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ABSTRACT
Linear and nonlinear electronic spectra provide an important tool to probe the absorption and transfer of electronic energy. Here, we intro-
duce a pure state Ehrenfest approach to obtain accurate linear and nonlinear spectra that is applicable to systems with large numbers of excited
states and complex chemical environments. We achieve this by representing the initial conditions as sums of pure states and unfolding multi-
time correlation functions into the Schrödinger picture. By doing this, we show that one can obtain significant improvements in accuracy over
the previously used projected Ehrenfest approach and that these benefits are particularly pronounced in cases where the initial condition is a
coherence between excited states. While such initial conditions do not arise when calculating linear electronic spectra, they play a vital role
in capturing multidimensional spectroscopies. We demonstrate the performance of our method by showing that it is able to quantitatively
capture the exact linear, 2D electronic spectroscopy, and pump–probe spectra for a Frenkel exciton model in slow bath regimes and is even
able to reproduce the main spectral features in fast bath regimes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138671

I. INTRODUCTION

Nonlinear optical spectroscopy is a powerful tool for prob-
ing the structure and dynamics of chemical systems,1–3 and it
typically provides significantly more information than its linear
counterparts. For example, 2D electronic spectroscopy (2DES)4,5 is
frequently used to elucidate inter-chromophoric couplings, energy
transfer and relaxation processes, and environmental effects in
systems such as photosynthetic molecular aggregates with fem-
tosecond time resolution.6–9 However, interpreting these spec-
tra in terms of the specific molecular structures and motions
that give rise to the electronic states and their relaxation path-
ways often requires the assistance of simulations to disentan-
gle spectral features such as short-time coherent oscillations and
long-time population decay pathways. Accurately and efficiently
simulating 2DES signals from atomistic simulations and uncov-
ering how they arise from the underlying quantum dynam-
ics of the nuclear and electronic states remains a significant
challenge.

Simulating nonlinear optical spectra requires obtaining higher-
order response functions, and hence, the number of methods
that have successfully been applied to generate them is signifi-
cantly more limited than for the less computationally demanding
linear spectra. Exact methods such as the hierarchical equations
of motion (HEOM)10–13 and multiconfiguration time-dependent
Hartree (MCTDH)14,15 provide important insights and bench-
marks for approximate methods. However, the desire to treat large
condensed-phase systems containing many electronic states with a
fully atomistic treatment of the nuclear motions and even on-the-fly
evaluation of the electronic surfaces has spurred the recent devel-
opment of approximate dynamics methods. When approximate
methods are used, 2DES has been shown to provide a much stricter
test of the quantum dynamics method employed than linear elec-
tronic spectroscopy. For example, when using Redfield theory,16,17

it has been shown that in parameter regimes where the linear elec-
tronic spectrum can be quantitatively captured, the 2DES spectrum
significantly deviates from the exact results,18 although this can be
somewhat alleviated by freezing the low-frequency bath modes.18,19
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Trajectory-based methods provide a particularly appealing
approach to simulate 2DES since they are typically compati-
ble with a fully atomistic treatment of the nuclear motions and
even on-the-fly evaluation of the electronic surfaces on which the
nuclei evolve. Many recent applications of trajectory-based meth-
ods to 2DES have been based on semiclassical treatments of the
Meyer–Miller–Stock–Thoss20,21 mapping of the electronic degrees
of freedom. In particular, the partially linearized density matrix
(PLDM) approach22 and its more recent spin-PLDM variant23,24

have been shown to produce accurate 2DES spectra in parameter
regimes where perturbative methods break down.25,26 Further work
has shown how mapping-based semiclassical methods can be used to
simulate 2DES beyond the perturbative treatment of the field–matter
interaction.27 The optimized mean trajectory approach has also
been recently coupled with trajectories based on the Meyer–Miller
Hamiltonian to compute two-dimensional vibrational-electronic
spectra.28,29 Other trajectory-based approaches include the numer-
ical integration of the Schrödinger equation (NISE)30–32 and the
stochastic Liouville equation methods,33,34 which involve an explicit
treatment of the bath degrees of freedom but do not account for the
back-reaction of the electronic degrees of freedom on the bath, lead-
ing to inaccuracies in linear and nonlinear spectra. To correct this,
NISE has been combined with the fewest switches surface hopping
approach, allowing it to incorporate the quantum back-reaction on
the bath and thus improve its accuracy.35

