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We present here a formalism based on time-dependent density functional theory (TDDFT) to
describe characteristics of both intra- and inter-valley excitons in semiconductors, the latter of
which had remained a challenge. Through the usage of an appropriate exchange-correlation kernel
(nanoquanta), we trace the energy difference between the intra- and inter-valley dark excitons
in monolayer (1L) WSe> to the domination of the exchange part in the exchange-correlation
energies of these states. Furthermore, our calculated transition contribution maps establish the
momentum resolved weights of the electron-hole excitations in both bright and dark excitons
thereby providing a comprehensive understanding of excitonic properties of 1L WSe>. We find
that the states consist of hybridized excitations around the corresponding valleys which leads to
brightening of the dark excitons, i.e., significantly decreasing their lifetime which is reflected in
the PL spectrum. Using many-body perturbation theory, we calculate the phonon contribution to
the energy band gap and the linewidths of the excited electrons, holes and (bright) exciton to find
that as the temperature increases the band gap significantly decreases, while the linewidths
increase. Our work paves for describing the ultrafast charge dynamics of transition metal

dichalcogenide within an ab initio framework.
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1. Introduction

Monolayer transition metal dichalcogenides (TMDs) are a class of two-dimensional (2D)
materials with unique, most notably optical, properties that have drawn considerable interest in
recent years.? Compared to the case of the bulk, monolayer TMDs exhibit a direct band gap at K
points in the Brillouin zone with highly efficient luminescence.®>* The systems also demonstrate
high electron mobility and room-temperature current on/off ratio, with potential field-effect
transistor applications.® As one of most actively studied TMDs, it is known that 1L WSe, a three-
atom thick system, displaying a pronounced absorption region® and a direct band gap at two time-
reversal valleys (K, K’) in the Brillouin zone.”° Due to spin-orbit coupling (SOC), the bottom of
the conduction and top of the valence band are each split into two sub bands with opposite spins.
The valence band splitting is wide, in the hundred meV range, while that of the bottom of
conduction band is in the tenths of meV.® The splitting of conduction band, in particular, creates
an ideal environment for forming intra-valley bright and intra- and inter-valley dark excitons
(shown in Figure 1). The properties of these excitons can be tuned by changing valley polarization
and by the interaction between the different (orbital, spin, valley) degrees of freedom,'**2 giving
rise to exotic effects such as valley optical selection rules®®. The intravalley bright (opposite spin
for electron and hole) or dark (same spin for electron and hole) excitons consist of the electron-
hole pairs from the same K valley, constrained by the spin orientation, with the bright exciton
giving the major contribution to the photoluminescence (PL). On the other hand, the intervalley
dark (opposite spin for electron and hole) exciton is composed of electrons and holes from K and
K’ valleys.!** Because the recombination of the electron and hole from different valleys is
forbidden by momentum conservation law, the emission from (phonon-assisted) recombination of
the intervalley dark exciton is very low. In other words, the lifetime of dark excitons is much longer
than that of the bright ones.*>6
Gate- and magnetic-field based measurements show PL peaks from both bright and dark excitons,
with almost measurement-independent, 16meV, difference in energy for the intra- and inter-valley
dark excitons.?” In a combined experimental+theoretical study using a semiquantitative approach
in which wavefunctions and energies from DFT were used as input for many-body analysis, Liu
et al.!8 showed that the binding energy of the intervalley dark exciton is 10 meV smaller than that
of the intravalley dark exciton because of the difference in the Coulomb exchange energy as a

result of different orientations of the electron and hole in these two systems (for intra- and
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intervalley exciton state transitions, see work [19]). Similarly, Yang et al. found experimentally
that intervalley exciton has smaller binding energy by ~ 9 meV.?’ The dark excitonic states are
seen in the PL spectrum, and the reason for the rather high signatures of the intra- and inter-valley
dark exciton states in the PL despite a low recombination probability, is their relatively large

population.?
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Figure 1. (Color online) Schematic representation of the (a) intravalley bright exciton, (b)
intravalley dark exciton, and (c) intervalley exciton in 1L WSe,. The band in red and green
represent the opposite spin polarizations (depicted by the arrows) at time-reversal K and K’ points
in BZ.

