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Abstract: We study the robustness of quantum error correction in a one-parameter
ensemble of codes generated by the Brownian SYK model, where the parameter quantifies
the encoding complexity. The robustness of error correction by a quantum code is upper
bounded by the “mutual purity” of a certain entangled state between the code subspace
and environment in the isometric extension of the error channel, where the mutual purity
of a density matrix ρAB is the difference Fρ(A : B) ≡ Tr ρ2

AB − Tr ρ2
A Tr ρ2

B. We show that
when the encoding complexity is small, the mutual purity is O(1) for the erasure of a small
number of qubits (i.e., the encoding is fragile). However, this quantity decays exponentially,
becoming O(1/N) for O(logN) encoding complexity. Further, at polynomial encoding
complexity, the mutual purity saturates to a plateau of O(e−N ). We also find a hierarchy
of complexity scales associated to a tower of subleading contributions to the mutual purity
that quantitatively, but not qualitatively, adjust our error correction bound as encoding
complexity increases. In the AdS/CFT context, our results suggest that any portion of
the entanglement wedge of a general boundary subregion A with sufficiently high encoding
complexity is robustly protected against low-rank errors acting on A with no prior access
to the encoding map. From the bulk point of view, we expect such bulk degrees of freedom
to be causally inaccessible from the region A despite being encoded in it.
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1 Introduction

The bulk-to-boundary map in AdS/CFT has a rich structure. For any boundary subregion
A, the associated Ryu-Takayanagi surface [1] singles out a certain subregion a of the bulk
spacetime called the entanglement wedge of A [2]. The AdS/CFT map then satisfies
subregion duality: bulk semi-classical degrees of freedom in a are encoded within A and
are protected against erasures in A. Furthermore, bulk operators within the entanglement
wedge a can be reconstructed as boundary operators localized within the boundary region A,
a property sometimes known as entanglement wedge reconstruction [3]. Using the language
of [3–10], these properties hold because the Ryu-Takayanagi formula and its quantum
generalizations imply that the bulk-to-boundary map in AdS/CFT is a quantum error
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A A

Figure 1. The entanglement wedge of a boundary subregion A can have a rich substructure. The
outer white region on the left is the causal wedge of A, while the slightly darker grey region bounded
by a non-minimal QES (shown in red) is the simple wedge. Beyond this lies the python’s lunch
(dark grey).

correcting code with complementary recovery, where the entanglement wedge a of A is
protected against the erasure of A, while a is protected against the erasure of A.

Recent progress points towards a sharper characterization of the structure of entangle-
ment wedges that appear in holography and its generalizations [11–16]. Given a general
boundary subregion, the corresponding entanglement wedge has a layered structure, i.e.,
it can be broken up into three regions: the causal wedge, the simple wedge [14, 15] and
the python’s lunch [17]. These three regions of the entanglement wedge are defined as
follows (see figure 1): the causal wedge is the region in the bulk which is causally accessible
from the boundary, i.e., a boundary observer in the domain of dependence of A can send
signals to and receive signals from all points in the causal wedge of A. The simple wedge
is defined to be the bulk domain of dependence of the homology region between A and
the outermost quantum extremal surface (QES) which need not be minimal among all the
QESs associated with A. The simple wedge is generically larger than the causal wedge, and
so there are points in the simple wedge which are out of causal contact with the domain of
dependence of A. However, it has been argued that the simple wedge can always be brought
in causal contact with the boundary by performing backwards and forwards Lorentzian
time evolution with sources turned on to de-focus the causal horizons [15]. Finally, the
python’s lunch region is defined as the portion of the entanglement wedge which lies between
the outermost QES and the minimal QES. This region is causally inaccessible from the
boundary subregion A, and furthermore since it lies behind an extremal surface it cannot be
brought into causal contact with the domain of dependence of A (in contrast with the simple
wedge); this follows from the fact that extremal surfaces must always lie behind causal
horizons. This seems to lead to a puzzle — on the one hand, bulk operators in the python’s
lunch are encoded in A and in particular one should be able to create a semi-classical bulk
excitation in the python’s lunch via an operator acting on the domain of dependence of A.
On the other hand, semi-classical gravity seems to forbid this!

The evaporating black hole provides a context where this apparent contradiction is
particularly sharp. Beyond the Page time, a portion of the black hole interior — the
island — lies in the entanglement wedge of the radiation (see [11–13, 18–26] for a partial
list of articles discussing this phenomenon for black hole and cosmological horizons). But
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this portion lies behind a non-minimal QES, namely the empty surface,1 and therefore
constitutes a python’s lunch. While one should be able to manipulate operators in the
island by quantum operations on the radiation, such operations seem to blatantly violate
semi-classical bulk causality. A potential way out is suggested by bounds coming from
computational complexity [14, 15, 17, 27–32] — we expect that the encoding map for
excitations in the python’s lunch region is extremely complex, perhaps exponentially so
in the number of qubits, and so any computationally bounded observer (with access only
to sub-exponential operations on the radiation) will be unable to manipulate the degrees
of freedom in the island. This is how we expect that semi-classical bulk causality will be
approximately respected. On the other hand, certain finely tuned, exponentially complex
operations on the radiation should be able to manipulate degrees of freedom in the island,
but the gravitational mechanism for this involves Euclidean wormholes.

We can get an intuition for why complexity can protect information in this way from
an analogy to older results concerning the complexity of black hole microstates and the
difficulty of using simple probes to extract information about them [33–35]. Consider, for
example, a Schwarzschild black hole of mass M in AdS5 with a length scale ℓ. A microstate
of this black hole is described in the dual SU(N) Yang-Mills theory with 16 supersymmetries,
by an operator O of dimension ∆ = Mℓ ∼ N2. O is roughly a polynomial of length N2

built from the elementary fields of the Yang-Mills theory (a gauge field Aµ, fermions ψa and
three complex adjoint scalars X,Y, Z) and their derivatives, with indices contracted to make
the polynomial gauge and Lorentz invariant. Almost all such long polynomials are random
sequences of fields and derivatives up to constraints of gauge and Lorentz invariance. A
light probe of the state like the graviton corresponds to an operator of dimension O(1), like
P = Tr(XX). The question is whether a measurement, modeled as a correlation function
in the state created by O, ⟨0|O†P †PO|0⟩, can reveal information about the identity of O.
The authors of [33, 34] argue that the answer is “no” because of the universal statistics of
random polynomials, which mean that almost all O will lead to a similar sum of terms from
contractions between the fields in the probe and the fields in O in evaluating the correlator.
As such, simple (i.e., low-dimension) probes cannot reveal the microstate, but an observer
with prior knowledge of the state could construct a fine-tuned, complex probe to check
that knowledge, by choosing these probes to match long sequences of the fields composing
O. One expects the situation in the python’s lunch inside an evaporating black hole to be
somewhat analogous: a highly complex encoding map prevents simple operations in the
radiation from affecting the black hole interior, but if the encoding map is accessible then
finely tuned, complex operations affecting the interior may be performed more easily.

Kim, Preskill and Tang (KPT) have sharpened these expectations [30]. They suggested
that the encoding of the black hole interior degrees of freedom in the radiation, thought of

1In more detail, in the toy models where these calculations are possible, the radiation is extracted into
an auxiliary reservoir that is not geometrically connected to the island. Even in the absence of a geometric
connection, there is still an obvious candidate extremal surface which one can consider as bounding the
region dual to the radiation, namely the “empty surface”. By this, we mean that the entire black hole
spacetime is taken to lie “outside” the would-be entanglement wedge. After the Page time, this surface is no
longer the quantum minimal surface which computes the radiation entropy, and the true minimum QES
lies in the spacetime near the black hole horizon. Nevertheless, the island is “behind the empty extremal
surface” from the point of view of the radiation.
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as a quantum error correcting code, has robust error correction properties against low-rank,
computationally bounded errors on the radiation, or more precisely, errors which effectively
see the radiation density matrix as thermal. Note that this is not the standard error
correction one encounters in the context of subregion duality; in the KPT formulation, bulk
degrees of freedom in the island — while being encoded in the radiation — are nevertheless
approximately (up to corrections exponentially small in the black hole entropy) protected
against certain errors acting on the radiation itself. KPT then argued that this approximate
error correction implies the existence of “ghost logical” operators which act on the radiation
to mimic bulk operators in the island and at the same time commute with computationally
bounded operators on the radiation — thus realizing the approximate causality of the black
hole spacetime. The language of quantum error correction thus enables one to formulate
and address the question of bulk causality in a universal manner.

Recently, the novel error correction in evaporating black holes proposed by KPT was
tested in a toy model for an evaporating black hole in Jackiw-Teitelboim gravity [31], and
it was argued that the bulk degrees of freedom in the island are protected against a large
class of low-rank error operations on the radiation which do not have access to the details
of the microscopic black hole state. The low-rank criterion can be formalized as a bound
on the coherent information of the error in terms of the black hole entropy. In [31], it was
also conjectured that this same robust error correction should also work in the python’s
lunch portions of more general entanglement wedges. The underlying reason is the high
complexity of encoding in the python’s lunch. The rough picture is the same as KPT —
as the encoding map becomes sufficiently complex, any generic, low-rank error operation
involving “simple” operations sees only a coarse-grained2 density matrix on the boundary
subregion, with no sign of the encoded subspace. In other words, the encoded subspace
gets lost within the exponentially large Hilbert space of the boundary subregion. This
“complexity-protected error correction” makes it possible for the semi-classical degrees of
freedom in the python’s lunch to be encoded in a boundary subregion and yet be causally
inaccessible from it using simple probes.

The purpose of this paper is to demonstrate the above phenomenon in a toy model
where the behavior of the encoding complexity is known more or less by construction. Such
control is difficult to achieve directly in real holography because proving results about
the complexity of the bulk-to-boundary map (without resorting to toy models like tensor
networks) in different regions of the entanglement wedge is generically a very difficult task.
Rather than a single code, here we consider an ensemble of quantum error correcting codes
of the type relevant for entanglement wedge reconstruction in AdS/CFT. Since we want
control over the complexity of encoding, our ensemble of codes is generated by picking the
encoding map from an ensemble of unitaries with fixed circuit complexity.

We accomplish this by taking these unitaries to be time evolution operators
U(T ) = T exp[−i

∫ T
0 dt H(t)] in the Brownian Sachdev-Ye-Kitaev (SYK) model [37–41], a

2The relevant notion of coarse-graining was defined in [15, 36]: one finds the maximum-entropy state
consistent with correlation functions of all simple operators, including Lorentizan time-folds with simple
sources turned on. Here simple operators and sources are defined as those whose effects propagate causally
in the bulk.
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quantum mechanical theory of N Majorana fermions. The SYK model here is merely a trick
to generate an ensemble of unitaries with fixed complexity, parametrized by the number T .
When T is small, the corresponding set of unitary operators is clustered around the identity
operator, but as T → ∞ this set grows [42–46] to cover (modulo global symmetries) the
entire unitary group. When it covers the entire unitary group, the typical complexity of an
operator in the set is exponentially large [47]. So, computing the average error correction
properties of such sets gives us some insight into the behavior of a family of codes with
increasing complexity.

In this paper we will consider typical, low-rank errors with no prior access to the
encoding map, and acting on a small fixed fraction of the physical Hilbert space. As a
particular instance of such errors, we will consider the erasure of a small fraction of the
physical Hilbert space. In quantum information theory, it is standard to model an error in
terms of coupling to an external environment and tracing out the environment. The error
correction properties of the code can then be studied in terms of the amount of correlation
generated by the error between the code subspace and the environment. Error correction
works with high accuracy when these correlations are suppressed by a large parameter e.g.
the dimension of the physical Hilbert space.

We will study a particular measure of correlation, namely the “mutual purity” between
the code subspace and the environment. We define the mutual purity Fρ(A : B) of a density
matrix ρ between Hilbert subsystems HA and HB as Tr ρ2

AB − Tr ρ2
A Tr ρ2

B. The fact that
this quantity is a good measure of error correction is rigorously justified in appendix B.
Our main result is that for the Brownian SYK ensemble of quantum error correcting codes,
there are three complexity regimes of interest.

(i) For T smaller than a scrambling time T ∼ logN (i.e., low encoding complexity)
the erasure of a small fraction of the physical qubits generate an O(1) amount of
correlation that decays exponentially with T between the code subspace and the
environment, and thus there is no robust quantum error correction.

(ii) For T > logN , the mutual purity becomes O(1/N) but keeps decaying further as the
complexity T increases.

(iii) When T ∼ N , the mutual purity becomes exponentially small in N ; at this point,
there is an O(e−N ) residual correlation generated by the error which is unavoidable.

The third and final regime corresponds to an exchange of dominance between a leading
saddle point and a subleading saddle point3 in the Brownian SYK calculation, analogously to
the exchange of dominance between a disconnected geometry and the Euclidean wormhole in
gravity. This quantitative hierarchy of complexity-protected error correction, ranging from a
fragile encoding at O(1) complexity, through a logarithmic complexity regime of reasonable
protection, and finally an emergent robust error correction at large encoding complexity,

3Furthermore, there are also strictly subleading saddles controlled by a one-dimensional lattice of critical
time points with the scrambling time as the lattice vector. The amount of correlation generated with the
environment only changes as T passes a lattice point.
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is the central result of this paper. We regard this as a step towards understanding the
structure of general entanglement wedges (figure 1) from the boundary perspective in terms
of quantum error correction.

Three sections follow. In section 2 we review the necessary ideas from quantum error
correction. We discuss the class of errors of interest, and show that the mutual purity which
is relevant for recovery from these errors can be expressed in terms of the standard purity4

of a certain density matrix constructed using the encoding map. We also briefly review the
Brownian SYK model. In section 3, we compute this purity in the large N limit using the
Brownian SYK time evolution operator to model the encoding map. We conclude with
a discussion in section 4. In appendix A, we give a Hamiltonian treatment of Brownian
SYK to complement the path integral discussion in the main text and in appendix B we
prove that the mutual purity provides a bound on the error correction properties of an
encoding map.