Here, we present an accurate method to simulate 2DES using
Ehrenfest dynamics and contrast it with a previously reported
method detailed in Ref. 36. By applying our method, we show that
significantly more accurate 2DES spectra can be obtained from
Ehrenfest dynamics if one uses an appropriate initialization of
coherence and mixed states. In particular, we express all initial con-
ditions as sums of pure states, which have important implications for
the accuracy of the resulting dynamics and allow the simulation to
be done unambiguously in either the wavefunction or density matrix
formulations of Ehrenfest theory. Using a judicious splitting of den-
sity matrices into pure states, we are able to keep the computational
cost under control by limiting the number of pure states that need
to be time-propagated. We show that when formulated in this way,
Ehrenfest theory can closely reproduce the HEOM result and that
this result is not achieved when initialization is not performed from
pure states.

II. PURE STATE AND PROJECTED EHRENFEST
METHODS

For a dynamical method to be well-defined, it is desirable for it
to yield unique results based on its formulation. Previous work has
demonstrated that the wavefunction (i.e., pure state) formulation of
Ehrenfest offers such uniqueness.37 Hence, here we employ a pure-
state decomposition of the off-diagonal initial conditions required
for the calculation of spectroscopic response functions. This allows
the time-dependent self-consistent mean field approximation at the
heart of the Ehrenfest method to evolve physically well-defined ini-
tial states, allowing one to construct the time-dependent statistical
average from their evolution. In particular, we expand any given
initial density matrix ρ0 as a sum of pure states,

ρ0 =∑
i

ai∣ψi⟩⟨ψi∣. (1)

For an arbitrary initial density matrix ρ0 = ∣a⟩⟨b∣, the pure state
decomposition can be accomplished as follows:

∣a⟩⟨b∣ = ρ+ab + iρ−ab −
[1 + i]

2
(ρaa + ρbb), (2)

where

ρaa = ∣a⟩⟨a∣,
ρbb = ∣b⟩⟨b∣,

ρ+ab =
1
2
(∣a⟩ + ∣b⟩)(⟨a∣ + ⟨b∣),

ρ−ab =
1
2
(∣a⟩ + i∣b⟩)(⟨a∣ − i⟨b∣)

(3)

are pure states. We will refer to this approach as pure state Ehrenfest.
Electronic spectroscopy typically involves a ground state ini-

tial condition, ∣g⟩⟨g∣, upon which a dipole operator μ is applied n
times, with n determined by the type of response function being
computed. In our implementation of pure state Ehrenfest, the ini-
tial electronic condition, ρ0 = ∣g⟩⟨g∣ [see Eq. (17)], is maintained as
a pair of vectors (∣g⟩ and (⟨g∣)†) whose outer product yields the
desired initial electronic density matrix, ∣g⟩⟨g∣. The application of μ
from the left (right) is then accomplished via a dot product between
the μ matrix and the ket (bra) vector, resulting in a new pair of vec-
tors. For example, applying the dipole operator from the right would
be accomplished as follows:

∣g⟩⟨g∣μ = ∣g⟩⟨x∣, (4)

where ⟨x∣ = ⟨g∣ ⋅ μ. The resultant ∣g⟩⟨x∣ can then be split into four
pure states as described in Eq. (2). Since ∣g⟩⟨x∣ is still maintained as
the vector pair ∣g⟩ and (⟨x∣)†, the pure state components ρaa, ρbb,
ρ+ab, and ρ−ab are readily obtained by replacing ∣a⟩ and ∣b⟩ in Eq. (3)
with ∣g⟩ and (⟨x∣)† = ∣x⟩, respectively. These pure states are then
normalized, and the coefficients are saved so as to multiply them
back in when computing the final response function. This ensures
that the time propagation always begins from a density matrix whose
norm equals unity, in line with the requirements of the density
matrix formulation of Ehrenfest dynamics. Additionally, since ∣g⟩⟨x∣
is decomposed into four normalized pure states, we circumvent the
explosion in terms that would occur were we to create a separate
trajectory for each coherence formed when the dipole operator is
applied, e.g.,

∣g⟩⟨g∣μ =∑
j
∣g⟩⟨j∣, (5)

where j is the set of all possible states that result from a single
excitation.

