simulations (MacBean et al., 2021; Mahmud et al., 2021). 199 

 200 

3. Methodology 201 

Ecosystem Flux and Meteorological Measurements 202 

The eddy covariance technique was used to measure ecosystem-scale CO2, water vapor, and energy 203 

fluxes. Instrumentation on a 7 m tall scaffolding tower measured all variables needed to quantify 30-min 204 

averages of NEP, ET, air temperature (Ta), vapor pressure deficit (VPD), air pressure, photosynthetically 205 

active radiation (PAR), incoming and outgoing shortwave and longwave radiation, and precipitation (P). 206 

NEP is an ecosystem-centered metric of net CO2 exchange; a positive value represents a net uptake and 207 

a negative value indicates a net release of CO2 by the ecosystem. A specific instrumental bias in the 208 

sensitivity of each open-path infrared gas analyzer used at the site (IRGA, LI-7500, Li-Cor Inc) was 209 

discovered using side-by-side tests with other open-path and closed-path IRGAs. To correct for this bias 210 

and to ensure comparability across periods when different analyzers were deployed, we multiplied the 211 

30-minute vertical wind and CO2 density covariance by a bias correction factor determined individually 212 

for each IRGA through comparison with a closed-path analyzer (for more information see Scott et al., 213 

2015) 214 

The prevalence of data gaps in the meteorological data was low, usually less than 1% of all the 30-215 

minute periods in each year. Except for P and PAR, these data were not gap-filled to compute annual 216 

and seasonal averages. The site has redundant precipitation gauges on separate dataloggers and 217 

another rain gauge is less than 1 km away. Differences in annual totals between the paired gauges were 218 

less than ~10 mm or 3%. In the case of failed primary gauge measurements, data from the other site 219 

gauge was used so that precipitation sums were gap-free. Missing PAR data, essential to partitioning and 220 

gap-filling fluxes, were either filled with a relationship using site-measured incoming solar radiation or 221 

PAR data from a nearby site (AmeriFlux site US-SRG, 5 km away). 222 
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The flux data were filtered for spikes, instrument malfunctions, and poor quality (representing ~7 – 11% 223 

of the ET and NEP data). The rejection criteria used to filter data included rain events, out-of-range 224 

signals, and spikes with variability of CO2, water vapor , and/or sonic temperature greater than 2 225 

standard deviations from the yearly mean. Daily ET was calculated by filling the gaps in the 30-minute 226 

data using 14-day moving-average look-up tables of ET and incoming PAR, averaged over 100-μmol m-2 227 

s-1 intervals (Falge et al., 2001) and separated into morning (before 12 pm) and afternoon periods.  228 

We partitioned NEP into gross ecosystem production (GEP) and ecosystem respiration (ER) by first 229 

eliminating NEP data when the friction velocity, u*, was less than 0.15 m s-1. We then fit an exponential 230 

function of air temperature to the remaining nighttime NEP data over a moving ~5 day window 231 

(Reichstein et al., 2005) with varying window sizes to ensure that data from pre-storm (dry) periods 232 

were not grouped together with post-storm data; this step was necessary because precipitation events 233 

have been shown to result in immediate respiration pulses that change the relationship between 234 

temperature and nighttime NEP, equivalent to ER (Roby et al., 2020). The resultant exponential 235 

functions were used to fill missing nighttime NEP data and to model daytime ER. Missing daytime NEP 236 

values were filled using a second-order polynomial of incoming PAR, fit to separately to morning and 237 

afternoon data in a 5-day moving window. Finally, we calculated GEP as GEP = ER + NEP where GEP and 238 

ER are always greater than or equal to zero. 239 

To examine the trade-off between carbon uptake and water loss, we calculated water use efficiency in a 240 

variety of ways (Knauer et al., 2017).  At the ecosystem scale, the amount of gross productivity per unit 241 

of total water evaporated was defined as WUEe = GEP/ET (gC kg-1H2O) for the summer growing season 242 

(Jul-Dec), for the peak growing months (Aug-Sep), and for peak August days when light and soil water 243 

were non-limiting (daily average PAR > 250 μmol m-2 s-1 and VWC0-30cm > 0.06 cm3 cm-3), focusing on the 244 

summer when most of the plants were actively photosynthesizing. Non-limiting light and soil thresholds 245 

were determined by plotting GEP:VWC or GEP:PAR and visually identifying where the relationships 246 

plateaued. For a more plant-centric metric that accounts for VPD limitations on stomatal conductance, 247 

we also quantified the underlying WUE, WUEu = GEP* VPD1/2/ET (S. Zhou et al., 2015). We averaged 30-248 

min values of WUEu under non-limiting light and soil water conditions (PAR > 800 μmol m-2 s-1 and VWC0-249 

30cm > 0.06 cm3 cm-3), and only when evaporative losses were small (at least two days after rain). Results 250 

were comparable when including only data three or four days after rain.  251 

Root-zone Volumetric Soil Water Content 252 
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Root-zone volumetric soil water content (VWC, cm3-water cm-3-soil) was measured with time-domain 253 

measurement probes (CS616, Campbell Scientific) installed at 2.5-5, 5-10, 15-20, 25-30, 45-50, 65-70, 254 

95-100, and 125-130 cm depths. One inter-canopy profile was located ~10 m to the east of the flux 255 

tower below bunchgrasses and bare soil, and another under-tree profile was located under a nearby 256 

large (~5 m diameter crown) mesquite tree canopy about one-half the distance between the tree bole 257 

and crown edge. The under-tree profile lacked a probe at the 125-130 cm depth. We converted probe 258 

output to VWC using a second-order polynomial that was developed in the laboratory using soil from 259 

the site. Total 0-30 cm and 0-130 cm soil VWC for the two locations was determined by multiplying VWC 260 

at each depth by the thickness of each soil layer (7.5, 7.5, 7.5, and 7.5 cm or 7.5, 10, 15, 20, 25, 30, and 261 