2 Setup

2.1 Brief review of quantum error correction

The mathematical framework for quantum error correction involves an isometric embedding
of a small “code subspace” Hcode into a larger Hilbert space Hphys:

V : Hcode → Hphys,

where V †V = 1. It is standard to model the error and recovery operations as completely
positive trace-preserving linear maps, or “quantum channels”. Any such map E has a
representation in terms of its Kraus operators {Em} [48, 49]:

E(ρ) =
∑
m

EmρE
†
m,

∑
m

E†
mEm = 1. (2.1)

The minimum number of Kraus operators needed to implement a particular channel is
called the rank of the channel. These quantum channels act on physical density matrices,
and the goal of error correction is to determine for a given error channel E whether or not
there exists a recovery channel R which restores the state ρcode:

R(E(V ρcodeV
†)) = ρcode. (2.2)

On the right hand side, we have in mind that the recovery channel has eliminated redundant
portions of Hphys, leaving behind precisely the matrix ρcode on the remaining subspace
of Hphys.

A second, convenient description of a quantum channel is given by its isometric extension,
also known as its Stinespring dilation: we describe it as coupling the physical system via a
unitary operator UE to an auxiliary environment with Hilbert space Henv spanned by basis
elements {|em⟩env}, initially in some fiducial state |e0⟩. The action of the channel E on ρ is

4For a density matrix ρ, the purity is defined as Tr ρ2.
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then recovered by tracing out the environment: E(ρ) = Trenv
[
UE (ρ⊗ |e0⟩⟨e0|env)U †

E

]
. This

implies that Em = ⟨em|UE |e0⟩, or, equivalently,

UE |ψ⟩ ⊗ |e0⟩ =
∑
m

Em|ψ⟩ ⊗ |em⟩, (2.3)

where |ψ⟩ is any state in the physical Hilbert space.
A standard fact in quantum error correction, sometimes called the decoupling principle,

is that there always exists an approximate recovery channel where the error in recovery
is bounded in terms of the amount of correlation the error channel generates between the
code subspace and the environment. The convenient way to evaluate this correlation is to
use the following procedure: (a) introduce a reference system Href which is isomorphic to
and maximally entangled with code Hilbert space, (b) act with the error quantum channel,
(c) trace out the physical Hilbert space, and (d) evaluate the correlation between the two
remaining auxiliary spaces (the environment used to represent the channel and the reference
space). Thus, taking |i⟩ref and |i⟩code to be orthonormal bases for the reference space and
the code subspace respectively, we construct the state

|Ψ′⟩ = 1√
dcode

dcode∑
i=1

denv∑
m=1

|i⟩ref ⊗ EmV |i⟩code ⊗ |em⟩env, (2.4)

where we have defined dX to be the dimension of a Hilbert space HX . Here the code states
are embedded by V into the physical Hilbert space and maximally entangled with the
reference, while the error channel acts via Em on the physical states and thus entangles
them with the environment. Then we can say that for any error channel E = {Em} there
exists a recovery channel R for which the Schatten 1-norm distance between the resulting
state and the original encoded state is bounded as [50, 51]:

∥R(E(V ρcodeV
†)) − ρcode∥1 ≤ (IΨ′(ref : env))1/4 . (2.5)

Here IΨ′(ref : env) is the mutual information between the environment and the reference
space after tracing out the physical Hilbert space. This means that the error E is exactly
correctable in the code V if the reference and environment do not share any correlation,
hence the term “decoupling”.

In this paper, we will be interested in quantum codes with complementary recovery [52],
which are the types of codes relevant for entanglement wedge reconstruction in AdS/CFT.
For simplicity, consider a code subspace where we have some semi-classical bulk degrees
of freedom in the entanglement wedge of a boundary subregion A, but no excitations in
the entanglement wedge of the complement region A. Let |i⟩code denote basis states for
these bulk degrees of freedom. It was shown by Harlow that the Ryu-Takayanagi formula
together with quantum corrections implies the following structure for the encoding map in
this situation:

V : Hcode → Hphys, (2.6)

V |i⟩code = (UA ⊗ 1A)
(
|i⟩A1 ⊗ |χ⟩A2A

)
, (2.7)
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where the physical Hilbert space (i.e., the Hilbert space of the dual CFT) is factorized as

Hphys = HA ⊗HA, HA = HA1 ⊗HA2 ⊕HA3 , (2.8)

and |χ⟩ is some fixed pure state in the Hilbert space HA2,A
. The argument for this involves

the decoupling principle applied to the erasure of A. Let us briefly recall how this works
(see [52] for details): we introduce an auxiliary system Haux isomorphic to the code subspace,
and construct the state

|Ψ⟩ = 1√
dcode

dcode∑
i=1

|i⟩aux ⊗ |ψi⟩A,A, |ψi⟩A,A = V |i⟩code. (2.9)

Since the bulk degrees of freedom in the code subspace are contained in the entanglement
wedge of A, one can show using the RT [1] plus FLM [53] formula that the mutual information
I(aux : A) vanishes, which implies that ρaux,A = ρaux ⊗ ρA. Therefore, viewed as a bipartite
state on A and aux ∪ A the Schmidt vectors of Ψ should take a factorized form on aux ∪ A.
The canonical purification [36, 54] of ρaux,A will therefore also have factorized states on
A. This is why the state inside the parentheses in equation (2.7) takes the factorized form
between A1 and A2; here A1 is the canonical purifier of aux and A2 is the canonical purifier
of A. Finally, any two purifications of the same density matrix ρaux,A should be related by
a unitary on A; this is precisely the unitary UA ⊗ 1A appearing in equation (2.7). It is easy
to check that this code subspace is protected against the erasure of A. We will refer to the
operator UA as the encoding unitary.5

There is an important caveat: the bulk-to-boundary map V need not be an exact
isometry, and is often an approximate one with corrections of O(e−1/GN ).6 Relatedly, the
quantum generalization of the Ryu-Takayanagi formula, namely the QES formula, is correct
to all orders in the GN perturbation theory for appropriate states,7 but in general there
are corrections of O(e−1/GN ). Therefore, the bulk-to-boundary map in AdS/CFT is only
approximately of the form (2.7), and has additional exponentially small corrections. As
a first pass, we will focus on codes of the type (2.7) in this work. It would be interesting
to incorporate the corrections mentioned above in our analysis, but we will not attempt
this here.

2.2 An error correction bound

Putting together the considerations from above, we first introduce a reference system
isomorphic to the code subspace and consider the maximally entangled state:

|Ψ⟩ = 1√
dcode

∑
i

|i⟩ref ⊗ UA
(
|i⟩A1 ⊗ |χ⟩A2A

)
⊗ |e0⟩env, (2.10)

5The additional Hilbert space component HA3 in (2.8) is, for our purposes, a bookkeeping device for
situations where the physical Hilbert space dimension is not a product of integers, also implying that a part
of it does not participate in the code; so we will simply drop HA3 as it is not pertinent to our considerations.
Henceforth, we will focus our attention on codes which have the above structure, but without HA3 .

6There are also more extreme situations in which the map is far from an isometry [29, 31, 32].
7See [55] for situations where there are leading order corrections.
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where we included the code subspace structure in (2.7) and an auxiliary environment in
some fiducial initial state |e0⟩. The error now acts in the form of a joint unitary operator
on A ∪ env (we assume the error does not act on the A system):

|Ψ′⟩ = 1√
dcode

∑
i

|i⟩ref ⊗ UE
[
UA

(
|i⟩A1 ⊗ |χ⟩A2A

)
⊗ |e0⟩env

]
, (2.11)

where we applied the error channel as in (2.4) to the state (2.10) in terms of a unitary
operator (2.3) entangling the physical system with the environment. Next, we obtain the
reduced density on the reference and environment subsystems:

ρ′ref,env = 1
dcode

∑
i,j

|i⟩⟨j|ref ⊗ TrA
{
UE
[
UA

(
|i⟩⟨j|A1 ⊗ ρχA2

)
U †
A ⊗ |e0⟩⟨e0|env

]
U †
E

}
, (2.12)

where we have performed the trace over A and replaced χ with its reduced density matrix
ρχA2

. Finally, following (2.5) we can bound the error in recovery of the original state after
action of the error channel in terms of the fourth root of the mutual information between
the reference and the environment:

IΨ′(ref : env) = S(ρ′ref) + S(ρ′env) − S(ρ′ref,env), (2.13)

where the von Neumann entropies on the right hand side are computed from ρ′ref,env and the
reduced density matrices on the reference and the environment ρ′ref = Trenv(ρ′ref,env) and
ρ′env = Trref(ρ′ref,env).

The mutual information in (2.13) is difficult to compute directly. A standard approach
is to use the replica trick to obtain the von Neumann entropies on the right hand side as
analytic continuations of the Rényi entropies which are easier to compute via the relation

S(ρ) = −Tr(ρ log ρ) = lim
n→1

1
1 − n

S(n)(ρ), (2.14)

where S(n)(ρ) = log Tr(ρn) is the nth Rényi entropy. We will take a different approach.
In appendix B we study a particular, well-motivated recovery channel and show that the
trace distance between the recovered state under this recovery channel and the actual
state satisfies

D(R◦E(V ρcodeV
†),ρcode)≤ c

(
Tr
(
ρ′2ref,env−ρ′2ref⊗ρ′2env

))1/4
, c= d

5/2
code d

1/2
env, (2.15)

where D(ρ, σ) = 1
2 Tr(|ρ − σ|) with |X| =

√
X†X is the trace distance between density

matrices. As above, dcode and denv are dimensions of the code/reference subspace and the
environment in the isometric extension of the error channel, respectively. In this work, (2.15)
will replace the standard decoupling principle (2.5) due to the ease of evaluating the right
hand side. In particular, the expression (2.15) bounds the error in recovery directly in
terms of the quantity

FΨ′(ref : env) ≡ Tr
(
ρ′2ref,env − ρ′2ref ⊗ ρ′2env

)
, (2.16)

which we call the mutual purity. If F vanishes, so does the right hand side of the bound (2.15),
so that perfect recovery is possible and the error can be corrected. In view of this bound,
below we will compute F to quantify the robustness against errors for encoding maps of
increasing complexity.
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2.3 Error correction and maximum complexity encoding

To get a more quantitative understanding of what happens when the encoding unitary
becomes complex, as a first pass we can compute the Haar ensemble average with respect
to UA of FΨ′ . This is because we expect that the typical unitary in the Haar ensemble
will be exponentially complex, and that as long as the dimension of HA is large, deviations
away from the ensemble average will be exponentially suppressed in the number of qubits.
For a Haar random unitary U acting on a Hilbert space HX , a standard formula for Haar
integration says:

⟨Um1p1U
†
q1n1Um2p2U

†
q2n2⟩Haar =

1
d2
X

(δm1,n1δm2,n2δp1,q1δp2,q2 +δm1,n2δm2,n1δp1,q2δp2,q1)+O
( 1
d3
X

)
.

(2.17)

This expression has a gravitational analogue: in the Euclidean path integral computation
of the radiation purity in the PSSY toy model for an evaporating black hole in JT grav-
ity [10], the two terms displayed above are respectively analogous to the “disconnected”
and “wormhole” gravitational saddles. Using the above integral we can now evaluate the
Haar average of Trref,env

[
(ρ′ref,env)2

]
as follows.

⟨Trρ′2ref,env⟩Haar = 1
d2

code

∑
i,j,m,n

⟨TrA
{
EmUA

(
|i⟩⟨j|A1⊗ρ

χ
A2

)
U †
AE

†
n

}
TrA

{
EnUA

(
|j⟩⟨i|A1⊗ρ

χ
A2

)
U †
AE

†
m

}
⟩Haar

≈ 1
d2

code d
2
A

∑
i,j,m,n

Tr(E†
mEn)δi,j Tr(ρχA2

)Tr(E†
nEm)δj,iTr(ρχA2

)

+ 1
d2

code d
2
A

∑
i,j,m,n

Tr(EmE†
mEnE

†
n)Tr(ρχ2

A2
)δi,i δj,j

= 1
d2

code d
2
A

∑
m,n

(
dcode Tr(E†

mEn)Tr(E†
nEm)+d2

code Tr(EmE†
mEnE

†
n)Tr(ρχ2

A2
)
)

= 1
d2

coded
2
A

(
dcode d

2
ATr(σ2

env)+d2
code d

2
ATr(σ2

A)Tr(ρχ2
A2

)
)

= Tr(σ2
env)

dcode

(
1+dcode

Tr(σ2
A)Tr(ρχ2

A2
)

Tr(σ2
env)

)
,

(2.18)

where we have defined the density matrix σ on HA ⊗Henv as

σ ≡ UE

(
1A
dA

⊗ |e0⟩⟨e0|env

)
U †
E =

∑
m,n

Em
1A
dA
E†
n ⊗ |em⟩⟨en|, (2.19)

and the associated reduced density matrices

σA = Trenv σ =
∑
m

Em
1A
dA
E†
m , σenv = TrA σ =

∑
m,n

TrA
(
EmE

†
n

)
dA

|em⟩⟨en| . (2.20)
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In the first step, we represented the action of UE in terms of the Kraus operators Em =
⟨em|UE |e0⟩ and traced out the reference and the environment degrees of freedom. The
second step follows from equation (2.17). In the fourth step, we used equations (2.19)
and (2.20). Following similar steps, we can compute the Haar average of Tr ρ′2env:

⟨Tr ρ′2env⟩Haar ≈ Tr(σ2
env)

(
1 +

Tr(σ2
A) Tr(ρχ 2

A2
)

dcode Tr(σ2
env)

)
. (2.21)

Since ρ′ref is maximally mixed, we have

Tr ρ′2ref = 1
dcode

, (2.22)

for any UA, which means this expression factors out of any Haar average since it is
independent of UA. Combining the above results for ⟨Tr ρ′2ref,env⟩Haar, ⟨Tr ρ′2env⟩Haar, and
Tr ρ′2ref, the final result for the Haar averaged mutual purity is given by

⟨FΨ′(ref : env)⟩Haar = e−S
(2)(σA)−S(2)(χ

A
)
(

1 − 1
d2

code

)
+ · · · , (2.23)

where the · · · indicate exponentially small contributions that we have dropped along the
way, S(2)(σA) is the second Rényi entropy of the A subsystem in the mixed state σ, and
S(2)(χA) is the second Rényi entropy of the A subsystem in the state |χ⟩A2A

. The salient
feature of (2.23) is the leading exponential suppression, as we will now describe. The
quantity 1 − d−2

code is simply an O(1) prefactor for a nontrivial code subspace.
Two features of (2.23) are worth highlighting. Firstly, note from the final formula that

in the typical code drawn from the Haar ensemble, the error channel perceives the state
on A as maximally mixed, and gains no access to the microscopic structure of the state.
Consequently, as long as the error channel is low-rank, we see that ⟨FΨ′(ref : env)⟩Haar is
exponentially suppressed by e−S

(2)(σA). This is a direct consequence of complexity — a
general, complex encoding unitary scrambles the code subspace to a point where generic
error channels do not gain any access to it. (A similar coarse-graining picture for apparent
horizons and quantum extremal surfaces was advocated in [15, 36, 56].) Furthermore, there
is an additional suppression factor of e−S(2)(χ

A
) in equation (2.23) coming from the shared

entanglement with A. The combination of these two effects coming from complexity and
entanglement thus makes the code robust against generic, low-rank errors.

