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Abstract: 

The U.S. manufacturing sector accounts for 77% of the industrial energy consumption, but its 

participation in demand response (DR) programs is largely lagged behind. The relatively limited 

flexibility in production scheduling under high capacity utilization and the lack of DR schemes 

incorporating energy demand flexibility measures are deemed as major barriers. In this study, the 

framework of an interactive vehicles-to-manufacturing (V2M) energy sharing system is proposed 

to improve the energy demand flexibility of the aggregated system and enhance the DR 

effectiveness for manufacturers. The V2M-based DR scheme aims to reduce the energy cost by 

load shifting through joint production and energy sharing control, and it can eventually promote 

manufacturing DR implementation even under high capacity utilization requirements and 

dynamic real-time electricity prices. The V2M system is modeled based on a discrete-Markov 

chain considering the complex interconnections among various manufacturing resources and 

multi-directional energy flows among manufacturing facilities, electric vehicles, and the power 

grid. Based on the system model, a mixed-integer nonlinear programming (MINLP) problem is 

formulated to identify the optimal DR scheme. The effectiveness of the proposed approach is 

validated through comparisons with traditional manufacturing DR schemes. The results show 

that a 2.1 to 6.5 times energy demand flexibility improvement and an additional 4.7% to 6.9% 

energy cost reduction can be achieved by the proposed approach. 
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Nomenclature 
Parameters 

��,� Occupancy of the buffer � at time � 

� Heat capacity of air (kWh/kg oC) 

�� RTP rate ($/kWh) 

�	 Cost of grid electricity ($) 

�	
 EV battery depreciation cost ($) 

�� Maximum capacity of the buffer �  

���� Electricity consumption of the HVAC system at time � (kWh) 

���
 Electricity consumption of the manufacturing system at time � (kWh) 

���
	
,��

 Energy flow from EVs to manufacturing facility at time � (kWh) 

���
����,	


 Energy flow from power grid to EVs at time � (kWh) 

���
����,��

 Energy flow from power grid to manufacturing facility at time � (kWh) 

���� Efficiency of machine � 

��� Heat emission from the manufacturing system at time � (kWh) 

� Thermal conductivity of manufacturing facility  

� Average thickness of the walls and roofs (m) 

��	
 Unit depreciation cost ($/kW) 

�� Rated power of machine � (kW) 

��� Production rate of machine �  

�� Production target  

�� Production throughput of the entire manufacturing system  

�� Energy required to maintain the indoor temperature (kWh) 

���� Heat transfers between the indoor and outdoor environment (kWh) 

� Surface area of the manufacturing facility (m2) 

� ��,� SOC of the !-th EV’s battery at time � 

��"��� Indoor temperature at time � (oC) 

��"��#� Outdoor temperature at time � (oC) 

��"��$� Target indoor temperature at time � (oC) 

% Volume of the manufacturing facility (m3)  

&� Operation state of the HVAC system 

'( Cooling efficiencies of the HVAC system 

') Heating efficiencies of the HVAC system 

'	
() EV charging efficiencies 

'	
��*() EV discharging efficiencies 

'� Energy efficiency of machine � 

+ Density of air (kg/m3) 

Decision variables 

,�,� Binary variable deciding the operation state of the �-th machine at time � 

-�,�  Binary variable deciding the charging state of the !-th EV at time � 

.�,�  Binary variable deciding the discharging state of the !-th EV at time � 

��,�()  Continuous variable controlling the charging power of the !-th EV at time � 

��,���*()  Continuous variable controlling the discharging power of the !-th EV at time � 
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1 Introduction 

With the rapid development of smart grid technologies, the demand response (DR) is 

considered a promising strategy in promoting energy efficiency [1], reducing carbon emissions 

[2], and enhancing the energy distribution network’s reliability and stability [3], [4]. The DR 

programs enable energy consumers to actively adjust their demand in response to the time-

varying prices, reducing their energy cost while helping reshape the load profile and alleviate 

power grid congestion [5]. In particular, the manufacturing sector contributes 77% of the total 

industrial energy consumption in the U.S. in 2020 [6], and thus the DR schemes for 

manufacturing facilities have attracted widespread attention [7]–[9]. 

