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We present here a formalism based on time-dependent density functional theory (TDDFT) to 

describe characteristics of both intra- and inter-valley excitons in semiconductors, the latter of 

which had remained a challenge. Through the usage of an appropriate exchange-correlation kernel 

(nanoquanta), we trace the energy difference between the intra- and inter-valley dark excitons 

in  monolayer (1L) WSe2 to the domination of the exchange part in the exchange-correlation 

energies of these states. Furthermore, our calculated transition contribution maps establish the 

momentum resolved weights of the electron-hole excitations in both bright and dark excitons 

thereby providing a comprehensive understanding of excitonic properties of 1L WSe2. We find 

that the states consist of hybridized excitations around the corresponding valleys which leads to 

brightening of the dark excitons, i.e., significantly decreasing their lifetime which is reflected in 

the PL spectrum. Using many-body perturbation theory, we calculate the phonon contribution to 

the energy band gap and the linewidths of the excited electrons, holes and (bright) exciton to find 

that as the temperature increases the band gap significantly decreases, while the linewidths 

increase. Our work paves for describing the ultrafast charge dynamics of transition metal 

dichalcogenide within an ab initio framework.  
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1. Introduction 

Monolayer transition metal dichalcogenides (TMDs) are a class of two-dimensional (2D) 

materials with unique, most notably optical, properties that have drawn considerable interest in 

recent years.1,2 Compared to the case of the bulk, monolayer TMDs exhibit a direct band gap at K 

points in the Brillouin zone with highly efficient luminescence.3,4 The systems also demonstrate  

high electron mobility and room-temperature current on/off ratio, with potential field-effect 

transistor applications.5 As one of most actively studied TMDs, it is known that 1L WSe2, a three-

atom thick system, displaying a pronounced absorption region6 and a direct band gap at two time-

reversal valleys (K, K′) in the Brillouin zone.7-10 Due to spin-orbit coupling (SOC), the bottom of 

the conduction and top of the valence band are each split into two sub bands with opposite spins. 

The valence band splitting is wide, in the hundred meV range, while that of the bottom of 

conduction band is in the tenths of meV.9 The splitting of conduction band, in particular, creates 

an ideal environment for forming intra-valley bright and intra- and inter-valley dark excitons 

(shown in Figure 1). The properties of these excitons can be tuned by changing valley polarization 

and by the interaction between the different (orbital, spin, valley) degrees of freedom,11,12 giving 

rise to exotic effects such as valley optical selection rules13. The intravalley bright (opposite spin 

for electron and hole) or dark (same spin for electron and hole) excitons consist of the electron-

hole pairs from the same K valley, constrained by the spin orientation, with the bright exciton 

giving the major contribution to the photoluminescence (PL). On the other hand, the intervalley 

dark (opposite spin for electron and hole) exciton is composed of electrons and holes from K and 

K′  valleys.12-14 Because the recombination of the electron and hole from different valleys is 

forbidden by momentum conservation law, the emission from (phonon-assisted) recombination of 

the intervalley dark exciton is very low. In other words, the lifetime of dark excitons is much longer 

than that of the bright ones.15,16  

Gate- and magnetic-field based measurements show PL peaks from both bright and dark excitons, 

with almost measurement-independent, 16meV, difference in energy for the intra- and inter-valley 

dark excitons.17 In a combined experimental+theoretical study using a semiquantitative approach 

in which wavefunctions and energies from DFT were used as input for many-body analysis, Liu 

et al.18 showed that the binding energy of the intervalley dark exciton is 10 meV smaller than that 

of the intravalley dark exciton because of the difference in the Coulomb exchange energy as a 

result of different orientations of the electron and hole in these two systems (for intra- and 
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intervalley exciton state transitions, see work [19]). Similarly, Yang et al. found experimentally 

that intervalley exciton has smaller binding energy by ~ 9 meV.20 The dark excitonic states are 

seen in the PL spectrum, and the reason for the rather high signatures of the intra- and inter-valley 

dark exciton states in the PL despite a low recombination probability, is their relatively large 

population.20 

 

Figure 1. (Color online) Schematic representation of the (a) intravalley bright exciton, (b) 

intravalley dark exciton, and (c) intervalley exciton in 1L WSe2. The band in red and green 

represent the opposite spin polarizations (depicted by the arrows) at time-reversal K and K′ points 

in BZ. 

 

Available first-principles studies of excitons and the optical spectra in 1L WSe2, mostly based 

on the GW-Bethe-Salpeter equation (GW-BSE) approach,21-23 find the binding energy of the direct 

(bright) exciton to be in reasonable agreement with experiments.24 Despite this remarkable 

achievement, the GW-BSE methodology becomes technically more complicated when one moves 

from direct (intravalley) to indirect (intravalley) excitons. For example, in order to calculate 

exciton dispersion 𝐸(𝑸) (i.e., exciton energies when electrons and holes have different momenta, 

including  the case of indirect exciton studied in this work) with the BSE approach, one needs to 

diagonalize the eigenenergy equation for each value of 𝑸 (see Eq. (1) in work [25]), while in the 

TDDFT case it is enough to solve the corresponding TDDFT eigenvalue equation (14) (see 

Subsection 2.1 below) in a much cheaper way: one solves much less expensive diagonal equation 

(15) (i.e., the direct exciton problem, at zero exciton momentum) and then substitutes the solution 

into Eq. (14) that immediately gives the indirect exciton matrix element 𝜌𝒌𝒒
𝑐𝑣(𝜔) (and hence the 

exciton energy from the peak in the absorption spectrum, see Eq. (18)). Furthermore, the optical 
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absorption of extended systems studied by the many-body BSE theory is computationally 

demanding, requiring calculations for an enormous number of k-points to solve the two-particle 

Green’s functions.26 There is thus an urgent and economic need in theoretical ab initio efforts for 

developing computationally efficient techniques for reliable calculations of both indirect 

(intervalley) dark excitons and the usual bright excitons. As we document below, time-dependent 

density functional theory (TDDFT) is one such scheme. 