Each subsequent application of the dipole matrix is conducted
on all four of the pure state components [ρaa(t), ρbb(t), ρ

+
ab(t), and

ρ−ab(t)]. The application of the dipole matrix usually results in the
formation of a new set of non-pure states. If we require more time
propagation, each resulting non-pure state is further spawned into
four pure state components using the procedure described above.
Otherwise, we compute the response function by summing up all
pure state components, taking care to multiply back the coefficients
used to normalize them. This procedure spawns four final branches
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for the first-order response function and 64 for the third-order
response.

We will contrast the pure state Ehrenfest method outlined
above with the unmodified alternative, which we refer to as projected
Ehrenfest, where all initial conditions ∣a⟩⟨b∣ are propagated directly
without having been normalized or decomposed into pure states.

III. SIMULATION DETAILS: FRENKEL EXCITON MODEL
We consider a Frenkel exciton model of coupled chromophores

where the full matter Hamiltonian is

Ĥmat = Ĥs + Ĥb + Ĥsb. (6)

Here, Ĥs is the system Hamiltonian, Ĥb is the bath Hamiltonian,
and Ĥsb is the system–bath coupling. The system Hamiltonian, Ĥs,
consists of individual chromophores, each with a site energy ϵm, that
couple electronically via the transfer integrals Jmn,

Ĥs =∑
m
εm∣m⟩⟨m∣ +∑

m≠n
Jmn∣m⟩⟨n∣. (7)

The bath Hamiltonian, Ĥb, consists of independent sets of phonon
modes coupled to each chromophore. It is expressed in terms of the
phonon mode frequencies ω and their mass-weighted momenta and
coordinates P̂ and Q̂ as

Ĥb =∑
m

Nm
b

∑

j=1
(

1
2

P̂2
mj +

1
2
ω2

mjQ̂
2
mj). (8)

Each chromophore site ∣m⟩⟨m∣ is linearly coupled to its local bath of
phonon modes such that Ĥsb takes the form

Ĥsb =∑
m

Nm
b

∑

j=1
cmjQ̂mj∣m⟩⟨m∣, (9)

where cmj is the coupling strength of the jth phonon mode attached
to chromophore m. The characteristics of the baths and their effect
on the chromophores are specified via the spectral density,

Jm(ω) =
π
2∑j

c2
mj

ωj
δ(ω − ωj). (10)

All chromophore sites are assumed to have identical spectral densi-
ties (Jm(ω) = J(ω)). Here, we use an Ohmic spectral density with a
Lorentzian cutoff (Debye),

J(ω) =
2λωcω
ω2

c + ω2 , (11)

where ωc is the bath cut-off frequency and λ = (̵hπ)−1
∫

∞
0 dωJ(ω)/ω

is the reorganization energy.
To obtain linear and non-linear spectra, we treat the

light–matter interaction perturbatively,5 i.e.,

Ĥspec = Ĥmat − μ ⋅ E(t), (12)

where E(t) is the classical electric field and μ is the total dipole
operator,

μ =∑
m
μm(∣m⟩⟨0∣ + ∣0⟩⟨m∣). (13)

We consider a system of two coupled chromophores with
ϵ1 = 50 cm−1, ϵ2 = −50 cm−1, and J12 = 100 cm−1, consistent with
that used in previous studies.18,38 In this system, there are four states,
all of which are accessible: the ground state, two singly excited states,
and one doubly excited state. The bath coordinates and momenta are
initially sampled from the Wigner transform of the Boltzmann dis-
tribution on the ground state. We report results for two sets of bath
parameters: a slow bath with a relaxation timeω−1

c = 300 fs and a fast
bath with a relaxation time ω−1

c = 17.7 fs, both at kBT = 208 cm−1.
Each bath was discretized using 300 phonon modes via the method
employed in Ref. 39, which is designed to yield the exact reor-
ganization energy regardless of the number of modes used. The
reorganization energy λ was set to 50 cm−1. All spectra were cal-
culated with a transition dipole matrix, where μ1/μ2 = −5. The slow
bath parameter regime was previously investigated via HEOM and
Redfield theory and its frozen mode variant in Ref. 18.

