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A Spin and Spinc structures 18

1 Introduction

When given a topological quantum field theory (TQFT), the first question one asks is,
“What does it compute?” In general, given a three-manifold, a three-dimensional TQFT
computes for us a topological invariant of that three-manifold. For example, the SU(2)
Chern-Simons theory at level k ∈ Z computes the Witten-Reshetikhin-Turaev (WRT) in-
variants of three-manifolds [1, 2]. A decorated TQFT computes a topological invariant that
depends on additional data. We call this additional data “decoration”. One classic exam-
ple of such an invariant is the Reidemeister-Milnor-Turaev torsion which is a topological
invariant of three-manifolds that depends on the Spinc structure of the three-manifold [3].

In [4], Atiyah axiomatized the notion of topological quantum field theory. In a three-
dimensional TQFT, a vector space is assigned to every two-dimensional surface Σ, and
a vector in that vector space is assigned to a three-manifold with boundary Σ. We can
obtain the partition function of a TQFT on a closed manifold by cutting it into simpler
pieces and gluing them back together. Thus by their very nature TQFTs give us topological
invariants. This axiomatization was extended to Spin TQFTs in [5, 6]. In this paper, we
describe how to do the cutting and gluing for some TQFTs decorated by Spinc-structures
or cohomology classes.

In [7, 8], Gukov, Pei, Putrov, and Vafa conjectured the existence of the three-manifold
invariant Ẑb(M3, q) valued in q-series. This q-series invariant depends on the choice of
Spinc structure on the three-manifold. Ẑb(M3, q) is believed to give a non-perturbative
definition of complex Chern-Simons theory with gauge group SL(2,C). In various limits,
this q-series invariant is related to other topological invariants [9–11]. It is connected to
different areas of mathematics and physics such as resurgence [12], three-dimensional gauge
theories, modular forms, vertex operator algebra [13–15], etc.

As Ẑb(M3, q) is a q-series with integer coefficients, there is hope that it can be categori-
fied. Finding a four-dimensional TQFT that is a categorification of Ẑ-TQFT would be quite
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helpful for the classification problem of smooth four-manifolds. Before one can categorify
the Ẑ-TQFT, one has to properly understand the TQFT that computes the Ẑ-invariant.
An important question for understanding the Ẑ-TQFT is: what does Ẑ-TQFT assign to a
circle? Or what is the category of line operators in Ẑ-TQFT? These questions are closely
related to the problem of finding the Hilbert space associated with torus in Ẑ-TQFT.

In [16], Gukov and Manolescu introduced a two-variable series FK associated with
three-manifolds with torus boundaries which can be thought of as a vector in Hilbert space
associated with torus in Ẑ-TQFT. They also gave a formula for gluing them along the
torus boundaries. In this paper, we explain how to express the cutting and gluing in terms
of cutting and gluing of states and operators (k-linear maps) on Hilbert spaces and make
a conjecture about the structure of Hilbert spaces in Ẑ-TQFT. We claim that the Hilbert
space associated to genus g surface Σg in the Ẑ-TQFT is given by,

HẐ(Σg) = H(2g,2) ⊗ C[Z2g × Z2g]. (1.1)

Where H(2g,2) is the Hilbert space of 2g bosonic oscillators and 2 fermionic oscillators.

Organization of the paper. In section 2, we give a simple example of a decorated
TQFT, where the TQFT is decorated by H1(M3,Z2). We also discuss how the decorations
of a three-manifold decompose into grading and decorations of Hilbert spaces in a decorated
TQFT. In section 3, we move on to a slightly non-trivial example of a decorated TQFT.
We discuss the TQFT for inverse Reidemeister-Milnor-Turaev torsion, which is decorated
by Spinc-structures. In section 4, we discuss how to obtain the q-series Ẑ by cutting and
gluing states and k-linear maps on a Hilbert space. In section 5, using conjectured relations
between the Ẑ-invariant and other three-manifold invariants, we propose relations between
Hilbert spaces in their TQFTs. These relations are illustrated in figure 1.

2 General structure of decorated TQFTs

A simple example of decorated TQFT is U(1) Chern-Simons theory at level k “enriched” by
0-form global symmetry Z2.1 We could think of this theory as Spin Chern-Simons theory,
which was introduced in [17]. We couple this theory to a background flat connection
B
2π ∈ H

1(M3,Z2). Its partition function in terms of path integral can be written as,

Z(M3, B) =
∫
DA exp

{
2πi

∫
M3

kA+B

2π ∧ F

2π

}
. (2.1)

The partition function depends on the topology of M3 and additional data, viz. the back-
ground flat connection B. We say the partition function is decorated by B.

This theory has 0-dimensional charged operators, and charge operators Og(Σ) with
g ∈ Z2 ⊂ C/Z supported on a two-dimensional surface Σ (we refer to [18] for details on
theories with generalized global symmetries). An operator with charge m can be thought

1In general, we could consider a C/Z symmetry. However, here we consider its subgroup Z2 ⊂ C/Z.
Where (+1) ∈ Z2 → 0 ∈ C/Z, and (−1) ∈ Z2 → 1

2 ∈ C/Z.
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q

1

i

e
2πi
k

q

C ∼= C[Z/Z]

C[Z/kZ]

C[Z× Z]

Figure 1. 0-decorated and (`,m)-graded sectors of Hilbert space associated to torus at q = 1,
q = e

2πi
k and at a generic value of q. See section 2 for details on decorations and gradings of

Hilbert spaces.

of as a monopole with magnetic flux m =
∫
S2

F
2π . The charge operator Og(Σ) is given by

Og(Σ) = exp
(
ig

∫
Σ
F

)
.