 As in TDDFT one solves an effective one-particle problem, it is technically much simpler than 

methods such as BSE. It is a theory of one-particle density that depends on one space vector and 

one time variable. Thus, the solution can be obtained in a feasible manner, provided an appropriate 

exchange-correlation (XC) potential is available. Formally, the linear-response TDDFT used for 

calculation of excited states incorporates many-body effects into the dynamical exchange-

correlation kernel 𝑓𝑥𝑐(𝐫, 𝑡, 𝐫′; 𝑡′) = 𝛿𝑣𝑥𝑐(𝐫, 𝑡) 𝛿𝑛(𝐫′, 𝑡′)⁄ , where 𝑣𝑥𝑐(𝐫, 𝑡)  denotes the 

corresponding time-dependent exchange-correlation potential and 𝑛(𝐫′, 𝑡) is the charge density. 

The standard approximations for 𝑣𝑥𝑐 (local density or generalized gradient form) typically predict 

the ground-states properties of extended system quite reliably, but fail to describe excitonic effects 

in the optical and energy-loss spectra.27 Moreover, 𝑓𝑥𝑐  is often defined either by empirical 

parameters (such as the long-range (LR) kernel)28 or by some physically-motivated but not quite 

universal approximations (e.g., the exact-exchange kernel)29. What is needed is an “exact” 

(parameter-free) and technically simple 𝑓𝑥𝑐  to accurately study excitonic and multi-excitonic 

effects in extended systems, such as two dimensional TMDs. From this point of view, the 

nanoquanta kernel derived from the BSE approach has an acceptable computational cost, as it 

employs the one-loop approximation for the susceptibilities, and has proven to be suitable for 

selected systems.30-32   

In this work, we focus on describing the fundamental properties of intra and intervalley bright 

and dark excitons by using the nanoquanta kernel. We solve the TDDFT problem in the density 

matrix representation and obtain results for the excitonic binding energies for the intra-valley 

bright and intra and intervalley dark excitons in 1L WSe2. We also calculate the transition 

contribution maps to find the composition of these excitons in terms of the free electron-hole 

excitations. Finally, by adding phonon effects into the theory in the form of many-body 

perturbation theory we calculate the temperature-dependence of the electron and hole excitation  

energies and lifetimes of electrons, holes and excitons.  
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2. Methodology 

2.1 Theory 

TDDFT for intervalley excitons 

The Casida equation formalism for TDDFT allows one to calculate the eigenenergies and 

eigenstates of the system by solving the corresponding eigenproblem.33 However, so far a TDDFT 

formalism for describing non-conserving-momenta transitions, including inter-valley excitons,  is 

absent. To derive TDDFT equation for the intervalley bound states, we begin with the time-

dependent Kohn-Sham equation34-36: 

𝑖
𝜕Ψ𝒌

𝑣(𝒓,𝑡)

𝜕𝑡
= 𝐻(𝒓, 𝑡)Ψ𝒌

𝑣(𝒓, 𝑡),                                                 (1) 

where 𝒌 is the wave vector and the system Hamiltonian is given by 

𝐻[𝑛](𝒓, 𝑡) = −
𝛁2

2𝑚
+ 𝑉𝐻[𝑛](𝒓, 𝑡) + 𝑉𝑋𝐶[𝑛](𝒓, 𝑡) + 𝑒𝒓𝑬(𝑡),                          (2) 

which includes the kinetic (first), Hartree (second), and XC (third) potential terms, as well as 

external electric field part (the last term). The self-consistent electron density is used to solve Eq. 

(1): 

𝑛(𝑟, 𝑡) = ∑ |Ψ𝒌
𝑙 (𝒓, 𝑡)|

2
𝑙,|𝒌|<𝑘𝐹

,                                               (3) 

where l is combined band and spin index. 

To derive the exciton eigenenergy equation it is convenient to use the density matrix 

formalism34-36 in which one expands Ψ𝒌
𝑣(𝒓, 𝑡) in the basis of the wavefunctions 𝜓𝒌

𝑙 (𝒓) obtained 

from DFT: 

Ψ𝒌
𝑣(𝒓, 𝑡) = ∑ 𝑐𝒌

𝑙 (𝑡)𝜓𝒌
𝑙

𝑙=𝑣,𝑐    ,                                                 (4) 

where 𝑐𝒌
𝑙  are time-dependent coefficients. From Eqs. (1) and (4) we thus obtain: 

𝑖
𝜕𝑐𝒌

𝑚

𝜕𝑡
= ∑ 𝐻𝒌𝒒

𝑚𝑙𝑐𝒒
𝑙

𝑙=𝑣,𝑐;𝒒    ,                                                        (5) 

where 

𝐻𝒌𝒒
𝑚𝑙(𝑡) = ∫ 𝜓𝒌

𝑚∗(𝒓)𝐻[𝑛](𝒓, 𝑡)𝜓𝒒
𝑙 (𝒓)𝑑𝒓                                    (6) 

are matrix elements of the Hamiltonian. 