Our HEOM and projected Ehrenfest calculations were con-
ducted using the Python package PyRho.40 For the HEOM calcula-
tions, converged results for the regimes studied here were obtained
by employing the high-temperature approximation, i.e., using zero
Matsubara frequencies (K = 0), and truncating the auxiliary density
matrices at L = 15. Both the HEOM and projected Ehrenfest equa-
tions of motion were propagated using a fourth-order Runge–Kutta
integrator, while the pure state Ehrenfest method was propagated
via the split evolution method, allowing for the use of larger time
steps. In the slow bath parameter regime, we used time steps of
10 fs for HEOM and 2 fs for both versions of Ehrenfest. Both
versions of Ehrenfest were run at a time step of 2 fs to ensure
consistency with projected Ehrenfest, which required the smaller
time step to converge the fourth-order Runge–Kutta integrator. In
the fast bath parameter regime, we used a time step of 2.5 fs for
HEOM and 10 fs for pure state Ehrenfest. The linear spectra were
generated using ∼20 000 trajectories of length 400 fs, while the
nonlinear spectra used ∼20 000 trajectories of length 300 fs (in
t1 and t3) for the slow bath regime and 200 fs for the fast bath
regime.

IV. RESULTS
Here, we compare the Ehrenfest results for both the linear and

nonlinear optical spectra of the Frenkel exciton model outlined in
Sec. III to the spectra obtained using the numerically exact HEOM
approach. We demonstrate that, while in linear absorption spectra,
the differences between the pure state and projected Ehrenfest are
subtle, they become much more pronounced for nonlinear spectra.

A. Linear optical spectroscopy
Linear absorption spectra can be obtained from the Fourier

transform of the first-order response function, χ(t),5

χ(t) = Tr[μ̂e−iĤ t μ̂(0)ρ(0)eiĤ t
]

σ(ω) = ∫
∞

0
dteiωtχ(t).

(14)

Applying the dipole operator at t = 0 results in optical coherences
between the ground state and singly excited states, ρ̃(0) = μ̂(0)ρ(0).
This initial condition can be represented either as an unmodified
projected state (i.e., ∣e⟩⟨g∣) or as a sum of four pure states as outlined
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in Eq. (1). Absorption spectra computed via pure state Ehrenfest,
projected Ehrenfest, and the numerically exact HEOM for both the
fast and slow bath parameter regimes are shown in Fig. 1. In both
parameter regimes, the two peaks in the spectrum correspond to the
two exciton states in the system. Their energies correspond approx-
imately to the eigenenergies obtained upon diagonalization of the
single-exciton section of the electronic Hamiltonian. In the slow
bath regime [Fig. 1(a)], where Ehrenfest theory is expected to be
accurate, both projected Ehrenfest and pure state Ehrenfest quan-
titatively reproduce the HEOM result. In the fast bath parameter
regime [Fig. 1(b)], despite the qualitative agreement with the HEOM
result, there are small inaccuracies for both Ehrenfest methods, with
the pure state Ehrenfest method giving a more accurate result than
the projected Ehrenfest method. These results can be explained by
examining the dynamics arising from the coherence initial con-
dition, ρS(0) = ∣0⟩⟨1∣, shown in Figs. 2(a) and 2(b). ∣0⟩⟨1∣ is one
of the coherence initial conditions (the others being ρS(0) = ∣0⟩⟨2∣
and their complex conjugates) that is propagated to give rise to the
first-order response function, χ(t). In the slow bath regime, there
is near quantitative agreement between both versions of Ehrenfest
and the HEOM result, while in the fast bath regime, there are more
pronounced differences, with the pure state Ehrenfest dynamics
matching the HEOM result more closely and the projected Ehren-
fest result being underdamped. These differences mirror and point
to the source of inaccuracies in the absorption spectra for the fast
bath parameter regime. The overall similarity in coherence dynamics
across different methods (Fig. 2) also reveals why the linear spec-
tra appear to be relatively insensitive to the initialization scheme
used for Ehrenfest dynamics: the dynamics starting from a den-
sity matrix corresponding to a coherence with the ground state are