In the current literature, most DR studies for manufacturing facilities focus on the 

management of manufacturing systems. For example, Dababneh et al. proposed an analytical 

modeling-based approach for DR-driven production decision-making for serial production lines 

[10]. In addition, Lu et al. developed a data-driven DR scheme and validated it through a metal 

powder production line [11]. Recently, some studies extended these research efforts and 

considered other auxiliary systems in the manufacturing facility. For example, Sun et al. 

optimized the DR scheduling for combined manufacturing and heating, venting, and air-

conditioning (HVAC) system [12]. Furthermore, Yun et al. proposed a DR scheme for 

manufacturing facilities considering the high power demand of the electric material handling 

equipment with fast charging stations [13]. Despite the impact of auxiliary systems on the total 

power demand, the manufacturing system is still the primary energy consumer and 

fundamentally determines the DR scheme. In general, the current DR schemes for manufacturing 

contribute to energy demand flexibility and load shifting/shedding by manufacturing system 

scheduling under production capacity utilization constraints, which adopted a foundational 

assumption that the capacity utilization rate of a manufacturing system should be limited, i.e., the 

desired production target should be significantly less than the maximum production throughput. 

Specifically, the capacity utilization rates in these DR studies are usually less than 70%. 

Otherwise, the effectiveness of load shifting/shedding in these DR schemes would be 

significantly diminished since the production line needs to be fully loaded even during some 

peak periods to achieve high production target. 

However, this assumption is questionable in practice for industrials that require high capacity 

utilization rates. For example, to meet the increased chip demand, the semiconductor 
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manufacturers are substantially increasing their fab capacity utilization, especially under a 

worldwide “chips shortage” during the COVID-19 pandemic. The traditional DR schemes only 

consider the control of manufacturing resources, and thus the energy demand flexibility of the 

manufacturing facility is limited under high capacity utilization requirements. In addition, this 

flexibility issue is even more severe for the real-time price (RTP) based DR programs. 

Specifically, the RTP reflects the actual supply-demand relationship of the electricity market, 

which provides more benefit to the power system than the day-ahead price tariff in terms of 

reducing the peak demand and flattening the load profile, but it also requires a more flexible and 

timely DR control strategy [14]. Since the energy demand flexibility issue is hard to be addressed 

merely by production scheduling along, an energy storage system could potentially provide 

additional demand flexibility to manufacturing facilities [15]. In the current literature, integrating 

stationary energy storage systems with manufacturing systems, such as cement plant [16] and 

assembly plant [17], has been proved to be a feasible solution for demand flexibility 

improvement. However, stational energy storage systems require a vast capital investment, 

which may not be economically attractive to some manufacturers [18]. 

With the rapid growth of the electric vehicle (EV) market, the energy sharing between EVs 

and other energy systems presents a large potential to improve the aggregated energy demand 

flexibility with limited investment [19]. Hence, the energy sharing system with EVs could be a 

promising solution to the above-mentioned problem. Specifically, EVs in the smart grid are 

capable of not only drawing energy from the power grid, but also delivering energy to other 

systems to achieve the peak demand reduction of the aggregated energy system [20]. In the 

current literature, various research efforts have been devoted to DR schemes considering EVs in 

residential and commercial applications, which are referred to as Vehicle to Home (V2H) [21], 

[22] and Vehicle to Building (V2B) [23], [24]. Although these studies provide insights into the 

energy demand flexibility improvement for the aggregated system under DR, they cannot be 

directly integrated with manufacturing systems. In manufacturing systems, turning off one 

machine can potentially affect the operation status and the production throughput of the entire 

production line due to machine starvation and blockage [25]. In addition, the heat emission from 

machine operation can also affect the thermal load of the heating, ventilation, and air 

conditioning (HVAC) system [12]. Therefore, unlike the demand loads from appliances in V2H 

and V2B systems, which can be freely scheduled with limited constraints, the scheduling and 
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control of demand loads from machines, HVAC systems, and energy sharing between EVs and 

manufacturing facilities should be decided considering their complex interconnection. A DR 

scheme for manufacturing facilities that can reap the benefit of energy sharing system with EVs 

is still lacking. 

To fill the above-mentioned research gap, a vehicle to manufacturing (V2M) energy sharing 

system and the V2M-based DR scheme are proposed in this study. The contributions of this 

study are summarized as follows. 

1. The framework of the V2M system is proposed, where the EVs can provide 

electricity storage to manufacturing facilities for additional energy demand flexibility 

without compromising production capacity utilization under RTP-based DR program. 