Available first-principles studies of excitons and the optical spectra in 1L WSe,, mostly based
on the GW-Bethe-Salpeter equation (GW-BSE) approach,?:-2 find the binding energy of the direct
(bright) exciton to be in reasonable agreement with experiments.?* Despite this remarkable
achievement, the GW-BSE methodology becomes technically more complicated when one moves
from direct (intravalley) to indirect (intravalley) excitons. For example, in order to calculate
exciton dispersion E (Q) (i.e., exciton energies when electrons and holes have different momenta,
including the case of indirect exciton studied in this work) with the BSE approach, one needs to
diagonalize the eigenenergy equation for each value of Q (see Eq. (1) in work [25]), while in the
TDDFT case it is enough to solve the corresponding TDDFT eigenvalue equation (14) (see
Subsection 2.1 below) in a much cheaper way: one solves much less expensive diagonal equation
(15) (i.e., the direct exciton problem, at zero exciton momentum) and then substitutes the solution

into Eq. (14) that immediately gives the indirect exciton matrix element p,i’j,(w) (and hence the

exciton energy from the peak in the absorption spectrum, see Eq. (18)). Furthermore, the optical
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absorption of extended systems studied by the many-body BSE theory is computationally
demanding, requiring calculations for an enormous number of k-points to solve the two-particle
Green’s functions.?® There is thus an urgent and economic need in theoretical ab initio efforts for
developing computationally efficient techniques for reliable calculations of both indirect
(intervalley) dark excitons and the usual bright excitons. As we document below, time-dependent
density functional theory (TDDFT) is one such scheme.

As in TDDFT one solves an effective one-particle problem, it is technically much simpler than
methods such as BSE. It is a theory of one-particle density that depends on one space vector and
one time variable. Thus, the solution can be obtained in a feasible manner, provided an appropriate
exchange-correlation (XC) potential is available. Formally, the linear-response TDDFT used for
calculation of excited states incorporates many-body effects into the dynamical exchange-
correlation kernel f..(r t,r';t") = Sv,.(r,t)/6n(r',t") , where wv,.(r,t) denotes the
corresponding time-dependent exchange-correlation potential and n(r’, t) is the charge density.
The standard approximations for v, (local density or generalized gradient form) typically predict
the ground-states properties of extended system quite reliably, but fail to describe excitonic effects
in the optical and energy-loss spectra.?’ Moreover, f,. is often defined either by empirical
parameters (such as the long-range (LR) kernel)?® or by some physically-motivated but not quite
universal approximations (e.g., the exact-exchange kernel)®. What is needed is an “exact”
(parameter-free) and technically simple f,. to accurately study excitonic and multi-excitonic
effects in extended systems, such as two dimensional TMDs. From this point of view, the
nanoquanta kernel derived from the BSE approach has an acceptable computational cost, as it
employs the one-loop approximation for the susceptibilities, and has proven to be suitable for
selected systems. 3032

In this work, we focus on describing the fundamental properties of intra and intervalley bright
and dark excitons by using the nanoquanta kernel. We solve the TDDFT problem in the density
matrix representation and obtain results for the excitonic binding energies for the intra-valley
bright and intra and intervalley dark excitons in 1L WSe,. We also calculate the transition
contribution maps to find the composition of these excitons in terms of the free electron-hole
excitations. Finally, by adding phonon effects into the theory in the form of many-body
perturbation theory we calculate the temperature-dependence of the electron and hole excitation
energies and lifetimes of electrons, holes and excitons.
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2. Methodology
2.1 Theory
TDDFT for intervalley excitons

The Casida equation formalism for TDDFT allows one to calculate the eigenenergies and
eigenstates of the system by solving the corresponding eigenproblem.®® However, so far a TDDFT
formalism for describing non-conserving-momenta transitions, including inter-valley excitons, is
absent. To derive TDDFT equation for the intervalley bound states, we begin with the time-
dependent Kohn-Sham equation3*-3¢;

l a‘Pk(r t)