Instead of solving Eq. (5), it is convenient to solve the equation for the density matrix 

𝜌𝒌𝒒
𝑙𝑚(𝑡) = 𝑐𝒌

𝑙 (𝑡)𝑐𝒒
𝑚∗(𝑡),                                                    (7) 
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that contains more physical information such as the state occupancies which are given by its 

diagonal elements, while electron transitions (polarizations, including excitonic states) are given 

by the non-diagonal elements. The density matrix satisfies the Liouville equation 

𝑖
𝜕𝜌𝒌𝒒

𝑙𝑚(𝑡)

𝜕𝑡
= [𝐻, 𝜌]𝒌𝒒

𝑚𝑙(𝑡) ≡ ∑ (𝐻𝒌𝒑
𝑙𝑛 (𝑡)𝜌𝒑𝒒

𝑛𝑚(𝑡) − 𝜌𝒌𝒑
𝑙𝑛 (𝑡)𝐻𝒑𝒒

𝑛𝑚(𝑡))𝑛,𝑝 .                  (8) 

The four types of the matrix elements (for valence 𝑣 and conduction 𝑐 bands): 𝜌𝒌𝒌
𝑣𝑣(𝑡), 𝜌𝒌𝒒

𝑐𝑣 (𝑡), 

𝜌𝒌𝒒
𝑣𝑐 (𝑡) and 𝜌𝒌𝒌

𝑐𝑐 (𝑡)  are not all independent, since by definition: 

 1 = ∫|Ψ𝒌
𝑙 (𝒓, 𝑡)|

2
= 𝜌𝒌𝒌

𝑣𝑣(𝑡) + 𝜌𝒌𝒌
𝑐𝑐 (𝑡), 𝑎𝑛𝑑 𝜌𝒌𝒒

𝑐𝑣 (𝑡) = 𝜌𝒒𝒌
𝑣𝑐(𝑡).                                          (9) 

We choose 𝜌𝒌𝒒
𝑐𝑣 (𝑡) and 𝜌𝒌𝒌

𝑐𝑐 (𝑡) as the two independent matrix elements, the equations of motion 

for which are 

𝑖
𝜕𝜌𝒌𝒒

𝑐𝑣(𝑡)

𝜕𝑡
= 𝐻𝒌𝒑

𝑐𝑐 (𝑡)𝜌𝒑𝒒
𝑐𝑣(𝑡) − 𝜌𝒌𝒑

𝑐𝑣 (𝑡)𝐻𝒑𝒒
𝑣𝑣(𝑡) + (1 − 𝜌𝒒𝒒

𝑐𝑐 (𝑡) − 𝜌𝒌𝒌
𝑐𝑐 (𝑡)) 𝐻𝒌𝒒

𝑐𝑣(𝑡),      (10) 

𝜕𝜌𝒌𝒌
𝑐𝑐 (𝑡)

𝜕𝑡
= −2𝐼𝑚 (𝐻𝒑𝒌

𝑣𝑐(𝑡)𝜌𝒌𝒑
𝑐𝑣 (𝑡)).                                                (11) 

The above equations describe dynamics of the system.  

Since we are interested in the excitonic eigenstates lets us derive the eigenequation by 

linearizing the polarization equation (10): 

𝑖
𝜕𝜌𝒌𝒒

𝑐𝑣 (𝑡)

𝜕𝑡
= (𝜀𝒌

𝑐 − 𝜀𝒒
𝑣)𝜌𝒌𝒒

𝑐𝑣 (𝑡) + ∑ ∫ 𝐹𝒌𝒒𝑸𝑸
𝑐𝑣𝑐𝑣 (𝑡, 𝑡′)𝜌𝑸𝑸

𝑐𝑣 (𝑡′)𝑑𝑡′
𝑡

0|𝑸|<𝑘𝐹,𝑎,𝑏

 

+ ∑ ∫ 𝐹𝒌𝒒𝑸𝑸
𝑐𝑣𝑐𝑣 (𝑡, 𝑡′)𝜌𝑸𝑸

𝑣𝑐 (𝑡′)𝑑𝑡′
𝑡

0|𝑸|<𝑘𝐹,𝑎,𝑏 + 𝑑𝒌𝒒
𝑐𝑣 𝐸⃗⃗(𝑡),                                 (12) 

where the function 

𝐹𝒌𝒒𝑸𝑸
𝑙𝑚𝑎𝑏(𝑡, 𝑡′) = ∬ 𝑑𝒓𝑑𝒓′ 𝜓𝒌

𝑚∗(𝒓)𝜓𝒒
𝑙 (𝒓) (

1

|𝒓−𝒓′|
𝛿(𝑡 −  𝑡′) + 𝑓𝑥𝑐(𝒓, 𝒓′, 𝑡, 𝑡′)) 𝜓𝑸

𝑎∗(𝒓′)𝜓𝑸
𝑏 (𝒓′) (13) 

describes scattering of two charges from states with momenta 𝒌, 𝒒 to those with momenta 𝑸 and 