15 cm from shallow to deep, respectively), summing, and then dividing by the total depths.  For the 262 

under-tree profile, we assumed that soil VWC at the 125-130 cm depth was equal to the 95-100 cm 263 

depth. We estimated site-average VWC using a weighted average of the profiles based on the tree-264 

canopy fraction (0.30). While some studies have suggested that soil water potential may be a better 265 

metric to quantify ecosystem/plant available water (e.g., Novick et al., 2022), it is not commonly 266 

available and was not measured at this site, and VWC is commonly used to explain water and carbon 267 

flux variation (e.g., Kurc and Small, 2007; Vivoni et al., 2008). 268 

Remote Sensing Flux Products 269 

We evaluated site measurements of carbon and water fluxes against one vegetation index and seven 270 

satellite-based models that apply various approaches to estimate ET and GEP using radiance/reflectance 271 

data. Brief summaries of their spatial and temporal scales, along with the model approach and inputs 272 

are included below. We note that model products of GEP are often called gross primary production 273 

(GPP), which is equivalent to GEP. 274 

 275 

1. MODIS Enhanced Vegetation Index (EVI, MOD13Q1; Huete et al., 2002): 0.25 km spatial resolution, 276 

16-day temporal resolution, operational 2000-present. EVI is derived from atmospherically-277 

corrected surface reflectance in the red, near-infrared, and blue wavebands. EVI minimizes canopy-278 

soil variations and improves sensitivity over dense vegetation conditions relative to the normalized 279 

difference vegetation index (NDVI). Downloaded as 8.25 x 8.25 km subset centered on the tower 280 

(ORNL DAAC, 2018 https://doi.org/10.3334/ORNLDAAC/1567). A 3 x 3 pixel-area was averaged 281 

around the pixel containing the site. 282 
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2. MODIS ET (MOD16A2GF; Mu et al. 2011): 0.5 km spatial resolution, 8-day temporal resolution, 283 

operational 2000-present. Based on the Penman-Monteith model, where potential 284 

evapotranspiration is reduced under temperature and moisture stress. Remotely-sensed (RS) inputs 285 

are land cover, LAI, albedo, and the fraction of incident PAR absorbed by the canopy (FPAR); 286 

meteorological inputs are solar radiation, air pressure, Ta, and humidity (from GMAO reanalysis 287 

data).  288 

3. MODIS GEP (MOD17A2GF; Running et al., 2004): 0.5 km spatial resolution, 8-day temporal 289 

resolution, operational 2000-present. Based on a light-use efficiency (LUE) model with 290 

“environmental stress” scalars that reduce photosynthesis below a biome-specific minimum 291 

temperature threshold and above a VPD threshold. RS inputs are FPAR and land cover; 292 

meteorological inputs are PAR, VPD, and Ta (GMAO). 293 

4. SMAP GEP (SMAP L4C; Jones et al., 2017): 9 km spatial resolution, daily temporal resolution, 294 

operational 2015-present. GEP is simulated using a LUE model with “environmental stress” scalars 295 

that reduce photosynthesis below a biome-specific minimum temperature threshold, below a soil 296 

moisture threshold, above a VPD threshold, and when the ground is frozen. RS inputs are land cover, 297 

FPAR, surface and rootzone soil moisture, freeze/thaw status, and surface temperature; 298 

meteorological inputs are solar radiation, minimum Ta, and VPD (GEOS-5 Forward Processing 299 

system). 300 

5. GLEAM ET (Martens et al., 2017; Miralles et al., 2011): 0.25o (~30 km) spatial resolution, daily 301 

temporal resolution, available 2003-2021. ET is modeled as a function of potential evaporation 302 

(Priestley-Taylor), rainfall interception (Gash analytical model) and a cover-dependent stress factor, 303 

which is a function of microwave VOD and root zone soil moisture (calculated via a multi-layer water 304 

balance algorithm). 305 

6. GLASS ET (Liang et al., 2021; Yao et al., 2014): 1 km spatial resolution, 8-day temporal resolution, 306 

available 2000-2018. A Bayesian fusion of five process-based or semiempirical algorithms: the 307 

MODIS ET algorithm (MOD16), the revised remote-sensing-based Penman-Monteith algorithm (RRS-308 

PM), the Priestley-Taylor algorithm of the Jet Propulsion Lab (PT-JPL), a modified satellite-based 309 

Priestley-Taylor algorithm, and the Semiempirical Penman LE Algorithm of the University of 310 

Maryland. 311 

7. GLASS GEP (Liang et al., 2021): 0.5 km spatial resolution, 8-day temporal resolution, available 2000-312 

2020. Based on a revised Eddy Covariance-Light Use Efficiency (EC-LUE) model (Yuan et al., 2019), in 313 

which GEP is a function of direct and diffuse radiation, down-regulated based on Ta, VPD, and 314 
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atmospheric CO2 concentration. Inputs are GIMMS3g NDVI (to estimate FPAR) and MERRA GMAO 315 

Ta, VPD, and PAR.   316 

8. FluxSat v2.0 GEP (Joiner and Yoshida, 2020): 0.05o (~6 km) spatial resolution, daily temporal 317 

resolution, operational 2000-2020. GEP is upscaled by training a neural network to predict 318 

FLUXNET2015 GEP based on MODIS 7-band surface reflectance [MCD43C4] and top-of-atmosphere 319 

