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Abstract

The Stefan problem is the classical model of a melting phase change. In hetero-
geneous systems, such phase changes can exhibit non-Fourier (anomalous) behaviors,
where the advance of the melt interface does not follow the expected time scaling.
These situations can be modeled by replacing the derivatives, in the governing partial
differential equations, with fractional order derivatives. In particular, replacing the
time derivatives leads to non-Fourier models that account for memory effects in the
system. In this work, by using appropriate time convolution integrals, a general ther-
modynamic balance statement for melting phase problems, explicitly accounting for
memory effects, is developed. From this balance, a general model formulation appli-
cable to problems involving melting over a temperature range (i.e., a mushy region)
is derived. A key component in this model is the representation of memory effects
through the use of fractional derivative based constitutive models of the enthalpy and
heat flux. On shrinking the mushy region to a single isotherm, a general sharp inter-
face melting model is obtained. Here, in contrast to the classic Stefan problem, the
fractional derivatives induce a natural regularization, such that the constitutive mod-
els for enthalpy and heat flux are continuous at the melt interface; a result confirmed
through numerical simulation. To further support the theoretical findings, a physical
example of a non-Fourier Stefan problem is presented. Overall the development and
results in this paper underscore the importance of explicitly relating the development

of fractional calculus models to the appropriate thermodynamic balance statements.
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1 Introduction

Phase change problems are ubiquitous in the thermal sciences and of significant interest in
both engineering [1-7] and mathematical [8-13] disciplines. The canonical phase change
problem is the Stefan problem, describing the melting of pure ice [14]. The core feature
in this problem is a sharp moving phase front (interface), separating the melt water from
the ice. Typically, in studying the Stefan problem, the heat flux is modeled as a Fourier
heat conduction, leading to solutions, in one-dimensional settings, where the melt front
advances as the square root of time [8]. Currently, however, there is developing and active
research focused on the study of so called non-Fourier Stefan problems [15-25]. Here, due
to ‘fast-paths’ or ‘memory’ in the transport system, the length-time scaling can deviate
from the expected square-root in time behavior. Possible models of this behavior can be
built by using fractional calculus constructs, consisting of non-integer order integrals and
derivatives [26-28]. In general, as summarized in [29-31], replacing the first order integer
space derivative (the gradient) in the Fourier heat conduction equation, with a derivative
of order 0 < B < 1, produces so-called super-diffusive behavior—indicative of fast-paths—
where the length-time scaling has an exponent 0.5 < % < 1. In contrast, replacing the
first order time derivative with a fractional order 0 < a < 1 accounts for ‘memory’ in the
system, leading to a sub-diffusive exponent 0 < § < 0.5.

A general exploration of non-Fourier heat transport is provided in the review by Voller
[32], this includes discussions on the mechanisms that may lead to non-Fourier behavior
and examples of physical systems that exhibit this behavior. There is an extensive litera-
ture on non-Fourier problems associated with the freezing of biological tissue, an inherently
heterogeneous media, e.g., [33-36]. There are also specific physical examples of non-Fourier
behaviors related to Stefan phase change problems [37-39]. Direct simulations of the solid-
ification of a phase change material (PCM), placed as a fractal pattern within a non-phase
change matrix (mold), indicates that the advance of the solidification front has a super-

diffusive time exponent > 1 [37]. In contrast, direct simulations of the solidification front

advance in a PCM containing non-phase change inserts, arranged as a fractal pattern, is



sub-diffusive, with a time exponent < % [37]. Further, simulations of a water infiltration
into a porous media [38], a limit case Stefan problem, exhibit sub-diffusive behavior in the
presence of a fractal obstacle field; simulation predictions that have been experimentally
confirmed [39].

Many of the works on modeling and analysis of non-Fourier Stefan problems cited above,
including works from the current authors, simply start by arbitrarily replacing the first order
gradient and/or time derivative in the governing equations of the classic Stefan problem
with fractional derivatives of order 0 < a, 5 < 1. While this may lead to mathematically
well posed problems, there is no guarantee that the modified governing equations obtained,
in this ‘ad-hoc’ manner, are physically sound, i.e., it may not be possible to associate
them with an appropriate thermodynamic (heat) balance that specifically identifies the
mechanism for the non-Fourier heat transport. As a case in point, consider formulations
of the Stefan condition. In the classic model, see [§8], this condition expresses the heat
balance on the moving melt interface, relating the speed of this interface to the jump in
the value of the Fourier flux at the interface. In developing Stefan model formulations that
account for memory two alternatives for the Stefan condition have been proposed. The
first, see [15,20], relates a fractional 0 < o < 1 rate of change of the interfaces position
to the jump in the Fourier flux. In contrast, the second, see [17,24], relates the rate of
change of the interfaces position to the jump in a memory flur—defined as the fractional
time derivative 0 < o < 1 of the Fourier flux. While, in solving one-dimensional problems,
both of these alternatives produce the expected sub-diffusive time scaling, § < %, analysis
shows that the solution of the temperature fields differ [19,24|. In particular, formulations
that use a fractional rate in time for the front position [15,20|—in keeping with the classic
problem—induce a jump in the temperature gradient at the melt interface, whereas in
formulations that use a memory flux the temperature gradient is continuous [25|. This
dramatic difference is cause for concern, reinforced by the analysis in Voller at al [17], who
argue that the two proposed interface balances provide fundamentally different treatments

on how the memory associated with the melting phase change is encoded. In this light,



we feel that there is a need go beyond non-Fourier Stefan formulations that simply replace
integer derivatives with fractional ones, moving towards more consistent treatments that
start from a thermodynamic balance statement based on a physically reasoned accounting
of memory effects.