𝑸. These elements are defined by the XC kernel 𝑓𝑥𝑐(𝒓, 𝒓′, 𝑡, 𝑡′). In Eq.(12), 𝜀𝒌
𝑐  and 𝜀𝒒

𝑣  are the 

spectra of the conduction and valence bands obtained from DFT. The excitonic states are described 

by the elements 𝜌𝒌𝒑
𝑐𝑣 (𝑡). In the spin-dependent case, for the spin triplet excitations the products of 

two functions 𝜓𝒌
𝑚∗(𝒓)𝜓𝑸

𝑏 (𝒓′)  and 𝜓𝒒
𝑙 (𝒓)𝜓𝑸

𝑎∗(𝒓′) corresponding to such transitions (like in the 

case of intervalley dark excitons, see below) in Eq. (13) have to be substituted by an antisymmetric 

combinations, e.g.𝜓𝒌
𝑚∗(𝒓)𝜓𝑸

𝑏 (𝒓′) →
1

√2
(𝜓𝒌

𝑚∗(𝒓)𝜓𝑸
𝑏 (𝒓′) − 𝜓𝒌

𝑚∗(𝒓′)𝜓𝑸
𝑏 (𝒓)), and similar for the 
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second pair. In the Tamm-Dancoff approximation, 𝜌𝑸𝑸
𝑣𝑐 (𝑡) (de-excitation) terms can be neglected 

and the resulting Casida equation becomes: 

(𝜔 − 𝜀𝒌
𝑐 + 𝜀𝒒

𝑣)𝜌𝒌𝒒
𝑐𝑣 (𝜔) − ∑ 𝐹𝒌𝒒𝑸𝑸

𝑐𝑣𝑐𝑣 (𝜔)𝜌𝑸𝑸
𝑐𝑣 (𝜔)|𝑸|<𝑘𝐹

− 𝑑𝒌𝒒
𝑐𝑣 𝐸⃗⃗(𝜔) = 0.           (14) 

Solution of the above equation yields the eigenenergies of the excited system, including 

exciton binding energies, when 𝜔 < Δ𝑔 (Δ𝑔 is band gap). Equation (14) is quite general, since it 

can describe intra- (𝒌 = 𝒒) and inter-valley (𝒌 ≠ 𝒒 ) transitions. This is a generalization of the 

density matrix TDDFT equation for excitons35 for the case when the electron and hole have 

different momenta. Equation for the standard intra-valley excitons has been analyzed in previous 

works.34-36 

We note that equation (14) for the inter-valley excitons can be solved separately for the 

diagonal and non-diagonal elements. Thus, one needs to find first the solution for the diagonal 

part  ρ̃kk
cv (ω) that satisfies the equation 

(𝜔 − 𝜀𝒌
𝑐 + 𝜀𝒌

𝑣)𝜌̃𝒌𝒌
𝑐𝑣 (𝜔) − ∑ 𝐹𝒌𝒌𝑸𝑸

𝑐𝑣𝑐𝑣 (𝜔)𝜌̃𝑸𝑸
𝑐𝑣 (𝜔)|𝑸|<𝑘𝐹

− 𝑑𝒌𝒌
𝑐𝑣 𝐸⃗⃗(𝜔) = 0.            (15) 

The solution of the above equation is 

𝜌̃𝒌𝒌
𝑐𝑣(𝜔) = ∑ 𝐵𝒌𝒒

−1

|𝒒|<𝑘𝐹

𝑑𝒒𝒒
𝑐𝑣 𝐸⃗⃗(𝜔),                                                    (16) 

where 

𝐵𝒌𝒒(𝜔) = (𝜔 − 𝜀𝒌
𝑐 + 𝜀𝒒

𝑣 + 𝑖𝛿)𝛿𝒌𝒒 − 𝐹𝒌𝒌𝒒𝒒
𝑐𝑣𝑐𝑣(𝜔)                                (17) 

and 𝑖𝛿 is a small imaginary part. 

Substitution of equation (16) into equation (14) gives the equation for the inter-valley 

polarization 𝜌𝒌𝒒
𝑐𝑣(𝜔). 

Next, one can use the solution of the resulting equation to analyze the peaks in the absorption 

spectrum 𝐴(𝜔)~ −
1

|𝐸⃗⃗(𝜔)|
𝐼𝑚𝜌𝒌𝒒

𝑐𝑣(𝜔) to find the intervalley exciton peak that corresponds to the 

pole of  

 
1

(𝜔−𝜀𝒌
𝑐+𝜀𝒒

𝑣+𝑖𝛿)
∑ 𝐹𝒌𝒒𝑸𝑸

𝑐𝑣𝑐𝑣 (𝜔)𝐵𝑸𝒑
−1(𝜔)|𝑸|,|𝒑|<𝑘𝐹

𝑑𝒑𝒑
𝑐𝑣 ,                                   (18) 

i.e., a pole of 𝜌𝒌𝒒
𝑐𝑣 (𝜔) below the gap which gives rise to bound states. 