PAR, estimated as a function of the solar zenith angle. 320 

 321 

The spatial resolutions of the satellite model estimates (0.25 - 9 km except for GLEAM ET, which is ~30 322 

km) differ substantially from the footprint of the flux measurements, which have an average source area 323 

extending to approximately 200 m from the tower (and a range of ~100 - 1000 m, depending on 324 

atmospheric and surface conditions; Chu et al., 2021; Schmid, 1997). However, both spatial and 325 

temporal factors increase the comparability of the measurements and model estimates. The mesquite 326 

savanna around the flux tower extends for several kilometers in all directions around the site. While 327 

those distances span changes in soils, tree/grass percentages, stand age, and meteorology – most 328 

notably summer precipitation associated with spatially-discrete convective thunderstorm cells – we 329 

expect that the influence of forcing variability is considerably reduced when aggregating flux data 330 

seasonally (Goodrich et al., 2008). Also, satellite spectral indices (e.g., EVI) should integrate how 331 

precipitation, stand characteristics, and soils might affect vegetation productivity, effectively de-332 

emphasizing the relevance of any single driver. A previous remote sensing study, based on this site and 333 

others in the lower elevation monsoon region, compared relationships of flux tower GEP with EVI and 334 

the Photochemical Reflectance Index (PRI) averaged over 3 km and 0.5 degree spatial scales, and found 335 

nearly identical temporal correlations at fine and coarse scales (Smith et al., 2018). Similarly, we found 336 

that the 16-day EVI data used in this study (3 x 3 0.25-km pixels centered on the tower pixel) was highly 337 

correlated with the average of the entire 8 x 8 km subset (R2 = 0.95). Thus, satellite estimates derived 338 

from products at scales less than ~10 km (i.e., all except GLEAM) should capture the variability in the site 339 

conditions as sampled by eddy covariance.  340 

 341 

Land Surface Model (LSM) 342 

Carbon and water fluxes in LSMs are derived from process-based equations (e.g., leaf phenology, 343 

photosynthesis, respiration, stomatal conductance, and vertical soil moisture diffusion; Blyth et al., 344 

2021) with fixed values (parameters) dependent on broadly defined plant functional types (PFTs) or soil 345 

texture. In this study, LSM estimates came from the ORCHIDEE v2.2 terrestrial biosphere model 346 
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(ORganizing Carbon and Hydrology In Dynamic EcosystEms; Dufresne et al., 2013; Krinner et al., 2005), 347 

which forms the land component of the French Institute Pierre Simon Laplace (IPSL) Earth system model. 348 

While there are many LSMs, MacBean et al. (2021) showed that all LSMs in the TRENDY v7 model 349 

intercomparison fail to capture variability in annual gross and net carbon fluxes. Across 12 sites in the 350 

Southwestern US, LSM gross and net CO2 flux IAV and mean annual net carbon uptake were 351 

considerably underestimated by all TRENDY models. Teckentrup et al. (2021) reported similar results in 352 

TRENDY v8 across Australian FLUXNET sites, and Fawcett et al. (2022) demonstrated that TRENDY 353 

models have considerable biases in GPP and aboveground biomass across dryland regions globally. Here, 354 

we compared eddy covariance ET and GEP with site-scale ORCHIDEE simulations in land only mode, 355 

forced with site-measured meteorology, PFT fractional cover, and soil texture class. We applied 356 

ORCHIDEE with and without optimizing carbon and water cycle related parameters; parameters of the 357 

optimized version were calibrated against measured ET (Mahmud et al., 2023). Model outputs for both 358 

simulations (default and calibrated parameters) were available only from 2004 – 2012 due to an earlier 359 

termination of the modeling studies. 360 

 361 

4. Results 362 

Precipitation and Carbon Fluxes 363 

For the 2004 - 2022 study period (Fig. 4), mean annual precipitation (P) was 360 +/- 103 mm (standard 364 

deviation) with 82 +/- 43 mm in the spring (January - July) and 277 +/- 85 mm in the summer growing 365 

season (July - December). In general, the first half of the US-SRM data record experienced drier springs 366 

and summers than the latter half. The study period overlaps the 21st-century “megadrought” across the 367 

western U.S. (Williams et al., 2022), which was indeed drier than the previous 30-yr (1974-2003) mean 368 

precipitation of 112 mm (spring), 295 mm (summer), and 407 mm (annual). However, the longer 369 

precipitation record for the Santa Rita Experimental Range from 1937-2003 reveals spring, summer, and 370 

annual averages (97 mm, 280 mm, 377 mm, respectively) only slightly higher than the current study 371 

period. The driest growing seasons during the current study were the spring of 2006 and the summer of 372 

2020, and the wettest seasons were the spring and summer of 2018 (Fig. S1). 373 
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 374 

Figure 4. a) Annual precipitation (P) partitioned into spring and summer growing seasons with 2004-375 

2022 average spring and annual totals indicated with dashed lines. b) Monthly Standardized 376 

Precipitation Index (SPI, 3-month) with dashed lines at -1.5 and 1.5 to indicate drought or pluvial 377 

conditions, respectively.  378 

The interannual variability in precipitation at this savanna ecosystem translates to high variability in 379 

both gross and net carbon fluxes (Fig. 5). The ecosystem was a net sink for atmospheric CO2 in twelve of 380 

the nineteen years, with the driest years generally resulting in negative NEP. Annually, NEP averaged 23 381 

+/- 64 gC m-2. Annual NEP was lowest in 2017, which had both a dry spring and summer, and highest in 382 

2016 (wet spring and average summer, Fig. S1). Mean annual GEP was 372 +/- 122 gC m-2 and mean 383 

annual ER was 349 +/- 73 gC m-2. Seasonally, spring periods were characterized by lower gross fluxes 384 

(GEP = 82 +/- 60, ER = 104 +/- 28 gC m-2) and typically negative NEP (-22 +/- 37 gC m-2) in contrast to 385 

higher gross fluxes (GEP = 290 +/- 117, ER = 245 +/- 68) and positive NEP for summer periods (45 +/- 58 386 

gC m-2). Annual GEP was more variable than ER with coefficients of variation equal to 33% and 21%, 387 

respectively, and was even more variable than P (CV = 29%). The only seasonal gross flux that was 388 

significantly correlated with annual NEP was summer GEP (R2 = 0.49, p < 0.01).   389 