FIG. 1. Linear absorption spectra for the slow bath (a) and fast bath (b) parameter
regimes computed via HEOM, pure state Ehrenfest, and projected Ehrenfest.

FIG. 2. Coherence dynamics for the slow bath (a) and fast bath (b) parameter
regimes computed via HEOM, pure state Ehrenfest, and projected Ehrenfest.

not as sensitive to the initialization scheme. The relative insensi-
tivity of the linear absorption spectra to methods that inaccurately
treat coherence dynamics has previously been observed for Redfield
theory, which was shown to yield accurate linear absorption spec-
tra despite getting incorrect population dynamics,18 albeit with a
different dynamical method rooted in perturbation theory.

B. Nonlinear optical spectroscopy
Two-dimensional electronic spectra offer a much stricter test

than absorption spectroscopy of a method’s accuracy because they
require one to correctly capture both the population and coherence
dynamics for a wider range of initial conditions.

2DES spectra can be obtained from a Fourier transform over
the rephasing (Rrp) and non-rephasing (Rnr) terms of third-order
response function under the rotating wave approximation,5

S(ω3, t2,ω1) =Re∫
∞

0
dt1∫

∞

0
dt3[ei(ω1t1+ω3)Rnr(t3, t2, t1)

+ ei(−ω1t1+ω3)Rrp(t3, t2, t1)], (15)

where

Rrp = Φ1(t3, t2, t1) +Φ2(t3, t2, t1) −Φ3(t3, t2, t1),
Rnr = Φ4(t3, t2, t1) +Φ5(t3, t2, t1) −Φ6(t3, t2, t1),

(16)

with Φ1(t3, t2, t1) and Φ4(t3, t2, t1) yielding the stimulated emis-
sion (SE) contributions, Φ2(t3, t2, t1) and Φ5(t3, t2, t1) yielding the
ground state bleaching (GSB) contributions, and Φ3(t3, t2, t1) and
Φ6(t3, t2, t1) yielding the excited state absorption (ESA) contribu-
tions. These are computed as
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Φ1(t3, t2, t1) = ⟨μ−G(t3)[G(t2)[μ+G(t1)(ρ0μ−)]μ+]⟩,
Φ2(t3, t2, t1) = ⟨μ−G(t3)[μ+G(t2)[G(t1)(ρ0μ−)μ+]]⟩,
Φ3(t3, t2, t1) = ⟨μ−G(t3)[μ+G(t2)[μ+G(t1)(ρ0μ−)]]⟩,
Φ4(t3, t2, t1) = ⟨μ−G(t3)[G(t2)[G(t1)(μ+ρ0)μ−]μ+]⟩,
Φ5(t3, t2, t1) = ⟨μ−G(t3)[μ+G(t2)[μ−G(t1)(μ+ρ0)]]⟩,
Φ6(t3, t2, t1) = ⟨μ−G(t3)[μ+G(t2)[G(t1)(μ+ρ0)]μ−]⟩.

(17)

Here, G(t)ρ = e−iHmatt/h̵ρeiHmatt/h̵ is the Liouville-space propagator.
ti∈{1,2,3} are time intervals between successive light–matter interac-
tions, and

μ− =∑
m
μm∣0⟩⟨m∣,

μ+ =∑
m
μm∣m⟩⟨0∣.