2. A discrete-time Markov decision process-based approach is applied to model the 

V2M energy sharing system, which systematically considers the impacts of 

production schedules and multidirectional energy interactions on production 

throughput and peak power demand. 

3. A mixed-integer nonlinear programming (MINLP) optimization model is formulated 

and solved to find the optimal RTP-responsive DR scheme that can enhance the 

economic viability of the system. 

The outcomes of this study provide a practical strategy to improve energy demand flexibility 

for manufacturers and allow them to reduce their energy costs even under high capacity 

utilization requirements through RTP-based DR programs. 

The rest of this paper is organized as follows. In Section 2, the framework of the V2M 

system, system modeling, and optimization problem formulation are presented. The performance 

evaluation, comparative analyses, and sensitivity analyses of the proposed V2M-based DR 

scheme are discussed in Section 3. The conclusions and future work are provided in Section 4. 

 

2 Proposed method 

2.1 Description of V2M system 

The V2M system enables energy sharing among the power grid, manufacturing facilities, and 

EVs. The framework of the proposed V2M energy sharing system is shown in Figure 1. More 

specifically, a V2M controller collects information such as RTP signals, manufacturing power 



6 
 

demand, and EV battery state of charge (SOC), and then optimizes the production scheduling 

and power flow within the system. In the manufacturing facility, the energy demands from the 

manufacturing system and heating, ventilation, and air conditioning (HVAC) system are 

considered in this study since these two systems are the largest energy consumers for direct 

process and direct non-process end uses in the U.S. manufacturing sector [26]. Machines in the 

manufacturing system consume energy for part fabrication, and the production schedule can be 

actively adjusted in response to RTP. The HVAC system consumes energy to maintain a desired 

indoor temperature. Due to the impact of heat emission from the machine operation on indoor 

temperature, the operation and energy consumption of the HVAC system are affected by the 

production schedule. EVs in the parking lot need to be charged to a desired battery level before 

departure, and their battery can be discharged to share the stored energy with the manufacturing 

facility. The EV charging/discharging activities are determined by controller after jointly 

considering the RTP and energy consumption of manufacturing facility. The possible energy 

flows and information flows in the proposed V2M system are represented by red lines and blue 

lines in Figure 1, respectively. 

  

Figure 1. Framework of the proposed V2M energy sharing system. 
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Figure 2. The layout of the manufacturing system. 

 

In this study, the V2M energy sharing system is modeled based on a discrete-time Markov 

chain. The production horizon is evenly divided into � time slots, and the duration of each time 

slot � ∈ [1, … , �] is ∆�. The manufacturing system is represented by a serial production line with 

5  machines and 5 − 1 work-in-process buffers (as shown in Figure 2), and let � denote the 

index of machine and buffer. In addition, assume a total of 7 EVs are connected to the V2M 

system and let ! denote the index of EV. In order to obtain the optimal control of the V2M 

system, three binary and two continuous decision variables are considered in this study. More 

specifically, binary variable ,�,� decides the operation state of the �-th machine at time �; binary 

variables -�,�  and .�,�  determine the charging/discharging states of the ! -th EV at time � , 

respectively. In addition, continuous variables ��,�() and ��,���*()  control the charging/discharging 

power of the !-th EV at time �, respectively. The binary decision variables are formally defined 

as follows: 

   ,�,� = :1, !� �ℎ� ��) "<ℎ�!�� != �>?� @� <� �!"� �
0, @�ℎ�?B!=�  (1) 

 -�,� = :1, !� �ℎ� !�) C% != �ℎ<?D!�D <� �!"� �
0, @�ℎ�?B!=�  (2) 

 .�,� = :1, !� �ℎ� !�) C% != E!=�ℎ<?D!�D <� �!"� �
0, @�ℎ�?B!=�  (3) 

The process of optimizing the production and energy sharing schedules and calculating the 

corresponding energy cost is shown in Figure 3. The models of manufacturing and HVAC 

systems in the manufacturing facility are discussed in Section 2.2.1, the EV charging/discharging 

model is presented in Section 2.2.2, and the optimization problem formulation is shown in 

Section 2.3. Note that since the actual RTP is not known at the scheduling stage, the price 

prediction is used to obtain the optimum schedule. Then, the actual RTP is applied to calculate 

the real energy cost and evaluate the optimal schedule. 
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Figure 3. Flow chart of optimization and energy cost calculation. 