Since
∫

Σ F ∈ 2πZ, these operators satisfy Og1(Σ) · Og2(Σ) = Og3(Σ) with g3 = g1 +
g2 mod 1. We can turn on the decoration B by inserting a charge operator on 2-chain
representing the Poincaré dual of B. When it is inserted on a “constant time” slice (see
figure 2a), we interpret it as an operator acting on Hilbert space, and when it has an
extent in “time-direction” (see figure 2b) it takes us to a different decoration (sector) of
the Hilbert space. In general, Hilbert spaces associated with co-dimension-one manifolds
in a decorated TQFT have induced decorations and grading. A choice of decoration on
Σ×S1 usually splits into a choice of decoration on Σ and a choice of parameter dual to the
grading on the Hilbert space associated with Σ. In our example, H1(Σ×S1,Z2) splits into,

H1(Σ× S1,Z2) ∼= H1(Σ,Z2)⊕H0(Σ,Z2) ∼= H1(Σ,Z2)⊕Hom(H0(Σ,Z),Z2). (2.2)

To turn on a decoration B with B
2π ∈ H

1(Σ,Z2) ⊂ H1(Σ× S1,Z2), we insert a charge op-
erator with an extent in time. Thus we have a Hilbert space H(Σ) decorated by H1(Σ,Z2)
and graded by H0(Σ,Z). The graded dimensions of this Hilbert space are given by

Z(Σ× S1, ω ⊕ α) =
∑

n∈H0(Σ,Z)
e2πiα(n)dimH(Σ, ω, n). (2.3)

Where ω ∈ H1(Σ,Z2) and α ∈ Hom(H0(Σ,Z),Z2), with Z2 thought of as a subgroup of
C/Z.
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(a) Charge operator on a “constant time” slice. (b) Charge operator with extent in “time”.

Figure 2. The arrows indicate the time direction, and the gray spatial slice is the slice with which
we associated a Hilbert space.

Figure 3. Line operator surrounded by a charge operator.

Another interesting set of operators in this theory is the set of line operators. The line
operators are given by,

We(γ) = exp
(
ie

∫
γ
A

)
, (2.4)

where the decimal part of e is fixed, with e = g mod 1. In U(1) Chern-Simons theory at
level k “enriched” by 0-form global symmetry Z2, there are 2k such line operators. These
line operators have charges [g], 1 + [g], . . . , k − 1 + [g], where [g] ∈ {0, 1

2}. Another way
to think of these line operators is by thinking of the usual U(1) Chern-Simons theory line
operators sitting at the core of a solid torus with charge operator Og(Σ) surrounding them,
such that Σ is homologous to the boundary torus (see figure 3). Depending on how we fill
in T 2 to get a solid torus, we get different vectors in the Hilbert space associated with the
boundary torus.

For each decoration, the Hilbert space associated with the torus is a k-dimensional
vector space Ck. The action of generators of modular group, S and T , on these vector
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spaces is given by,

Sk1,k2
λ1,µ1,λ2,µ2,n1,n2

= 1√
k
δn1,n2δλ1,−µ2δµ1,λ2q

−(k1+λ1)(k2+λ2) (2.5)

T k1,k2
λ1,µ1,λ2,µ2,n1,n2

= δn1,n2δλ1,λ2δµ1,µ2−λ2δk1,k2e
− iπ12 q

(λ1+k1)2
2 . (2.6)

Here λi, µi ∈ Z2 ⊂ C/Z, give us the decorations, and ni ∈ Z/2Z give us the gradings,
ki ∈ Zk label the basis of Ck, and q = e

2πi
k . In this example, the partition function is

decorated by a flat connection B
2π ∈ H

1(M3,Z2). The cohomology group H1(M3,Z2) acts
transitively and freely on Spin(M3), space of spin structures on M3. Once make a choice
of a spin structure on M3, the set of spin structures on M3 is in bijection with H1(M3,Z2).
Then we could think of Z(M3, B) as being decorated by Spin(M3).

In general, the action of the modular group on decorations and grading on Σ tells us
how different sectors labeled by decorations and grading are mapped to each other under
the action of the modular group on the Hilbert space. However, this does not completely
specify the action of the modular group on the Hilbert space. If the sectors of the Hilbert
space with given decoration and grading are non-trivial, they could have a non-trivial action
of the modular group.

3 Inverse Reidemeister-Milnor-Turaev torsion

We will now look at topological quantum field theories decorated with Spinc-structures.
The cohomology group H2(M3,Z) acts transitively and freely on Spinc(M3). Throughout
the paper, we assume that we have a Spinc-structure on M3. Once we choose a Spinc-
structure on M3, it gives a bijection between the sets Spinc(M3) and H2(M3,Z). Due
to this bijection, we can think of them as TQFTs decorated by H2(M3,Z). Reidemeister-
Milnor-Turaev torsion, τ , is a Spinc decorated topological invariant which can be computed
by U(1, 1) supergroup Chern-Simons theory coupled to a background complex flat connec-
tion [19]. It is closely related to the Alexander polynomial, whose TQFT construction
was discussed in [20]. Inverse Reidemeister-Milnor-Turaev torsion is a bilateral series in
generators of the first homology group. By inverse Reidemeister-Milnor-Turaev torsion, we
mean the bilateral series we get by inverting Reidemeister-Milnor-Turaev torsion.

For example, the Reidemeister-Milnor-Turaev torsion for a mapping torus of T 2 is
given by,

τ(T 2 ×ϕ S1) = det(zI2×2 − ϕ)
(z − 1)2 =

∑
n∈Z

δn,0 + |n|2 (2− Trϕ)zn. (3.1)

Where ϕ is the element of the mapping class group of the torus (i.e., ϕ ∈ SL(2,Z)) describ-
ing the twist along the base circle S1, and z is the generator of the cycle along the base
circle. The inverse Reidemeister-Milnor-Turaev torsion for a mapping tori of T 2 is given by,

τ−1(T 2 ×ϕ S1) = (z − 1)2

det(zI2×2 − ϕ) . (3.2)
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Its bilateral series is given by,

∑
n∈Z

δn,0 + sgn(n)Trϕ− 2
2

(Trϕ+
√

(Trϕ)2 − 4)n − (Trϕ−
√

(Trϕ)2 − 4)n

2n
√

(Trϕ)2 − 4
zn. (3.3)

For mapping tori T 2 ×ϕ S1,

H1(T 2 ×ϕ S1) ∼= Coker(ϕ− I)⊕ Z. (3.4)

Using the bijection between the sets Spinc(M3) and H2(M3,Z) ∼= H1(M3,Z), we can get
the Spinc(M3) dependence of τ or its inverse. τ(T 2×ϕ S1) or its inverse doesn’t depend on
the generators in Coker(ϕ−I). In other words, they are non-zero only for 0 ∈ Coker(ϕ−I).
For n ∈ Z τ and τ−1 are given by the coefficient of zn in their respective series.