 390 

 391 
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 392 

 393 

Figure 5. Annual, spring (Jan-Jun), and summer (Jul-Dec) growing season ecosystem respiration (ER, 394 

blue), gross ecosystem productivity (GEP, green), and net ecosystem production (NEP, black). 395 

Variation in summer and annual NEP was explained largely by precipitation (summer R2 = 0.82, annual R2 396 

= 0.65; Fig. 6, Table 1). However, variability in spring NEP was poorly explained by spring P (R2 = 0.29) 397 

due to previously unutilized fall (October – December) precipitation stored as soil moisture that 398 

contributes to spring productivity (Scott and Biederman, 2019). Thus, spring NEP was more correlated 399 



17 
 

with precipitation when October – December rainfall was included in the regression (R2 = 0.80). 400 

Recognizing the effects of non-negligible storage between years, we defined a hydrological or water 401 

year with a start and end that occurs when storage is minimal, which at this site occurs most reliably in 402 

June (Fig. 2). Redefining annual P and NEP in water years improved their annual relationship (R2 = 0.78, 403 

Fig. 6).  404 

 405 

Figure 6. Spring (Jan-Jun), summer (Jul-Dec), annual (Jan-Dec) and water year (Jul-Jun) sums of 406 

precipitation and net ecosystem production (NEP). 407 

In addition to precipitation, much of the variance in seasonal and annual NEP could also be explained by 408 

soil moisture (0-130 cm, though fits were only slightly worse for 0-30 cm) and greenness (Table 1). 409 

Annual P, soil VWC, and EVI typically explained less variance in NEP than seasonal values because spring 410 

and summer slopes and/or offsets were often season specific. We therefore explored the drivers of GEP 411 

and ER at the seasonal scale. To simplify presentation, we show results using VWC as the water 412 

availability metric because of its direct physical ties to plant photosynthesis and plant/soil respiration.  413 

Table 1. Linear regression coefficients with slope (m), offset (b), and coefficients of determination (R2) 414 

for spring, summer, and annual NEP predicted by P, VWC, and EVI.  415 
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NEP predicted by m b R2 

P spring 0.47 -60.16 0.29 

 summer 0.62 -126.64 0.82 

 annual 0.50 -158.33 0.65 

VWC 0-130 cm spring 2481.01 -185.13 0.70 

 summer 5669.81 -332.37 0.69 

 annual 6016.01 -375.15 0.51 

EVI spring 10.61 -266.68 0.58 

 summer 10.26 -303.01 0.71 

 annual 8.40 -456.92 0.47 

 416 

Drivers of Seasonal Productivity and Respiration 417 

Soil moisture explained much of the variation in both spring (R2 = 0.85) and summer (R2 = 0.73) GEP and 418 

ER (R2 = 0.73 and 0.58, respectively, Fig. 7) and typically explained more of the variation than P (not 419 

shown). Slopes were greater for GEP than ER, indicating that soil moisture control on seasonal NEP was 420 

primarily driven by its effects on GEP. However, regression slopes were lower in spring than summer, 421 

implying that ecosystem metabolism was less sensitive to the same soil water status in spring than in 422 

summer. This was not due to averaging of elevated spring VWC values across the mainly dormant parts 423 

of spring (Jan-Feb, Figs. 2&3); the slopes of VWC regressions from March – June were similar to slopes of 424 

regressions from the entire January – June period (not shown).  425 

 426 

Considering unexplained (by VWC) seasonal GEP variance (Fig. 7), GEP residuals were not significantly 427 

correlated with VPD or Ta in spring, but were correlated with VPD in summer (R2 = 0.17, p = 0.08). Ta 428 

was correlated with ER residuals in spring (R2 = 0.31, p = 0.01) but not with VPD or Ta in summer. Annual 429 

predictive power increased for both GEP (R2 from 0.55 to 0.74) and ER (R2 from 0.37 to 0.59) when 430 

separate seasonal regressions with VWC were used instead of annual values (Fig. 7).  431 

 432 
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433 
Figure 7. The relationship between soil volumetric water content (VWC, 0-1.3 m) and gross ecosystem 434 

productivity (GEP) or ecosystem respiration (ER). Spring values are shown in blue, summer in red. 435 

 436 

Temporal Trends 437 

Longer flux tower records allow for the detection of trends in water and carbon fluxes. We used the 438 

non-parametric Mann-Kendall τ (ranging from −1 to 1) to determine the degree to which trends were 439 

present in the data, where τ = 1 indicates a monotonically increasing trend and τ = -1 indicates a 440 

monotonically decreasing trend. Over the period of record (2004-2022), there were positive trends in 441 

spring ER and annual NEP, GEP, and ER, but no significant changes (p > 0.10) in ET (Table 2). Over the 442 

same period, concentrations of atmospheric CO2 increased 2.58 ppm/yr, 49 ppm, or about 13% (data not 443 

shown), which may partly explain increases in GEP and NEP without an associated increase in ET due to 444 

increased plant water use efficiency (Walker et al., 2021). However, annual P, VWC (both depths), and 445 

EVI also increased (Table 2), as did spring and summer VWC for 0-0.3 m depth and spring EVI. 446 

 447 

Table 2. 2004 – 2022 trend results for the spring, summer 

and annual site meteorology and fluxes. Numbers indicate 

Mann-Kendall τ values, with bold values denoting 
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statistically significant increases (+ τ) at p < 0.10(*) and p < 

0.05(**). 