 

2.2 V2M system modeling 

2.2.1 Manufacturing facility  

According to material balance, the buffer occupancy can be calculated as: 

   ��,� = ��,�FG + ,�,� ∙ ��� ∙ ���� ∙ ∆� − ,�JG,� ∙ ���JG ∙ ����JG ∙ ∆� (4) 

where ��,� is the buffer occupancy of the �-th buffer at time �; specifically, ��,K is the initial 

occupancy of the �-th buffer; ��� is the production rate of the �-th machine (unit per hour); and 

���� is the efficiency of the �-th machine.  

The production throughput (��) of the entire manufacturing system is defined by the product 

processed by the last machine 5,which can be calculated as: 

   �� = L ,M,� ∙
�

��M ∙ ���M ∙ ∆� (5) 

The electricity consumption of the manufacturing system, denoted by ( ���
 ), can be 

calculated as: 

   ���
 = L N,�,� ∙ �� ∙ ∆�O
�

 (6) 

where �� is the rated power of the �-th machine. 

The heat emission from the manufacturing system (denoted by ���) can affect the HVAC 

load to maintain the desired indoor temperature, which can be calculated by: 

Optimization 

problem

Price 

Prediction

Optimum 

schedule

Energy cost 

calculation

Energy cost

Actual RTP

Manufacturing 

system model

HVAC system 

model

EV charging 

/discharging model
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   ��� = L ,�,� ∙ �� ∙ ∆�
�

∙ (1 − '�) (7) 

where '� is the energy efficiency of the �-th machine.  

The heat transfers between the indoor and outdoor environment, denoted by ��
��

, can be 

calculated as: 

   ���� = � ∙ �
� ∙ ∆� ∙ N��"��� − ��"��#�O (8) 

where �  is the thermal conductivity of the walls and roofs of the facility; �  is the average 

thickness of the walls and roofs; � is the surface area of the manufacturing facility; and ��"��� 

and ��"��#� are indoor and outdoor temperature of the facility at time �, respectively. Note that 

the indoor-outdoor temperature difference determines whether ��
��

 is positive or negative. 

The energy (��) required to maintain the indoor temperature can be calculated as: 

   �� = � ∙ + ∙ % ∙ N��"��$� − ��"���O + ���� − ��� (9) 

where � is the heat capacity of air; + is the density of air; % is the volume of the manufacturing 

facility; and ��"��$�  is the target indoor temperature of the facility at time �. 

Let &�  denote the operation state of the HVAC system. Whether the HVAC system is in 

heating state (&� = 1) or cooling state (&� = 0) is determined by �� as: 

   &� = :1, !� �� ≥ 0
0, @�ℎ�?B!=� (10) 

The electricity consumption of the HVAC system, denoted by (����), can be calculated as: 

   ���S = T��T
&� ∙ 'ℎ + (1 − &�)'� (11) 

where ') and '( are the respective heating and cooling efficiencies of the HVAC system.  

According to the conservation of energy, the total energy that flows into the manufacturing 

facility, i.e., from the power grid (���
����,��

) and EVs (���
	
,��

), equals the energy consumed by 

manufacturing system and HVAC system. 

   ���
����,�� + ���

	
,�� = ���
 + ����  (12) 

2.2.2  EV changing/discharging 

According to the conservation of energy, the EV battery state of charge (SOC) can be 

calculated as: 

   � ��,� = � ��,�FG + -�,� ∙ ��,�() ∙ Δ� − .�,� ∙ ��,���*() ∙ Δ� (13) 
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where � ��,�  represents the SOC of the ! -th EV’s battery at time � . Specifically, � ��,K 

represents the initial SOC when the !-th EV arrives the parking lot. 

The energy flows from EVs to the manufacturing facility and from the power grid to EVs 

(���
����,	


) are determined by the EV charging and discharging power, as shown in the following 

equations: 

   ���
	
,�� = '	
��*() ∙ L ��,���*() ∙ .�,� ∙ Δ�

�
 (14) 

 ���
����,	
 = L ��,�() ∙ -�,� ∙ Δ�

�
/'	
() (15) 

where '	
() and '	
��*() are the respective charging and discharging efficiencies. 