Py = H(r, t)¥;(r, 1), 1)

where k is the wave vector and the system Hamiltonian is given by
HInI(r,6) = =+ Vy [l £) + Ve [n (o, ©) + erE(o), 2)

which includes the kinetic (first), Hartree (second), and XC (third) potential terms, as well as

external electric field part (the last term). The self-consistent electron density is used to solve Eq.
(1):
n(r,t) = Ly ueee| PR O] (3)
where | is combined band and spin index.
To derive the exciton eigenenergy equation it is convenient to use the density matrix

formalism®-% in which one expands WY (r,t) in the basis of the wavefunctions y} () obtained
from DFT:

W, t) = Ximvc k(O (4)
where cj, are time-dependent coefficients. From Egs. (1) and (4) we thus obtain:
25K = %y g HECY 5)
where
Hige (©) = [ ¥ () H([n](r, ) g (r)dr (6)

are matrix elements of the Hamiltonian.
Instead of solving Eq. (5), it is convenient to solve the equation for the density matrix

P () = cp (D (1), (7
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that contains more physical information such as the state occupancies which are given by its
diagonal elements, while electron transitions (polarizations, including excitonic states) are given
by the non-diagonal elements. The density matrix satisfies the Liouville equation

; 9Pkg®) _

= [H, I (6) = Ty (Hin (©pp(6) — piis (OHZ (D)) (8)
The four types of the matrix elements (for valence v and conduction ¢ bands): py (t), py. (t)

Piq(t) and pj (¢) are not all independent, since by definition:

2
1= [|W(r, 0| = pi(©) + pii (), and piy(t) = pgi (D). ©)
We choose pj, (t) and pj (t) as the two independent matrix elements, the equations of motion

for which are

P = g 0050 ~ Py OB (O + (1= G50 — piE(O) HEG®, (10

) CC(t)
2P = —2im (Hpg(Dpiay (0)) (11)

The above equations describe dynamics of the system.
Since we are interested in the excitonic eigenstates lets us derive the eigenequation by

linearizing the polarization equation (10):

a IC(‘Z(t) — ‘ Cvcv d
e G L HOE I S 27 AT YA
|Q|<kp.ab " °
+ Tloi<kran s Fiaga(t: )b (t)dt + dinE(®), (12)

where the function

Frqae(t,t) = [[ drdr’ i (r)wq(r)< (r,7t,t ))w YL (13)

describes scattering of two charges from states with momenta k, q to those with momenta Q and
Q. These elements are defined by the XC kernel f,.(r,7',t,t"). In Eq.(12), & and &4 are the
spectra of the conduction and valence bands obtained from DFT. The excitonic states are described
by the elements pj, (£). In the spin-dependent case, for the spin triplet excitations the products of
two functions w,’f*(r)l,bg(r’) and 1/)},(r)¢3*(r’) corresponding to such transitions (like in the

case of intervalley dark excitons, see below) in Eq. (13) have to be substituted by an antisymmetric

combinations, e.g. g (Mg (') - \%( e ) — ¢,T*(r’)¢3(r)), and similar for the
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second pair. In the Tamm-Dancoff approximation, pgq (t) (de-excitation) terms can be neglected

and the resulting Casida equation becomes:
(0 — & + €)piin (@) = Tigi<r Fingo (@Ipgo(@) — dimE(@) = 0. (14)
Solution of the above equation yields the eigenenergies of the excited system, including
exciton binding energies, when w < A, (4, is band gap). Equation (14) is quite general, since it
can describe intra- (k = q) and inter-valley (k # q ) transitions. This is a generalization of the
density matrix TDDFT equation for excitons® for the case when the electron and hole have
different momenta. Equation for the standard intra-valley excitons has been analyzed in previous
works 3436
We note that equation (14) for the inter-valley excitons can be solved separately for the
diagonal and non-diagonal elements. Thus, one needs to find first the solution for the diagonal

part pry(w) that satisfies the equation

(@ — & + )P (@) — Tigieir g (@)Pg(@) — difE(@) = 0. (15)
The solution of the above equation is
@) = ) Bt dsE (), (16)
lql<kr
where
Byq(w) = (w — & teg + i6)6kq }(’g’é(a)) a7

and id is a small imaginary part.

Substitution of equation (16) into equation (14) gives the equation for the inter-valley
polarization pjg(w).