 Spring Summer Year 

P 0.18 0.26 0.29* 

Ta 0.29* 0.10 0.25 

VPD 0.24 0.11 0.05 

VWC 0-1.3m 0.42** 0.25 0.45** 

VWC 0-0.3m 0.45* 0.36** 0.52** 

EVI 0.31* 0.25 0.35** 

    

NEP 0.23 0.17 0.32* 

GEP 0.25 0.19 0.35** 

ER 0.31* 0.27 0.29* 

ET 0.15 0.12 0.18 

 448 

Focusing in on the summer growing season when there is maximum plant photosynthesis, ecosystem 449 

water use efficiency (WUEe) and underlying water use efficiency (WUEu) computed over various times 450 

and conditions were highly variable (Fig. 8), with decreases in dry years and increases in wet years. 451 

There were no significant trends in either metric at any time or condition analyzed, but there were clear 452 

increases in the summers of 2021 and 2022 as the ecosystem was released from the severe drought that 453 

lasted from the 2020 summer through the 2021 spring. 454 
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 455 

Figure 8.  Mean daily ecosystem water use efficiency (WUEe = GEP/ET) for the summer growing season, 456 

the months of August – September, and peak, non-water limiting, and non-light limiting conditions in 457 

August. Also shown is the mean underlying water use efficiency (WUEu = GEP* VPD1/2/ET) under optimal 458 

(see Methods) growth conditions in August. Missing years indicate that there were no values with 459 

optimal conditions. 460 

Satellite and Land Surface Models 461 

We examined whether state-of-the-art models can reproduce the seasonal and annual variability of the 462 

measurements. Here, we focused on two key variables: GEP for the fundamental role it plays in the IAV 463 

of NEP, and ET as a metric of site water availability that can also be estimated using satellite data and 464 

associated models. While ET is a flux, rather than an ecosystem state variable, it has previously been 465 

shown to be an excellent predictor (explaining more variance than P and VWC) of carbon fluxes at this 466 

and other dryland sites (Biederman et al., 2016; Scott et al., 2015; Scott and Biederman, 2019). 467 

 468 

Models of seasonal ET (0.5 km MODIS, 30 km GLEAM, 1 km GLASS, default and optimized ORCHIDEE) 469 

differed substantially in their agreement with site measurements (Fig. 9). Satellite model regression 470 

slopes ranged from 0.27 to 0.71 for spring and from 0.10 to 0.61 for summer. Biases in the seasonal 471 

magnitudes were largest for MODIS, while GLASS had very little variability from year to year (slope = 472 
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0.27 for spring; 0.10 for summer). In spring, the ORCHIDEE LSM tended to underestimate ET at low 473 

values and overestimate at high values; in summer, ORCHIDEE slopes were 0.64 and 0.89 for default and 474 

optimized simulations, respectively.  475 

476 
Figure 9.  Measured and modeled spring and summer growing season evapotranspiration (ET, mm) 477 

totals. The 1:1 line is dashed and the colored lines represent best-fit regressions. ORCHIDEE simulation 478 

results are for default (Orch) and optimized (Orcho) parameters. 479 

The IAV of GEP was underestimated by all models, as demonstrated by measured vs. modeled GEP 480 

regression slopes substantially <1 for all models in both seasons (slopes ranged 0.31 – 0.55 in spring and 481 

0.36 – 0.71 in summer; Fig. 10). In most cases, GEP was overestimated in spring (values above the 482 

dashed 1:1 line) and underestimated in summer (values below). This resulted in compensating errors 483 

when determining mean annual sums, but also indicated a failure to capture even the general bimodal 484 

seasonal pattern of GEP at this site (Fig. 3) with substantially lower values in spring and higher values in 485 

summer. Optimization of ORCHIDEE carbon and water cycle parameters using ET as a constraint 486 

improved the slope and underestimation of summer GEP but did not notably improve spring 487 

simulations. 488 
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 489 

Figure 10.  Measured vs. modeled spring and summer growing season gross ecosystem productivity 490 

(GEP, gC m-2) totals. ORCHIDEE simulation results are for default (Orch) and optimized (Orcho) 491 

parameters. 492 

5. Discussion  493 

Short-term ecosystem flux studies are useful for understanding the magnitudes and seasonality of the 494 

fluxes at a site, but their conclusions are constrained by the meteorological and ecosystem conditions 495 

during the study period. As site records lengthen, it is possible to resolve flux means, variability, and 496 

trends, as well as environmental drivers of those flux quantities, with higher confidence (Figs. 2 and 3). 497 

As we celebrate the 25th anniversary of AmeriFlux, data records for sites are beginning to span one and 498 

even two decades. Here, we were able to constrain longer-term processes using 19 years of 499 

micrometeorological measurements at a semiarid savanna site. 500 

Long-term monitoring is essential to capture dryland ecosystem response to interannual climatic 501 

variability and decadal climate shifts like long-term drought. In general, the first half of the US-SRM 502 

record experienced drier springs and summers than the latter half, corresponding to the “turn-of-the-503 

21st century” drought, which was associated with large reductions in carbon uptake throughout the 504 

western U.S. (Cayan et al., 2010; Schwalm et al., 2012). As drought conditions continued into the 2010’s, 505 

the 21st-century “megadrought” emerged across the southwestern U.S. (Williams et al., 2022), and site 506 

conditions were indeed drier than the previous 30-year means. However, they were only slightly drier 507 

than the longer-term precipitation record at the site. This result highlights that defining the period for 508 
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determining average or baseline climatic conditions, as well as ecosystem responses, may affect what is 509 

seen as normal versus anomalous in a changing climate (Milly et al., 2008). 510 

One of the ways that megadrought status is assessed is by using cumulative 0-2 m soil moisture 511 

anomalies from a bucket-type water balance model forced with climate data, where anomalies are 512 

defined as differences from long-term climatological soil moisture values (Williams et al., 2022). This 513 

may be a good metric to describe cumulative drought stress for human systems like agriculture and 514 

water supply that have large amounts of water storage (e.g., groundwater basins, man-made 515 

reservoirs), but it is not appropriate for quantifying the water status of dryland ecosystems that may 516 

experience some seasonal storage/carryover of water (e.g., spring moisture adding to summer growth, 517 

or late fall/ winter moisture for spring growth) but not from year to year. For example, every June at US-518 