 

2.3  MINLP problem formulation 

The MINLP problem can be formualted as: 

min
Z[,\,]^,\,_^,\,`̂ ,\ab,`̂ ,\c^dab 

� �� = �	 + �	
   
(16) 

=. �.  0 ≤ ��,� ≤ ��,                       ∀�, �   (17) 

��,K = ��,h ,                                     ∀�   (18) 

�� ≥ ��  (19) 

-�,� + .�,� ≤ 1,                                 ∀!, �  (20) 

�()��� ≤ ��,�() ≤ �()�$Z ,                     ∀!, �   (21) 

���*()��� ≤ ��,���*() ≤ ���*()�$Z ,              ∀!, �   (22) 

� ���� ≤ � ��,� ≤ � ��$Z ,     ∀!, �  (23) 

� ��,h ≥ � ��	i,                           ∀!  (24) 

The objective of the optimization problem is to minimize the total cost of the V2M energy 

sharing system. The total cost includes two parts: the cost of grid electricity for the V2M system 

(�	) and the EV battery depreciation cost (�	
). The cost of grid electricity can be calculated as: 

   �	 = L �� ∙ N���
����,	
 + ���

����,��O 
�

 (25) 

where �� is the RTP at time �. Note that the predicted RTP is used for solving the optimization 

problem and find the optimal schedule since the actual RTP is not known in the day-ahead 

production scheduling stage. Whereas the actual RTP is applied to evaluate the obtained optimal 

solution. 
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The batteries in EVs usually have a fixed cycle life, i.e., the number of charge and discharge 

cycles that a battery can complete before losing performance [27]. Since EVs participating in the 

V2M system need to be charged and discharged more frequently, the batteries in these EVs are 

anticipated to have a shorter lifetime. Therefore, the EV owners should be paid for the battery 

depreciation, which can be estimated by the charging/discharging power as: 

   �	
 = L j��	
 ∙ L (��,�() + ��,���*()) ∙ ∆�
�

k
�

 (26) 

where ��	
 is unit depreciation cost per kWh. 

The first three constraints are related to the manufacturing facility. Constraint (17) shows that 

the occupancy of buffer �  should be between zero and its maximum buffer capacity �� . 

Constraint (18) shows that the buffer occupancy before and after the production horizon should 

maintain the same level to ensure long-term production stability. Constraint (19) represents the 

product throughput requirement, i.e., the throughput should be no less the desired production 

target (denoted by ��).  

The rest five constraints are related to the EV charging/discharging activities. Constraint (20) 

indicates that an EV cannot be charged and discharged at the same time. Constraints (21) and (22) 

define the charging/discharging power limits, where �()��� and �()�$Z are minimal and maximal 

allowed charging power, respectively; and ���*()���  and ���*()�$Z  are minimal and maximal allowed 

discharging power, respectively. Constraint (23) shows that batteries cannot be overcharged or 

overdischarged, i.e., the battery SOC should be in a range from � ���� to � ��$Z. The last 

constraint indicates that EV should be charged to a desired battery level (denoted by � ��	i) 

before departure. 

 

3 Results and discussions 

3.1 Case study settings 

In this study, the manufacturing system is assumed to be a five-machine-four-buffer serial 

production line. All machine-related parameters, i.e., production rate, power, and energy 

efficiency, are listed in Table 1. In addition, the buffer-related parameters, i.e., initial buffer 

occupancy, and maximum buffer capacity, are listed in Table 2. The production horizon is set to 
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an eight-hour shift from 9:00 to 17:00. The production horizon is evenly divided into 32 time 

slots, and the length of each time slot ∆� is 15 min.  

The manufacturing facility is assumed to be a building whose floor area is 40m by 40m and 

the height is 10m. The thermal conductivity of the walls and roofs of the facility is 0.001695 

kW/m oC [28]. The specific heat capacity of air is 0.00028 kWh/kg oC. The target indoor 

temperature of the manufacturing facility is set to be 20 °C, and the outdoor temperature is 

adopted from the recent weather records in New York [29]. The cooling and heating efficiencies 

of HVAC are assumed to be 70% and 80%, respectively. 