In the above analysis, we have assumed that the error channel does not have prior
access to the encoding unitary UA. This is crucial, because with prior access to the details
of the encoding unitary, it is possible to construct low-rank error channels which corrupt
the code subspace. For example, consider the error channel:

E(ρA) = Epartial SWAP(U †
AρAUA), (2.24)

where the unitaries U †
A(· · · )UA first undo the encoding, and the partial swap then swaps

out the state on the first t qubits with the environment. Since the reference system in Ψ′ is
maximally entangled with the qubits in A1, even if the partial SWAP acts on one of the
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qubits in A1, then it will generate an O(1) amount of mutual information between Href
and Henv, and thus error correction fails. There is an analogue of this in the JT gravity
model [31] — there, one assumes that the error channel does not “generate” additional
asymptotic boundaries which can connect up with the bulk geometry and modify the mutual
information. Of course, note that this channel is fine-tuned, in that it uses the specific
unitary UA which goes into the encoding. Nevertheless, if UA is computationally simple,
then the above error channel is also simple. On the other hand, when the encoding unitary
UA is exponentially complex, the error channel described above must be equally complex in
order to first undo the encoding. Thus, if the python’s lunch has an exponentially complex
encoding map, then although it will not be robust against the error channels which are
constructed with prior access to the encoding unitary, the channel in question will be
exponentially complex. So it will be extremely difficult to implement such errors. This
is again a manifestation of the idea that semi-classical causality in the bulk is robust due
to complexity.

2.4 Random circuit codes: Brownian SYK

Our goal in the rest of the paper is to study in more detail the dependence of the error
correction against generic, low-rank errors acting on A relative to the complexity of the
encoding unitary. It is convenient, for this purpose, to study the ensemble average of the
mutual purity introduced above, but we would like to consider a one-parameter family of
ensembles, labelled by the complexity of the typical unitary in the ensemble.

A simple way to generate such an ensemble is to consider the time evolution operators
UA = e−iTH , for some ensemble of chaotic Hamiltonians. It is important that the Hamilto-
nians be chaotic, because for integrable Hamiltonians, the complexity of the time evolution
operator is expected to saturate at a sub-exponential time-scale [46]. On the other hand,
for chaotic Hamiltonians, it is widely expected that the complexity C(e−iTH) grows linearly
with time T for an exponential amount of time: C(e−iTH) ∝ T (examples in [44, 46, 57, 58]).
Thus, the parameter T is expected to be a good measure of the complexity for chaotic
Hamiltonians for exponentially long times. Considering an ensemble of chaotic Hamiltonians
then allows us to rely on this property holding only for the typical chaotic Hamiltonian,
which is a much weaker assumption than expecting an arbitrary chaotic Hamiltonian to
have linearly growing complexity.

More generally, we could consider unitaries UA which are constructed from random
circuits. Any unitary can be constructed as a circuit with local quantum gates — in a
random circuit, we randomly choose the local gates at each instant of time from some
ensemble. The resulting one-parameter family of random circuit ensembles may be thought
of as a one-parameter family of measures dµ(T ) on the unitary group U(dA). To guarantee
increasing complexity, we can choose dµ(T ) to be highly concentrated at the identity when
T = 0, and as T increases we require that the support of dµ(T ) should expand outward
on U(dA) like a gas, eventually covering the entire group. If we further require that dµ(T )
approaches the Haar measure when T → ∞, we can guarantee that the typical operator
selected by averaging with dµ(T ) will have roughly increasing complexity as T increases [59].
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To define such a one-parameter ensemble of random circuit codes it is convenient to pick
UA(T ) to be the time evolution operator of the Brownian SYK model [37–41]. This model
is constructed from N Majorana fermions ψa, and is defined by a set of random couplings:

H(t) = iq/2 ∑
1≤a1<···<aq≤N

Ja1...aq (t)ψa1 . . . ψaq , {ψa, ψb} = δab. (2.25)

The coupling constants are time-dependent and are chosen to be independently Gaussian
at each time point with mean zero and a fixed variance:

⟨Ja1...aq (t)Jb1...bq (t′)⟩ = δa1b1 . . . δaqbq

(q − 1)!
N q−1 J2(t, t′), J2(t, t′) = Jδ(t− t′). (2.26)

The associated encoding unitary operator is

UA(T ) = T exp
(
−i
∫ T

0
dt H(t)

)
, (2.27)

where T is the time-ordering operator. Note that we are using the Brownian theory not as
a model of a holographic boundary theory Hamiltonian (as has been done previously [41]),
but rather as the generator of a family of holographic encoding (bulk-to-boundary) maps.
Because H(t) depends on random couplings, UA(T ) is a random variable which has support
on certain portions of the unitary group depending on the magnitude of T . The relevant
portions are analogous to regions of space covered by a random walk of a certain fixed length.

An subtlety which we will return to later is that the SYK theory obeys certain global
symmetries. The presence of these symmetries prevents the effective measure dµ(T ) from
covering the entire unitary group as T → ∞. To get around this, we will follow the strategy
of [41], where a semi-classical analysis of the SYK theory gave a natural way of extracting
results for SYK-like theories which do end up covering the whole unitary group.

2.5 Erasure errors

In order to further simplify the problem, we will consider a particular class of errors. It is
important that the error channel has no prior access to the encoding unitary, i.e., we want
the error to be generic and low-rank. The error channel we consider in this work will be
the erasure of some subsystem R.

Let us define
σ ≡ 1

dcode
V V † = 1

dcode

∑
i

|ψi⟩⟨ψi|, (2.28)

and let σR be the reduced density matrix on R, and σL be the corresponding reduced
density matrix on the rest of the system L. We have defined this new σ, which we will
use for the rest of this paper, in place of the previous one in (2.19). Then, for such an
erasure error,

FΨ′(ref : env) = FΨ′(ref : R)

= Trσ2
L − 1

dcode
Tr σ2

R, (2.29)
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where recall that |Ψ′⟩ was the state which resulted from applying the error to the maximally
entangled state between the reference and the code subspace. For simplicity, we will
specialize to the case where R = A1 and L = A2 ∪ A. In addition, using the fact that
|χ⟩A2A

is maximally entangled, we then arrive at

FΨ′(ref : R) =
(

Trσ2
L − 1

d2
code

)
. (2.30)

Since the dimension of the environment in this case is the same as dcode, we find that
the robustness of error correction for the above erasure error is bounded by the quantity
dcode

(
d2

code Trσ2
L − 1

)
.

In the next section, we will turn to the main objective of this work: computing the
purity Trσ2

L for Brownian SYK codes. In particular, we are interested in the dependence
of this quantity on the encoding complexity of the code, which as explained above, is
linearly related to the time parameter T . From equation (2.29), we need to compute Trσ2

L

as a function of T . Actually, since A has no dynamics associated with it (i.e., there is
no non-trivial time evolution operator acting on A), this computation boils down to a
Lorentzian path integral entirely in the A1A2 subsystem — the relevant time contours
are shown in figure 2. To arrive at figure 2, we notice that Trσ2

L involves two copies of
UA and two copies of U †

A, and so can be thought of as a matrix element of the operator
U †
A ⊗ UA ⊗ U †

A ⊗ UA. The matrix element in question is determined by the trace structure:
since the R = A1 system is traced out first to obtain σL, the adjacent blue A1 contours
are joined in figure 2, while the secondary trace over L joins the inner and outer red A2
contours.

When T is small, we expect Trσ2
L to be close to 1, and so the mutual purity is non-zero.

On the other hand, at very late times, we expect Trσ2
L to approach 1/d2

code and the mutual
purity to approach zero. The intuitive argument for this is as follows: let us first purify
the density matrix σ by including an auxiliary system aux which is isomorphic to the code
subspace:

|ψσ⟩ = 1√
dcode

∑
i

|i⟩aux ⊗ |ψi⟩

= 1√
dcode

∑
i

|i⟩aux ⊗ UA(T )|i⟩A1 ⊗ |χ⟩A2,A
. (2.31)

When T = 0, the subsystem A1 is maximally entangled with aux while L = A2 ∪ A is in
a pure state. When T becomes large (on the order of the scrambling time), we expect
UA(T ) to generate nearly maximal entanglement between A1 and L. By the monogamy
of entanglement, therefore, A1 cannot share much entanglement with aux. However, the
unitary operator never acted on aux; thus the reduced density matrix on aux must still
be maximally mixed. We therefore conclude that both A1 and aux are close to being in a
maximally entangled state with L, and so the purity of L must approach 1

d2
code

. Consequently,
FΨ′(ref : R) should approach zero.

In what follows, we wish to understand the detailed time-dependence of the mutual
purity at late times. In particular, we will demonstrate that the mutual purity becomes O( 1

N )
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Figure 2. The contour computing Trσ2
L, the quantity relevant for the mutual purity for the erasure

of A1. The red contour corresponds to the A2 fermions while the blue corresponds to the A1
fermions. The hatched regions denote an application of the time evolution operator UA(T ) or U†

A(T )
of Brownian SYK, which couples the A1 and A2 systems. We have omitted the contour orientations
which determine the forward and backward time evolution, but from left to right the hatched regions
alternate between U†

A(T ) and UA(T ), beginning with U †
A(T ). The arcs at the top and the bottom

specify the final and initial conditions respectively; in our calculation, all these arcs are actually
infinitesimally small (corresponding to maximal entanglement), but they have been enlarged for
visual clarity.

by the scrambling time T ∼ 1
J logN , but then continues to decay thereafter, approaching

its saturation value which is O(e−N ) at a time of order T ∼ 1
JN . The important point is

that the mutual purity keeps decaying even beyond the scrambling time, until it reaches an
exponentially small plateau, which in the present model happens at polynomial time.8 We
will interpret this phenomenon as “complexity-protected quantum error correction”.

3 Erasures in Brownian SYK codes

3.1 Boundary conditions and large N equations

Our task now is to evaluate the path integral of Brownian SYK on the contour in figure 2.
Following [41], we will use the collective-variable description of Brownian SYK. We view
the path integral in figure 2 as an amplitude where we start with an “in” state, then time
evolve for a time T and then take the overlap with an “out” state. The boundary conditions
relevant for us are as follows. For the in boundary conditions, we have

ψ(1)
a1 |in⟩ = iψ(2)

a1 |in⟩, ψ(3)
a1 |in⟩ = iψ(4)

a1 |in⟩, (3.1)

ψ(1)
a2 |in⟩ = iψ(4)

a2 |in⟩, ψ(2)
a2 |in⟩ = iψ(3)

a2 |in⟩, (3.2)

8It is plausible that the time-scale at which the saturation happens is an artefact of the ensemble we
have chosen, and that for other choices of ensembles, the plateau happens at exponential times.
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while for the out state we have the adjoint boundary conditions:

⟨out|ψ(1)
a1 = −i⟨out|ψ(2)

a1 , ⟨out|ψ(3)
a1 = −i⟨out|ψ(4)

a1 , (3.3)

⟨out|ψ(1)
a2 = −i⟨out|ψ(4)

a2 , ⟨out|ψ(2)
a2 = −i⟨out|ψ(3)

a2 . (3.4)

Here a1 denotes the index of the N1 fermions corresponding to the subsystem A1, while a2
denotes the index of the N2 fermions corresponding to the subsystem A2. The superscript
index (i) on ψ

(i)
a (where i = 1, · · · , 4) labels the four contour segments corresponding to

real time evolution. From left to right in figure 2, we label the contours 1, 2, 3, and 4.
In order to evaluate the path integral, it is convenient to define the two matrices:

g
(1)
ij (t) = 1

N1

∑
a1

⟨ψ(i)
a1 (t)ψ(j)

a1 (t)⟩, g
(2)
ij (t) = 1

N2

∑
a2

⟨ψ(i)
a2 (t)ψ(j)

a2 (t)⟩, (3.5)

which we can think of as the singlet part of the fermion two-point functions in the A1
and A2 sectors respectively. Here we inserted the operators on the right hand side at the
specified time into the path integral in figure 2. We will soon see that these two sets of
variables control the classical limit of the Brownian theory on this contour. To solve the
classical equations of motion we will obtain in this limit, we require the boundary conditions
that are implied by the in and out state relations above. It is also convenient to define the
total two-point function (i.e., the summed two-point function of all the fermions):

gij = λg
(1)
ij + (1 − λ)g(2)

ij , (3.6)

where we have introduced the parameter λ = N1
N . When evaluating the path integral at

large N , it will be convenient to take the double scaling limit:

N1 → ∞, N2 → ∞, λ = N1
N

fixed. (3.7)

In fact, A1 has the same dimension as the code subspace, so we would like to take N1 much
smaller than N2. This corresponds to taking λ ≪ 1. Thus, we can take λ to be a small
(but O(N0)) parameter and work in perturbation theory in λ. This makes some of the path
integral calculations analytically tractable.