If we think of τ−1(T 2 ×ϕ S1) as a partition function of a quantum field theory, it
suggests that the factor (z − 1)2 is coming from fermionic states, while det(zI2×2 − ϕ) is
coming from bosonic states. As we will see, this is indeed the case. This TQFT is related
to the TQFT that computes τ by sending the fermions that give the factor (1 − z)2 to
bosons and sending the bosons that give the factor det(zI2×2 − ϕ) to fermions.

The TQFT that computes the inverse Reidemeister-Milnor-Turaev torsion is decorated
by H2(M3,Z). H2(Σ× S1,Z) splits into,

H2(Σ× S1,Z) ∼= H2(Σ,Z)⊕H1(Σ,Z). (3.5)

Therefore, the Hilbert space associated to Σ in this TQFT is decorated by H2(Σ,Z) and
graded by Hom(H1(Σ,Z),C/Z) ∼= H1(Σ,C/Z). Let’s now look at the Hilbert space asso-
ciated with the torus in this TQFT. It is given by,

Hτ−1(T 2) = C[C/Z× C/Z]⊗H(2,2). (3.6)

Where H(2,2) is the Hilbert space of two fermionic and two bosonic harmonic oscillators.
The decoration H2(T 2,Z) ∼= Z is given by the particle number on H(2,2). While the grading
Hom(H1(T 2,Z),C/Z) ∼= Hom(Z2,C/Z) ∼= (C/Z)2 is inherited from the (C/Z)2 grading of
C[C/Z× C/Z].

Let α and β be the bosonic annihilation operators, and ψ and χ be the fermionic
annihilation operators in H(2,2). Their non-trivial (anti)commutation relations are given
as follows,

[α, α†] = z [β, β†] = z {ψ,ψ†} = z {χ, χ†} = z. (3.7)

The basis of n-particle subspace of H(2,2) consists of states of the form

|i, n− a− b− i, a, b〉 = 1√
i!(n− a− b− i)!

(ψ†)a(χ†)b(α†)i(β†)n−a−b−i |0〉 (3.8)

Where a, b ∈ {0, 1}, and i, n − a − b − i ∈ {0, 1, . . . n − a − b}. With (anti)commutation
relations given in equation (3.7), the norms of n-particle states described above are simply
(−1)a+bzn.
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The Hilbert space H(2,2) can be broken down into four subspaces; one purely bosonic,
two with one fermionic particle, and one with two fermionic particles. Further, the vector
space of purely bosonic states can be written as the direct sum of symmetric tensor products
of purely bosonic one-particle subspace.

H(2,2) =
[ ∞⊕
n=0

SymnV

]
⊕ ψ†

[ ∞⊕
n=0

SymnV

]
⊕ χ†

[ ∞⊕
n=0

SymnV

]
⊕ ψ†χ†

[ ∞⊕
n=0

SymnV

]
. (3.9)

Where V is the two dimensional vector space V = Span{α† |0〉 , β† |0〉}. This division into
four subspaces carries on to the n-particle subspace of H(2,2). For the mapping tori of
T 2, the part of the partition function coming from fermions, (z − 1)2, does not depend
on twisting along the base circle. This tells us that the action of SL(2,Z) on fermionic
generators is trivial. Therefore, the action ϕ ∈ SL(2,Z) on n-particle subspace of H(2,2)
takes the following block diagonal form,

ϕn
ϕn−1

ϕn−1
ϕn−2

. (3.10)

Where ϕn represents the action of ϕ on purely bosonic n-particle subspace SymnV . The
action of ϕ on SymnV is given by its action on V , which is the usual action of SL(2,Z) on
a two-dimensional vector space. SymnV is a n+ 1-dimensional vector space with basis{

|i〉
∣∣∣ |i〉 = 1√

i!(n− i)!
(α†)i(β†)n−i |0〉 , i ∈ {0, 1, . . . , n}

}
. (3.11)

In this basis the matrix elements of ϕ =
(
a b

c d

)
∈ SL(2,Z) are given by,

ϕi,j =
Min(i+j,n)∑
k=Max(i,j)

an−kbk−ick−jdi+j−k

(k − i)!(k − j)!(n− k)!(i+ j − k)!

√
i!(n− i)!j!(n− j)!. (3.12)

Now let’s look at the SL(2,Z) action on C[C/Z × C/Z] part of the Hilbert space.
We consider the basis of C[C/Z × C/Z] labeled by (λ, µ) ∈ (C/Z)2, {fλ,µ|fλ,µ(λ′, µ′) =

δ(λ−λ′)δ(µ−µ′)}. In this basis the matrix elements of ϕ =
(
a b

c d

)
∈ SL(2,Z) are given by,2

ϕλ1,µ1,λ2,µ2 = δ(aλ1 + cµ1 − λ2)δ(bλ1 + dµ1 − µ2). (3.13)

Taking a graded trace of ϕ : Hτ−1(T 2) → Hτ−1(T 2) gives us the inverse Reidemeister-Milnor-
Turaev torsion, τ−1

`,m(T 2×ϕS1, z), of mapping tori T 2×ϕS1. Taking a trace over H2,2 gives
us,

TrH2,2(ϕ) = (z − 1)2

1− (a+ d)z + z2 . (3.14)