Table 1. Machine parameters 

Machine 
Production rate 

(unit/h) 
Power (kW) 

Energy 

efficiency 

M1 40 60 0.85 

M2 40 80 0.85 

M3 40 100 0.80 

M4 40 100 0.85 

M5 40 80 0.80 

 

Table 2.  Buffer parameters 

Buffer Initial occupancy Maximum capacity 

B1 20 80 

B2 20 80 

B3 25 100 

B4 20 80 

 

In this study, the EV battery capacity is set to be 30 kWh, and both charging/discharging 

efficiencies are set to be 95% [30]. Forty EVs are assumed to arrive at the parking lot at the 

beginning of the production horizon with different battery levels. Specifically, it is assumed that 

twenty EVs arrive with a low battery level (20%), and the other twenty EVs arrive with a high 

battery level (50%). All EVs are assumed to depart the parking lot at the end of the production 

horizon with the minimum required departure battery level of 80%. The minimum 

charging/discharging rates are assumed to be 2kW. The maximum charging/discharging rates are 
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respectively set to 19.2kW and 9.6kW based on Ford charge station pro [31]. The depreciation 

cost for EV batteries is assumed to be ₵0.25/kWh [32]. 

The actual RTP is adopted from New York Independent System Operator (NYISO) [33], 

whereas the predicted RTP is obtained using long short-term memory (LSTM). LSTM is an 

artificial recurrent neural network architecture specialized for processing sequential data, which 

is widely used in problems such as speech recognition and market price trend prediction. The 

actual and predicted RTPs used in this study are shown in Figure 4. The predicted RTP is used 

for MINLP formulation, and the actual RTP is applied to evaluate the optimal production 

schedule. The optimization problems are solved using LINGO on a laptop with an Intel® CoreTM 

i7 CPU and an 8 GB memory, and the optimality tolerance in LINGO is set to 10-5. 

 

Figure 4. Actual RTP and predicted RTP on Dec. 19, 2020. 

 

In this study, three scenarios are established and compared to evaluate the effectiveness of 

the proposed V2M system in improving the energy demand flexibility in manufacturing facilities 

and reducing energy cost for manufacturers. The details of three scenarios are described as 

follows: 

1) Scenario I (baseline): in this scenario, the manufacturing facility and EVs are controlled 

independently. In addition, the manufacturing facility control strategy aims to minimize 

electricity consumption, i.e., the RTP-based DR program is not considered in this 

scenario. 
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2) Scenario II (without V2M): in this scenario, the traditional manufacturing DR control 

method is adopted, where the manufacturing facility is controlled independently in 

response to RTP without energy sharing between EVs and manufacturing facility 

(ensured by the following equation). 

   ��,���*() = 0 (27) 

3) Scenario III (with V2M): in this scenario, the proposed V2M system is applied for DR 

control, i.e., the EVs can share energy with manufacturing facility to achieve the 

minimum energy cost of the entire V2M system under DR. 

 

3.2 Performance evaluation of the proposed V2M energy sharing system 

In this subsection, the superiority of the proposed V2M system in energy demand flexibility 

improvement and energy cost reduction are evaluated and compared with the other two scenarios 

under various production targets (capacity utilization rates). More specifically, the maximum 

production throughput of the manufacturing system in case studies is 320, i.e., the production 

throughput achieved when all machines are turned on during the entire production horizon (the 

capacity utilization rate is 100%). Five production targets (capacity utilization rates), from 240 

(75%) to 320 (100%), are evenly selected for performance evaluation. The MINLP problem 

under each case setting is solved five times, and the calculation takes around 3.8 seconds. The 

solutions in all five trials converge to the same value. 

The energy demand flexibilities are represented by two metrics from different aspects, i.e., 

the quantitative metric (C�l	)  showing the amount of energy that can be shifted during the 

production horizon, and the temporal metric (��l	 ) showing the total duration of the shifted 

energy demand [34]. These two metrics can be calculated as follows: 

   C�l	 = L maxN0, ���o$*	 − ���pqO
�

 (28) 

   ��l	 = ∆� ∙ Tr�|���o$*	 − ���pq > 0uT (29) 

where ���o$*	 is the energy demand from the power grid at time � in baseline scenario (Scenario 

I), and ���pq  is the energy demand from the power grid at time �  in DR control scenario 

(Scenarios II and III). The comparison of energy demand flexibilities in Scenarios II and III are 

shown in Table 3. 
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Table 3. Energy demand flexibility comparison 

Production target 

(capacity utilization) 

vwxy (kWh) zwxy (h) 