Note that both the in and out boundary conditions have the property that (recall that
the fermions are normalized such that ψ2 = 1/2):

ψ(1)
a1 ψ

(2)
a1 ψ

(3)
a1 ψ

(4)
a1 |in⟩ = −1

4 |in⟩, (3.8)

ψ(1)
a2 ψ

(2)
a2 ψ

(3)
a2 ψ

(4)
a2 |in⟩ = −1

4 |in⟩. (3.9)

Since A1 fermions lie in the same parity sector as the A2 fermions, and the (effective)
Hamiltonian commutes with the fermion parity operator after averaging (see appendix A,
equation (A.2) and discussion below it), the above relations should hold at any time.
Equations (3.8) and (3.9) imply the following symmetry properties:

g
(1)
12 = g

(1)
34 , g

(1)
14 = g

(1)
23 , g

(1)
24 = −g(1)

13 , (3.10)

g
(2)
12 = g

(2)
34 , g

(2)
14 = g

(2)
23 , g

(2)
24 = −g(2)

13 . (3.11)
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These should hold at all times because time evolution preserves fermion parity flavor-wise.
So the evolution reduces to the six variables xα = 2ig(α)

12 , yα = 2g(α)
13 and zα = 2ig(α)

14 , where
α = 1, 2. We can now rewrite the initial and final boundary conditions in terms of these
new variables as

x1(0) = 1, y1(0) = z1(0), (3.12)

x2(0) = −y2(0), z2(0) = 1. (3.13)

x1(T ) = 1, y1(T ) = −z1(T ), (3.14)

x2(T ) = y2(T ), z2(T ) = 1. (3.15)

It is convenient to also introduce the total variables x = λx1 + (1 − λ)x2, and similarly for
y and z. The above boundary conditions imply the following constraints in terms of the
(x, y, z) variables:

z(0) − x(0) − y(0) = (1 − 2λ), z(T ) − x(T ) + y(T ) = (1 − 2λ). (3.16)

In order to proceed with the evaluation of the Lorentzian path integral in figure 2,
recall [41] that the action for the Brownian SYK model on the contour in figure 2 is given by

I = 1
2

∫ T

0
dt
(
ψ(j)
a ∂tψ

(j)
a + i

q
2 sj Ja1···aq ψ

(j)
a1···aq

)
, (3.17)

where the flavor indices run over a = 1, · · · , N (i.e., over both A1 as well as A2 fermions),
and we have introduced the notation ψ

(j)
a1···aq = ψ

(j)
a1 · · ·ψ(j)

aq . The quantity sj is given by

sj =

+i, j ∈ {2, 4}
−i · iq, j ∈ {1, 3},

(3.18)

and is related to the difference between forward and backward time evolution (see [41] for
details). We now wish to perform the average over the couplings. Using

⟨Ja1···aq (t)Jb1···bq (t′)⟩ = δa1b1 · · · δaqbq

(q − 1)!
N q−1 J2(t, t′), (3.19)

the action obtained after ensemble averaging over the couplings is given by9

I = 1
2

∫ T

0
dt ψ(j)

a ∂tψ
(j)
a − iq(q − 1)!

2N q−1

∫∫ T

0
dtdt′J2(t, t′)sjsj′ ψ

(j)
a1···aq (t)ψ(j′)

a1···aq (t′)

= 1
2

∫ T

0
dt ψ(j)

a ∂tψ
(j)
a − N

2q

∫∫ T

0
dtdt′J2(t, t′)sjsj′

( 1
N
ψ(j)
a (t)ψ(j′)

a (t′)
)q
. (3.20)

At this stage, it is convenient to introduce the collective (G,Σ) variables. Since we
have two sets of fermions corresponding to A1 and A2, we introduce two collective fields

G
(1)
ij (t, t′) = 1

N1

N1∑
a=1

ψ(i)
a (t)ψ(j)

a (t′), G
(2)
ij (t, t′) = 1

N2

N∑
a=N1+1

ψ(i)
a (t), ψ(j)

a (t′), (3.21)

9In the second step, we have made the same imprecise replacement of the Hamiltonian as in [41], discussed
in more detail in appendix A.3 of [40].
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and the corresponding Lagrange multipliers Σ(1)
ij (t, t′) and Σ(2)

ij (t, t′) to impose the constraints.
We can now integrate out the fermions. The action in terms of the collective variables is

− I

N
= λ log Pf(∂t − Σ(1)) + (1 − λ) log Pf(∂t − Σ(2))

− 1
2

∫∫ T

0
dtdt′

[
λΣ(1)

ij (t, t′)G(1)
ij (t, t′) + (1 − λ)Σ(2)

ij (t, t′)G(2)
ij (t, t′)

]
+ 1

2q

∫∫ T

0
dtdt′J2(t, t′)sjsj′Gjj′(t, t′)q,

(3.22)

where Pf is the Pfaffian, and we have defined

Gij(t, t′) = λG
(1)
ij (t, t′) + (1 − λ)G(2)

ij (t, t′). (3.23)

In the large N limit, the path integral over the collective variables can be performed in the
saddle point approximation. The equations of motion corresponding to the above action are:

∂tG
(α)
jj′ (t, t′) − Σ(α)

jk ⋆ G
(α)
kj′ (t, t

′) = δ(t− t′)δjj′ , (3.24)

Σ(α)
jj′ = sjsj′J

2(t, t′)G(α)
jj′ (t, t′)

q−1
, (3.25)

where α = 1 corresponds to the fermions in A1 while α = 2 corresponds to the fermions in
A2, the repeated k index is summed, and the star product between two bi-local fields is
defined as

(A ⋆ B)(t, t′) =
∫

dt′′A(t, t′′)B(t′′, t). (3.26)

Using the fact that G(α) and Σ(α) are both anti-symmetric, we can rewrite these equations
in a more convenient form:

(∂t + ∂t′)G
(α)
jj′ =

(
Σ(α)
jk ⋆ G

(α)
kj′ −G

(α)
jk ⋆ Σ(α)

kj′

)
, (3.27)

Σ(α)
jj′ = sjsj′J

2(t, t′)G(α)
jj′

q−1
. (3.28)

Now, a simplification happens in the Brownian SYK model — recall that for Brownian
SYK, J2(t, t′) = Jδ(t− t′). As a result, Σ is “diagonal” (in time), and only the diagonal
components of all the collective variables are relevant; the off-diagonal components drop
out of the equations of motion. In fact, it is easy to see from the action that for Brownian
SYK, the off-diagonal modes do not have any interesting dynamics and can be integrated
out of the full path integral trivially [41].

Let us denote the diagonal components of the collective variables as

G
(α)
ij (t, t) = g

(α)
ij (t), Σ(α)

ij (t, t′) = δ(t− t′)σ(α)
ij (t) , (3.29)

The resulting equations of motion for the (g, σ) variables are

dg
dt

(α)
=
[
σ(α)(t), g(α)(t)

]
, σ

(α)
ij (t) = σij(t) ≡

Jsisj(gij(t))q−1, i ̸= j

0, i = j
(3.30)
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where the equation on the left is written for the g and σ matrices and

g(t) = λg(1)(t) + (1 − λ)g(2)(t). (3.31)

In terms of the (xα, yα, zα) variables, we get the following equations of motion:

ẋα = J

2q−2 (yq−1zα − zq−1yα)

ẏα = J

2q−2 (xq−1zα − zq−1xα)

żα = J

2q−2 (xq−1yα − yq−1xα),

(3.32)

where recall that x = λx1 + (1 − λ)x2, and so on. These relations imply the following
equations of motion for the total variables:

ẋ = J

2q−2 (yq−1z − zq−1y)

ẏ = J

2q−2 (xq−1z − zq−1x)

ż = J

2q−2 (xq−1y − yq−1x).

(3.33)

As an aside, the above equations of motion have a Hamiltonian structure. To see this,
let us denote xα = (xα, yα, zα) and x = λx1 + (1 − λ)x2 = (x, y, z). Further, we define
h2(x) = 1

2(x2 − y2 + z2) and hq(x) = 1
q (xq − yq + zq). Then, equations (3.32) take the

succinct form

ẋIα = ωIJα
∂hq(x)
∂xJα

, ωIJα = −pαϵIJK
∂h2(xα)
∂xKα

, (3.34)

where pα = ( 1
λ ,

1
1−λ). Similarly, the equations for the total variables take the form

ẋI = ωIJ
∂hq(x)
∂xJ , ωIJ = −ϵIJK ∂h2(x)

∂xK . (3.35)

Thus, these equations take the form of Hamilton’s equations of motion — the underlying
phase space is that of two copies, labelled by α, of a co-adjoint orbit of sl(2,R) specified
by a constant value of the conserved quantity h2(x).10 The Hamiltonian hq(x) couples the
two copies, with the effective coupling constant being λ. It may seem unusual that we have
an odd number of variables (e.g. (x, y, z)) in Hamiltonian mechanics, but this is simply
because we have parametrized the two-dimensional dynamics on the hypersurface h2(x) =
const. in terms of coordinates in the ambient R3.

10The solutions we will find turn out to have 2h2(x) = 1, so for the total variables x the orbits in
question are related to the “continuous series” of unitary sl(2, R) representations by geometric quantization.
Understanding the significance of this structure is an interesting problem in its own right, but we will not
address it further in this work.
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Normalization. The fermionic path integral depicted in figure 2 is the result of writing
Trσ2

L in a Hilbert space form and replacing the maximally entangled state projectors with
connections in the contour. However, translating a Hilbert space expression into a fermionic
path integral comes with a standard normalization issue since Majorana fermions have
a somewhat unusual Hilbert space interpretation (when they admit one at all). So, we
must relate the path integral Z(T ) to Trσ2

L(T ) with an overall normalization that ensures
Trσ2

L(T = 0) = 1.
When T = 0, the contour in figure 2 consists of four disconnected circles which are not

coupled by any time evolution. The result of the path integral for a single free Majorana
fermion on a circular contour of length T with antiperiodic boundary conditions is actually
equal to

√
2, independent of T , so in the limit T → 0 we still have

√
2. As such, when

T = 0, the contour in figure 2 yields Z(T = 0) = 2N since there are N1 Majorana fermions
on the two A1 circles and N2 Majorana fermions on the two A2 circles. So we must relate
the path integral Z(T ) to Trσ2

L(T ) by the formula

Trσ2
L(T ) = 2−NZ(T ). (3.36)

3.2 Solutions: qualitative discussion

We will first qualitatively discuss what the solutions to the equations of motion (3.32) should
look like, leaving a quantitative treatment for sections 3.3, 3.4, and 3.5. When N1 = 0
(i.e., λ = 0), then the x2 equations are easy to solve. In this case, the boundary conditions
imply that the solution stays at the fixed point x∗

2 = (0, 0, 1). When λ is small but non-zero,
we expect that this saddle point remains, but with small corrections. In particular, the
x2 variables will stay close to their original fixed point values. The corrections to the x2
solutions can be obtained in perturbation theory in λ, and we describe them in detail in
section 3.3. (Recall from the discussion under (3.7) that λ ≪ 1.) This resulting solution
is the dominant saddle point at small times, and is the analogue of the “disconnected”
contribution in equation (2.17), or the disconnected geometry in JT gravity [31].

When λ is small, to zeroth order, the solution for x2 variables will be unaffected by
the x1 variables, and in particular will correspond to a fixed point of the Hamiltonian
picked out by the boundary conditions as we have just described. However, the initial
backreaction on the x1 variables will be large. The source of this strong backreaction is the
mismatch between the boundary conditions of the x1 and x2 variables. As the A1 system is
small compared to A2, the Brownian dynamics quickly thermalizes the A1 system so that
the correlation between contours (in figure 2) can be measured with any subset of all N
fermions; at the level of the solutions, this means that we will have x1 ≈ x2 at all times
except in small neighborhoods around t = 0 and t = T where we expect large transient
behaviors for x1 to arrive at their “thermalized” values. These transient behaviors can be
computed analytically in perturbation theory for the disconnected solution and must be
treated numerically otherwise. These qualitative properties of the x1 solutions hold both
for the disconnected solution in section 3.3 as well as the other solutions we now describe.

In addition to generating nontrivial time-dependence for the disconnected solution,
turning on a small λ has another important effect — it gives rise to new “tunneling” solutions
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(i.e., instantons) which are absent at λ = 0. The tunneling allows the x2 variables to jump
between different fixed points; the leading tunneling solution jumps from x2(0) ≈ (1,−1, 1)
to x2(T ) ≈ (1, 1, 1). The x1 variables again have large transient signals near t = 0 and t = T ,
but this time both transients are different than the ones which occur for the disconnected
solution due to the different fixed points approached by the x2 variables, and in fact these
are the only other two types of transient behavior which can occur. This saddle point, which
we describe in section 3.4, is the analogue of the “connected” saddle point in equation (2.17),
or the “wormhole” in JT gravity [31]. While it is suppressed by a factor of e−(1−2λ)N relative
to the leading, disconnected solution, the contribution of the disconnected saddle point
decays exponentially in time. So, at a time t∗ ∼ O(N), there is an exchange of dominance
between these two saddle points.