In this work, restricting attention to melting problems at thermal equilibrium and con-
trolled by heat conduction, our objective is to derive non-Fourier Stefan formulations from
thermodynamic balance statements. We will start by writing down the heat balance for
an arbitrary control volume undergoing a general melting phase change. Then use physical
reasoning to arrive at a more general statement, explicitly accounting for memory in the
system. From this starting point, we develop a general fractional derivative based governing
equation for non-Fourier phase change systems. We argue that, an appropriate limit case
of this general formulation, recovers a thermodynamically consistent and general formula-
tion for non-Fourier Stefan melting problems, i.e., problems that exhibit—or approach—a
sharp interface separating the melt from the solid. We show, supported by appropriate
numerical simulations, that this sharp interface formulation implies that the Fourier flux
(the gradient of temperature) is at least piecewise continuous at the phase interface and
that its derivative, on the liquid side of the interface, is infinite. Findings that run counter
to what is seen in the classic Stefan models, where the flux is discontinuous and its liquid
side derivative is identically zero. Indeed, in the classic Stefan problem, an interface flux

discontinuity is required to drive the phase change forward—the Stefan condition.

2 Preliminaries

To start our exploration of non-Fourier Stefan problems we need to provide, some back-
ground on general analysis approaches for Stefan problems, furnish key definitions and
constructs of the fractional calculus, and identify appropriate variables and constitutive

models for a melting phase change system.



2.1 Analysis approaches for Stefan problems

The central difficulty in solving the Stefan problem is the tracking of the sharp moving
melting front defined by the isotherm w,,. This difficulty is compounded by the fact that,
in order to accumulate the latent heat to melt the solid, the conductive heat flux needs
to exhibit a jump discontinuity on the melt front. In the study of Stefan problems, the
way around this issue, is to introduce a so-called ‘mushy region’ in which both the lig-
uid and solid phases coexist. In the melting/solidification of alloy metal systems [1,5-7|
such regions are natural, a consequence of the alloy phase diagram. In mathematical and
engineering studies of sharp interface Stefan problems, however, the mushy-region is an
‘artificial” regularization device, introducing sufficient smoothness into the problem to al-
low for analysis [9-13] or numerical solution [2-4]. A typical approach, adopted here,
is to model the mushy region as a thin temperature range around the melting isotherm,
[t — €, U, +€], across which, the liquid fraction changes continuously and smoothly, from a
value of f = 0 (full solid) to a value of f =1 (full liquid). By physical considerations it can
be readily concluded that, if the phase change is continuous and smooth, the conductive
heat flux and temperature will also be continuous and smooth. The idea behind such a reg-
ularization, is that, by considering the case where the mushy region collapses to the sharp
interface (¢ — 0), results and methods arising from the mushy region approximation can be
applied to the classic sharp Stefan problem. We will use this approach in the current work.
Initially developing non-Fourier formulations and treatments of melting problems with a
mushy-region and then considering the nature of these results as we pass to the limit of

e — 0.

2.2 Key definitions and properties of fractional calculus

Given a general function in space and time, g(«,t), the Riemann-Liouville (RL) fractional

time integral of order 0 < av < 1 |27], is defined as,

W2 gl 1) = ﬁ / (t — 7y g(a, ) or, (1)

to



where t is a fixed initial point in time and I'(-) is the gamma function. This definition,
arising from a non-integer generalization of the Cauchy repeated integral formula, is in
the form of a convolution integral; expressing how the function (t — 7)®~! modifies the
function g(a,t) over the time interval [to,¢]. A physically interpretation, is a weighting of
the function g(z,t) back to the time origin ¢y, with larger weights attributed to the more
current times.

For later use, we note the following properties of the RL integral.

(i) By direct integration we see that the fractional integral 0 < ov < 1 of a constant C' is

o=t /t(t —icar = oLl (2)
YT T@) Sy T al(a)
(i) It immediately follows from eq.(2) that the
thjg tolg ¢ =0. (3)

(iii) For two arbitrary orders «, 5 > 0, Riemann-Liouville fractional integrals satisfy the

semi-group property (see 1.3 in [27])
[tolta][toltﬁ]g(x’ t) = [toltﬁ] [toff‘]g(m, t) = tolfé+ﬂg(m7 t)' (4)

From the definition of the Riemann-Liouville integral we can define the Riemann-

Liouville (RL) fractional time derivative of order 0 < a < 1 as

0

Dol ) = 5 ol o)) = gy [ -7 e n)on )

essentially stating that the Riemann-Liouville fractional derivative of order 0 < a < 1 is

formed by the time derivative of the fractional 0 < 1 — a < 1 integral [27]. Note that [27]:

(i) The RL derivative of order « is the left inverse of the RL integral of order a ,
Bytng?tolgg(m? t) = g($7 t) (6)

(ii) The RL fraction derivative of a constant is not zero ,

(t—to)™

RLDa C —
o™t I'(1-a)



2.3 Variables and constitutive models

In developing various Stefan problem models we will consider an arbitrary control volume
), with surface I' and outward pointing normal n, contained in a domain, with prescribed
boundary conditions, undergoing a time-dependent melting process, from a solid to liquid
phase, around a scaled melting temperature of u,, = 0.