2Note the delta function is on C/Z.
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While, taking a graded trace of ϕ over C[C/Z× C/Z] gives us,∫ 1

0

∫ 1

0
dλdµ ϕλ,µ,λ,µe2πi(λ`+µm) (3.15)

=
∫ 1

0

∫ 1

0
dλdµ δ(aλ+ cµ− λ)δ(bλ+ dµ− µ)e2πi(λ`+µm)

=
∑

k`,km∈Z

∫ 1

0

∫ 1

0
dλdµ e−2πi(k`(aλ+cµ−λ)+km(bλ+dµ−µ))e2πi(λ`+µm)

=
∑

k`,km∈Z
δ`,(a−1)k`+bkmδm,ck`+(d−1)km . (3.16)

Note the graded trace of ϕ over C[C/Z×C/Z] is non-zero only for (`,m) ∈ (ϕ− I)Z2 that
is (`,m) = 0 ∈ Coker(ϕ− I).

We can represent the Hilbert space in such a way that it is graded by H1(T 2,Z)
and decorated by H2(T 2,Z) by taking a “Fourier transform” (described below) of the
H1(T 2,C/Z) grading. In that case, the Hilbert space associated with the torus can be
written as

Hτ−1(T 2) = C[Z2]⊗H2,2. (3.17)

For genus g surface Σg the inverse Reidemeister-Milnor-Turaev torsion of Σg × S1 is
given by,3

τ−1(Σg × S1) = (z − 1)2

(z − 1)2g . (3.18)

Therefore, the Hilbert space associated with Σg in this TQFT is given by

Hτ−1(Σg) = C[Z2g]⊗H2g,2. (3.19)

Where H2g,2 is the Hilbert space of 2g-bosonic oscillators and 2-fermionic oscillators.
Sp(2g,Z) acts trivially on the fermionic creation operators. The action of Sp(2g,Z) on
bosonic operators is induced by its action on the 2g-dimensional vector space of one-particle
bosonic states. The action of Sp(2g,Z) on C[Z2g] is induced by action of Sp(2g,Z) on Z2g.

Let us now summarise the structure of TQFTs decorated by H2(,Z).

• A TQFT decorated byH2(.,Z) assigns a vector space Z(Σ, ω) to each oriented surface
Σ and ω ∈ H2(Σ,Z). We call ω the decoration of Z(Σ, ω).

• Z(Σ, ω) is graded by Hom(H1(Σ,Z),C/Z) ∼= H1(Σ,C/Z). We can switch between
C/Z grading and Z grading using a “Fourier transform”.

Z(e2πiλ)→ Z̃(n) =
∮ dz

2πizZ(z)z−n (3.20)

• A TQFT decorated by H2(.,Z) assigns a vector Z(M,ω) ∈ Z(∂M,ω|∂M ) to each
oriented closed three-manifold M and ω ∈ H2(M,Z).

3We thank the reviewer for pointing this out.
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• To an orientation preserving diffeomorphism f : Σ1 → Σ2, a TQFT decorated by
H2(.,Z) assigns a linear map Z(f) : Z(Σ1, f

∗(ω)) → Z(Σ2, ω), such that f∗(α)-
graded sector of Z(Σ1, f

∗(ω)) are mapped to α-graded sector of Z(Σ2, ω).

• SupposeM is obtained by gluingM1 andM2 along Σ using an orientation preserving
diffeomorphism f : Σ → Σ. A decorated TQFT assigns Z(Mi, ωi) ∈ Z(Σ, ωi|Σ). We
get Z(M,ω) from them as follows,

Z(M,ω) =
∑
α

〈Z(M2, α)|D(ω)Z(f) |Z(M1, f
∗(α))〉 . (3.21)

Where D is a linear map that depends on ω ∈ H2(M,Z).

4 q-series Ẑ

Since the q-series invariant Ẑ(q) was first proposed in [7, 8], the understanding of its
decorations has developed over time. In [7, 8] Ẑ(q) was labeled by abelian flat connec-
tions. For rational homology spheres, the set of flat abelian connections is the same as
Hom(H1(M3,Z),U(1))/Z2. In [21], for manifolds with b1 > 0, Ẑ was decorated by abelian
and “almost abelian” flat connections on M3. The set of abelian flat connections, in this
case, is in bijection with the torsion part of H1(M3,Z)/Z2. Later, in [16] it was understood
that Ẑ should in fact, be decorated by Spinc-structures on M3. We pick a Spinc-structure
on M3 which gives us a bijection between Spinc(M3) and H1(M3,Z). Using this bijection
between Spinc(M3) and H1(M3,Z), the Ẑs are now labeled by spinc-structures associated
with (0, b) ∈ H1(M3,Z) ∼= Zb1 ⊕ TorsH1(M3,Z). Where TorsH1(M3,Z) is the torsion part
of H1(M3,Z).

In this section, we will interpret the surgery formula for Ẑ on plumbed manifolds
proposed in [21] as cutting and gluing of states and operators (k-linear maps) on a Hilbert
space assigned to a torus, and make comments on how this Hilbert space is related to the
Hilbert space that Ẑ-TQFT assigns to a torus.

Surgery formula for plumbed manifolds. By the Lickorish-Wallace theorem, any
closed oriented connected 3-manifold can be obtained by performing an integral Dehn
surgery on a link in S3. Plumbed manifolds are a special class of manifolds that can be
obtained by performing an integral Dehn surgery on a link in S3, which is made up of
linked unknots. This class of three-manifolds can be described by a graph whose vertices
are labeled by integers. This graph is called the plumbing graph.

Each vertex of the plumbing graph corresponds to an unknot in S3, and the integer that
labels the vertex is the framing of that unknot. An edge between two vertices corresponds
to a linking between the unknots corresponding to the two vertices. For each cycle in the
plumbing graph, we add a 0-framed unknot that wraps around the cycle (see figure 4).
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Figure 4. Examples of plumbing graph of links of unknots.