SRM, the soil moisture storage was drawn down so there would be little or no hydrological memory of 519 

previous year’s precipitation. Still, ecosystem carbon cycle legacies can result from shifts in precipitation 520 

(decadal-scale droughts and pluvials) as carbon stocks (e.g., aboveground/belowground biomass, soil 521 

carbon) adjust over longer timescales. Carbon cycling trajectories following disturbance are well-studied 522 

in forested ecosystems using chronosequences (Fu et al., 2017), but much less is known about them in 523 

dryland ecosystems, though some results suggest that adjustments may be more rapid (years, rather 524 

than decades; Ma et al., 2016; Scott et al., 2015). 525 

Below, we discuss whether our results support our specific hypotheses: 526 

1) Investigate coupling between the interannual variability of hydrometeorological drivers and 527 

ecosystem carbon fluxes  528 

As expected, water availability was the dominant driver of carbon cycling in this savanna. The ecosystem 529 

carbon fluxes at US-SRM rapidly responded to variations in precipitation (CV = 29%), with plants quickly 530 

adding leaf area and accumulating biomass in years of abundance and quickly decreasing carbon uptake 531 

in dry years (Figs. 4 and 5). As expected for dryland regions, the large interannual variability of P and 532 

associated root zone soil moisture led to a large variability in NEP (mean = 23 +/- 64 gC m-2 yr-1, Fig. 6, 533 

Table 1). Other long-term flux studies at mesic forested sites have shown similar variability (standard 534 

deviation = ~50 – 100 gC m-2 yr-1), but with considerably higher means (~100 – 500 gC m-2 yr-1; Beringer 535 

et al., 2022; Desai et al., 2022; Finzi et al., 2020). Throughout the lower elevation sites in the 536 

southwestern U.S. and northwestern Mexico region, Biederman et al. (2017) found that about half of 537 

the 25 flux sites analyzed pivoted between annual net carbon loss during dry years and carbon gain 538 
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during wet years, especially in the lower monsoon region (Fig. 6; Scott et al., 2015). The NEP of dryland 539 

sites on other continents (e.g., Australia and Spain) similarly pivoted depending on P, showing that 540 

carbon exchanges are resilient to the frequent drought and pluvial cycles experienced in these regions 541 

(El-Madany et al., 2020; Tarin et al., 2020). While a strong relationship between total summer P and NEP 542 

may be surprising given the well-known precipitation pulse-driven responses characteristic of 543 

thunderstorm-driven drylands (Huxman et al., 2004), we note that summer P totals were closely related 544 

to the amount of rainfall occurring in the larger, more biologically-significant pulse events (P > 10 mm 545 

day-1, Fig. S2), which stimulate and sustain GEP increases to a greater degree than ER (Roby et al., 2022). 546 

Thus, summer P totals reflected the number and amount of these less frequent but disproportionately 547 

important pulse events.   548 

Given that the variability of GEP (CV=33%) was higher than that of ER (CV=21%), NEP variations were 549 

principally driven by GEP as hypothesized. The annual variability of NEP from dryland flux sites at other 550 

sites in the southwestern U.S. is similarly explained by GEP variability (Biederman et al., 2017). Out of all 551 

seasonal flux totals at US-SRM, only summer GEP was correlated with annual NEP, indicating that the 552 

summer growing season was a key determinant of the annual carbon balance. In this savanna, 553 

phenocam measures of separate tree and grass greenness responses indicate that summertime 554 

greenness is dominated by the C4 grass understory rather than the C3 trees (Steiner, 2022). While 555 

greenness from satellites and phenocams can be less coupled to productivity at hourly to weekly 556 

timescales because of strong stomatal regulation in response to soil and atmospheric dryness, the 557 

monthly-to-annual greenness tends to approximate GEP (Browning et al., 2017; Ma et al., 2013; Yan et 558 

al., 2019). Studies of flux IAV across precipitation gradients have shown similarly variable GEP and ER at 559 

other semiarid grassland and shrubland sites (Biederman et al. 2017) that decrease considerably at 560 

wetter, forested sites (mean GEP CV = 0.13 and mean ER CV = 0.12, Baldocchi et al., 2018). 561 

 562 

The savanna showed different carbon flux responses to variations in water availability during the spring 563 

and summer growing seasons (Figs. 6 and 7). The precipitation pivot point (P = 96 mm where NEP = 0) 564 

tended to be higher than the mean spring P (82 mm), such that only wetter-than-normal springs had net 565 

carbon gains (Fig. 6), contrary to our hypothesis that spring NEP would be more responsive to P due to 566 

decreased ER relative to GEP. The opposite was true for summer (pivot point = 217 mm P, average = 277 567 

mm P), such that most summers were characterized by positive NEP. During both growing seasons, soil 568 

moisture explained much of the variability in GEP and ER, but there was lower GEP and ER for a given 569 

VWC in spring than in summer (Fig. 7). This may be associated with the reduced activity of the 570 
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understory C4 grasses in spring compared to summer (Cable, 1975; Kemp, 1983; Steiner, 2022). 571 

Conversely, the relatively higher influence of C3 trees on spring GEP is likely why spring productivity at 572 

the savanna was less water use efficient than summer (mean spring WUEe = 0.70 vs. 1.17 for summer). 573 

This reduced WUE contrasts with C3-dominated shrubland sites in the region, which have a propensity 574 

for higher NEP in spring than summer due to consistent WUE and less ER relative to GEP in spring 575 