(18)

A procedure for obtaining the third-order response function from
Ehrenfest dynamics was previously outlined in Ref. 36, which
employs ensemble averages over the ground state wavefunction, ∣g⟩.
In this scheme, the dipole operator is applied via a product with
individual dipole matrix elements, time propagation is done only
over select population states, and the effect of coherences is mod-
eled via an average over two wavefunctions formed from the ket and
bra. However, the use of specific dipole matrix elements as well as
time-propagation over select population states makes it difficult to
generalize that method to arbitrary systems with multiple quantum
states. Here, we present a generalizable method that exploits the lin-
earity of density matrices to compute third-order response functions
as follows:

1. Apply the first dipole operator to ρ0 at t = 0 and split the resul-
tant density matrix into four pure states as described in Sec. II.
Via the Condon approximation, the bath degrees of freedom
are untouched by the dipole operator. Each resultant pure
state inherits its own copy of the bath. Propagate states and
their corresponding baths independently through t1.

2. Apply the second dipole operator at t = t1, this time to all
four propagated states. This operation usually results in a new
set of non-pure states, which are subsequently split into four
of their respective pure states, bringing the total number of
branches to 16. Each branch adopts a copy of bath coordinates
and momenta from its parent branch, ensuring continuity
from t = 0. Propagate the pure states and baths independently
through the waiting time, t2.

3. Apply the third dipole operator at t = t1 + t2 to the 16 propa-
gated states. This splits them again into a total of 64 branches,
each a pure state. Propagate all branches through t3.

4. Consolidate all 64 branches at t = t1 + t2 + t3, and apply
the final dipole operator to obtain the third-order response
function.

Multiple instances of this procedure are run in order to aver-
age over an ensemble of initial bath states. From the above, it is clear
that the pure state Ehrenfest method requires more sampling than
projected Ehrenfest, which does not involve any splitting of initial
conditions into pure states. As we will see below, this splitting into
pure states is required to obtain accurate 2DES spectra. The pro-
cedure can also be trivially parallelized since all trajectories in the

scheme run independently. Additionally, as demonstrated in Sec. II,
we decompose each initial density matrix ∣a⟩⟨b∣ as a sum of only four
pure states in the same Liouville space.

An alternative method for obtaining accurate Ehrenfest
dynamics from non-pure state density matrices is outlined in our
previous work in the Appendixes of Ref. 41, and it involves stochas-
tically sampling an auxiliary wavefunction. For example, the initial
condition ∣0⟩⟨1∣ would be obtained from

∣ψ⟩ =
1
√

2
(∣0⟩ + eiϕ

∣1⟩), (19)

where ϕ is a parameter that is sampled over the range 0–2π. In this
stochastic scheme, sampling is required both over values of ϕ and
initial positions and momenta of the bath. In the context of a third-
order response function, ϕ would require fresh sampling at each
light–matter interaction (i.e., at times t = 0, t = t1, and t = t1 + t2)
because the auxiliary wavefunction would otherwise return incor-
rect dynamics. In contrast, the pure state Ehrenfest method detailed
above only requires the usual sampling over initial bath conditions,
which can be done once at t = 0 since the baths are continuous
through t = t1 + t2 + t3.

Figure 3 shows the 2DES spectra obtained from both the pure
state and projected forms of Ehrenfest and how they compare to
the HEOM spectra. At t2 = 0, we see two partially resolved diagonal
peaks centered at energies −130 and 140 cm−1, which roughly match
the eigenenergies of single-exciton states. We also observe two cross-
peaks that indicate inter-chromophoric coupling, with their positive
amplitudes, suggesting that they arise from SE and GSB contribu-
tions involving two different one-exciton states. The cross-peak in
the upper diagonal region is weaker at all times because the ESA

FIG. 3. Exact 2DES spectra for the slow bath parameter regime computed using
HEOM (top row). 2DES spectra computed using the pure state Ehrenfest and pro-
jected Ehrenfest methods are shown in the middle and bottom rows, respectively.
All spectra are normalized such that the maximum amplitude equals 1.

J. Chem. Phys. 158, 074107 (2023); doi: 10.1063/5.0138671 158, 074107-5

Published under an exclusive license by AIP Publishing

 23 August 2024 12:01:14

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

contributions largely cancel out the SE + GSB contributions. Spec-
tral diffusion is observed at later times (t2 = 200, 600 fs), and in the
HEOM spectra, the lower-energy exciton state evolves to have a
higher population than the higher-energy exciton state, consistent
with the detailed balance expectation.