XC kernels 
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An important aspect of the above derivation is the XC kernel. In this work, we consider three 

different XC kernels: 

1. Local kernel37: this is simply the phenomenological contact interaction  

𝑓𝑋𝐶
𝑙𝑜𝑐𝑎𝑙(𝒓, 𝒓′) = −𝛼𝛿(𝒓 − 𝒓′),                                                         (19)  

where 𝛼 is a parameter describing the strength of the TDDFT local electron-hole 

attraction 

2. Long range (LR) kernel37: it is given by 

𝑓𝑋𝐶
𝐿𝑅(𝒓, 𝒓′) = −

1

ε

1

|𝒓−𝒓′|
,                                             (20)  

where ε is the effective screening parameter of the electron-hole interaction.  

3. Nanoquanta XC kernel derived from the BSE with the matrix elements (in momentum 

space) defined by28  

𝑓𝑋𝐶𝐺𝐺′(𝐪) = ∑
1

𝑓𝑣1𝒌1−𝑓𝑐2𝒌2

Φ−1(𝑣1𝒌1, 𝑐2𝒌2; 𝑮)ℱ 𝑣1𝑐1;𝑣2𝑐2

𝒌1𝒌2;𝒌3𝒌4

𝑣1,𝑣3,𝑐2,𝑐4,𝒌1,𝒌3
Φ−1(𝑣3𝒌3, 𝑐4𝒌4; 𝐺′),  

(21) 

where 𝐪 = 𝒌2 − 𝒌1 = 𝒌4 − 𝒌3 and 𝑮 are reciprocal vectors. Functions Φ in Eq. (21) are Fourier 

transforms of  Φ(𝑣1𝒌1, 𝑐2𝒌2; 𝒓) = 𝜓𝒌1

𝑣1(𝒓)𝜓𝒌2

𝑐2∗(𝒓)   and functions ℱ 𝑣1𝑐1;𝑣2𝑐2

𝒌1𝒌2;𝒌3𝒌4

 are 

ℱ 𝑣1𝑐1;𝑣2𝑐2

𝒌1𝒌2;𝒌3𝒌4

= − ∬ 𝑑𝑟𝑑𝑟′Φ(𝑣1𝒌1, 𝑣3𝒌3; 𝒓) 𝑊(𝒓, 𝒓′)Φ(𝑐2𝒌2, 𝑐4𝒌4; 𝒓′) 

= −
4𝜋

𝑉
∑

𝜖
𝑮𝑮′
−1 (𝐪)

|𝐪+𝑮|2𝑮,𝑮′;𝒌,𝒌′ ⟨𝑐2𝒌2|𝑒𝑖(𝒒+𝑮)𝒓|𝑐4𝒌4⟩⟨𝑣3𝒌3|𝑒−𝑖(𝒒+𝑮′)𝒓′
|𝑣1𝒌1⟩,  (22) 

where 𝑊(𝒓, 𝒓′) is screened Coulomb interactions, 𝑉 denotes the crystal volume and the inverse 

macroscopic dielectric function 𝜖𝑮𝑮′
−1 (𝑞)  is approximated by using the one-loop charge 

susceptibilities. 

 

Effect of electron-phonon interaction 

As is the case with DFT calculations of system energetics, the above derivations are valid at 

very low (zero) temperature. Here, we include effects of the ambient temperature through electron-

phonon and exciton-phonon interactions which provide temperature dependencies of the band gap 

and the excitonic line width (inverse lifetime). Using second-order perturbation theory to include 

electron-phonon interaction in the calculated electronic band energy 𝐸𝒌
𝑙 (𝑇)38 leads to 
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𝐸𝒌
𝑙 (𝑇) = 𝜀𝒌

𝑙 + Σ𝒌
𝐹𝑎𝑛,𝑙(𝜔, 𝑇) + Σ𝒌

𝐷𝑊,𝑙(𝑇)                                       (23) 

where  

 

Σ𝒌
𝐹𝑎𝑛,𝑙(𝜔, 𝑇) = ∑

|𝑔𝒒𝝂
(1)(𝒌, 𝑙, 𝑙′)|

2

𝑁𝒒
[
𝑁𝒒𝜈(𝑇) + 1 − 𝑓𝑙′,𝒌−𝒒

𝜔 − 𝜀𝒌−𝒒
𝑙′

− 𝜔𝒒𝜈 + 𝑖𝛿
+

𝑁𝒒𝜈(𝑇) + 𝑓𝑙′,𝒌−𝒒

𝜔 − 𝜀𝒌−𝒒
𝑙′

+ 𝜔𝒒𝝂 + 𝑖𝛿
]

𝑙′,𝒒,𝜈

              (24) 

 

is the Fan part of the electron self-energy, and 

Σ𝒌
𝐷𝑊,𝑙(𝜔, 𝑇) =

1

𝑁𝒒
∑ 𝑔𝒒𝝂,−𝒒𝝂

(2) (𝒌, 𝑙, 𝑙)(2𝑁𝒒𝝂(𝑇) + 1)

𝒒,𝜈

                                                                      (25) 

is the Debye-Weller part of self-energy. In Eqs. (24) and (25), 𝑁  and 𝑓  are Bose and Fermi 

distribution functions, and  𝑔𝒒𝝂
(1)(𝑘, 𝑙, 𝑙′) and 𝑔

𝒒𝝂,𝒒′𝜈′
(2)

(𝑘, 𝑙, 𝑙′) are the first- and the second-order 

process scattering probabilities, where 𝒒 is phonon momentum and 𝜈 is phonon band. For example, 

in the second-order case the probability corresponds to the scattering process |𝑙𝒌⟩ →

|𝑙′𝒌 − 𝒒 − 𝒒′⟩ ⊗ |𝒒𝜈⟩ ⊗ |𝒒′𝜈′⟩, i.e. electron state transforms into another electron state with two 

absorbed (emitted) phonons (for details, see Ref. [38]). 