Scenario II Scenario III Scenario II Scenario III 

240 (75.0%) 647.81 1385.93 2.00 2.75 

260 (81.3%) 474.69 1319.99 1.50 2.75 

280 (87.5%) 330.00 1202.94 1.00 2.75 

300 (93.8%) 165.00 1077.00 0.50 2.50 

320 (100.0%) 0 912.00 0 2.50 

 

The results show that in the case of 100% capacity utilization, the energy demand flexibilities 

represented by two metrics are equal to zeros under the traditional DR scheme in Scenario II, 

whereas the proposed V2M-based DR scheme can still ensure decent levels of energy demand 

flexibility. In the other four cases, compared to Scenario II, the proposed approach in Scenario 

III can improve the metric C�l	 by 2.1 to 6.5 times and the metric ��l	 by 1.4 to 5 times. 

In addition, the costs achieved in Scenario I are treated as baseline costs (100%). The costs 

achieved in Scenarios II and III are compared to the baseline costs, and the results are shown in 

Figure 5. The results show that the proposed V2M-based DR scheme outperforms the traditional 

DR scheme under all five cases. Specifically, Scenario III can further reduce the total cost by 4.7% 

to 6.9% compared to Scenario II. In addition, the results in Figure 5 show that the cost reduction 

effect under DR control diminishes with increasing capacity utilization. Specifically, the cost 

reductions achieved by traditional method in Scenario II are reduced from 10.5% when capacity 

utilization is 75% to 0% when capacity utilization is 100%. Since the traditional method can only 

adjust the machine operation schedule to avoid the electricity peak period, this method loses 

effectiveness when machines must be in operation state for a longer time to achieve a higher 

capacity utilization. Especially under the 100% capacity utilization, the traditional method is 

completely invalid.  In comparison, since the proposed V2M-based DR scheme provides more 

energy demand flexibility, the total cost can still be reduced by 6.9% through the energy sharing 

between the manufacturing facility and EVs even under the highest capacity utilization.  
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Figure 5. The cost percentage of three scenarios compared with Scenario I under five different 

capacity utilization rates. 

 

Specifically, the details of production schedules, EV charging/discharging activities, power 

demands, and cost analysis under the production target 300 (93.8% capacity utilization) are 

discussed next as an example to show the difference between the traditional method in Scenario 

II and the proposed method in Scenario III. 

Figure 6 shows the optimal production schedules obtained in Scenarios II and III. The results 

indicate that production schedules tend to avoid high electricity prices during peak periods in 

both two scenarios. More specifically, since production schedule adjustment is the only 

mechanism responding to peak demand in Scenario II, all five machines are turned off from 

12:00 to 12:30 to avoid the highest electricity price, as shown in Figure 6 (a). However, in order 

to achieve high capacity utilization, machines can only be turned off for a limited time. Hence, 

the production schedule in Scenario II cannot respond to other peak periods, such as the period 

from 13:30 to 14:15 (as shown in Figure 4). In comparison, Figure 6 (b) shows a more flexible 

DR control method in Scenario III. Specifically, attributed to the energy sharing between EVs 

and the manufacturing facility, machines can use electricity from EVs instead of from the power 

grid during peak periods. Therefore, in this scenario, manufacturers can turn some machines on 

from 12:00 to 12:30 without paying for the highest RTP. Consequentially, machines can be 

turned off during other periods in response to more peak electricity price while satisfying high 

capacity utilization.  



17 
 

 

(a) 

 

(b) 

Figure 6. The optimal production schedules in (a) Scenario II and (b) Scenario III. 

 

The changes in power demands of manufacturing and HVAC systems in Scenario III are 

shown in Figure 7. Specifically, results in Figure 7 (a) show that the manufacturing power 

demand is reduced by 140 to 180 kW during two peak periods based on the production schedule 

in Figure 6 (b). In addition, the power demand of the HVAC system reacts to the outdoor 

temperature and electricity price, and the results are shown in Figure 7 (b). Since the temperature 

data on a winter day is applied in this case, the HVAC system is used to warm up the 

manufacturing facility. Therefore, in general, the power demand of the HVAC system decreases 

with the increasing outdoor temperature. In addition, since the power demand of the 

manufacturing system is reduced during two peak periods, the heat emission from the 
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manufacturing system is also reduced during these periods. Therefore, the HVAC system should 

consume more energy to keep the desired indoor temperature during these two periods. Although 

the power demand of the HVAC system increases by 30 kW to 45 kW during peak periods, 

considering the demand reduction of the manufacturing system, the total power demands of the 

manufacturing facility are still reduced by 95 to 150 kW during peak periods based on the 

proposed DR scheme. 