There are also other tunneling saddle points, described in section 3.5, where the x2
variables tunnel back and forth multiple times between the two possible initial fixed points
x2 ≈ (0, 0, 1) and x2 ≈ (1,−1, 1) and the two possible final fixed points x2 ≈ (0, 0, 1) and
x2 ≈ (1, 1, 1); these are even more subleading in powers of e−N , and occur with all possible
combinations of the previously described types of transient behaviors for the x1 variables.
Explicitly, there are two possible behaviors at t = 0 and two at t = T corresponding to the
possible initial and final fixed points for x2, and all four combinations of initial and final
transient behaviors occur in the multiply tunneling solutions. These multiply tunneling
solutions show interesting behavior as a function of T . We will see that they become
genuine solutions of the equations (3.32) only after certain critical values of T , related to
the scrambling time. Before these critical times, these configurations are actually off-shell.
Configurations which tunnel more times take longer to become solutions. As the presence
of these contributions is important for unitarity of the overall evolution [41], it is intriguing
that they can be invisible on-shell for a parametrically (though not polynomially) long time
in N .

In summary, we began with the goal of studying the error correction dynamics of a
family of unitary operators with increasing average circuit complexity. The specific family
which we chose for convenience was the set of time evolution operators in the Brownian
SYK model, a family of time-dependent Hamiltonians which are essentially a continuous
random circuit. We found that the error correction dynamics are governed by the quantity
FΨ′(ref : env), and this quantity in turn depends on a Brownian SYK path integral (figure 2).
What we have just discussed are the saddle point solutions to that path integral. Evaluating
the effective action of these solutions will allow us to draw conclusions about the error
correction behavior of the family of unitary operators with increasing complexity.

3.3 Disconnected solution

We will first solve for the disconnected solution at small, non-zero λ, and evaluate its on-shell
action together with the one-loop determinant. We begin by expanding our variables in a
power series expansion in λ:

xα =
∞∑
n=0

λnx(n)
α , x =

∞∑
n=0

λnx(n). (3.37)
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At O(λ0), we must have x(0) = x(0)
2 . Therefore, the boundary conditions, equations (3.14)

and (3.15), imply that at leading order these variables sit at a fixed point of the Hamiltonian:

x(0)(t) = x(0)
2 (t) = (0, 0, 1). (3.38)

After substituting these solutions in (3.32), we get the following equations for x(0)
1 :

ẋ1
(0) = − J

2q−2 y
(0)
1 ,

ẏ1
(0) = − J

2q−2 x
(0)
1 ,

ż1
(0) = 0.

(3.39)

We need to solve these equations with the boundary conditions (3.12) and (3.14). The
solution is

x
(0)
1 (t) =

cosh
(

J
2q−2 (t− T

2 )
)

cosh
(
JT

2q−1

) ,

y
(0)
1 (t) = −

sinh
(

J
2q−2 (t− T

2 )
)

cosh
(
JT

2q−1

) ,

z
(0)
1 (t) = tanh

(
JT

2q−1

)
.

(3.40)

We can think of this solution as the backreaction of the x(0)
2 variables on the x(0)

1 variables.
For instance, x1 starts off at one at t = 0, but after a brief transient behavior, it thermalizes
to a small value of about e−

JT

2q−1 owing to its coupling to the x2 variables, which act like a
bath and dynamically force x1 ≈ x2. There is another transient near t = T , where x1 again
deviates from x2 significantly to reach the final boundary condition.

At order λ, we note from x = λx1 + (1 − λ)x2, that

x(1) = x(1)
2 + x(0)

1 − x(0)
2 . (3.41)

Now we use the O(λ0) solutions to find the following boundary conditions up to O(λ):

x
(1)
1 (0) = 0, y

(1)
1 (0) = z

(1)
1 (0),

x
(1)
1 (T ) = 0, y

(1)
1 (T ) = −z(1)

1 (T ), (3.42)

x
(1)
2 (0) = −y(1)

2 (0), z
(1)
2 (0) = 0,

x
(1)
2 (T ) = y

(1)
2 (T ), z

(1)
2 (T ) = 0, (3.43)

x(1)(0) =
(

1 + x
(1)
2 (0), tanh

(
JT

2q−1

)
+ y

(1)
2 (0), tanh

(
JT

2q−1

)
− 1

)
,

x(1)(T ) =
(

1 + x
(1)
2 (T ),− tanh

(
JT

2q−1

)
+ y

(1)
2 (T ), tanh

(
JT

2q−1

)
− 1

)
. (3.44)
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With these boundary conditions in hand, we can in principle solve for all the variables at
O(λ). However, in what follows, we will only need x(1) in order to evaluate the on-shell
action up to O(λ). The corresponding differential equations are given by

ẋ(1) = − J

2q−1 y
(1),

ẏ(1) = − J

2q−1 x
(1),

ż(1) = 0.

(3.45)

The solution is:

x(1)(t) =
(

1 + tanh
(
JT

2q−1

))
cosh

(
J

2q−2

(
t− T

2

))
e−

JT

2q−1 ,

y(1)(t) = −
(

1 + tanh
(
JT

2q−1

))
sinh

(
J

2q−2

(
t− T

2

))
e−

JT

2q−1 ,

z(1)(t) = tanh
(
JT

2q−1

)
− 1.

(3.46)

Classical on-shell action. Having obtained the classical solutions, we can evaluate the
action in (3.22) at leading order in λ. We first compute the Pfaffian for the A1 fermions:

Pf(∂t − σ(1)) =

∫ ψ(1)=−iψ(2), ψ(3)=−iψ(4)

ψ(1)=iψ(2), ψ(3)=iψ(4)

Dψ(1) . . .Dψ(4) exp
(
−1

2

∫ T

0
dt
[
ψ(j)∂tψ

(j) − σjj′(t)ψ(j)ψ(j′)
])

.

(3.47)
On the right hand side of the above expression, we have used the fact that on-shell,
σ

(1)
ij (t) = σij(t); see equation (3.30). Following [41], we can write the Pfaffian in a Hilbert

space representation in terms of a single qubit:11

Pf
(
∂t − σ(1)

)
= 2 × ⟨+|T exp

(
−
∫ T

0
dt h(t)

)
|+⟩, (3.48)

where h(t) is the qubit Hamiltonian:12

h(t) = J

2q−1

(
−xq−1(t)X + iyq−1(t)Y − zq−1(t)Z

)
, (3.49)

and X,Y, Z are the Pauli matrices. Further, |+⟩ is an eigenstate of the Pauli X operator
with the eigenvalue +1: X|+⟩ = |+⟩. The initial and final states are fixed by the boundary
conditions of the path integral. Since the leading contribution to xq−1(t), yq−1(t) is at
O(λq−1) we can ignore them in the evaluation of the Pfaffian (assuming q ≥ 4). The Pfaffian
is therefore given by

Pf
(
∂t − σ(1)

)
= 2 × ⟨+| exp

(∫ T

0
dt J

2q−1 z
q−1(t)Z

)
|+⟩ +O(λq−1)

= 2 cosh
(
JT

2q−1 z
q−1(0)

)
+O(λ2).

(3.50)

11Naively, we would need two qubits given that there are four Majorana fermions. However, since time
evolution preserves fermion number, we need only use one qubit.

12The factor of 2 appearing in (3.48) ensures that, when T = 0, the Pfaffian gives 2, as this is the
result for a single Majorana fermion path integral on two disjoint circles of any length with antiperiodic
boundary conditions.
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In the second step, we used the fact that z(t) is a constant at O(λ). Similarly, we can
evaluate the Pfaffian for the A2 fermions:

Pf(∂t − σ(2)) =

∫ ψ(1)=−iψ(4), ψ(2)=−iψ(3)

ψ(1)=iψ(4), ψ(2)=iψ(3)

Dψ(1) . . .Dψ(4) exp
(
−1

2

∫ T

0
dt
[
ψ(j)∂tψ

(j) − σjj′(t)ψ(j)ψ(j′)
])

= 2 × ⟨0| exp
(
JT

2q−1 z
q−1(0)Z

)
|0⟩ +O(λq−1)

= 2 exp
(
JT

2q−1 z
q−1(0)

)
+O(λq−1).

(3.51)

Here, |0⟩ is an eigenstate of the Pauli Z operator with eigenvalue +1: Z|0⟩ = |0⟩.
Having evaluated the Pfaffians to O(λ), we now evaluate the rest of the terms in the

action following [41]:

− 1
2

∫∫ T

0
dtdt′

[
λΣ(1)

ij (t, t′)G(1)
ij (t, t′) + (1 − λ)Σ(2)

ij (t, t′)G(2)
ij (t, t′)

]
+ 1

2q

∫∫ T

0
dtdt′J2(t, t′)sjsj′Gjj′(t, t′)q

= − JT

2q−1q
− 1

2

∫ T

0
dt
[
σij(t) gij(t) −

1
q
sjsj′ gjj′(t, t′)q

]
= − JT

2q−1q
− JT

2q−1
q − 1
q

r

= JT

2q−1q
(r − 1) − JT

2q−1 r,

(3.52)

where r = qhq(x) = xq(t) − yq(t) + zq(t) is a constant of motion, namely the total energy.
Note that this form of the bulk contribution to the action is independent of the particular
solution we are considering. Now, we can combine the above terms with equations (3.50)
and (3.51) to obtain the full on-shell action for the disconnected saddle point:

−I
N

= log 2 + λ log cosh
(
JT

2q−1 z
q−1(0)

)
+ (1 − λ) JT2q−1 z

q−1(0) + JT

2q−1q
(r − 1) − JT

2q−1 r

= log 2 + λ log cosh
(
JT

2q−1

)
+ JT

2q−1

(
(1 − λ)zq−1(0) + r − 1

q
− r

)
= log 2 + λ

(
log cosh

(
JT

2q−1

)
− JT

2q−1

)
+O(λ2).

(3.53)

As the normalization relation (3.36) cancels the leading log 2 in the effective action, the
contribution of the disconnected saddle point in the large N limit is given by

Trσ2
L

∣∣∣
disc

≈

1 + exp
(
− JT

2q−2

)
2

Nλ . (3.54)

This formula is consistent with physical expectations; see the discussion around equa-
tion (2.31). At small times JT

2q−1 ≪ 1, we find that Trσ2
L → 1. This is expected, since
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Figure 3. The disconnected solution for the x1 (left) and x2 (right) variables with J = q = 4,
r = 1 − 10−8, and λ = 10−4. There is a long region where x1 ≈ x2 around the fixed point (0, 0, 1),
while there are large transient behaviors where x1 ̸= x2 near t = 0 and t = T ≈ 10 due to the
difference between the x1 and x2 boundary conditions. The difference between the exact numerical
x1 solution shown here and the perturbative solution (3.40) is essentially invisible.

in this limit, UA(T ) does not introduce much entanglement between L and A1. On the
other hand, at late times JT

2q−1 ≫ 1, Trσ2
L → 2−Nλ = 1

d2
code

, as we anticipated based on
monogamy of entanglement. As a further check, we also reproduce the above formula
from a “Hamiltonian” point of view in appendix A. For now, we proceed to evaluate the
one-loop determinant around the disconnected solution. But, before doing so, we display
the numerical solutions for x1 and x2 in figure 3, where we can clearly see the leading order
nontrivial time-dependence of x1 takes the rough hyperbolic forms we found for x(0)

1 (t)
in (3.40).

One-loop determinant. To compute the one-loop determinant in the path integral
formalism, we need to expand the action around the saddle point and integrate over small
fluctuations. We will follow the notations and conventions of appendix B in [41]. Recall
that the action is given by

−I
N

= λ log Pf(∂t − σ(1)) + (1 − λ) log Pf(∂t − σ(2))

− 1
2

∫ T

0
dt
[
λσ

(1)
ij (t)g(1)

ij (t) + (1 − λ)σ(2)
ij (t)g(2)

ij (t)
]

+ J

2q

∫ T

0
dt sjsj′ gjj′(t)q.

(3.55)

We can write the Pfaffian in the Hilbert space representation, as in equations (3.50)
and (3.51):

− I

N
= log 2 + λ log

[
⟨+| exp

(∫ T

0
dt
(
−σ(1)

x (t)X + iσ(1)
y (t)Y − σ(1)

z (t)Z
))

|+⟩
]

+ (1 − λ) log
[
⟨0| exp

(∫ T

0
dt
(
−σ(2)

x (t)X + iσ(2)
y (t)Y − σ(2)

z (t)Z
))

|0⟩
]

+ λ

∫ T

0
dt
[
σ(1)
x (t)x(1)(t) − σ(1)

y (t)y(1)(t) + σ(1)
z (t)z(1)(t)

]
+ (1 − λ)

∫ T

0
dt
[
σ(2)
x (t)x(2)(t) − σ(2)

y (t)y(2)(t) + σ(2)
z (t)z(2)(t)

]
− J

2q−1q

∫ T

0
dt (1 − xq(t) + yq(t) − zq(t)) .

(3.56)
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We now expand around the saddle point solution x(α)
∗ found in section 3.3. We will use

hatted variables to denote fluctuations:

x(α) = x(α)
∗ +

√
ℏ(α) ĝ(α), σ(α) = σ

(α)
∗ +

√
ℏ(α) σ̂(α), (3.57)

σ̂(α) =
(
σ̂(α)
x , σ̂(α)

y , σ̂(α)
z

)
, ĝ(α) =

(
x̂(α), ŷ(k), ẑ(α)

)
, (3.58)

where ℏ(α) =
(

1
Nλ ,

1
N(1−λ)

)
. The quadratic action for the fluctuations has the following

form:

−Î =


σ̂(1)

ĝ(1)

σ̂(2)

ĝ(2)

 .M.