The plumbing graph can further be described by its linking matrix, which is defined
as follows,

Qvv′ =


av if v = v′

−1 if (v, v′) ∈ E
0 otherwise.

(4.1)

Where v, v′ are in the vertex set of the plumbing graph, E is the edge set, and av are the
framing coefficients. The first homology group of the plumbed manifold can be described
in terms of its linking matrix as follows,

H1(M3,Z) = Zb1(Γ) × ZV /QZV . (4.2)

Where V is the number of vertices in the plumbing graph, and b1(Γ) is the first Betti
number of the graph or equivalently number of cycles in the graph.

In [21] a surgery formula for Ẑ of plumbed manifolds with b1 > 0 was given. This
surgery formula gives us Ẑ0,b, with (0, b) ∈ Zb1 ⊕ (2Coker(Q) + δ)/Z2. The surgery formula
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for Ẑ0,b can be written as

Ẑ0,b(q) = q
3σ−
∑

v
av

4 q−
bT Q−1b

4
∑
k∈ZV

q−(kTQk+kT b)

× v.p.
∮
|zv |=1

∏
v

dzv
2πizv

(
zv − z−1

v

)2−deg(v)
z2Qk+b. (4.3)

Where σ is the signature of the linking matrix Q, deg(v) is the degree of vertex v, and
“v.p.” tells us that we should consider principle value prescription for contour integrals (for
more details we refer to [21]). Let fQ,nv denote the coefficients of the series expansion of
(zv − 1/zv)2−deg(v). That is,

(zv − 1/zv)2−deg(v) =
∑
nv∈Z

fQ,nvz
−nv
v (4.4)

fQ,nv is simple for deg(v) ≤ 2 and terminates after finite terms. For deg(v) > 2, fQ,nv is
given by,

fQ,nv =


sgn(nv)deg(v)

2
(deg(v)+|nv |

2 −2
deg(v)−3

)
if |nv| ≥ deg(v)− 2, and nv = deg(v) mod 2

0 otherwise.
(4.5)

Using the series expansion of (zv−1/zv)2−deg(v), we can do the principle value prescription
contour integrals in equation (4.3) and get,

Ẑ0,b(q) = q
3σ−
∑

v
av

4 q−`k( b2 ,
b
2 ) ∑
k∈ZV

∑
n∈ZV

q−χb(k)fQ,nδ2Qk+b,n (4.6)

Where `k : TorsH1(M3) × TorsH1(M3) → Q/Z, is the linking pairing, which is given
by `k(a, b) = aTQ−1b mod 1, the quadratic function χb : ZV → Z is given by χb(k) =

kTQk+bTk, and the term q
3σ−
∑

v
av

4 comes from the framing anomaly. Since the quadratic
function χb is valued in integers, the sum in equation (4.6) is valued in Z[[q, q−1]].4

Surgery formula from Hilbert space. A plumbing graph of a plumbed three-manifold
encodes the information about how the three-manifold can be obtained by gluing T 2 ×
[0, 1] along the torus boundaries. Each edge of plumbing graph corresponds to gluing
by S ∈ SL(2,Z) (see figure 5) and a vertex with coefficient av corresponds to gluing by
T av ∈ SL(2,Z). Similarly, a surgery formula encodes how a three-manifold invariant can be
obtained by cutting and gluing. In a TQFT, a manifold with a torus boundary, depending
on its orientation, is associated with a vector in H(T 2) or Hom(H(T 2),C), a manifold
with r + r′ torus boundaries, with r of them oriented one way and the other r′ oriented
the other way, is associated with an element of Hom(H(T 2)r,H(T 2)r′)(see figure 6). We
want to understand how to get the surgery formula (4.6) by cutting and gluing states and
operators (k-linear maps) on H(T 2).

4For negative definite plumbed manifolds we can choose b such that the sum is valued in Z[[q]].
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Figure 5. Gluing two T 2 × I along (black) boundary T 2 by S ∈ SL(2,Z).

Figure 6. This manifold is associated with an element of Hom(H(T 2)3,H(T 2)2).

To cut down q− b
T

2 Q−1 b
2 into pieces that can be glued, we have to express it as q−βTQβ .

Where β is given by β = 1
2Q
−1b. When we write q− b

T

2 Q−1 b
2 we take b ∈ ZV to be some

representative of [b] ∈ ZV /2QZV . Under b → b + 2Qx, with x ∈ ZV , β → β + x. Just as
b is a representative of [b] ∈ ZV /2QZV , β ∈ QV is a representative of [β] ∈ (Q/Z)V . Just
as in all formulae involving b, b comes with 2Qk + b, β will come with k + β. Since in all
these formulae, k ∈ ZV is summed over, the choice of representatives doesn’t matter, and
we will denote [β] by β.

In terms of β the surgery formula (4.6) can be written as

Ẑ0,b(q) =
∑

β∈(Q/Z)V
Ẑ

Q/Z
0,β (q)δ2Qβ,b, (4.7)

– 12 –



J
H
E
P
0
8
(
2
0
2
3
)
1
1
0

where

Ẑ
Q/Z
0,β (q) = q

3σ−
∑

v
av

4
∑
n∈ZV

∑
k∈ZV

q−(k+β)TQ(k+β)fQ,nδ2Q(k+β),n. (4.8)

Note ẐQ/Z
0,β (q) is non-zero only for β such that Qβ ∈ ZV . Written this way, the summand

in equation (4.8) can be broken down as follows,

q−(k+β)TQ(k+β) = q−
∑

v
av(k+β)2

vq
2
∑

(v,w)∈E(k+β)v(k+β)w (4.9)
δ2Q(k+β),n =

∏
v

δ2av(k+β)v−2
∑

(v,w)∈E(k+β)w,nv . (4.10)

The simple building blocks in (4.9), (4.10) are labeled by (k+β)v and (k+β)w. This suggests
that the basis of the Hilbert space H(T 2) is labeled by Q2 and that H(T 2) is given by,

H(T 2) = C[Q×Q] ∼= C[(Q/Z× Z)× (Q/Z× Z)]. (4.11)