Next, one can use the solution of the resulting equation to analyze the peaks in the absorption

spectrum A(w)~ — Impj.a(w) to find the intervalley exciton peak that corresponds to the

|E< )
pole of
1
(w—eC+e+id) Sialipi<r Fiago (@B (@) dip, (18)
i.e., a pole of pj, (w) below the gap which gives rise to bound states.

XC kernels



An important aspect of the above derivation is the XC kernel. In this work, we consider three
different XC kernels:

1. Local kernel*”: this is simply the phenomenological contact interaction
local(p, 1) = —ad(r —1'), (19)

where « is a parameter describing the strength of the TDDFT local electron-hole
attraction

2. Long range (LR) kernel®’: it is given by

By = -2 (20)

g |r—r'|’
where ¢ is the effective screening parameter of the electron-hole interaction.

3. Nanoquanta XC kernel derived from the BSE with the matrix elements (in momentum

space) defined by?®
1 — - l
fxcae' (@) = Zul,v3,c2,c4,k1,k3m¢ Y(vyky, coky; G)T:;li;ziz O~ (v3ks, ciky; G,
(21)
where q = k, — k; = k, — k5 and G are reciprocal vectors. Functions @ in Eq. (21) are Fourier

transforms of ®(v,kq, c,k,;1) = 11;,‘{’1 (T)ll),iz*(r) and functions F vic,;v,c, are
klkz;k3k4

.'Fvlclzvzcz = _f de‘r"CD(vlkl, 173k3; T) W(r,r’)cb(CZkz, C4k4,; T')
kiky;ksk,

I C))
lq+G1?

= —%ZG,G';k,k' (Czkz|ei(q+6)r|c4k4)(v3k3|e‘i(q"6')r'|v1k1), (22)

where W (r,r") is screened Coulomb interactions, VV denotes the crystal volume and the inverse
macroscopic dielectric function egé, (q) is approximated by using the one-loop charge

susceptibilities.

Effect of electron-phonon interaction

As is the case with DFT calculations of system energetics, the above derivations are valid at
very low (zero) temperature. Here, we include effects of the ambient temperature through electron-
phonon and exciton-phonon interactions which provide temperature dependencies of the band gap
and the excitonic line width (inverse lifetime). Using second-order perturbation theory to include

electron-phonon interaction in the calculated electronic band energy EL(T)% leads to



EL(T) = e, + 2f ™ (w, T) + 221 (T) (23)

where

®
iy = 3 |95 (k L1 )| Nov(D) + 1= friq | NoT + fraeg 2
= W= g — Wgqy +16  ©— &y + Wgy + 8
is the Fan part of the electron self-energy, and
24w, T) = ng,?_qv(k, L D(2Ngy(T) + 1) (25)

is the Debye- Weller part of self-energy. In Egs. (24) and (25), N and f are Bose and Fermi

distribution functions, and gq,,)(k [,l") and g;i)q,v,(k [,1") are the first- and the second-order

process scattering probabilities, where q is phonon momentum and v is phonon band. For example,
in the second-order case the probability corresponds to the scattering process |lk) —
[l'k—q—q') ®|qv) ® |q'v'), i.e. electron state transforms into another electron state with two
absorbed (emitted) phonons (for details, see Ref. [38]).

The shift of the band gap at the K-point obtained by subtracting ¢, — ¢f from Eg(T) — E{(T)-
IS given by:
A= ERT) + T (1) = T ™ (ER. T) = Zg " (B, T). (26)

The phonon-induced exciton line broadening for state [ obtained using second order perturbation
theory in exciton-phonon coupling is:

@ 1 z N T
y = z e z)| S5+ Nay, )6(ho — B +q) Foys,).  @27)
q v,
For further details of calculations of the effect of phonons on optical properties using semi-

empirical methods see Refs. [39,40] and for first-principles implementation see Refs. [41-43].