Constitute laws for heat transfer in our control volume will be developed in terms of

the Fourier heat conduction law, defining the heat flux [ﬁ} as

q(z,t) = —kVu(z,t) (8)

where k [ﬁ] is the thermal heat conductivity. In considering Fourier models will use
this law as is. In non-Fourier memory treatments, however, we will form the constitutive
equation for heat flux at a point in space as a time convolution of the Fourier heat flux at
that point.

At time ¢, we will measure the heat content at a space point  in our volume with the

volumetric enthalpy function [2;] defined as [8],
H(z,t) = pc u(x,t) + f(u)pl, (9)

where p [%] and c [kgiK] are the density and specific heat receptively (assumed constant),

u(x, t)[K] is the temperature, [kig} > 0 is the latent heat associated with melting, and f(u)
is the liquid fraction. To regularize the problem, we will assume that the liquid fraction is

modeled by the continuous and smooth function

0, —€>u
f(u) =14 0.5sin (u%) +0.5, —e<u<e ; (10)
1, uU> €

with € > 0 [K] is defined as the half-temperature mushy region width. We stress that
the choice of this liquid fraction function is arbitrary, any function that changes smoothly
between 0 and 1, across a given temperature range, will suffice. Schematic plots of enthalpy

H(z,t) and liquid fraction f against temperature, for various choices of latent heat | and

8
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Figure 1: Schematic plots of enthalpy and liquid fraction vs. temperature.

temperature half-width €, are illustrated in Fig. 1. If [ = 0 there is no phase change
and the enthalpy is directly related to the temperature (u = pﬂc) With a finite value of
latent heat and a relatively large value of €, the effect of the increase in latent heat due
the melting phase change is spread over a ‘mushy region’ that increases in liquid fraction
with increasing temperature. When the value of € becomes smaller, the phase change
becomes much sharper, with a rapid change in the liquid fraction, from values close to
zero, just below the temperature u = 0, to values very close to unity just above. In fact, by
decreasing e further, while still retaining a strictly positive value, we can approximate, to
arbitrary accuracy, the sharp phase change at the temperature u(x,t) = 0 associated with

the classical Stefan problem.

3 Heat balance statements

3.1 The Fourier balance

In a conventional heat transfer setting, the appropriate heat balance equates the heat in
our control volume, at time ¢, to the total heat fluxed across its surface through the time

interval [0, ¢]. On defining the initial enthalpy in the control volume as H(z,0), this balance



can be expressed as,

/Q(H(w,t)—H(w,O)) AV = —/Ot/rq(w,T)-ndS dt. (11)

By taking time derivatives of both sides we can also express this balance as

%/QH(M) dV:—/Fq(:c,t)-ndS, (12)

saying that the rate of the increase of the heat in the volume €2 is equal to the heat flux
across its surface I'.

At this point we observe that, in eq.(11) and eq.(12), the heat flux has the same weight
at any time value 7 € (0,¢). Implying that the system has a ‘perfect memory’, where the
heat transfer events at all previous times are weighted equally. By contrast, in this work,
we would like to explore situations where this memory weighting might change through

space and time.

3.2 A general non-Fourier balance accounting for memory effects

For example, heterogeneities in the system ( e.g., a fractal distribution of low conductivity
inclusions), might weight recent heat transfer events more heavily, slowly forgetting previ-
ous events as they recede into the past. In essence, such a behavior disrupts the perfect
memory found in the balance of eq.(11), by given our system a selective memory with
the ability to forget. On recalling its convolution property, we can build a model with
this attribute by replacing the time integral in eq.(11) with a Riemann-Liouville fractional

integral [eq.(1)]

/Q (H(z,t) — H(z,0)) dV = —I° < /F q(z,t) - nds> , (13)

where a decreasing value of the value 0 < o < 1 indicates a higher tendency to ‘forget’ past
(03 t a—
events and oI*( [. q(z,t) - n dS) = ﬁ JoJga(z,7) - ndS)(t — ) dr.
We can further generalize the memory model by applying the fractional integral operator

ol 77, & < B <1 to both sides of eq.(13) to get
o[1P / (H(z,t) — H(z,0)) dV = —oI}**~" < / gz, 1) - nds>, (14)
Q r
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essentially distributing the memory effect between a transient and flux term. In this gener-
alization, the parameter a € (0, 1], referred as the memory parameter, controls the memory
in the system; indicating an increasing memory effect as o deceases in value. While, the
parameter [ € [«, 1], referred to as memory distribution, controls the distribution of the
memory effect between flux (8 = 1) and enthalpy (5 = «) convolutions.

Since the enthalpy and flux are smooth and continuous, we can swap the order of

integration in eq.(14) to rewrite the balance as

/ ol P (H(z,t) — H(z,0)) dV = — / o[ T P gz, t) - ndS, (15)

or, differentiating in time, and taking the time derivative inside the surface integral, as

i [ . D tie
S o1 H wt) ~ H(w0)) av = - / oI g(a ) - mds. (16)
Q Iy

To move forward from this statement, we propose the following generalized constitutive

relationships, which when € > 0, will be continuous and smooth,

— the memory enthalpy
H™ = o1} 77 (H(z,t) — H(x,0)), (17)

representing a weighted average of the heat content back through time and, using the

definition of the Riemann-Liouville fractional derivative [eq.(5)] ,

— the memory flux

0

R CORR Iy CO! (18)

qm(w7 t) =

physically interpreted as the time derivative of a decreasing weighted sum of the

Fourier flux at position x back through time.