(Biederman et al., 2018; Pérez-Ruiz et al., 2022).  576 

2) Quantify trends in hydrometeorological drivers and ecosystem carbon fluxes during the spring and 577 

summer growing seasons 578 

Even with nearly two decades of data, we hypothesized that the high variability in water availability, the 579 

dominant driver of carbon flux IAV at this site, would make it difficult to identify trends over the 19-year 580 

record. However, we found statistically significant increases in Ta, VWC, and EVI in spring, VWC in 581 

summer, and in annual P, VWC and EVI (Table 2), which both influence and are influenced by water and 582 

carbon fluxes. Spring ER increased significantly during 2004-2022 in accord with increased temperatures 583 

and near-surface soil moisture. Soil moisture is a primary control of soil respiration in drylands, and has 584 

been shown to both explain substantial variability in efflux rates and regulate the temperature response 585 

of soil respiration at this site (Roby et al., 2022, 2019). Also, small positive, but non-significant, trends in 586 

spring and summer GEP, ER, and NEP contributed to significant increases in annual GEP, ER, and NEP 587 

over the study period. These trends were likely driven by changes in precipitation (regression line slope 588 

of 5.5 mm yr-1) transmitted through soil moisture. Generally, the early years of monitoring were drier 589 

with lower fluxes, while the later years were wetter with higher fluxes (Fig. 4 and 5).Thus, we found little 590 

evidence that the southwestern US megadrought conditions continued into the later half of the 591 

monitoring period nor that it caused ecosystem structural changes (e.g., plant mortality and dieback 592 

resulting in less soil carbon inputs and plant matter decay) that could lead to persistent carbon loss from 593 

the savanna (Huang et al., 2018; Throop and Archer, 2007). Plant cover surveys suggest that such a 594 

structural adjustment for both woody and grass cover happened in the decade preceding the start of 595 

flux tower monitoring (Fig. S3) with large decreases in cover following the wet 1980’s and early 1990’s. 596 

There was considerable variability in the trade-off between productivity and evapotranspiration (i.e., 597 

WUE) of the savanna, especially during the last three years. All WUE metrics were dramatically reduced 598 

during the record summer drought in 2020 (Fig. 4), but subsequently responded to abundant summer 599 

rains and increased to their highest levels in 2021 and 2022 (Fig. 8). It is likely that this dramatic 600 

rebound, or ‘whiplash’ (Swain et al., 2018), was driven by increasing LAI and GEP associated with 601 
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flourishing understory grasses and mesquite trees in 2021 and 2022 and captured by increasing EVI. 602 

Nearby long-term vegetation transects showed a doubling in grass basal cover and a 10% increase in 603 

tree/shrub canopy cover from measurements prior to the 2020 summer drought (Fig. S3). This 604 

abundance led to noticeable decreases in bare soil cover that altered the amount of GEP relative to the 605 

ET during this season (Figs. 8 and S4).  606 

Applying the Scott and Biederman (2017) approach to estimate long-term abiotic evaporation (E) at US-607 

SRM prior to 2021, we found an average summer E/ET ratio of 0.32 (or, [transpiration, T]/ET = 0.68). 608 

However, 2021 and (especially) 2022 did not conform to the close relationship between GEP and ET in 609 

prior summers (Fig. S4); there was lower soil evaporative loss relative to ET during these years. Reasons 610 

for this could include increased cover acting as a mulch (less E) and/or improved scavenging of soil 611 

moisture due to more surface roots (more grass T). Furthermore, across dryland sites, increased water 612 

availability leads to higher WUEe, in part due to increased LAI that increases T/ET (Scott et al., 2015). 613 

Thus, the trends in carbon fluxes at US-SRM are likely due to increasing plant water availability 614 

supporting more leaf area, rather than changes in leaf-level water use efficiency associated with carbon 615 

dioxide fertilization, as found for forested flux sites in the northeast U.S. (Keenan et al., 2013). We 616 

expect that changes in leaf-level water use efficiency (i.e., carbon fertilization) might be harder to detect 617 

in drylands at the ecosystem scale, even more so than they are in north-central U.S. forests (Desai et al., 618 

2022), because of drylands’ greater proportion of abiotically-driven processes (E, heterotrophic ER) to 619 

biotically-driven processes (T, autotrophic ER, GEP) in the composite fluxes (ET and NEP, Wang et al., 620 

2021).   621 

3) Assess the ability of modern land surface and satellite models to reproduce the IAV of carbon and 622 

water fluxes  623 

Satellite and LSM estimates of ET, GEP, and NEP are routinely used to assess water and carbon cycle 624 

trends and variability, as well as their responses to climatic change and extreme weather events. They 625 

have also been used to identify key regions driving the response of the biosphere to anthropogenic 626 

change, and they have identified drylands as hotspots for carbon sink variability (Ahlström et al., 2015; 627 

Poulter et al., 2014). Satellite models are typically assessed globally with a large compilation of site data 628 

from data products like FLUXNET2015 (Pastorello et al., 2020) and are thus shown to work across sites 629 

(spatially) rather than through time (e.g., Jones et al., 2017; Liang et al., 2021; Running et al., 2004). 630 

Correspondence between models and measurements at locations through time is comparatively less 631 

well-studied. 632 
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While considerable effort has been expended to develop satellite-based estimates of ET, especially for 633 

agricultural and forestry applications (Anderson et al., 2011; Melton et al., 2022), dryland ET variability is 634 

often underestimated (Biederman et al., 2017; Dannenberg et al., 2023). Yet, dryland ET represents an 635 

integrated measure of ecosystem water availability, and explains a large part of dryland carbon flux 636 

variability (Biederman et al., 2016). Of the satellite models we examined, GLEAM (30 km resolution) 637 

more closely matched the range of tower-observed ET variability during both growing seasons (Fig. 9, 638 

slopes of 0.71 and 0.61) than MODIS (0.5 km, slopes of 0.49 and 0.47) or GLASS (1 km, slopes of 0.47 and 639 

0.10). This was unexpected given GLEAM’s coarse spatial resolution relative to the tower footprint, but 640 

it may highlight the importance of particular variables and processes – namely soil water availability and 641 

plant water use – for controlling dryland ET. Unlike MODIS and GLASS, GLEAM includes vegetation 642 

optical depth, which is directly related to plant water status and water use strategies (e.g., Konings and 643 