2.2 Computational details

The DFT Kohn-Sham wavefunctions and eigenenergies were generated by the code
QUANTUM ESPRESSO* and served as the input for the TDDFT code BEE (Binding Energy of

Excitons)® developed in our group to obtain the associated fundamental parameters and solutions
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of the exciton eigenenergy equation. The Perdew-Burke-Ernzerhof (PBE) XC potential within the
generalized gradient approximation (GGA)* was used in the DFT calculations. We used the norm-
conserving pseudopotential to avoid inappropriate normalization of pseudo-wave functions.*® A
cutoff energy of 70 Ryand a (12 x 12 x 1) k-point mesh in the 2D Brillouin zone (BZ) were used
to optimize the crystal structure.*” The 1L WSe; is modeled using a cell with (1x1) periodicity
added to the vacuum slab ~12 A along the ¢ direction (shown in Figure 2). The optimized lattice
constant a was found to be 3.357 A. Further, the band structure calculations in the presence of
SOC were performed with fully relativistic pseudopotentials.®® The calculations to generate the
wavefunction with SOC were performed with (18 X 18 X 1) k-point grid in the BZ. Density
functional perturbation theory (DFPT)*® was used to calculate the dispersion of phonons and the
electron-phonon scattering probabilities across the BZ using QUANTUM ESPRESSO. The
phonon frequency calculations were converged for residual force less than 0.00001 eV/ A2, In
calculations of the exciton binding energies, we used 12 x 12 x 1 k-point mesh which gives rather
accurate results (for the dependence of the exciton binding energy on the number of k-points in
the case of local XC kernel, see Figure 3). Note that the k-point mesh used in our TDDFT study is
much smaller than the typical (a few times/order of magnitude larger) ones used to obtain

converged results in the BSE approach *°.
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Figure 2. (Color online) Atomic structure of 1L WSe..

10



600
—8— 6x6x1
12x12x1
500 { —®— 18x18x1
—8— 24x24x1

400 A

300 4

200 4

Exciton binding energy (meV)

100 A

[I) Sb l(l)O 15|0 2(l]0 250
a

Figure 3. Dependence of the exciton binding energy in 1L WSe2 on number of k-points in the case
of local XC kernel (19) at different values of the kernel parameter «a.

3. Results and discussions
3.1 Band structure and exciton binding energy

The calculated band structure of 1L WSe: is shown in Figure 4. Although the PBE potential
underestimates the band gap of 1L WSe, (1.46 eV which is less than the experimental value of
2.02eV > our result regarding splitting of the bottom of the conduction band (~38.6 meV) owing
to SOC are in good agreement with experimental observations and theoretical predictions.®®2
Functionals that account for screening effects, such as the Heyd-Scuseria-Ernzerhof (HSE) hybrid
functional, provide band gap that agrees with the experimental data,>® but with a high
computational cost. Since the calculated binding energies (of the exciton) with respect to the
bottom of sub-bands should not be significantly sensitive to the value of the band gap, we have
stayed with the PBE functional for our DFT calculations.

For further computational feasibility, we use a three-band approximation, which includes the
top of valence band (V1) and two sub-bands of bottom of conduction band (C1, C2) split by the
SOC effect, in the TDDFT calculation for the binding energy of excitons. Note that TDDFT results
for the exciton binding energies are less sensitive to the number of used bands as compared to the
BSE approach.®* Figure 4 also displays the momentum-resolution of the three bands across the BZ.
The highest level of the top of the valence band is located at K and K’ points, similarly the lowest

levels of the conduction bands are also at these points, i.e. the system is a direct-gap semiconductor.
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Figure 4. (Color online) The band structure of 1L WSe> along the path of the high-symmetry
points (a). The three-band approximation used for TDDFT (black solids in (a)) in our calculations,
which include the valence band (V1) (b), and the split conduction band (C1) (c) and conduction
band (C2) (d). The full and the first Brillouin zones are shown in white,

The theoretical values of the exciton binding energy in 1L WSe; still lack trustworthy
consistency in the community. The DFT-based method® and GW-BSE calculations®* predict
exciton binding energy of approximately 500 meV and 340 meV, respectively, while the