These relationships allow us to write the balance in eq.(16) in the more compact form,

d

— | H™(z,t) dV = —/ q"(z,t) - ndS, (19)
dt Jo r

referred to as the memory balance. Pay particular attention to the fact that this balance

is identical in form to the more standard balance in eq.(12). Equation (19) still equates

11



the rate of heating in the volume to the flux across its surface but now with generalized
enthalpy and flux constitutive relationships that, through appropriate time convolutions,
account for memory effects. Note, if we set & = 1 then § = 1, and we recover the standard

form [eq.(12)] from eq.(19).

4 Governing domain equation

Let us now consider a one dimensional problem in the domain, x € [0, L], L >> 1,t € [0, T].
Initially the domain contains solid and a constant temperature u(z,0) = u;, < 0. At
time ¢t > 0 the temperature at x = 0 is raised and fixed to the temperature ug > 0 —
initiating a phase change—while the temperature at x = L remains fixed at the initial
value u(L,t) = u;,. Considering an arbitrary fixed section [a,b] of our domain, we can

write the general balance in eq.(19) as

% / " Hrdr = — (b 1) + " (at) (20)
On noting that, (i) a and b are fixed points, (ii) H™ is continuous and differentiable, (iii)
[ e = a0 - (o0, @1
and, (iv) by the Reynold Transport theorem,
% ab H™dx = /ab aa—i]mda:, (22)
we can rewrite eq.(20) as , -
i ¢ (z,t) de =0 (23)
Or, since the interval [a, b] is arbitrary chosen from [0, L],
%—}t]m +q¢"(z,t) =0, 0<ux<L. (24)

Further, (i) through the definitions of the memory enthalpy in eq.(17) and the Riemann-
Liouville fractional derivative in eq.(5), we see that

OH™

= 6D/ (H(x,t) — H(x,0)) (25)

12



and (ii) through the definitions of the memory flux in eq.(18) and Fourier flux ¢ =

—kug(x,t), we see that

(o, 0) =~ (5 PEDE e, ) (26)
x
With these relationships in hand we can expand eq.(24) as
0
FLD} (H(x,t) = H(x,0) - 5- <k Rgpf*auz(x,t)) —0, O<z<lL, (27)

where 0 < a < 1, a < < 1. This is our proposal for a general mushy melting phase
change model formulation, accounting for memory effects by setting a value a € (0,1)
and distributing these effects between a memory enthalpy and flux by setting the value of
B € a,1].

We make three observations related to the general model formulation in eq.(27):

- The value of of the memory parameter 0 < o < 1 determines the ‘level’ of memory
in the system. In a given application, we would expect each value of o to provide a

unique solution.

- The value of distribution 3 determines the orders of the fractional derivatives in the
memory enthalpy and memory flux terms. Since eq.(27) was derived from the general
balance statement in eq.(14) —by the inverse property of the RL derivative eq.(6)—it
is reasonable to expect that, for a given value of «, any arbitrary choice of 3 in the

range [«, 1] will, result in equivalent formulations.

- If we set a = 1 ( implying that § = 1) in eq.(27), we recover the standard and well

known enthalpy formulation, see [§],

2H(glz',t) - (,% (kug(x,t)) =0. 0<x<L, (28)

Like this basic form, the more general memory form in eq.(27) is valid throughout
the domain [0, L]. Further, in a similar fashion to the basic enthalpy method, we can
apply eq.(27) to approximate the sharp interface problem by simply choosing a very
small value of ¢ << 1. In fact, in practice, in seeking a numerical solution for such a

case, it is convenient to set € = 0 in the definition of the enthalpy H given in eq.(9).

13



5 Governing sharp interface equations

5.1 Derivation of equations

Now let us consider a case where our interval [a,b] contains the isotherms u = —e and
u = € located at positions s~ (t) and s*(t) respectively. From eq.(23), this allows us to

write down three balances, one over the full liquid sub-interval [a, s,

s Hm
/ %—t + ¢ (z,t) de =0, (29)

one over the full solid sub-interval [sT, b],

b Hm
on + ¢ (x,t) dz =0, (30)
o Ot

and one over the mushy sub-interval [s™, s7]

+
s Hm
/ 88_15 + ¢ (z,t) de =0, (31)

On recognizing that
st

/ (o, t) dz = [q(st 1) — (s 1)]

and using the Reynold transport theorem,

+ +
s aHm d S m d8+ my .+ ds™ m( ,—

we can rewrite the balance in eq.(31), over the sub interval [s~, s7], as

d [ ds* ds
m _ m( .+
dt/s H™(x,t) d:zH—{ I H™(s™,t) +

o Hm(s_,t)} + [q™(sT,t) — ¢ (s7,1)] =0

(32)
As we pass to the limit of a sharp phase change, i.e., ¢ — 0, (i) the € and —e isotherms
approach the melt isotherm u = 0, at position s(t), i.e., s~ — st — s, (ii) the integral
fssj H™(z,t) dv — 0, and (iii) the velocities of the € and —e isotherms approach the velocity

of the melt front, i.e., %~ — d5=

s o T %. In this way, on recalling the arbitrary choice of the

14



fixed points a and b, we can derive the following sharp interface governing equations from

eqs.(29) and (30),

Hm
E)a_t +ql(zx,t) =0, O<zx<s(t), 0<t<T (33a)
OH™
s + ¢z, t)=0 s(t)<x<L, 0<t<T. (33b)

The initial condition is u(x,0) = u;,, eq.(33a) has boundary conditions u(0,t) = uo and
u(s,t) = 0, whereas the boundary conditions for eq.(33b) are u(s,t) = 0 and u(L,t) = u,.
Both equations are subject to an additional condition on the melt front, a generalized

Stefan condition, obtained from the € — 0 limit case of eq.(32),
m +d8 ml+
[HA")Z— —[¢"]Z=0, 0<t<T, (34)

where [] represents the jump from the liquid to the solid side of the melt interface s.