σ̂(1)

ĝ(1)

σ̂(2)

ĝ(2)

 , (3.59)

where

M =


K1 S 0 0
S λS̃ 0

√
λ(1 − λ)S̃

0 0 K2 S

0
√
λ(1 − λ)S̃ S (1 − λ)S̃

 . (3.60)

The matrices K1 and K2 can be derived by variation of the Pfaffian terms at quadratic
order. S and S̃ are defined as

S = δ(t12)

1 0 0
0 −1 0
0 0 1

 , S̃ = J(q − 1)
2q−2 δ(t12)

0 0 0
0 0 0
0 0 1 +O(λ)

 . (3.61)

To compute the determinant at leading order in λ, it turns out to be sufficient to note that
K2 has non-zero matrix elements only in σ̂

(2)
x and σ̂(2)

y . Therefore, K2 satisfies the relation

S̃K2 = K2S̃ = 0. (3.62)

Moreover, we will only need the (σ(1)
z , σ

(1)
z ) component of K1 which is∫∫ T

0
dt1dt2 σ(1)

z (t1)Kzz
1 (t1, t2)σ(1)

z (t2) = 1
2 sech2

(
JT

2q−2

)(∫ T

0
dt σ(1)

z (t)
)2

. (3.63)

We can now compute the determinant of M to leading order in λ:

detM = detA detC
[
1 − λTr

(
A−1BC−1B

)]
+O(λ2), (3.64)

where
A =

(
K1 S

S λS̃

)
, B =

(
0 0
0 S̃

)
, C =

(
K2 S

S (1 − λ)S̃

)
. (3.65)

We first compute the trace term in the determinant

Tr
(
A−1BC−1B

)
= Tr

[
A−1

22 S̃C
−1
22 S̃

]
= Tr

[
SK1SS̃SK2(S − S̃K2)−1S̃

]
+O(λ)

≈ Tr
[
SK1S̃K2S̃

]
= 0.

(3.66)
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In the first step, we used the fact that B22 is the only non-zero entry in B. In the second
step, we inserted the A−1

22 and C−1
22 components upto O(λ) corrections. The third and

fourth step follow from the relation (3.62). Using relation (3.62) once again, we conclude
that detC = 1. We are left with the evaluation of detA.

detA = detA|λ=0
[
1 − λTr

(
K1S̃

)]
= 1 − λ

J(q − 1)
2q−2

∫∫ T

0
dt1dt2δ(t12)Kzz(t1, t2)

= 1 − λ
JT (q − 1)

2q−1 sech2
(
JT

2q−1

)
.

(3.67)

Thus,

detM = 1 − λ
JT (q − 1)

2q−1 sech2
(
JT

2q−1

)
+O(λ2). (3.68)

So, the one-loop determinant does not significantly modify the T dependence of Trσ2
L at

leading order. The coefficient of the O(λ) term above is bounded by an O(q) number, and
qλ is always small in our regime of interest.

3.4 Connected solution

When λ is slightly non-zero, x2 ≈ (0, 0, 1) is not the only fixed point for the x2 variables
which enters the analysis. The leading solution involving more than one fixed point is the
tunneling solution between the x2 ≈ (1,−1, 1) and x2 ≈ (1, 1, 1) fixed points. This solution
has nontrivial time-dependence for the x2 variables which involves an initial region where
x2(t) ≈ (1,−1, 1), then a transition to the x2(t) ≈ (1, 0, 0) fixed point where the solution
remains for a long period, and then a final transition to the x2(t) ≈ (1, 1, 1) fixed point.
The x1 solution has large transient behaviors in the initial and final fixed point regions, but
matches very closely with x2 in the long region where x2 ≈ x1 ≈ (1, 0, 0).

Because this solution is non-perturbative in λ, we cannot hope to use perturbation
theory to evaluate the effective action. We will instead follow the approximate analysis
of [41]. Unlike the disconnected solution we described in section 3.3, the connected solution
is suppressed exponentially in N , and the main aim of our approximate analysis will
be to demonstrate this suppression quantitatively. The numerical connected solution is
shown in figure 4. We will give an approximate analytical computation of the action for
this solution. As argued in section 3.3, for any solution of the equations of motion the
bulk terms in the effective action contribute to the total path integral exp(−JT/2q−1) for
r ≈ 1. So what remains is to evaluate the two Pfaffian contributions, again using the qubit
Hamiltonian approach.

We see in figure 4 that there is a long region with x1 ≈ x2 ≈ (1, 0, 0). In this region,
we may approximate the time-ordered exponential expressions as projectors |+⟩⟨+|, the
lowest energy state of the Hamiltonian −JTX/2q−1 generating the time evolution in that
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Figure 4. The connected solution for the x1 (left) and x2 (right) variables with J = q = 4,
r = 1 − 10−8, and λ = 10−4. There is a long region where x1 ≈ x2 around the fixed point (1, 0, 0),
while there are large transient behaviors where x1 ̸= x2 near t = 0 and t = T ≈ 29 due to the
difference between the x1 and x2 boundary conditions. The regions where x1 displays transient
behavior are comparable in size to a transition region where the x2 variables tunnel between
fixed points.

region.13 The energy contribution from this ground state exactly cancels the bulk term, so
the result of the long region for both x1 and x2 is a projector |+⟩⟨+|. At this point, the
analysis splits between x1 and x2.

The x2 variables include an initial region around the (1,−1, 1) fixed point and a final
region around (1, 1, 1). Both of these regions share an important property with their
adjacent transition regions, namely that the first has y2 ≈ −z2 and the second has y2 ≈ z2.
Because these regions are adjacent to the long middle region that yields a projector |+⟩⟨+|,
we may use the null state relations ⟨+|(iY + Z) = 0 and (iY − Z)|+⟩ = 0 to conclude that
the Pfaffian does not depend on the precise details of these transition regions nor on the
initial and final fixed point regions, and the remaining X term in the Hamiltonian simply
cancels against the bulk contribution as was the case in the long middle fixed point region.
So, the overall Pfaffian for the x2 variables is determined by the overlap of the initial state
|0⟩ and final state ⟨0| with the projector from the middle region: 2⟨0|+⟩⟨+|0⟩ = 1.

We may analyze the x1 variables similarly. Because the long region where x1 ≈ x2
again gives a projector |+⟩⟨+|, and because the transient regions satisfy the same relations
between the variables as the transition regions from the x2 analysis, the same arguments we
made about the transition regions for x2 goes through for the transient behaviors of x1, and
the Pfaffian does not depend on the precise form of the transient behaviors. The remaining
Hamiltonian contribution from X again cancels the bulk term in the transient regions.
There are no initial or final fixed point regions for x1, so the total contribution is from
another projector overlap with the relevant initial and final states: 2⟨+|+⟩⟨+|+⟩ = 2. It may
seem redundant to analyze the x1 variables separately as we have done here, since the A1

13When T is on the order of (1/J) log N and not much larger, there are exponentially suppressed T

dependent corrections to this projector which lead to O(1) factors in the wormhole contribution to the Rényi
mutual information. While these corrections could be addressed in the path integral formalism we employ
here, it is easier to study them in the Hamiltonian picture (appendix A). We will continue to approximate
the long region as a projector because these corrections are highly subleading by the time the wormhole
dominates at T ∼ N/J and are therefore unimportant for the qualitative error correction properties of the
Brownian circuit.
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Figure 5. The DW solution for the x1 (left) and x2 (right) variables with J = q = 4, r = 1 − 10−8,
λ = 10−4, and T ≈ 45.5. There are two long regions with x2 ≈ (0, 0, 1) and (1, 0, 0), although the
(0, 0, 1) region is a little smaller for this value of λ. The initial transient behavior for x1 matches the
disconnected solution in figure 3 while the final transient matches the connected solution in figure 4.

Figure 6. The WD solution for the x1 (left) and x2 (right) variables with J = q = 4, r = 1 − 10−8,
λ = 10−4, and T ≈ 45.5. There are two long regions with x2 ≈ (1, 0, 0) and (0, 0, 1), though the
(0, 0, 1) region is a little smaller for this value of λ. The initial transient behavior for x1 matches the
connected solution in figure 4 while the final transient matches the disconnected solution in figure 3.

Pfaffian term involves the total x variables like the A2 Pfaffian. However, it was important
here to conclude that the transient behaviors do not contribute any time-dependence at
O(λ), and we actually obtained a constant result that is independent of T .

Thus, again using the normalization (3.36), from the connected solution we have
a contribution

Trσ2
L

∣∣∣
conn

= 2−N(1−λ). (3.69)

3.5 Other tunneling solutions

There are also solutions which tunnel from x2 ≈ (0, 0, 1) to x2 ≈ (1, 1, 1) and from
x2 ≈ (1,−1, 1) to (0, 0, 1). We name these the “DW” and “WD” solutions, respectively,
after the order of transient behavior which occurs for the x1 variable: the first has “Disk”
initial transient behavior and “Wormhole” final transient behavior, while the second has
the opposite ordering. The DW solution is shown in figure 5 while the WD solution is
shown in figure 6. The contribution of these solutions to Trσ2

L can be evaluated in the
same approximate manner as section 3.4.

We begin with the DW solution in figure 5. The x2 variables has the same long region
with x2 ≈ (1, 0, 0) which appears in the connected solution (figure 4), and by the same
reasoning as in section 3.4 we conclude that this region yields for the path integral the
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Figure 7. A full period of the x2 variables with J = q = 4, r = 1 − 10−8, λ = 10−4. This periodic
segment can be inserted into the disconnected, connected, DW, or WD solutions however many
times we like to produce new solutions (for different values of T ) that are suppressed with powers of
2−kN , where k is the number of inserted periods.

projector |+⟩⟨+|. Similarly, the long region with x2 ≈ (0, 0, 1) gives a projector |0⟩⟨0|.
These two projectors cancel the transition regions and the other constant regions associated
with other fixed points, and we get the overlap 2⟨0|0⟩⟨0|+⟩⟨+|0⟩ = 1. The x1 variables
have a leading contribution determined by simply changing the initial and final states:
2⟨+|0⟩⟨0|+⟩⟨+|+⟩ = 1. Thus, including the normalization (3.36), we have the additional
suppression 2−N for the DW solution:14

Trσ2
L

∣∣∣
DW

= 2−N . (3.70)

We will not bother to compute the O(λ) contribution from the transient behaviors of x1 in
the A1 Pfaffian (which could lead to nontrivial T dependence), since this solution is already
highly suppressed compared to the connected one in section 3.4.

The WD solution can be analyzed similarly and also has a 2−N leading suppression.
Thus, both the DW and WD solutions are subleading compared to the connected solution
from section 3.4. There are also even more highly suppressed solutions which can be formed
by inserting additional periods into any of the four solutions we have discussed up to this
point. A full period of the x2 variables is shown in figure 7. By the same approximate
reasoning, inserting a full period in the solution will suppress the contribution to the path
integral by an additional 2−N .

Interestingly, the long regions of the solution have a minimum length which scales
like the scrambling time Ts ∼ (1/J) logN . What this means is that they are actually
not solutions for all values of T . For instance, the connected solution in section 3.4 is
only a solution for T > (1/J) logN . A configuration with k long regions will not appear

14We are neglecting the one-loop determinant here. As shown in [41], this determinant can lead to an
overall minus sign for some of these subleading solutions. Because they are subleading anyway, we will omit
this effect, which does not affect the disconnected or connected saddle points.
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Numerics Analytical Result
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Figure 8. A comparison between numerical evaluation of log2[log(2N1 Trσ2
L)] with the approximate

analytical result of equation (3.71) for N = 30 and λ = 1/3. At late times, the quantity saturates to
−(N2 −N1) = −(1 − 2λ)N = −10.

as a solution until T > (k/J) logN . This lattice of critical times is interesting from a
unitarity perspective. These subleading saddles are necessary to ensure the total Brownian
evolution is unitary, so an experimentalist with access to only on-shell configurations will
discover that it is impossible to verify unitarity with accuracy better than 2−kN until at
least T > (k/J) logN .

3.6 Summary

We have shown that the leading T dependence of the purity which controls the mutual
purity in Brownian SYK is15

Trσ2
L =

(
1 + e−JT/2q−1

2

)λN
+ Θ(JT − logN)

2(1−λ)N + . . . , (3.71)

where the first term comes from the disconnected saddle point, the second term from the
leading connected saddle point, and the dots represent further subleading solutions that
are suppressed in powers of 2−N . We present a comparison of this saddle point analysis
with an exact numerical computation of Trσ2

L in figure 8. The form of (3.71) means
FΨ′(ref : env) is initially O(1) and subsequently decays for a polynomial T ∼ N/J amount

15In this analysis, we have purposefully ignored the presence of discrete symmetries. The presence of such
symmetries generically prevents the time evolution from covering the entire unitary group. Following [41],
we can adapt the analysis of Brownian SYK so that the time evolution covers the entire unitary group by
only including the saddle points we have discussed. Incorporating the discrete symmetries of the SYK model
requires additional saddle points [41]. This means our results are effectively valid for an SYK-like model
with no discrete symmetries which does end up covering the whole unitary group.
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of time. When T > N/J , the connected solution begins to dominate and leads to an
exponentially small mutual purity.16 Thus, when the encoding complexity is sufficiently
large, the code is robustly protected from the erasure of A1. At multiples of the scrambling
time Ts ∼ (1/J) logN , subleading contributions become genuine on-shell solutions of the
equations of motion, though these contributions never dominate FΨ′(ref : env).

4 Discussion

We have studied the error correction properties of Brownian SYK quantum codes against
the erasure of a small number of qubits, but we expect our results to be valid more generally
for generic, low-rank errors with no prior access to the encoding map. As a measure of
quantum error correction, we computed the mutual purity FΨ′(ref : env), which is related
to the purity Trσ2

L, where σ = V V †/dcode is the density matrix built from the encoding
map V , σL = TrR σ, and R is a small fraction of the physical Hilbert space which is being
erased. In codes defined using Brownian SYK time evolution, which have a linearly growing
encoding complexity — mimicking the expected behavior of the bulk-to-boundary map for
an infalling observer in AdS/CFT — this purity is related to a four-contour Lorentzian
(Schwinger-Keldysh) path integral. We found two special saddle point solutions to the
large N equations of motion in Brownian SYK — analogous to the disconnected disks and
connected wormhole geometries in JT gravity — which dominate this path integral. At early
times T ≪ N/J , the disconnected solution gives an exponentially decaying value for the
mutual purity, while at late times the connected solution dominates and gives a constant,
exponentially small mutual purity. Thus, when the encoding complexity is sufficiently
large, we find emergent, “complexity-protected” quantum error correction against generic,
low-rank errors with no prior access to the encoding map. We should emphasize that it is
important that the error does not have access to the encoding map — with prior access, it
is possible to violate the above conclusions.