 

The shift of the band gap at the K-point obtained by subtracting 𝜀𝒌
𝑐 − 𝜀𝒌

𝑣 from 𝐸𝒌
𝑐(𝑇) − 𝐸𝒌

𝑣(𝑇). 

is given by: 

Δ = ∑ (𝐸𝑲
𝑐 , 𝑇)𝐹𝑎𝑛,𝑐

𝑲 + ∑ (𝑇)𝐷𝑊,𝑐
𝑲 − ∑ (𝐸𝑲

𝑣 , 𝑇)𝐹𝑎𝑛,𝑣
𝑲 − ∑ (𝐸𝑲

𝑐 , 𝑇)𝐷𝑊,𝑣
𝑲 .                (26) 

 

The phonon-induced exciton line broadening for state 𝑙 obtained using second order perturbation 

theory in exciton-phonon coupling is: 

𝛾 =
1

𝜋
∑ |𝑔𝒒𝜈

(1)(𝑲, 𝑙, 𝑙) |
2

(
1

2
±

1

2
+ 𝑁𝜔𝜈,±𝒒′

 ) 𝛿(ℏ𝜔 − 𝐸𝑙(𝑲 + 𝒒′) ∓ 𝜔𝜈,±𝒒′)

𝒒′,𝝂,±

.            (27) 

For further details of calculations of the effect of phonons on optical properties using semi-

empirical methods see Refs. [39,40] and for first-principles implementation see Refs. [41-43]. 

 

2.2 Computational details 

The DFT Kohn-Sham wavefunctions and eigenenergies were generated by the code 

QUANTUM ESPRESSO44 and served as the input for the TDDFT code BEE (Binding Energy of 

Excitons)35 developed in our group to obtain the associated fundamental parameters and solutions 



10 

 

of the exciton eigenenergy equation. The Perdew-Burke-Ernzerhof (PBE) XC potential within the 

generalized gradient approximation (GGA)45 was used in the DFT calculations. We used the norm-

conserving pseudopotential to avoid inappropriate normalization of pseudo-wave functions.46 A 

cutoff energy of 70 Ry and a (12 × 12 × 1) k-point mesh in the 2D Brillouin zone (BZ) were used 

to optimize the crystal structure.47 The 1L WSe2 is modeled using a cell with (1×1) periodicity 

added to the vacuum slab ~12 Å along the c direction (shown in Figure 2). The optimized lattice 

constant 𝑎 was found to be 3.357 Å. Further, the band structure calculations in the presence of 

SOC were performed with fully relativistic pseudopotentials.48 The calculations to generate the 

wavefunction with SOC were performed with  (18 × 18 × 1) k-point grid in the BZ. Density 

functional perturbation theory (DFPT)49 was used to calculate the dispersion of phonons and the 

electron-phonon scattering probabilities across the BZ using QUANTUM ESPRESSO. The 

phonon frequency calculations were converged for residual force less than 0.00001 eV/ Å-1. In 

calculations of the exciton binding energies, we used 12 × 12 × 1 k-point mesh which gives rather 

accurate results (for the dependence of the exciton binding energy on the number of k-points in 

the case of local XC kernel, see Figure 3). Note that the k-point mesh used in our TDDFT study is 

much smaller than the typical (a few times/order of magnitude larger) ones used to obtain 

converged results in the BSE approach 50.  

 

 

Figure 2. (Color online) Atomic structure of 1L WSe2.  
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Figure 3. Dependence of the exciton binding energy in 1L WSe2 on number of k-points in the case 

of local XC kernel (19) at different values of the kernel parameter 𝛼.   

 

3. Results and discussions 

3.1 Band structure and exciton binding energy 

The calculated band structure of 1L WSe2 is shown in Figure 4. Although the PBE potential 

underestimates the  band gap of 1L WSe2 (1.46 eV which is less than the experimental value of 

2.02eV,51 our result regarding splitting of the bottom of the conduction band (~38.6 meV) owing 

to SOC are in good agreement with experimental observations and theoretical predictions.9,52 

Functionals that account for screening effects, such as the Heyd-Scuseria-Ernzerhof (HSE) hybrid 

functional, provide band gap that agrees with the experimental data,53 but with a high 

computational cost.  Since the calculated binding energies (of the exciton) with respect to the 

bottom of sub-bands should not be significantly sensitive to the value of the band gap, we have 

stayed with the PBE functional for our DFT calculations.  

For further computational feasibility, we use a three-band approximation, which includes the 

top of valence band (V1) and two sub-bands of bottom of conduction band (C1, C2) split by the 

SOC effect, in the TDDFT calculation for the binding energy of excitons.  Note that TDDFT results 

for the exciton binding energies are less sensitive to the number of used bands as compared to the 

BSE approach.54 Figure 4 also displays the momentum-resolution of the three bands across the BZ. 