experimental observations, from in situ optical absorption and PL spectroscopy, suggest that the
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corresponding energy is 317 meV.*® Optical reflectance and spectroscopic data infer the binding
energy to be about 412 meV in suspended 1L WSe>.>" We first summarize our calculated exciton
binding energies using the local and long range kernels in Table | and Figure 5. As one can see
from Figure 5a, to achieve the experimentally estimated binding energy ~ 400 meV we need a =
191 for the contact local kernel, which is an unreasonably high value. It is also clear that the
exciton binding energy is very sensitive to the parameter «. Notably, the binding energy is very
weak if local potential is approximately regarded as “averaged LDA”. Similarly, the results for the
exciton binding energy depends dramatically on the parameter ¢ in the LR potentials, as shown in
Figure 5b. The screening parameter ¢ is approximately 450 to obtain the experimental value of
400 meV for exciton binding energy. Unfortunately, a realistic screening parameter (~3) cannot
produce binding energy that is consistent with the experimental value. Although the calculations
of binding energy using local and LR potentials do not include SOC effect, the fact that the
obtained results are sensitive to the values of the parameters and one cannot reproduce
experimental data with reasonable values of these parameters, suggests that these kernels cannot

be used to describe excitons 1L WSes.

Table 1. Exciton binding energy (in meV) for 1L WSe> calculated with the local and LR potentials
for different values of corresponding parameters « and «.

Local a 1 10 50 100 150 250
E, 0158 159 37.6 163 293 555 gfg
LR € 0.05 0.01 00033 000286 0.0025 0.002 o657

Ex 0.0589 0.2961 0.9058 5.668 202.11  493.15
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Figure 5. (Color online) Exciton binding energy for 1L WSe; (in meV) calculated with the contact
local kernel (a) for different values of coupling « and the LR kernel (b) with different «.

In order to obtain more physical results for the intra- and intervalley excitons we thus turn to
the nanoquanta kernel, which takes into account rather accurately screening in the framework of
many-body perturbation theory, and the rest of the computational procedure is parameter-free. In
the corresponding kernel calculation, the simple ground states KS potential, such as PBE, can be
applied instead of the more complex one in practice. The binding energies of intra- and intervalley
excitons calculated with the nanoquanta kernel are listed in the Table 1l which shows that our
values are slightly smaller than those from the experimental data. Some of discrepancy could be
attributed to the three-band model that we have used. For bench marking our results, we calculated
the binding energy of intravalley bright exciton using the GW-BSE-SOC method. Since this
method requires a dense k-mesh and a good number of bands, a (36 x 36 x 1) k-point mesh with
10 bands (6 valence bands and 4 conduction bands) were employed. Unfortunately, such a
procedure produced a binding energy of only 70 meV for the intravalley bright exciton.
Additionally, we notice that the binding energy of bright exciton with SOC differs significantly
from that without it. This difference depends mainly on the distinct curvatures of band edges in
the SOC and non-SOC cases, which gives rise to differences in the effective masses of carriers.

To shed light on direct and indirect optical transitions, we turn to a comparison of the
properties of the intra- and intervalley dark excitons. As shown in Figure 6, intravalley dark
exciton (D°) is composed of electron and hole with same spin, while intervalley dark exciton (1°)
consists of electron and hole with opposite spin. Electron-hole Coulomb interaction is naturally

present in both D%and 1°. On the other hand, electron-hole exchange interaction contributes only
14



to the energy of 1° (electron and hole have opposite spins, i.e. electrons from the conduction and
valence bands have the same spin) and thus leads to the energy splitting between D° and 1°. We
find this splitting using the nanoquanta kernel to be ~ 22 meV in our calculations, as seen in Table
1, in reasonable agreement with experimental observations (9~16 meV).1-2° Our calculations of
the difference of the exchange parts of the energy of the intra- and inter-valley dark excitons,
obtained with the nanoquanta potential, also support this result. Namely, we have calculated the

exchange energy related to the inter-valley dark exciton by using an approximate formula, valid
for two interacting particles, —%ff ardr' g (Y ) fxe 7 — 7)Y (PP (F) , where

fxc(¥ — 7") is the real-space Fourier transform of the nanoquanta kernel in Eq. (21) (this energy

is the analogue of the exchange part of the energy in the Hartree-Fock approximation
— [ dFdFp By )

two-particle approximation for the excitonic wave function, 33meV is in rather good agreement

1

771

Y (PP (1), to find it to be 33meV. Given the simplified

with the above Casida equation result of 22meV.

Figure 6. (Color online) The energy separation between intravalley dark exciton (D and
intervalley momentum-forbidden exciton (1°). Spin directions for different bands are shown by
arrows.