The response functions used to obtain the Ehrenfest spectra
were truncated (windowed using a step function) as outlined in
the supplementary material, Sec. I. From Fig. 3, we observe that
pure state Ehrenfest recovers almost quantitative agreement with
the HEOM result, with just a slight deterioration as the waiting
time t2 increases. In contrast, projected Ehrenfest yields much worse
agreement with the HEOM spectrum. While most of the spec-
tral features from the HEOM spectrum are present at t2 = 0, the
projected Ehrenfest spectrum becomes progressively worse as t2
increases and bears little resemblance to the HEOM result by the
time t2 = 600 fs. Additionally, it is well known that the Ehrenfest
method is unable to capture detailed balance correctly.42 Indeed,
the t2 = 600 fs panel in Fig. 3 shows that for pure state Ehren-
fest, the intensity of the higher-energy diagonal peak is larger than
would be normally expected in comparison to the exact HEOM
spectrum, demonstrating that pure state Ehrenfest inherits the
breakdown of detailed balance observed in the projected Ehrenfest
formulation.

Although one could imagine that the poor performance of the
projected Ehrenfest method could be attributed to underconverged
sampling of initial conditions and trajectories, in the supplementary
material, Sec. V, we demonstrate that increasing the sampling
does not remove the incorrect oscillatory features observed in the
projected Ehrenfest 2DES spectrum. Instead, we look for expla-
nations of the inaccuracies by examining the contributions to the
response function that make up the 2DES spectrum. Figures 4 and 5
illustrate this using plots of Φ2, with the rest of the contributions to

FIG. 4. Real parts of Φ2 for the slow bath parameter regime as computed via
HEOM, pure state Ehrenfest, and projected Ehrenfest.

FIG. 5. Imaginary parts of Φ2 for the slow bath parameter regime as computed via
HEOM, pure state Ehrenfest, and projected Ehrenfest.

the response function being shown in the supplementary material,
Figs. 2–13. Here, we observe that, as expected, pure state Ehrenfest
accurately reproduces the HEOM result, while projected Ehrenfest
fails to do so and that the discrepancy is much more striking in
the imaginary part of the response function. These discrepancies
can be further traced to the single-time dynamics obtained from
the coherence initial conditions between excited states. Since the
Frenkel exciton model is in the global ground state ρ0 = ∣0⟩⟨0∣ at
t = 0, such coherence states can only be obtained when the dipole
operator is applied multiple times, as is the case when computing
the third-order response. As such, the dynamics of coherence ini-
tial conditions between excited states (e.g., ∣1⟩⟨2∣) are relevant to
nonlinear spectra but not linear spectra. Figure 6 shows both the
population and coherence dynamics for ∣1⟩⟨2∣. In both the slow
and fast bath parameter regimes, we see from the first two rows
that the population dynamics obtained from pure state Ehrenfest
more closely matches the HEOM result, especially at longer times. In
contrast, projected Ehrenfest result matches the HEOM result until
∼200 fs, after which there are notable deviations. This poor perfor-
mance of the projected Ehrenfest is also observed to a lesser extent in
the coherence dynamics of the ∣1⟩⟨2∣ initial state (bottom two rows
of Fig. 6). We emphasize that the coherence dynamics presented
here are distinct from those involved in the absorption spectra since
they do not involve the ground state. The worsening performance of
projected Ehrenfest with time in reproducing the dynamics arising
from ∣1⟩⟨2∣ also explains why the respective 2DES spectrum degrades
progressively as the waiting time t2 increases (Fig. 3). As such, the
differences in the performance between projected and pure state
Ehrenfest can be attributed to inaccuracies in the projected Ehrenfest
dynamics when populations, and coherences to a lesser extent, arise
from an initial condition of coherences between two excited states.
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FIG. 6. Single-time dynamics for an initial condition of ∣1⟩⟨2∣ for both the slow
(left) and fast (right) bath parameter regimes. The first two rows contain popu-
lation dynamics [i.e., ∣1⟩⟨1∣(t) and ∣2⟩⟨2∣(t)], while the bottom two rows show
coherence dynamics [∣2⟩⟨1∣(t) and ∣1⟩⟨2∣(t)].