5.2 Interface flux conditions

A core result form our above analysis, is that, for a specified value of the memory parameter
«, any choice of the distribution parameter [, in the range [o, 1], results in an equivalent
model formulation. Thus, in exploring properties of the sharp interface model defined in
eq.(33) and eq.(34) we can, with no loss in generality, consider the special case of § = «.

That is the case where ¢ = ¢ = —ku,(z,t), the Fourier flux, and

H™ = o1 [pcu(z,t) — pcui, + pl f(u)], (35)

where we note for a sharp interface, the liquid fraction f(u), see eq.(10), is a Heaviside step

function.
Our interest here is to investigate the nature of the Fourier heat flux ¢ = —ku, and its
derivative ¢, = —ku,, at the melt interface. We know that, in the classical Stefan problem,

the flux exhibits a jump discontinuity at the interface and its derivative, on the liquid side,

is zero [8]. Will we recover similar conditions when we have memory, 0 < o < 17

15



From eq.(35) we see that at points = on the solid side of the melt interface (u < 0), where
melting has not commenced, the liquid fraction f(u) = 0 throughout the time interval [0, ]

and we can write the solid memory enthalpy as

H = oI [peu(a, t) — peus] (36)

S

On the other hand, for points x on the liquid side, the liquid fraction takes a value of
f(u) = 0 over the time interval [0, h(x)) and a value of f(u) = 1 over the time interval
[h(z),t], where h(x) is the time that the melt front arrives at position x. Thus, on the

liquid side of the melt interface,
H™ = (117 t) — ; 1791 37
! 04t [pcu(x, ) pcum] * h(z) 1 [p ] ( )

Since the first term on the left matches the memory enthalpy in the solid we can write
down the jump in memory enthalpy across the interface as

[H7]; = Jim 1o} [ 39
There is an important and interesting observation to be drawn from this result. From our
listed properties of the RL fractional integral [eq.(1)] we know that, when the value of «
is strictly in the interval (0, 1) the fractional integral of the constant value pl, h(m)]tl_a [pl],
will vanish as ¢ — h(z). This implies that, when o < 1, the memory enthalpy has no jump
across the melt interface, rather it is continuous, i.e., [H™]; = 0. In turn, through the
Stefan condition in eq.(34), there is no jump in the Fourier flux across the melt interface,
ie.,

II _kux(xvt)]]? =0 (39>

Note, however, when there are no memory effects, i.e., & = 1, the integral operator on the
left of eq.(38) becomes the identity operator and the jump in enthalpy takes the value of
pl, matching, as we should expect, the jump in the classical Stefan condition [§],

ds

—[ kug(z,t)]; = pl e (40)
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On first glance the result in eq.(39) appears to be in direct conflict with the classical
integer Stefan problem where the flux discontinuity across the interface is required to
provide the heat to melt and advance the phase change process. This dramatic contrast
with the classical case could be a cause for concern for the physical validly of the non-Fourier
treatments presented here. However, on closer inspection, we see that this result is a natural
consequence of the regularization induced by defining the heat content as the memory-
enthalpy o} *(H(x,t) — H(x,0)). With this step, the phase change—the accumulation
of sufficient latent heat to complete melting—does not occur instantaneously but rather
smoothly over time. Thus, the memory enthalpy can be viewed as a regularization for
the classic sharp interface model, a regularization that offers an alternative to the more
conventional approach of introducing a mushy region phase change, as in eq.(9).

In addition, we note that, continuity of flux at the melt interface has been seen in
previous studies of memory Stefan problems. In one-phase memory Stefan problems, where
the initial condition is solid at the phase change temperature u(z,0) = 0, the continuity
of flux at the melt interface will manifest as a zero flux value ku,(x,t) = 0 on the liquid
side of the interface. Kubica and Ryszewska [25| note this zero flux condition in their
mathematical analysis of the one-dimensional one phase Stefan memory-flux formulation.
Further, a specific closed solution for a limit case memory-enthalpy model, developed in [19],
exhibits a zero flux at the melt interface.

We get an equally interesting result in considering the derivative of the flux ¢, = —ku,,
on the liquid side of the interface. Retaining the case where 8 = o and using the memory
enthalpy definition in eq. (35), the governing equation in eq (33), on the liquid side of the

sharp interface, can be written as
BL D [peu(w, t) — peuin] + 1 DE[pl], —ktge(7,t) =0, 0 < 2 < s(t) (41)
ot P ) PCUn h(x)t/), pEACE ) >4 .
Since p and [ are constants we can directly evaluate the second fractional derivative

BL D [peu(w, t) — peug,) + pl% — kg (z,t) =0 (42)
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or multiplying through by (¢t — h(x))®

pl

(t = h(x)* ("5Df [peu(z, t) — pewin]) + T(—a)

— k(t — h(x))*Ugg (2, t) =0 (43)

Due to the smoothness of the temperature, we can expect the fractional derivative of
(u — u,) to be bounded throughout the liquid phase. Thus, when o < 1, as we approach
the melt interface, i.e., as (t — h(x))* — 0, the first term will vanish and the only way to
maintain the equation is for the derivative of the flux on the liquid side of the interface
Ugzz (2, t) — 00. Which, once again, is in conflict with the expected behavior for the classic

case (o = 1) where the derivative of the flux vanishes at the melt interface.