Table I1. Binding energy (in meV) of intra- and intervalley excitons with and without SOC for 1L
WSe> calculated with the nanoquanta kernel (Eq. (14) as approximated by Eq. (15)-(18)).
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Exciton Binding energy

Intravalley dark (D°) 132

SOC Intervalley dark (19 110
Intravalley bright 91

No SOC Intravalley bright 154

3.2 Transition contribution maps

For a deeper understanding of the properties of the dark excitons, we calculated momentum-
resolved weights of the electron-hole transitions for each excitonic state. This was done by
calculating the eigenvectors from Eq. (14) and plotting the transition contribution map - square of
the modulus of the components of eigenvectors (that correspond to different momenta). The
obtained transition contribution maps (Figure 7), that show contribution of different “DFT-state
excitations” to the excitonic transitions, facilitate a better understanding of excitonic states. In this
map, in the xy-plane we show the momentum of the electron excited state, while the hole excited
state is assumed to be at the K-point. Our findings reveal that electron-hole transitions consist
dominantly of states nearby the K and K’ valleys in the case of intravalley excitons (both
intravalley bright and dark excitations), while the excitations from the adjacent area of K and K’
also contribute to the optical transition. For the intervalley electron-hole excitations, the primary
contributions of excitonic hybridizations are from the areas around K and K’ valleys. Surprisingly,

there are additional contributions from the I" point.
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Figure 7. (Color online) The transition contribution map for the intra- (a) and intervalley (b)

excitons. The final momenta of electrons are given in the xy-plane and the final momenta of holes
are located at K point.

3.3 Energy shifts and lifetimes due to charge-phonon interaction

Inclusion of electron-phonon interactions, as summarized in Section 2.1, allows calculation
of the temperature dependencies of the excitation energy by documenting the shifts in the position
of the inter-band and exciton transition peaks. In particular, by using Eq. (26) we find that the band
gap shrinks from 1.46 eV to 1.396 eV (decrease by 64 meV) as temperature increases from OK to
300 K (Figure 8c). The top of valence band lifts and bottom of conduction band drops
simultaneously in this temperature range. The corresponding variation of ~100meV in electron
and hole energies at 300 K are well in agreement with the experimental observations that give
variation of 87.5eV.*® In this work, we did not calculate change of the energy of different types of
excitons with temperature, which is a separate computationally challenging project. We analyzed
the phonon part of lifetime of the electron, hole (from the inverse of the imaginary part of self-
energy (24)) and bright exciton (equal to inverse of the corresponding line broadening (27)). We
found that this quantity also changes significantly with temperature (Figures 8d and 8e). These

results point to the need to include phonon effects to describe experimental spectra of the system.
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Figure 8. (Color online) The energy renormalization as a function of temperature (0~300 K) in
the valence band (a), conduction band (b), and the band gap (c). The inverse lifetime of particles
(holes in the valence band and electrons in the conduction band) (d) and of the bright exciton (e)
as a function of temperature.
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4. Conclusions

In this work, we have formulated a density matrix TDDFT approach to examine the properties of
intervalley excitons in 1L WSe,. We applied different XC kernels to analyze the excitonic
properties of the system, and found that the nanoquanta kernel provides physically meaningful
results. This TDDFT approach is computationally much more feasible as compared to the BSE
method. The exchange energy-splitting of the energies of intra- and intervalley dark excitons
obtained by the nanoquanta kernel is approximately 22 meV, which is in good agreement with the
experimental results. The TDDFT calculations of the transition contribution map for the
excitations in 1L WSe> show that the electron-hole transitions near the K and K’ valleys mostly
contribute to the formation of intravalley excitonic states. Surprisingly, in the inter-valley exciton

case states around I'-point also give a significant contribution.

We have also applied second-order perturbation theory to evaluate the contribution of electron-
phonon scattering to the temperature-induced shift of the bands and of the band gap, as well as to
calculate the electron-, hole- and bright exciton lifetimes. We found that these quantities depend
significantly on temperature, and that our results for the band gap shift are in agreement with
available experimental data. These results suggest that phonons cannot be neglected in analysis of
the optical spectra of the system. The formalism presented here is ready to be applied to describe
systems with many (orbital, spin, valley, lattice vibration) degrees of freedom in TMDs and other

materials.
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