FIG. 7. Pump–probe spectra for the slow bath parameter regime obtained from
integrating the 2DES spectra over ω1.

FIG. 8. Exact two-dimensional spectra for the fast bath parameters computed
using HEOM (top row), compared to the pure state Ehrenfest method (bottom
row). All spectra are normalized such that the maximum amplitude equals 1.

Pump–probe spectra, generated by integrating over ω1, are
shown in Fig. 7. The results here mirror those of the 2DES spec-
trum, where the pure state Ehrenfest method accurately reproduces
the HEOM result, albeit with slightly higher peaks at 200 cm−1 for
t2 ≥ 200 fs. In contrast, while the projected Ehrenfest method yields
accurate results at t2 = 0, the accuracy of the pump–probe spec-
tra degrades at t2 ≥ 200 fs, with the peak around 200 cm−1 losing
definition.

Next, we examine how well pure state Ehrenfest performs in a
more challenging fast bath regime. Figure 8 shows 2DES spectra for
the fast bath parameters computed via HEOM and pure state Ehren-
fest. The range of values for t2 (0–150 fs) is more limited here than in
the slow bath regime because we observed virtually no change in the
2DES spectrum beyond t2 = 200 fs (see the supplementary material
Fig. 14). As with the slow bath parameter regime, the pure state

FIG. 9. Pump–probe spectra for the fast bath parameter regime obtained from
integrating the 2DES spectra over ω1.
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Ehrenfest response functions were truncated before being Fourier
transformed to produce the 2DES spectra (see the supplementary
material, Sec. I). In this more challenging regime, pure state Ehren-
fest does not perform as well as it did for the slow bath parameters.
This is not surprising, as it aligns with the well-known deficien-
cies of the Ehrenfest method, which struggles to capture the correct
dynamics in the limit of fast nuclei. Nonetheless, it is able to
qualitatively capture most of the features present in the HEOM spec-
trum. This result is corroborated by the pump–probe spectra shown
in Fig. 9.

V. CONCLUSION
Here, we have introduced the pure state Ehrenfest method to

obtain linear and nonlinear spectra. We have shown that exploiting
the linearity of the density matrix to express all initial conditions
as sums of pure states is essential to obtaining accurate coher-
ence dynamics. Our approach to obtaining pure states following
the application of the dipole operator ensures that the number of
branches involved in the time propagation does not depend on
the number of quantum states, making our approach suitable for
systems with large numbers of excited states. While our approach
provides modest improvements over projected Ehrenfest in com-
puting linear spectra, it is able to dramatically improve the accu-
racy with which nonlinear spectra (2DES and pump–probe) can
be obtained, especially at longer waiting times. The physical ori-
gin of this improvement arises from the ability of our pure state
Ehrenfest approach to much more accurately capture the dynam-
ics when the initial condition is a coherence between excited states.
These conditions do not occur when calculating the linear spec-
tra (where all the initial density matrices are coherences with the
ground state) but play a vital role in obtaining the higher-order
response functions needed to capture nonlinear spectroscopy. We
have shown that pure state Ehrenfest gives excellent agreement with
the exact linear and 2DES spectra in the slow bath regime where the
Ehrenfest method is expected to be accurate and have also demon-
strated that it still provides good results in a faster bath regime
and preserves the qualitative features observed in the exact spec-
tra. These results suggest that the pure state Ehrenfest approach
provides a tractable and accurate approach to calculate nonlinear
spectra for multichromophoric systems in a wide range of chemical
environments.

SUPPLEMENTARY MATERIAL

See the supplementary material for details of the time cutoffs
involved in the construction of the 2DES spectra, plots of individ-
ual components of the third-order response function for both the
slow and fast bath parameter regimes, and a discussion of the 2DES
spectra for the fast bath parameter regime at longer waiting times.
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Blankenship, and G. R. Fleming, Nature 446, 782 (2007).
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