5.3 Numerical verification of interface flux conduction

We can provide numerical calculations that support our findings related to the flux and
its derivative at the melt interface. For this we continue to consider, without loss of any
generality, the case where § = a. We will, however make one additional simplification,
setting the initial value in the domain to u;, = 0. This reduces our problem to a one domain
melting problem, where heat transfer only occurs in the melt, the solid phase (z > s(t))
remaining at the constant melt temperature u,, = 0, throughout the calculation. Thus,
based on our analysis here, when a < 1, we would expect to see that the liquid side flux,
at the melt interface takes a value of zero while its derivative is infinite.

We will numerically solve the full domain formulation, eq.(27) with § = «a, which
on noting the one-phase nature of the problem and that fact that the initial enthalpy

H(z,0) = 0, can be written as
BLDYH (2,1) — kg (z,t) =0, t>0, 0<x <L, (44)

In making this solution we will assume that the temperature width of the mushy region is
very small e << 1.
To numerically solve eq.(44) we use the time implicit unconditionally stable scheme

presented in detail by Voller [19]. As detailed in the Appendix, we make some small
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changes to this scheme related to the approximation of the fractional derivatives and the
use of a direct solver.

We consider the problem where ug = p = k = ¢ =1 = 1. The solution uses a finite
difference grid with 105 nodes points, equally spaced at a distance Az = 0.01. We will
consider two cases, the classic non-memory integer case o = 1, employing a time step of
At = 0.001 and a fractional case o = 0.5, employing a time step of At = 2 x 107°. In both
cases we will continue to solve the problem until the front is located at position s = 1.
Following [40,41], we assume that the melt front is located at node i (s = iAx) when the
nodal liquid fraction f; = 0.5. Thus, we can estimate the time t; to reach a particular
node 7, by linearly interpolating between the times ¢t = jAt and ¢ = (j + 1)At whenever
T >05and f/ <0.5.

As a verification, Fig. 2 show numerical predictions for the advance of the interface
(s = iAx), plotted as log(iAx) vs. logt;, i« = 1,2,.... The a = 1 predictions are
extremely well fit by the power-law s = 1.24t%5 which is the exact analytical solution of
this case [8]. The a = 0.5 predictions are also fit by a power-law but now with an exponent
of 0.25, i.e.,, s = 1.3766t%?> recovering the expected sub-diffusion scaling of n = «a/2.
Recalling that time 199 is the numerical estimate for the melt front to arrive at position
s = 100Az = 1, we made this later fit by assuming the form s = at®?°, determining the
value of the pre-factor as a = t55>.

Figure 3 shows the predicted nodal temperature profiles (a = 1,0.5). In panel a. these
are plotted as u vs. z. Note, that the integer case (o = 1) has very little curvature as we
approach the melt interface s = x = 1. A behavior that is consistent with the expected
interface jump in the temperature gradient dictated by the Stefan condition. However, when
a = 0.5, there is a distinct concaved up curvature in the temperature profile, suggesting
the possibility that the temperature gradient may approach a value of zero at the melt
interface. We can provide a more quantitative argument by considering the plot of log(u;)
vs. log(1 —a;), i =1,2...99 shown in panel b. of Fig. 3. Note, how, for both the integer

and fractional case, in the vicinity of the melt interface, the temperature profile asymptotes
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Figure 2: Predictions for the movement of the melt interface, log(s) vs. log(t).

to a power-law u ~ (1 — ¥)", obtained by the linear fit between (log(1 — wgg), log(ugs)) and
(log(1 — (z99),log(ugg)). When a = 1, a fit for this power-law exhibits, to three places,
the exponent n = 1.000. Thus we see that the flux, (the temperature gradient) at the
interface takes the time dependent value —ku, ~ % and its derivative —ku,, = 0. These
are the results we expect for the classic case, e.g., when we use the interface flux in the
Stefan condition [eq.(40)] the melt front moves as the square root of time s ~ ¢2. On
the other hand, when we consider the fractional case a = 0.5, the fit exponent of the
power-law is n = 1.452. Indicating that, as we approach the interface x — s, the flux
—kugy ~ —(1 — 2)0%% — 0 and its derivative —kug, ~ —(1 — £)7%% — oo; recovering our
theoretical result. Note, as an indication that we have reached reasonable grid convergence

in the results presented above, if we repeat the calculation with the coarser step Az = 0.02

we get a fit exponent, when o = 0.5, of n = 1.455.