The highest level of the top of the valence band is located at K and K′ points, similarly the lowest 

levels of the conduction bands are also at these points, i.e. the system is a direct-gap semiconductor.   
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Figure 4. (Color online) The band structure of 1L WSe2 along the path of the high-symmetry 

points (a). The three-band approximation used for TDDFT (black solids in (a)) in our calculations, 

which include the valence band (V1) (b), and the split conduction band (C1) (c) and conduction 

band  (C2) (d). The full and the first Brillouin zones are shown in white, 

 

The theoretical values of the exciton binding energy in 1L WSe2 still lack trustworthy 

consistency in the community. The DFT-based method55 and GW-BSE calculations24 predict 

exciton binding energy of approximately 500 meV and 340 meV, respectively, while the 

experimental observations, from in situ optical absorption and PL spectroscopy, suggest that the 
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corresponding energy is 317 meV.56 Optical reflectance and spectroscopic data infer the binding 

energy to be about 412 meV in suspended 1L WSe2.
57 We first summarize our calculated exciton 

binding energies using the local and long range kernels in Table I and Figure 5. As one can see 

from Figure 5a, to achieve the experimentally estimated binding energy ~ 400 meV we need 𝛼 =

191 for the contact local kernel, which is an unreasonably high value. It is also clear that the 

exciton binding energy is very sensitive to the parameter 𝛼. Notably, the binding energy is very 

weak if local potential is approximately regarded as “averaged LDA”. Similarly, the results for the 

exciton binding energy depends dramatically on the parameter 𝜀 in the LR potentials, as shown in 

Figure 5b. The screening parameter 𝜀 is approximately 450 to obtain the experimental value of 

400 meV for exciton binding energy. Unfortunately, a realistic screening parameter (~3) cannot 

produce binding energy that is consistent with the experimental value. Although the calculations 

of binding energy using local and LR potentials do not include SOC effect, the fact that the 

obtained results are sensitive to the values of the parameters and one cannot reproduce 

experimental data with reasonable values of these parameters, suggests that these kernels cannot 

be used to describe excitons 1L WSe2.  

 

Table I. Exciton binding energy (in meV) for 1L WSe2 calculated with the local and LR potentials 

for different values of corresponding parameters 𝛼 and 𝜀.  

Local 
𝜶 1 10 50 100 150 250  

Exp. 

317-   

41256,57 

𝐸𝑋 0.158 1.59 37.6 163 293 555 

LR 
𝜀 0.05 0.01 0.0033 0.00286 0.0025 0.002 

𝐸𝑋 0.0589 0.2961 0.9058 5.668 202.11 493.15 
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Figure 5. (Color online) Exciton binding energy for 1L WSe2 (in meV) calculated with the contact 

local kernel (a) for different values of coupling 𝛼 and the LR kernel (b) with different 𝜀. 

 

In order to obtain more physical results for the intra- and intervalley excitons we thus turn to 

the nanoquanta kernel, which takes into account rather accurately screening in the framework of 

many-body perturbation theory, and the rest of the computational procedure is parameter-free. In 

the corresponding kernel calculation, the simple ground states KS potential, such as PBE, can be 

applied instead of the more complex one in practice. The binding energies of intra- and intervalley 

excitons calculated with the nanoquanta kernel are listed in the Table II which shows that our 

values are slightly smaller than those from the experimental data. Some of discrepancy could be 

attributed to the three-band model that we have used. For bench marking our results, we calculated 

the binding energy of intravalley bright exciton using the GW-BSE-SOC method. Since this 

method requires a dense k-mesh and a good number of bands, a (36 × 36 × 1) k-point mesh with 

10 bands (6 valence bands and 4 conduction bands) were employed. Unfortunately, such a 

procedure produced a binding energy of only 70 meV for the intravalley bright exciton. 

Additionally, we notice that the binding energy of bright exciton with SOC differs significantly 

from that without it. This difference depends mainly on the distinct curvatures of band edges in 

the SOC and non-SOC cases, which gives rise to differences in the effective masses of carriers.  

To shed light on direct and indirect optical transitions, we turn to a comparison of the 

properties of the intra- and intervalley dark excitons. As shown in Figure 6, intravalley dark 

exciton (D0) is composed of electron and hole with same spin, while intervalley dark exciton (I0) 

consists of electron and hole with opposite spin. Electron-hole Coulomb interaction is naturally 

present in both D0 and I0. On the other hand, electron-hole exchange interaction contributes only 
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to the energy of I0 (electron and hole have opposite spins, i.e. electrons from the conduction and 

valence bands have the same spin) and thus leads to the energy splitting between D0 and I0. We 

find this splitting using the nanoquanta kernel to be ~ 22 meV in our calculations, as seen in Table 

II, in reasonable agreement with experimental observations (9~16 meV).17-20 Our calculations of 

the difference of the exchange parts of the energy of the intra- and inter-valley dark excitons, 

obtained with the nanoquanta potential, also support this result.  Namely, we have calculated the 

exchange energy related to the inter-valley dark  exciton by using an approximate formula, valid 

for two interacting particles, −
1

2
∬ 𝑑𝑟𝑑𝑟′𝜓𝐾

𝑣∗(𝑟)𝜓𝐾
𝑣∗(𝑟′)𝑓𝑋𝐶(𝑟 − 𝑟′)𝜓𝐾′

𝑐 (𝑟′)𝜓𝐾′
𝑐 (𝑟) , where 

𝑓𝑋𝐶(𝑟 − 𝑟′) is the real-space Fourier transform of the nanoquanta kernel in Eq. (21) (this energy 

is the analogue of the exchange part of the energy in the Hartree-Fock approximation 

−
1

2
∬ 𝑑𝑟𝑑𝑟′𝜓𝐾

𝑣∗(𝑟)𝜓𝐾
𝑣∗(𝑟′)

1

|𝑟−𝑟′|
𝜓𝐾′

𝑐 (𝑟′)𝜓𝐾′
𝑐 (𝑟)), to find it to be 33meV. Given the simplified 

two-particle approximation for the excitonic wave function, 33meV is in rather good agreement 

with the above Casida equation result of 22meV.    