The fractional part (Q/Z × Q/Z) corresponds to the label β, and the integer part corre-
sponds to k. Further the equations (4.9), (4.10) tell us that the matrix elements of S and
T elements of SL(2,Z) in the basis given by {fλ,µ|fλ,µ(λ′, µ′) = δλ,λ′δµ,µ′ , λ, µ ∈ Q} are,

Sλ1,µ1,λ2,µ2 = q−2µ1µ2δλ1,−µ2δµ1,λ2 (4.12)

Tλ1,µ1,λ2,µ2 = q−µ
2
1δλ1,λ2+µ2δµ1,µ2 . (4.13)

In this basis, the matrix elements of ϕ =
(
a b

c d

)
∈ SL(2,Z) are given by,

ϕλ1,µ1,λ2,µ2 = q−cλ1λ2−bµ1µ2δλ1,aλ2+bµ2δµ1,cλ2+dµ2 . (4.14)

Taking a trace of ϕ we get Ẑ of mapping tori T 2 ×ϕ S1. We get the label (`,m), with
(`,m) ∈ 2Coker(ϕ − I), by inserting the operator D(λ, µ) in the trace, where (λ, µ) =
1
2(ϕ− I)−1(`,m). The operator D(λ, µ) is given by,

D(λ, µ)λ1,µ1,λ2,µ2 =
∑

k`,km∈Z
δλ1,λ2δµ1,µ2δλ1,k`+λδµ1,km+µ. (4.15)

Now Ẑ0 for the mapping tori T 2 ×ϕ S1 is given by,

Ẑ0,(`,m)(T 2 ×ϕ S1) =
∑

λ,µ∈Q/Z
q
L−R

4 Tr[D(λ, µ)ϕ]δ2(ϕ−I)(λ,µ),(`,m) (4.16)

Where q L−R4 is a contribution from “framing anomaly”. If | tr{ϕ}| > 2, we can represent the

conjugacy class of ϕ by ±Rr1L`1 . . . RrnL`n with, R =
(

1 1
0 1

)
, L =

(
1 0
1 1

)
, and ri, `i, n ≥ 1,

then q L−R4 = q

∑
`i−
∑

ri
4 .
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Example 1 Let’s look at an example with ϕ = RL. There is no anomaly contribution for
ϕ = RL, therefore Ẑ0,(`,m)(T 2 ×RL S1) is given by

Ẑ0,(`,m)(T 2 ×RL S1)
=

∑
λ1,µ1∈Q
λ2,µ2∈Q
k`,km∈Z

δλ1,λ2δµ1,µ2δλ1,k`+m
2
δµ1,km+ `−m

2
q−λ2λ1−µ2µ1δλ2,2λ1+µ1δµ2,λ1+µ1

=
∑

k`,km∈Z
δ`,2(k`+km)δm,2k` (4.17)

Thus, Ẑ0,(`,m)(T 2 ×RL S1) is non-zero only for (`,m) ∈ 2(ϕ − I)Z2 or equivalently for
(`,m) = 0 ∈ 2Coker(ϕ− I).

The vacuum state in the Hilbert space corresponds to the leaves of plumbing graph
(degree one vertex). For a degree one vertex v fQ,nv is given by5

f1,n = δn,−1 − δn,1 (4.18)

Therefore the vacuum state is given by

vλ,µ =
∑

µ′∈Q/Z
δµ,µ′ (δ2λ,1 − δ2λ,−1) v†λ,µ =

∑
µ′∈Q/Z

δµ,µ′ (δ2λ,−1 − δ2λ,1) . (4.19)

While taking conjugate we take λ→ −λ, which accounts for orientation reversal. A degree
d > 2 vertex of plumbing graph corresponds to an operator O(a) ∈ Hom(H(T 2)r,H(T 2)r′),
with r + r′ = d and where a denotes the framing coefficient of the vertex. The operator
O(a) is given by,

O(a)λ̃1,µ̃1,...λ̃r′ ,µ̃r′
λ1,µ1,...λr,µr

=
∑
n∈Z

fd,nq
−aµ2

1δ
2aµ1+2

∑r

1 λi+2
∑r′

1 λ̃i,n

r∏
i=2

δµ1,µi

r′∏
i=1

δµ1,−µ̃i (4.20)

Example 2 Lets look at an example where the plumbed manifold given by the plumbing
graph from figure 7a. The second cohomology group of this plumbed manifold is Z3. We
can express ẐQ/Z

λ,µ as cutting and gluing of states and operators as shown in figure 7b.

Ẑ
Q/Z
λ,µ = q−

1
4 (v†T−4S)O(−1)(ST−3v)(D(λ, µ)ST−3v) (4.21)

Where q−
1
4 is the anomaly contribution. Using the expressions for v, v†, O(−1), S, and T

we can compute Ẑ and get,

Ẑ0 = 1− q + q6 − q11 + q13 − q20 + q35 − q46 + q50 − q63 + q88 + · · ·

Ẑ±1 = q
2
3 (−q + q4 − q22 + q31 − q67 + q82 + · · · ). (4.22)

5Here by d in fd,n we denote the degree of the vertex. Recall fQ,nv only depends on degree of vertex v.
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(a) Plumbing graph with a degree three vertex. (b) Cutting and gluing of states and operators.

Figure 7. Plumbing graph and it’s interpretation as cutting and gluing of states and operators.