5.4 Physical realization of sub-diffusive behavior

As a validation of our the theory presented here, we provide a physical realization of the sub-
diffusive evolution of a melting phase change. For this, building on previous experiments

and direct simulations [37-39], we consider a domain with a two-dimensional (z,y) square
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Figure 3: Predictions of the temperature profile when the melt front is on s = 1. (a) u(x)
vs. z. (b) logu vs. log(1 — z). Note, with reference to (b) how, in the vicinity of the melt
interface = s = 1, the profiles asymptote to power-laws of the form (1 —2)", n > 1.
planform of size 128 x 128 and a nominal thickness of Az = 1, The domain contains a fractal
(3rd order Sierpinski carpet) distribution of through thickness ceramic inserts, see Fig. 4,
with unit values of specific heat and density (¢ = 1, p = 1) and a very low conductivity value
of k = 107%. The spaces between the inserts contains a solid phase change material (PCM)
with a latent heat value of [ = 1 and unit values for specific heat, density and conductivity
(c =1,p =1, k=1). Initially, the PCM and the inserts are at a temperature u = 0, the
melting temperature of the PCM. At time ¢ = 0, the left vertical face of the domain, along
x = 0, is raised and fixed at the temperature of u = 1. Thus, as time advances, the PCM
material will begin to melt and heat up, while, due to their low conductivity, the inserts
will remain close to the initial temperature (v = 0). Following [37], we can model this 2D
melting process, through a direct simulation, using a standard enthalpy formulation

OH

S = V- (kVu). (45)

Note in the inserts, where k& << 1 we can approximate 0H /0t ~ 0 and in PCM regions
the enthalpy H = cu + f (recall 0 < f < 1) is the liquid fraction. For future reference,

we also note that, in the limit case of specific heat ¢ — 0, the governing equation becomes
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df /0t = V-(kVu); on replacing temperature u with pressure p and conductivity k with the
Hele-Shaw permeability, this governing equation and the associated boundary conditions,
exactly match the governing equation for fluid infiltration into a Hele-Shaw cell containing
obstacles laid out as a Sierpinski carpet (see eq. (1) in [38]). Thus we can view this
infiltration problem as a physical limit case of our proposed PCM melting problem.

The enthalpy formulation in eq.(45) can be readily solved with an explicit in time
control volume scheme. operating on a grid of (128 x 128) square control volumes with
sides Ax = Ay = 1. At any point in time, in this direct simulation, we predict a nodal
liquid fraction field, where in the inserts and unmelted regions f = 0, in the melted regions
f =1, and in the melting regions 0 < f < 1; Fig. 4 indicates the melted region, at the
point where melting has advanced up to the 2nd order of the Sierpinski carpet. Note,
the advance of the melting trends strongly in the x—direction and we can characterize the
advance, in this direction, by tracking the effective melting length

128 128
_ Ei:l j=1 fZJ
128

s(t) (46)

where f; ; are the predicted nodal liquid fractions at time ¢. Figure 5, shows, as a log-log
plot, the advance of the effective length with time. This plot clearly indicates that the
advance of the effective melting length is power-law in time, i.e., s(t) ~ t". Moreover,
fitting shows that the time exponent is sub-diffusive, n = 0.3588 < 0.5.

There are two important points to make in regard to this direct melting simulation:

1. Previous research [39], experientially investigated infiltration into Hele-Shaw cells
containing obstacles laid out as a Sierpinski carpet. Which, as we have noted above,
is a limit case of our proposed physical realization. In this light, it is noteworthy that
the sub-diffusive time exponent obtained from these experiments (n = 0.3463+0.018,
see Fig. 6 in [39]), is an excellent match for the exponents (n = 0.3588) obtained

from our direct melting simulation; providing an experimental validation.

2. Predictions based on our proposed continuum theory will readily recover any sub-

diffusive scaling seen in experiments or direct simulations through simply setting the
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Figure 4: Melting in a Sierpinski carpet, heated on the left side, insulated on all other sides.
The dark squares, the carpet elements, are inserts with a very low relative conductivity
(k = 107°). Surrounding the inserts is a phase change material (PCM). The lighter shading
represents the melting of the PCM at the point where melting extends to the 2nd order

element.
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Figure 5: Log-log plot of the advance of the effective melting length, eq.(46), follows a

power-law with a sub-diffusive exponent n = 0.3588.
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appropriate values of the parameters a and . For example setting @ = 2 x 0.3588

in solving the memory enthalpy formulation in eq.(44).

6 Discussion and Conclusion

In deriving models that describe heat conduction controlled heat transport, the obvious
starting point is to first define constitutive relationships for heat content (e.g., an enthalpy)
and heat flux (e.g., the Fourier heat conduction). Quantities that can be used to form a
heat balance, equating the rate of change of enthalpy in a control volume to the rate that
heat is fluxed in across the volumes surface. From this thermodynamic statement, through
appropriate mathematical operations, governing equations, in terms of partial time and
space derivatives can then be derived.

The question we are answering in this work is how to establish fractional derivative
models of anomalous heat transfer systems that can be directly related to thermodynamic
heat balance statements. Our focus has been on the development of models for Stefan
melting problems, employing fractional time derivatives to account for memory effects. To
arrive at these models, we have proposed generalized constitutive relationships, for what
we refer to as a memory enthalpy [eq.(17)] and a memory flux [eq.(18)]; formed as time
convolutions of the enthalpy and Fourier flux respectively. With the memory enthalpy
and flux we are able to form a thermodynamic balance, the memory balance [eq. (19)],
mimicking the standard heat balance form, through equating the rate of change of the
memory enthalpy in a control volume with the memory flux crossing its surface. Key
features in this balance, are the ability to control the memory in the system through
setting a parameter a € (0,1) (a value of @ = 1 indicating no memory effects) and the
ability to control the distribution of the memory effect between the memory enthalpy and
flux, by setting a parameter 3 € [«, 1].