Gentine, 2017). It also includes estimates of soil moisture, which drive variability in dryland surface 644 

conductance (e.g., Novick et al., 2016). The severe underestimation of ET IAV by GLASS may be 645 

associated with the weighted-average approach (reduces variance compared to the individual model 646 

estimates that compose the ensemble) and its tuning based on the global FLUXNET network, which was 647 

dominated largely by temperate flux sites (Yao et al., 2014). MODIS ET also underestimated ET in both 648 

seasons, which may be associated with its lack of an explicit soil moisture control (Brust et al., 2021).  649 

The ORCHIDEE model (local meteorology with default parameters) captured over 80% of variation in ET. 650 

Parameter optimization improved the slope of the summer regression line from 0.64 to 0.89 but did not 651 

improve the slope or bias for the spring (Fig. 9). Together, these results corroborate previous 652 

suggestions that diverse mechanisms for plant water uptake, transport, storage, and loss by multiple 653 

plant functional types (e.g., trees versus grasses) require more realistic representation in models 654 

(MacBean et al., 2021; Whitley et al., 2017). Dryland-specific plant photosynthetic and water use traits 655 

(e.g., Barron-Gafford et al., 2012) and improvement of phenology modules are also likely to improve 656 

model-data mismatches, and can be used to test the validity of calibrated parameters (Mahmud et al., 657 

2021; Teckentrup et al., 2021). 658 

As with ET, satellite models underestimated the IAV of GEP (Fig. 10), capturing only 40 to 53% of spring 659 

and summer variability. Moreover, the models did not reproduce US-SRM’s bimodal growing season: 660 

nearly all the spring estimates were biased high, and many of the summer estimates were biased low. 661 

This result suggests that static model parameterizations were unable to accommodate structurally and 662 

functionally variable ecosystems. For example, the LUE models (SMAP, GLASS, and MODIS) include 663 
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biome-specific (but temporally unchanging) parameterizations for “optimal” LUE and 664 

temperature/water stress scalar functions. For a pulse-driven semiarid savanna, where the fractional 665 

covers of annual and perennial grasses vary seasonally and interannually depending on water status, 666 

static LUE and scalar functions may not be sufficient (Chang et al., 2020). Further, only SMAP includes 667 

soil moisture as a potential water stress down-regulator for optimal LUE, despite the fundamental 668 

relevance of soil moisture, rather than VPD, in dryland ecosystem functioning (Novick et al. 2016). 669 

Finally, it is notable that Wang et al. (2022) found significant seasonal biases in the ability of optical 670 

reflectance—on which all the satellite-based models examined here are partly based—to track dryland 671 

GEP. They report overestimation of GEP prior to the peak growing season and underestimation after, 672 

which increased as woody plant cover increased.  673 

The ORCHIDEE model did a much poorer job of simulating the IAV of GEP relative to ET; however, 674 

optimizing for ET did result in improvements. As a result, more work is required to explore whether 675 

parameter calibration is responsible for model structural errors (Mahmud et al., 2021). For example, 676 

processes that are important for dryland carbon and water cycling, such as biological soil crust activity, 677 

are omitted from this and other LSMs (Osborne et al., 2022). 678 

Flux datasets spanning one to two decades afford new opportunities to assess the capability of satellite 679 

models and LSMs to predict the interannual variability of land-atmosphere water and carbon fluxes. 680 

Model testing focused on site-scale variability is a particularly promising avenue for model development 681 

because site-scale comparisons are focused on the temporal patterns often obscured by cross-site 682 

comparisons. While key uncertainties in measured fluxes include lack of energy balance closure and NEP 683 

partitioning, we expect that these are more relevant to flux means than their variability (Baldocchi, 684 

2008; Baldocchi et al., 2018; Lasslop et al., 2010). Thus, model testing focused on site variability may 685 

effectively diagnose model formulation and parameterization errors, leading to improved confidence in 686 

modeling study conclusions (Keenan and Williams, 2018).  687 

6. Conclusions 688 

The high IAV of both net and gross CO2 fluxes was very closely related to water availability at the US-689 

SRM savanna, which was mainly dependent on recent precipitation, with little long-term storage to 690 

buffer periods of water scarcity. Specifically, the NEP, GEP, and ER rapidly responded to interseasonal 691 

and interannual variability in water availability with no identifiable hydrological memory. We also found 692 

that climatic variability, even during this relatively short period, was significant with generally drier 693 
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conditions in the first half of the monitoring period and wetter conditions in the latter half. In addition, 694 

there were large whiplashes in the precipitation record; for example, from record summer and winter 695 

drought in 2020 to abundant rains in 2021 that may have induced ecosystem structural changes that 696 

altered WUE. With the easing of the turn-of-the-21st century drought, there were positive trends in 697 

annual P and seasonal and annual VWC, and the ecosystem responded with positive trends in CO2 fluxes. 698 

While the longer flux record allowed for a more robust characterization of the flux IAV and its controls, 699 

the multi-scale episodic nature of water inputs to this savanna and other dryland regions make it 700 

difficult to identify a stable or stationary period on which to base firm conclusions about mean 701 

ecosystem flux behavior. 702 

As AmeriFlux reaches its milestone 25th year, we celebrate that ecosystem flux research continues to 703 

add analytical facets that refine understanding of ecosystem function. In this case, we leveraged 19 704 

years of continuous flux data to focus on a more robust quantification of IAV and decadal-scale 705 

variability as well as to identify trends due to both short-term disturbances and long-term climatic and 706 

structural change. In this way, continuous datasets are especially critical to understanding and 707 

predicting ecosystem dynamics at dryland sites where the variability of fluxes makes it difficult to 708 

quantify mean responses. Although modern satellite estimates and LSMs are essential tools for 709 

understanding IAV of the terrestrial carbon sink, these models performed poorly at US-SRM. As a result, 710 

the cuttent study highlights the advantage of using long-term datasets to resolve model-data 711 

disagreements, especially for the purpose of capturing seasonal to annual variability. 712 
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