4.1 Relation to previous work

Understanding how the complexity of an encoding operator affects certain error correction
properties of the code is a problem that has been explored previously from a variety of
viewpoints. The most common method of studying codes with increasing complexity is
to employ the randomization trick as we have done, where one instead considers a one-
parameter family of ensembles of codes with increasing complexity and studies ensemble-
averaged properties.

For instance, [60, 61] argued that n-qubit random quantum circuits with O(n log2 n)
two-qubit gates and O(log3 n) depth can encode k qubits into n while correcting erasure
errors on d qubits where

k

n
< 1 − d

n
log2 3 − h(d/n), (4.1)

16Recall that Tr σ2
L enters in FΨ′ (ref : env) along with a subtraction of a baseline value, and so the

contribution which dominates FΨ′ (ref : env) is not necessarily the one which makes the largest contribution
to Tr σ2

L.
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with h(x) being the binary entropy function

h(x) ≡ −x log x− (1 − x) log(1 − x) . (4.2)

In our analysis, we studied a random error with k/n = d/n = λ, and with these replacements
the inequality (4.1) is true for roughly λ ≤ 1/5. It would be interesting to understand
whether our analytics can be extended to this rather large value of λ without the need
for novel techniques, although the numerical results in figure 8 suggest we may have an
accurate picture of the Brownian theory even when λ = 1/3. At any rate, it appears that
the Brownian codes we have studied in this work are able to approximately (with error of
order 1/n) correct errors on a fraction λ of the physical qubits with a depth T ∼ (1/J) log n.
This polynomial improvement in depth, if true, is likely due to differences in how the
random two-qubit quantum circuit theory of [61] and the Brownian SYK theory scramble
quantum information.

More recently, [62] studied low depth random circuits with spatial connectivity re-
strictions in various spatial dimensions D as stabilizer codes. They discovered that such
circuits can correct fairly large erasure errors (converging to both the optimal threshold and
zero failure probability at large n) with a depth of just O(log n) for D ≥ 2. These results
are similar to ours, although we have no restriction on spatial connectivity, but rather a
restriction on the number of fermions which can couple in the Hamiltonian. It would be
interesting to understand if there is a relation between the universality for D ≥ 2 found
in [62] and the expected universality of our results for q ≥ 4. A significant difference of our
analysis compared with [62] is that we do not restrict ourselves to stabilizer codes, though
we also have not studied the decoding problem in any detail.

Beyond questions of depth, we may also consider the total gate complexity of efficient
quantum codes. Several bounds on this complexity exist for stabilizer codes [63–65] and
their generalizations [65, 66]. In particular, for a generic stabilizer code encoding k qubits
into n, [65] showed that O(n(n − k)/ log n) gates are sufficient. Entanglement-assisted
stabilizer codes were also studied in [65] and were shown to have gate complexity linear
in the number of additional entangled qubits c, with O(n(n− k + c)/ log n) gates. As we
have not restricted ourselves to stabilizer circuits, our gate complexity is not expected to
have such small polynomial asymptotic behavior.17 However, if we used a sparse SYK
model instead [69], we may achieve equal or better gate complexity compared to stabilizer
circuits. This issue deserves further study as it would represent an interesting development
in efficient random code design.

Our work is also closely related to measurement-induced phase transitions which have
recently been studied extensively in the condensed matter community (see for instance [70,
71]). In these studies, the quantum circuit usually consists of local unitary gates with some
quenched disorder and forms a brickwall pattern. These local unitaries are interspersed with
local measurements, which are viewed as “errors”. The long range entanglement generated

17Efficient Hamiltonian simulation of Brownian SYK would likely involve discretization of the contact
correlation δ(t− t′) in the variance, along with a sparse query model like the one studied in [67, 68]. Because
the sparsity of the full SYK Hamiltonian scales with Nq, we do not expect simulation to be efficient compared
to stabilizer circuits.
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by the random unitary gates is identified as the volume-law phase, suitable for quantum
error correction. However, a transition to a short-range entanglement phase can occur when
measurement rate is high, i.e. when the error rate is high enough to disentangle different
subsystems. The volume-law to area-law transition is identified as a transition in quantum
error correction, when the error rate exceeds a critical value [70, 71]. In essence, the size of
the Hilbert space of the principal quantum system needs to be large enough (spatial) and
the time for the unitary gates need be long enough (temporal) to scramble the information
so that the entanglement is robust against local disturbances. It would be interesting to
compare these results with those presented here.

In another direction, ensembles of encoding maps that satisfy some global symmetry
have also been explored [72, 73]. The general idea is that there is a tension between
the existence of a continuous symmetry leaving the encoding map invariant and strong
protection against erasure errors. However, approximate error correction can be achieved
in certain circumstances [74]. In Brownian SYK, there are discrete global symmetries
(which we did not include in the analysis since we were interested in covering the entire
unitary group) but no continuous symmetries, allowing us to avoid these no-go arguments.
However, it is easy to implement continuous symmetries in analogues of the SYK model;
for instance, SYK with complex fermions satisfies a U(1) global symmetry [75]. It would be
interesting to understand the error correction behavior of a complex analogue of Brownian
SYK to further elucidate the tension between codes with continuous symmetries and erasure
error correction.

4.2 Pseudorandom codes

Our results seem to suggest that after a polynomial time, a random quantum circuit, which
likely has polynomial circuit complexity, has powerful error correction properties that are
essentially as good as a Haar random unitary code, which likely has exponential complexity.
One explanation for why this is possible may be that the majority of unitary operators with
polynomial complexity are in fact pseudorandom unitary operators, and a simple test of
error correction properties cannot distinguish polynomially complex pseudorandom unitary
operators from unitary operators of exponential complexity.

A pseudorandom unitary operator is, roughly speaking, an operator which has polyno-
mial complexity but which cannot be distinguished from one with exponential complexity
by any sort of simple test which can be implemented efficiently. The transition between
disconnected and connected solutions that we found, hints at a sharp transition point
where most random circuits with complexity less than some polynomial (N , for the purity
transition) are not pseudorandom, while the typical circuit and perhaps the majority of
circuits above that critical complexity are in fact pseudorandom, at least for the purposes of
error correction. It would be very interesting to understand in more detail what properties
of Haar random circuits can be reproduced by such low complexity Brownian circuits.

4.3 Complexity and the geometry of the entanglement wedge

From the AdS/CFT point of view, it would be very interesting to understand the bulk
significance of our results; indeed, one of our main motivations in this paper was to
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understand the geometry of figure 1 in terms of quantum error correction. Following [30, 31],
we expect that this error correction is a sign of “causal inaccessibility” from the boundary
subregion. By this, we mean that including backreaction from turning on simple sources in
the asymptotic boundary does not render the relevant degrees of freedom causally accessible
from the boundary; the mechanism behind this is that the relevant bulk degrees of freedom
lie behind a non-minimal quantum extremal surface. In our calculation, we encountered two
significant complexity scales, i.e., the mutual purity becomes O(1/N) at T ∼ logN , and the
mutual purity saturates to an exponentially small plateau at a much larger time-scale. It is
tempting to speculate that these thresholds have natural bulk interpretations: the logN
time-scale could correspond to the bulk degrees of freedom crossing the causal horizon,
while the plateau could correspond to the bulk degrees of freedom crossing over to the
python’s lunch. In a similar vein, the lattice of subleading solutions we found may also have
a geometric meaning, although it is less clear because they do not dominate the calculation
of the crucial quantity FΨ′(ref : env).
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A Hamiltonian formalism in Brownian SYK

In this appendix, we will reproduce some of the results of section 3 from a different point of
view. Recall that after averaging over the couplings Ja1...aq (t) in the Brownian SYK model,
we obtain the following effective action:

I = 1
2

∫ T

0
dt ψ(j)

a ∂tψ
(j)
a − iqJ(q − 1)!

2N q−1

∫ T

0
dtsjsj′ ψ

(j)
a1···aq (t)ψ(j′)

a1···aq (t). (A.1)

From the action, we can read off an “effective Hamiltonian”:

Heff = −iq J(q − 1)!
2N q−1

∑
j,k

∑
a1<a2···<aq

sjsk ψ
(j)
a1...aq

ψ(k)
a1...aq

, (A.2)

where, ψ(j)
a1...aq =

∏q
i=1 ψ

(j)
ai . We note that Heff commutes with the fermion parity operator

defined in equation (3.8) and (3.9). Therefore, we can write Heff in terms of the Pauli
matrices defined as follows:

ψ(1)
a ψ(2)

a = − i

2Xa, ψ(1)
a ψ(3)

a = i

2Ya, ψ(1)
a ψ(4)

a = − i

2Za. (A.3)
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After substituting the above relations in (A.2), the effective Hamiltonian can be written as

Heff = −J(q − 1)!
(2N)q−1

∑
a1<a2···<aq

(
Xa1 . . . Xaq − iqYa1 . . . Yaq + Za1 . . . Zaq − 1

)
, (A.4)

where the last term (proportional to the identity) comes from the j = k terms. Trσ2
L can

now be written as the Euclidean transition amplitude:

Trσ2
L = ⟨ψ| exp(−HeffT )|ψ⟩, (A.5)

where the initial and final states are dictated by the boundary conditions in the path
integral, and are given by

|ψ⟩ = |+⟩N1 |0⟩N2 . (A.6)

A.1 Disconnected and connected solutions

In the above expression, we can separate contributions from the ground states and the
excited states as follows:

Trσ2
L =

∑
n

|⟨ψ|gn⟩|2 +
∑
k

exp (−EkT )|⟨ψ|ek⟩|2. (A.7)

Here, gn are all the ground states of Heff (which all have zero energy) and ek are the excited
states with energies Ek. We first look at the contribution from the ground states. The set
of ground states depends on whether we choose q = 4k or q = 4k + 2 but the following two
ground states contribute to the leading order independently of q:

|g1⟩ = |0⟩N ,
|g2⟩ = |+⟩N .

(A.8)

Therefore, the contribution from the ground states is∑
n

|⟨ψ|gn⟩|2 ≈ ⟨ψ|g1⟩|2 + |⟨ψ|g2⟩|2

= 1
2N1

+ 1
2N2

,

(A.9)

which reproduces the two leading order terms (i.e., the disconnected and the connected
contributions) in the Haar ensemble. The contribution from excitations near the ground
states can be approximated in the following manner. The Hamiltonian can be written in
terms of the ladder operator as

H = −2JN
q

[(
Sx
N

)q
−
(
iSy
N

)q
+
(
Sz
N

)q
− 1

2q
]

+O

( 1
N

)
, (A.10)

where Sx =
∑
aXa/2, Sy =

∑
a Ya/2, and Sz =

∑
a Za/2. The matrix elements of the first

two terms in the Hamiltonian with excited states near |g1⟩ are suppressed by a factor of
1/N q/2 and can be ignored for q ≥ 4 at leading order in 1/N . Thus, the Hamiltonian up to
O(1/N) corrections is

H = −2JN
q

[(
Sz
N

)q
− 1

2q
]
. (A.11)
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The contribution from the states near |g1⟩ is:

Trg1 σ
2
L =

∑
k

exp (−EkT )|⟨ψ|eg1
k ⟩|2

≈
N1∑
k=0

1
2N1

(
N1
k

)
exp

(
−JkT2q−2

)

=

1 + exp
(
− JT

2q−2

)
2

N1

,

(A.12)

where |eg1
k ⟩ denotes the kth excited state near |g1⟩, explicitly given by a choice of k qubits

which are flipped to |1⟩ from |0⟩. These k must come from the first N1 qubits to give a
nonvanishing overlap ⟨ψ|eg1

k ⟩.
Similarly, we can compute the correction due to the excited states |eg2

k ⟩ near |g2⟩. The
perturbative Hamiltonian is now

H = −2JN
q

[(
Sx
N

)q
− 1

2q
]
, (A.13)

and the excited states are formed by flipping k qubits to |−⟩ from |+⟩, where these must
come from the last N2 qubits to give a nonvanishing overlap with the boundary state.
We get

Trg2 σ
2
L =

∑
k

exp (−EkT )|⟨ψ|eg2
k ⟩|2

≈ 1
2N2

(
1 +N2 exp

(
− JT

2q−2

)
+ . . .

)
.

(A.14)

Note that the contribution from the second and higher excited states (denoted here by
ellipsis) is not negligible. Moreover, unlike the case of the disconnected saddle where
N1/N = λ was a small parameter, we cannot resum all the contributions from higher
excited states near |g2⟩. Since N2/N ∼ 1, one must also take the quantum corrections
into account. Nevertheless, the above expression is sufficient to infer that the ground state
contribution dominates when T > 2q−2

J log(N2).
Summing up these contributions we have the following result for Trσ2

L:

Trσ2
L ≈ Trg1 σ

2
L + Trg2 σ

2
L

≈

1 + exp
(
− JT

2q−2

)
2

N1

+ 1
2N2

(
1 +N2 exp

(
− JT

2q−2

)
+ . . .

)
.