Bockstein homomorphism of decorated TQFTs. The decorations of Ẑ are the same
as those of inverse Reidemeister-Milnor-Turaev torsion. Therefore, as in the case of inverse
Reidemeister-Milnor-Turaev torsion, we expect that the Hilbert space that Ẑ-TQFT assigns
to a torus to be decorated by H2(T 2,Z) ∼= H0(T 2,Z) ∼= Z, and graded by H1(T 2,C/Z) ∼=
(C/Z)2 (or H1(T 2,Z) ∼= Z2). Since the surgery formula only computes Ẑ for decorations
(0, b) ∈ Zb1(M3) × TorsH1(M3) we don’t expect to see the H0(T 2,Z) ∼= Z decoration in
H(T 2) from equation (4.11). On the other hand, we do expect to see decoration b ∈
TorsH1(M3), coming from H1(T 2,Z) ∼= Z2 grading of the Hilbert space. However, as seen
from examples 1, and 2, the decoration b ∈ TorsH1(M3) is coming from the (Q/Z)2 grading
of the Hilbert space. How do we understand this discrepancy? We claim that the H(T 2)
from equation (4.11) is in fact Hilbert space associated to torus in ẐQ/Z-TQFT which under
“Bockstein Homomorphism” maps to Ẑ-TQFT.

Associated with a short exact sequence of abelian groups

0→ G1 → G2 → G3 → 0 (4.23)

there is a connecting homomorphism Bk : H i(M3, G3) → H i+1(M3, G1) called the
Bockstein homomorphism. This Bockstein homomorphism induces a map between topo-
logical invariants decorated with H i(M3, G3) and topological invariants decorated with
H i+1(M3, G1). For α ∈ H i(M3, G3),

Z ′α = ZBk(α). (4.24)

In particular, given a topological invariant decorated with H2(M3,Z), we get a topological
invariant decorated with H1(M3,Q/Z), under the “Bockstein homomorphism” associated
with the following short exact sequence of abelian groups,

0→ Z→ Q→ Q/Z→ 0. (4.25)

For plumbed manifolds, with plumbing graph Γ and linking matrix Q, the cohomology
group H1(M3,Q/Z) is given by,

H1(M3,Q/Z) ∼= (Q/Z)b1(Γ) ×Q−1ZV /ZV . (4.26)
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Where Q−1ZV /ZV = {α ∈ (Q/Z)V |Qα ∈ ZV }. The Bockstein homomorphism Bk :
H1(M3,Q/Z) → H2(M3,Z) takes (Q/Z)b1(Γ) to 0 ∈ Zb1(Γ), and on Q−1ZV its given as
follows,

Bk : Q−1ZV /ZV → ZV /QZV

α 7→ Qα

Notice the image of Bk is precisely the set of decorations we can get from the surgery
formula (4.3). Thus from equation (4.7) we see that under Bockstein homomorphism, Ẑ
maps to ẐQ/Z(q),

Ẑ
Q/Z
β (q) = ẐBk(β)(q) (4.27)

For mapping tori T 2×ϕS1, with tr{ϕ} 6= 2, H1(T 2×ϕS1,Q/Z) ∼= Q/Z×(ϕ−I)−1Z2/Z2

and H2(T 2 ×ϕ S1,Z) ∼= Z× Z2/(ϕ− I)Z2, and under Bockstein homomorphism,

Bk(Q/Z× (ϕ− I)−1Z2/Z2) = {0} × Z2/(ϕ− I)Z2 ⊂ Z× Z2/(ϕ− I)Z2 (4.28)

Therefore, the Bockstein homomorphism takes the (Q/Z)2-graded Hilbert space associated
to torus in ẐQ/Z-TQFT to 0-decorated sector of Z2-graded Hilbert space associated to
torus in Ẑ-TQFT. Since the Bockstein homomorphism maps decorations to decorations, we
expect the Hilbert space for each grading and decoration to remain the same. This suggests
that the 0-decorated sector of Hilbert space associated to torus in Ẑ-TQFT is given by,

H0
Ẑ

(T 2) = C[Z2 × Z2]. (4.29)

Or H0
(`,m)(T 2) = C[Z × Z]. Where 0 ∈ Z ∼= H2(T 2,Z), and (`,m) ∈ Z2 ∼= H1(T 2,Z)

represent the decorations, and grading of the Hilbert space respectively. This conjecture
is based upon the assumption that the Bockstein homomorphism only talks to the Z2 and
(Q/Z)2 grading. However, it is possible that the two Z2s in C[Z2 × Z2] are identified due
to some identifications. In that case the Hilbert space would just be H0

Ẑ
(T 2) = C[Z2].

5 Other invariants from Ẑ

The q-series invariant, in various limits, is related to other three-manifold invariants. These
relations have been studied in various different places in literature [7, 10, 21]. In this section,
we summarise these conjectural relations and make comments on how the Hilbert spaces
in the TQFTs that compute them are related.

Nr invariants are three-manifold invariants associated with quantum groups at roots
of unity [22–24]. They are decorated by H1(M3,C/2Z). The relation between Ẑ(q) and
Nr invariants was studied in [10]. To get the Nr invariants from Ẑ(q), we first take the
Fourier transform of decorations and then take the q → e

2πi
r limit. This map depends on

the value of r mod 4. We can schematically express it as,

Nr(M3, ω) =
∑

b∈H2(M3,Z)
cCGPω,b lim

q→e
2πi
r

Ẑb(M3, q) (5.1)
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Where ω ∈ H1(M3,C/2Z) (for more details we refer to [10]). For mapping tori and with
r = 1 mod 4,

Nr(M,ω) = r

2T (M, [ω]) e−
iπ
2 µ(M,s)

|TorH1(M,Z)|
×

∑
a,f∈Zv/QZv

e−iπω(a)e2πi`k(a+f,f)e2πi( 1−r
4 `k(a,a))Ẑ0(q)|

q→e
2πi
r
. (5.2)

Where T (M, [ω]) is the suitable version of the Reidemeister torsion, µ(M, s) is the mod 4
reduction of Rokhlin invariant and s is a spin-structure.