  

 

Figure 6. (Color online) The energy separation between intravalley dark exciton (D0) and 

intervalley momentum-forbidden exciton (I0). Spin directions for different bands are shown by 

arrows.  

 

Table II. Binding energy (in meV) of intra- and intervalley excitons with and without SOC for 1L 

WSe2 calculated with the nanoquanta kernel (Eq. (14) as approximated by Eq. (15)-(18)). 
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 Exciton Binding energy 

 

SOC 

Intravalley dark (D0) 132 

Intervalley dark (I0) 110 

Intravalley bright  91 

No SOC Intravalley bright 154 

 

3.2 Transition contribution maps 

For a deeper understanding of the properties of the dark excitons, we calculated momentum-

resolved weights of the electron-hole transitions for each excitonic state. This was done by 

calculating the eigenvectors from Eq. (14) and plotting the transition contribution map - square of 

the modulus of the components of eigenvectors (that correspond to different momenta). The 

obtained transition contribution maps (Figure 7), that show contribution of different “DFT-state 

excitations” to the excitonic transitions, facilitate a better understanding of excitonic states. In this 

map, in the xy-plane we show the momentum of the electron excited state, while the hole excited 

state is assumed to be at the K-point. Our findings reveal that electron-hole transitions consist 

dominantly of states nearby the K and K′  valleys in the case of intravalley excitons (both 

intravalley bright and dark excitations), while the excitations from the adjacent area of K and K′ 

also contribute to the optical transition. For the intervalley electron-hole excitations, the primary 

contributions of excitonic hybridizations are from the areas around K and K′ valleys. Surprisingly, 

there are additional contributions from the Γ point.  
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Figure 7. (Color online) The transition contribution map for the intra- (a) and intervalley (b) 

excitons. The final momenta of electrons are given in the xy-plane and the final momenta of holes 

are located at K point. 

 

3.3 Energy shifts and lifetimes due to charge-phonon interaction 

Inclusion of electron-phonon interactions, as summarized in Section 2.1, allows calculation 

of the temperature dependencies of the excitation energy by documenting the shifts in the position 

of the inter-band and exciton transition peaks. In particular, by using Eq. (26) we find that the band 

gap shrinks from 1.46 eV to 1.396 eV (decrease by 64 meV) as temperature increases from 0K to 

300 K (Figure 8c). The top of valence band lifts and bottom of conduction band drops 

simultaneously in this temperature range. The corresponding variation of ~100meV in electron 

and hole energies at 300 K are well in agreement with the experimental observations that give 

variation of 87.5eV.58 In this work, we did not calculate change of the energy of different types of 

excitons with temperature, which is a separate computationally challenging project. We analyzed 

the phonon part of lifetime of the electron, hole (from the inverse of the imaginary part of self-

energy (24)) and bright exciton (equal to inverse of the corresponding line broadening (27)). We 

found that this quantity also changes significantly with temperature (Figures 8d and 8e). These 

results point to the need to include phonon effects to describe experimental spectra of the system.  
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Figure 8. (Color online) The energy renormalization as a function of temperature (0~300 K) in 

the valence band (a), conduction band (b), and the band gap (c). The inverse lifetime of particles 

(holes in the valence band and electrons in the conduction band) (d) and of the bright exciton (e) 

as a function of temperature. 

 

 



19 

 

4. Conclusions 

In this work, we have formulated a density matrix TDDFT approach to examine the properties of 

intervalley excitons in 1L WSe2. We applied different XC kernels to analyze the excitonic 

properties of the system, and found that the nanoquanta kernel provides physically meaningful 

results. This TDDFT approach is computationally much more feasible as compared to the BSE 

method.  The exchange energy-splitting of the energies of intra- and intervalley dark excitons 

obtained by the nanoquanta kernel is approximately 22 meV, which is in good agreement with the 

experimental results.  The TDDFT calculations of the transition contribution map for the 

excitations in 1L WSe2 show that the electron-hole transitions near the K and K′ valleys mostly 

contribute to the formation of intravalley excitonic states. Surprisingly, in the inter-valley exciton 

case states around Γ-point also give a significant contribution.   

 

We have also applied second-order perturbation theory to evaluate the contribution of electron-

phonon scattering to the temperature-induced shift of the bands and of the band gap, as well as to 

calculate the electron-, hole- and bright exciton lifetimes. We found that these quantities depend 

significantly on temperature, and that our results for the band gap shift are in agreement with 

available experimental data. These results suggest that phonons cannot be neglected in analysis of 

the optical spectra of the system. The formalism presented here is ready to be applied to describe 

systems with many (orbital, spin, valley, lattice vibration) degrees of freedom in TMDs and other 

materials.  
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