(A.15)

The T dependent term proportional to N2/2N2 is a contribution from corrections to
the projector approximation to the long region we made in section 3.4. We could have
incorporated such terms in the path integral saddle point approximation of section 3.4 by
writing the long region as a projector |+⟩⟨+| plus an exponentially suppressed correction
e−JT |−⟩⟨−|. However, the evaluation of the saddle point including this correction is difficult
because the transient regions no longer cancel against the |−⟩⟨−| operator, so this term
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induces large corrections which depend sensitively on the transient shape. This is the
path integral analogue of the Hamiltonian picture difficulty we described under (A.14). Of
course, these corrections are only important before T < (1/J) logN , when the connected
configuration is not actually a solution of the equations. By the time the connected
configuration becomes a genuine saddle point, this T dependence is subleading and the
constant 2−N2 term dominates up to possible O(1) factors just as T crosses (1/J) logN .
Furthermore, by the time the connected solution actually dominates the mutual purity,
these terms are suppressed by an even stronger factor of e−N compared to the constant
2−N2 term.

A.2 One-loop determinant around disconnected solution

In the Hamiltonian picture, the one-loop determinant is related to corrections in the
energy eigenstates and the corresponding eigenvalues near the ground state |g1⟩. From
equation (A.10), we see that the energy eigenstates |eg1

k ⟩ gain corrections from the first
two terms related to the ladder operators. However, since they are suppressed by a factor
of 1/

√
N q we can ignore these corrections. The correction to energy eigenvalues can be

computed by expanding the Sqz term to O(1/N2):

Ek = J

2q−2

(
k − (q − 1)k

2

N

)
+O(N−2). (A.16)

Thus, the contribution to Trσ2
L from the first saddle including corrections at O(1/N) is

Tr(1)
g1 σ

2
L =

N1∑
k=1

(
N1
k

)
exp

(
−JTN1

2q−2

(
k

N1
− (q − 1)λ k

2

N2
1

))
. (A.17)

To extract the one-loop determinant from the above expression we divide it by the classical
saddle point result in equation (A.12) and take the large N1 limit keeping λ = N1

N fixed.
Define F (T ) as

F (T ) ≡
Tr(1)

g1 σ
2
L

Tr(0)
g1 σ

2
L

=

∑N1
k=1

(N1
k

)
exp

(
−JTN1

2q−2

(
k
N1

− (q − 1)λ k2

N2
1

))
∑N1
m=1

(N1
m

)
exp

(
−JN1T

2q−2
m
N1

) .

(A.18)

In the large N1 limit, we use Stirling’s approximation for the factorial terms and replace
the sum over k by an integral over x ≡ k/N1 to write F (T ) as follows:

F (T ) ≈

∫ 1
0 dx 1√

x(1−x)
exp [−N1f(x)]∫ 1

0 dx 1√
x(1−x)

exp [−N1g(x)]
, (A.19)

where we have defined the functions

g(x) = x log x+ (1 − x) log(1 − x) + JT

2q−2x,

f(x) = g(x) − λ
JT (q − 1)

2q−2 x2.

(A.20)
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The integrals can be evaluated in the saddle point approximation and we get the follow-
ing result:

F (T ) ≈
√
g′′(xg)xg(1 − xg)
f ′′(xf )xf (1 − xf ) exp [−N1 (f(xf ) − g(xg))] . (A.21)

Here, xf and xg are saddle points of f(x) and g(x) respectively. Since f(x) and g(x) differ
by a term proportional to λ, we can evaluate F (T ) perturbatively in λ. We have the
following equations:

g′(xg) = 0 =⇒ xg
1 − xg

= exp
(
− JT

2q−2

)
,

f ′(xf ) = 0 =⇒ g′(xf ) = λ
JT (q − 1)

2q−3 xf

=⇒ (xf − xg)g′′(xg) = λ
JT (q − 1)

2q−3 xg +O(λ2).

(A.22)

Another useful relation is
g′′′(x) = −g′′(x)h(x), (A.23)

where the function h(x) is
h(x) = 1

x
− 1

1 − x
. (A.24)

Using the above relations, we first evaluate the term in the square root.

f ′′(xf )xf (1 − xf )
g′′(xg)xg(1 − xg)

= 1 +
g′′′(xg)(xf − xg) − λJT (q−1)

2q−3

g′′(xg)
+ (xf − xg)h(xg) +O(λ2)

≈ 1 − λ

g′′(xg)
JT (q − 1)

2q−3

= 1 − λ
JT (q − 1)

2q−1 sech2
(
JT

2q−1

)
.

(A.25)

In a similar manner we can evaluate the expression in the exponential. Finally, we get:

F (T ) ≈
(

1 + λ
JT (q − 1)

2q sech2
(
JT

2q−1

))
exp

[
N1λJT (q − 1)

2q exp
(
− JT

2q−2

)
sech2 JT

2q
]
.

(A.26)
The term in the exponential turns out to be equal to the O(λ2) contribution from the
classical action while the factor multiplying the exponential piece is the contribution from
the one-loop determinant that we computed in (3.68).

B Proof of the error correction bound

We use the two different measures of distance in the proof [49]: the trace distance and
fidelity. The trace distance between two states ρ and σ is:

D(ρ, σ) = 1
2 Tr(|ρ− σ|)

= max
Q

Tr (Q(ρ− σ)) ,
(B.1)
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where |A| =
√
A†A. In the second expression, we maximize over all possible projectors Q.

The fidelity between two states ρ and σ is defined as:

F (ρ, σ) = Tr
(√√

σρ
√
σ

)
= max

|ψσ⟩
|⟨ψρ|ψσ⟩|,

(B.2)

where |ψρ⟩ and |ψσ⟩ are purification of ρ and σ respectively.
Consider a maximally entangled state |Ψ⟩ between the encoded code subspace and a

reference system isomorphic to the code subspace:

|Ψ⟩ =
∑
i

1√
dcode

|i⟩ref ⊗ |ψi⟩phys. (B.3)

The physical system interacts with the environment initially in some pure state |0⟩env. This
interaction is described by a joint evolution of the physical system and the environment by
a unitary UE leading to the following final state:

|Ψ′⟩ =
∑
i

1√
dcode

|i⟩ref ⊗ UE (|ψi⟩phys ⊗ |0⟩env) . (B.4)

Consider now a fictitious state

ρ̃ref,env = ρ′ref ⊗ ρ′env, (B.5)

where the reduced states are

ρ′ref = Trenv,phys
(
|Ψ′⟩⟨Ψ′|

)
,

ρ′env = Trref,phys
(
|Ψ′⟩⟨Ψ′|

)
.

(B.6)

Note that ρ̃ref,env is not the state ρ′ref,env, but is instead a factorized state between Href
and Henv that is built from its reduced states. Consider a purification |Ψ̃⟩ of ρ̃ref,env such
that its trace distance with |Ψ′⟩, the quantity D(|Ψ̃⟩, |Ψ′⟩), is minimum. By the Schmidt
decomposition of pure states, any purification of ρ̃ref,env may be written in the following form:

|Ψ̃⟩ =
∑
i,j

√
αj
dcode

|i⟩ref ⊗ |ϕij⟩phys ⊗ |j⟩env (B.7)

where the set {|ϕij⟩} form an orthonormal basis of the physical Hilbert space. The Schmidt
coefficients αj depend only on the environment index because ρ′ref is maximally mixed
which restricts the form of the Schmidt coefficients in this manner. Indeed, the state ρ′env
determines the real non-negative coefficients √αj completely. The condition that |Ψ̃⟩ should
be a purification with minimal D(|Ψ̃⟩, |Ψ′⟩) is hidden in the basis vectors |ϕij⟩phys. Define
projection operators Πj as:

Πj =
∑
i

|ϕij⟩⟨ϕij |. (B.8)

These projectors satisfy the following relation:

ΠjΠk = δjkΠk. (B.9)
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Moreover, every subspace corresponding to the projector Πj is isomorphic to the code
subspace i.e. for each Πj , there is a unitary operator Uj such that UjΠjU

†
j = Πcode, where

Πcode is a projector onto the code subspace.
Following [76], we construct a recovery channel R̃ which consists of the following two

operations:

1. Measurement with some projection operator Πj , and

2. Rotation of the resulting state by the unitary operator Uj .

Consider acting with R̃ on |Ψ̃⟩. Measurement of |Ψ̃⟩ with Πj projects the state |Ψ̃⟩ to the
following state with probability αj :

|Ψ̃⟩j =
∑
i

1√
dcode

|i⟩ref ⊗ |ϕij⟩phys ⊗ |j⟩env. (B.10)

The unitary transformation Uj acts on |Ψ̃j⟩ as

Uj |Ψ̃⟩j =
∑
i

1√
dcode

|i⟩ref ⊗ Uj |ϕij⟩phys ⊗ |j⟩env

=
∑
i

1√
dcode

|i⟩ref ⊗ |ψi⟩phys ⊗ |j⟩env

= |Ψ⟩ ⊗ |j⟩env.

(B.11)

Thus, R̃ acts on |Ψ̃⟩ to give back the original state |Ψ⟩ because the unitary Uj acts to
precisely rotate the basis |ϕij⟩ via Uj |ϕij⟩ = |ψi⟩. However, we are interested in recovery
from the state |Ψ′⟩, after the action of the error channel. We will now rephrase the
condition for approximate recovery, derived in [76] in terms of the trace distance between
the recovered state and the initial state, using the mutual purity between the reference and
the environment. We have the following bound on the trace distance between the state
obtained by action of the recovery channel R̃ on the actual state |Ψ′⟩ and the initial state |Ψ⟩.

D
(
R̃(|Ψ′⟩⟨Ψ′|), |Ψ⟩⟨Ψ|

)
= D

(
R̃(|Ψ′⟩⟨Ψ′|), R̃(|Ψ̃⟩⟨Ψ̃|)

)
≤ D

(
|Ψ′⟩, |Ψ̃⟩

)
=
√

1 − |⟨Ψ′|Ψ̃⟩|2

=
√

1 − F 2(ρ′ref,env, ρ
′
ref ⊗ ρ′env)

≤
√

2 − 2F (ρ′ref,env, ρ
′
ref ⊗ ρ′env)

≤
√

2D(ρ′ref,env, ρ
′
ref ⊗ ρ′env)

≤
√
dref denv λmax

≤
√
dref denv

(
Tr
(
ρ′ref,env − ρ′ref ⊗ ρ′env

)2
)1/4

=
√
dref denv

(
Tr
(
ρ′2ref,env − ρ′2ref ⊗ ρ′2env

))1/4
.

(B.12)

In the second step, we used the monotonicity property of trace distance with respect to the
action of a channel (see chapter 9 of [49]). The fourth step follows from the definition of
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fidelity and the fact that |Ψ̃⟩ is a purification of ρ̃ref,env that minimizes its trace distance with
|Ψ′⟩. The sixth step is a standard inequality between fidelity and trace distance [49]. As in
the main text, dref and denv are respective dimensions of the reference and the environment
Hilbert spaces. In the seventh step, λmax is the maximum eigenvalue of |ρ′ref,env −ρ′ref ⊗ρ′env|.
Since λ2

max < Tr (ρ′ref,env − ρ′ref ⊗ ρ′env)2, the eighth step follows. The final step is true
because ρ′ref is maximally mixed.

To summarize, we have shown that there exists a set of projection operators Πj , the
measurement of which followed by a unitary transformation with Uj approximately recovers
the maximally entangled state between the reference and the physical system. The accuracy
of this recovery in terms of trace distance is bounded by the combination we have found,
which is the mutual purity FΨ′(ref : env) from the main text.

The inequality (B.12) was derived for a specific recovery channel R̃. However, there
may exist a better recovery channel R which must also satisfy the inequality:

D
(
R(|Ψ′⟩⟨Ψ′|), |Ψ⟩⟨Ψ|

)
≤
√
dref denv

(
Tr
(
ρ′2ref,env − ρ′2ref ⊗ ρ′2env

))1/4
. (B.13)

We can use the above inequality to compute a bound on recovery of arbitrary states
in the code subspace after the action of the error channel E . We will use the channel-
state isomorphism of [77] as follows: consider a state σ =

∑
m,n σmn|ψm⟩⟨ψn| in the code

subspace and let σ′ = R ◦ E(σ). We can write σ′ in terms of σref =
∑
m,n σmn(|m⟩⟨n|)ref

and ω = R ◦ E(|Ψ⟩⟨Ψ|) as

σ′ =
∑
m,n

σmnR ◦ E(|ψm⟩⟨ψn|)

= dref
∑
k,l

Trref

( 1
dref

|k⟩⟨l|σTref

)
R ◦ E(|ψk⟩⟨ψl|)

= dref Trref
(
σTref R ◦ E(|Ψ⟩⟨Ψ|)

)
.

(B.14)

Here σTref is the transpose of σref. We have a similar expression for σ:

σ = dref Trref
(
σTref|Ψ⟩⟨Ψ|

)
. (B.15)

We can derive a bound on the trace distance between σ and σ′ as follows:

D(σ′, σ) = 1
2 Trphys |σ′ − σ|

= 1
2 dref Trphys |Trref

(
σTref (R ◦ E(|Ψ⟩⟨Ψ|) − |Ψ⟩⟨Ψ|)

)
|

≤ 1
2 dref Tr(|σTref(R ◦ E(|Ψ⟩⟨Ψ|) − |Ψ⟩⟨Ψ|)|)

= 1
2 dref Tr(|σTref ⊗ Πcode(R ◦ E(|Ψ⟩⟨Ψ|) − |Ψ⟩⟨Ψ|)|)

≤ dref Tr
(
σTref ⊗ Πcode

) 1
2 Tr (|R ◦ E(|Ψ⟩⟨Ψ|) − |Ψ⟩⟨Ψ||)

= dref Tr
(
σTref ⊗ Πcode

)
D (R ◦ E(|Ψ⟩⟨Ψ|), |Ψ⟩⟨Ψ|)

≤ d
5/2
ref d

1/2
env

(
Tr
(
ρ′2ref,env − ρ′2ref ⊗ ρ′2env

))1/4
.

(B.16)

In the fifth step, Πcode is the projector on the code subspace. In the final step, we used the
inequality in (B.13). The result above is precisely the one quoted in (2.15).
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