The Hilbert space associated to torus in Nr-TQFT for non-integral decorations is given
by C[Hr], where

Hr = {−(r − 1),−(r − 3), . . . , (r − 1)} if r = 1 mod 2
Hr = {1, 3, . . . , (r − 1)} if r = 2 mod 4. (5.3)

In this basis the S and T matrices are given by

Sk1,k2
λ1,µ1,λ2,µ2

= 1√
r
ξ−(k1+λ1)(k2+λ2)+...δλ1,−µ2δµ1,λ2 (5.4)

T k1,k2
λ1,µ1,λ2,µ2

= ξ
1
2 (k1+λ1)2+...δk1,k2δλ1,λ2δµ1,µ2−λ2 . (5.5)

Where ki ∈ Hr, λi, µi ∈ C/2Z, ξ = e
iπ
r , and “. . .” are terms that depend only on r.

We expect that this Hilbert space can be obtained from Hilbert space associated with
torus in ẐQ/Z-TQFT or Ẑ-TQFT. In the limit q 1

2 = ξ = e
iπ
r , qαλ is same as qα(λ+2r),

and hence the basis elements of C[Q2] labeled by (λ, µ) ∈ Q2 should be identified with
(λ+ 2nλr, µ+ 2nµr) for all integers nλ, nµ. Therefore, the Hilbert space C[Q2] reduces to
C[(Q/2Z)2 × (2Z/2rZ)2], and similarly C[Z4] should reduce to C[Z2 × (2Z/2rZ)2]. Now
switching the gradings of C[Z2×(2Z/2rZ)2] from Z2 to (C/Z) using the “Fourier transform”
we get C[(C/2Z)2×(2Z/2rZ)2]. We suspect this can be further reduced to the above Hilbert
space in the Nr-TQFT (last arrow in the schematic diagram below) and that Gauss sums
would play an important role in the reduction giving the r mod 4 dependence of the
Hilbert space. Schematically, we can represent the relation between Ẑ-invariants and the
Nr-invariants given in equation (5.2), as a set of operations given below.

C[Z4] C[(C/2Z× Z)2] C[(Z× 2Z/2rZ)2] C[Z2 × 2Z/2rZ].“Fourier transform” qαλ∼qα(λ+2r)

Similarly, appropriately summing over decorations of Ẑ and taking the q → e
2πi
k limit

as conjectured in [8, 10, 21] we get the WRT invariants. On the Hilbert space side taking
the q → e

2πi
k limit, C[Z4] reduces to C[Z2 × Z/kZ] and upon summing over decorations it

further reduces to C[Z2 × Z/kZ].
Without taking the “Fourier transform” of decorations or summing over them, but

taking the q → 1 limit of Ẑb(q), we get the inverse Reidemeister-Milnor-Turaev torsion
τ−1
b . Therefore, the Hilbert space associated torus in Ẑ-TQFT should roughly be the same
as the one in τ−1-TQFT. However, some states might get identified with each other in the
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q → 1 limit. For example, the 0-decorated sector in τ−1-TQFT is given by H0
`,m = C.

However, as conjectured in the previous section, the 0-decorated sector of Hilbert space
associated to torus in Ẑ-TQFT is given by H0

`,m = C[Z2]. We suspect that in the q → 1
limit, C[Z2] in Ẑ-TQFT reduces to C in τ−1-TQFT, as it reduced to C[2Z/2rZ] in Nr-
TQFT. Just as in the 0-decorated H0

`,m = C is lifted to H0
`,m = C[Z2], the n-decorated

sector of the τ−1-TQFT Hilbert space H0
`,m = Hn(2,2) gets lifted to H0

`,m = Hn(2,2) ⊗ C[Z2].
Where Hn(2,2) is the n-particle subspace of H(2,2).

Using this intuition, we conjecture that the Hilbert space associated with torus in
Ẑ-TQFT is given by,

HẐ(T 2) = H(2,2) ⊗ C[Z2 × Z2]. (5.6)

The H2(T 2,Z) ∼= Z decoration comes from the particle number grading of H(2,2) while the
H1(T 2,Z) ∼= Z2 grading comes from the Z2 grading of C[Z2 × Z2]. Thinking of Ẑ-TQFT
as SL(2,C) Chern-Simons theory, we could interpret the second Z2 as states created by
inserting Wilson lines in solid tori, now taking values in all of Z as the level is not quantized.

This intuitive understanding of Hilbert space associated with torus leads us to the con-
jecture that the Hilbert space associated with genus g surface Σg in the Ẑ-TQFT is given by

HẐ(Σg) = H(2g,2) ⊗ C[Z2g × Z2g]. (5.7)

We note that it is possible that the two Z2gs in C[Z2g×Z2g] are identified due to some identi-
fications. In that case the Hilbert space would just be H(2g,2g)⊗C[Z2g]. We suspect that the
recent progress towards finding a fully general mathematical definition of Ẑ from the theory
of quantum groups [25, 26] would provide insights into the validity of the above conjecture.
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A Spin and Spinc structures

The group Spin(n) is the double cover of the special orthogonal group SO(n) given by the
following short exact sequence,

1→ Z2 → Spin(n)→ SO(n)→ 1. (A.1)

A Spin structure on an oriented n-dimensional manifold is a lift of the structure group of
its tangent bundle from SO(n) to Spin(n). The group Spinc(n) is defined by the following
short exact sequence

1→ U(1)→ Spinc(n)→ SO(n)→ 1. (A.2)
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Equivalently we can define it as

Spinc(n) = Spin(n)×U(1)
Z2

. (A.3)

Where Z2 ⊂ Spin(n)×U(1) is given by {(1, 1), (−1,−1)}. A Spinc structure on an oriented
n-dimensional manifold is a lift of the structure group of its tangent bundle from SO(n) to
Spinc(n).

For three-manifolds the space of Spinc structures on it, Spinc(M3), is a H2(M3)-torsor.
Suppose M3 is a three-manifold obtained by integral surgery on a framed oriented link L
in S3 and suppose Q is a V ×V linking matrix of L. Then we can express the cohomology
group H2(M3) and the set of Spinc structures on M3, Spinc(M3), as follows,

H2(M3) ∼= ZV /QZV , (A.4)
Spinc(M3) ∼= {K ∈ ZV /2QZV | Ki = Qii mod 2}. (A.5)
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