From our proposed memory balance, we have developed a general fractional derivative
model formulation for melting phase change problems |eq.(27)|—or by simple extension, any

solid-liquid heat conduction controlled phase change. This model formulation assumes that
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the phase change (the accumulation of latent heat) occurs smoothy across a temperature
range [—¢, €]. This formulation can be directed at the Stefan melting problem, exhibiting
a sharp moving melt interfaces, by (i) choosing an arbitrarily small value of € << 1, or
(ii) by reposing the formulation in the limit of vanishing €, to arrive at an equivalent sharp
interface model [egs. (33) and (34)]. Both formulations retaining the generality of setting
values for the memory « € (0,1) and distribution § € [a, 1] parameters.

We emphasis the fact that all of the memory Stefan model formulations obtained in
this work are directly and consistently related to the common thermodynamic balance
statement in eq.(19). Thus, we feel that it is reasonable to make the conjecture that they
are equivalent. That is, a thermal field that satisfies a particular formulation will be a
solution for any other model, derived from eq.(19), that has the same value of a. This is an
important attribute, because an analysis result or approximate numerical solution, made
for one model formulation, will be universal. We have made use of this feature in the current
work. The numerical scheme presented in the Appendix can be the basis for developing
an approximate solution for any model formulation consistently derived from the memory
balance [eq.(19)]. Also, the analysis of the flux conditions at the interface, made around
model formulations with § = «, readily show how use of fractional calculus introduces a
regularization that leads to a continuous flux at at the melt interface. A feature that we
can conclude, is present in any other model formulation based on the memory balance in
eq.(19), regardless of the value of distribution parameter f.

The point we would most like to emphasize in our work is the need to be thermodynam-
ically consistent in developing fractional calculus models for heat transfer applications in
particular and reactive transport models in general. We hope we have made the case that
the utility and understanding of these models is significantly enhanced if they can be di-
rectly related to a thermodynamic balance statement. A statement that explicitly identifies

and includes the physical mechanism(s) that induce anomalous transport behaviors.
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Appendix: Implicit time numerical solution

Our objective is to numerically solve the eq. (44) on a finite difference grid of n+ 1 equally
spaced (Ax) node points (i =0,1...,n,n+ 1), using a constant time step of At. We will
assume fixed temperatures for the end nodes (ug = 1, u, 11 = 0), solving for the unknowns at
nodes 1,2, ...,n. In making the discretization of eq.(44) we will approximate the Riemann-
Liouville fractional derivative of the enthalpy at time level j + 1, ¢t = (j + 1)At using

Griinwald weights (generalized repeated backward differencing) of the time derivative [42]

] J+1 .
REDEHT ~ AN g, HIT (47)
p=0
where the weights
p—1—«
go=1 gp=0p1 T ,p=12.... (48)

With this approximation, using a central difference approximation for the divergence of the

temperature gradient, we arrive at the following time implict scheme for eq.(44),

j+1
. 4 N . 4
HIT = — E g HI TP 4 k_Ax2 (! =2 - udt]), j=0,1,2..51<i<n (49)
p=1

Noting, here, that the initial temperature is u;, = 0 we can write
HIT = peu ™ + 711, (50)
arriving at the non-linear system for solving the temperature nodal field at time level 7 + 1
Auvtt =b (51)
In this system, on row ¢ = 1,2,...n of A
At At At

A_x2’ Q4 = —pPC — ZkA—xQ, A;i—1 = kAa:Q

Aii—1 = k (52)

with all other coefficients set at zero and

J+1 4 4 N J+1 ' '
b= g T I ks, b= g T T =23, (53)
T
p=1 p=1
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The system is non-linear since both the current (j 4+ 1) temperature and liquid fraction
node fields are unknown.

In solving this non-linear system we will set the mushy temperature range ¢ = 0 (the
sharp interfaces limit). In this limit, through inversion of eq.(10), we see that when 0 <
fl-j 1 < 1 the corresponding nodal temperature will be ugH = 0. Further, at any point in
the solution there will only be one node in the domain (w say) where the phase change is
occurring, i.e., only one node where 0 < f/' < 1. Thus we can extend the well known
liquid fraction update enthalpy scheme [4] to solve eq.(51).

Let us assume that at time level j the phase change is occurring around node w. Then,

in solving for time level j + 1:

o We set the coefficient aj, , = 10", a sufficiently large value.

e Solution of eq.(51), using a packaged sparse matrix solver, will then predict a value

of ul! = 0.

e In this case, if the phase change at time level j + 1 is still around node w we can

assume the predicted nodal temperature field is correct.

e With this temperature field we can then update the liquid faction at node w as

J+1 j+1—p At j+1
- Zp:l 9 H3, + kR Uy
[

fitl = (54)

note the temperature values at w and w + 1 have been forced to values of zero by the

setting of ay,

e If the predicted value of the liquid fraction, at node w, remains within (0, 1), i..e,
fi+1 € (0,1), the solution for the current temperature and liquid fraction nodal fields

will be correct and complete and we can move calculation to the next time step.

e Otherwise, if fi™! > 1, indicating that the phase change is completed at node w, we
(i) set f2*1 =1, (ii) reset @y, = —pc—2k2L;, (iii) increment the phase change node

w = w + 1 and, (iv) repeat the solution process.
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We typically arrive at a converged solution for the current temperature and liquid fraction
nodal fields within one iteration, only in cases where the phase shifts from one node to the

next will additional iterations be needed. Hence solution is very efficient.
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