 

(a) 

 

(b) 

Figure 7. The changes in power demands of manufacturing and HVAC systems due to DR in 

Senario III. 
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The EV charging and discharging power shown in Figure 8 further explains the reason for 

the differences between two production schedules. As shown in Figure 8 (a), since there is no 

energy sharing in Scenario II, EVs only charge twice during off-peak periods to ensure 80% of 

battery level before departure. On the contrary, in Scenario III, EVs need to charge more 

frequently during off-peak periods to store enough electricity for energy sharing. Consequently, 

as shown in Figure 8 (b), EVs are able to discharge and share the stored energy with the 

manufacturing facility during three peak periods, i.e., around 10:30, from 11:45 to 13:15, and 

from 13:30 to 14:15. Combining the energy sharing and manufacturing scheduling, the proposed 

V2M system can help manufacturers reduce power demand from the grid during all three peak 

periods even under high capacity utilization. 

 

(a) 

 

(b) 
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Figure 8. The charging and discharging power of EVs in (a) Scenario II and (b) Scenario III. 

 

Figure 9 shows the total power demand required from the grid in Scenarios II and III. The 

results indicate that the traditional method in Scenario II can only respond to one peak period 

from 12:00 to 12:30 under high capacity utilization. However, due to the energy consumption of 

the HVAC system, the manufacturing facility still needs 183 kW from the grid during this period, 

even if all five machines are temperately turned off. In comparison, the V2M-based DR scheme 

in Scenario III is more flexible. The V2M system can respond to all three peak periods and 

significantly reduce the power demand from the grid during these periods. In general, the V2M 

system can shift the power demand from peak periods to off-peak periods. Therefore, it can 

eventually alleviate congestion on the power system and help manufacturers reduce energy cost. 

 

Figure 9. Total power demand from the grid in Scenario II and Scenario III. 

 

The detailed energy and cost comparisons between Scenarios II and III are presented in Table 

4. Compared with Scenario II, the manufacturing facility in Scenario III is less dependent on the 

grid, and its electricity consumption is significantly reduced by 23.3%. At the same time, the 

EVs in Scenario III consume more electricity from the grid for energy sharing, which results in a 

slightly higher total electricity consumption (i.e., 2.2% in this case). In addition, due to the 

frequent EV charging and discharging, the EV battery cost in Scenario III is also higher than 

Scenario II. However, even though Scenario III is associated with slightly higher total electricity 

consumption and battery cost, it successfully reduces power demand during peak periods. As a 
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result, the proposed V2M-based DR scheme eventually reduces the electricity and total costs by 

9.4% and 6.5% than the traditional manufacturing DR scheme. 

 

Table 4. The energy and cost comparisons between Scenarios II and III 

 Electricity consumption from the grid (kWh) EV battery 

cost ($) 

Electricity 

cost ($) 

Total 

cost ($)  Manufacturing facility EVs Total 

Scenario II 3921.70 

3009.70 

568.42 4490.12 1.35 169.08 170.43 

Scenario III 1578.95 4588.65 6.15 153.27 159.42 

Decrease      9.4% 6.5% 

 

3.3 Comparative analyses 

In this subsection, the performance of the proposed V2M-based DR scheme is compared with 

some other rule-based energy sharing schemes [35], [36], in which the manufacturing system 

scheduling is not jointly optimized with the EV energy sharing. Specifically, the alternative 

schemes include price-based method without facility power demand information (PBWO), price-

based method with facility power demand information (PBW), time-based method without 

facility power demand information (TBWO), and time-based method with facility power demand 

information (PBW). In the four alternatives, the EV charging/discharging timing is only 

determined by the power grid signals. In two price-based methods, EVs discharge and share 

energy with the manufacturing facility when the predicted RTP is higher than a predefined 

threshold. Whereas in two time-based methods, EVs discharge during a fixed period. In all four 

alternatives, EVs are charge during off-peak periods. In addition, if the manufacturing facility’s 

power demand information is not available, EVs discharge at the maximum power; otherwise, 

EVs discharge to meet the power demand of manufacturing facility. In this study, the threshold 

for price-based methods is set to 70% of the maximum predicted RTP during production horizon. 

The fixed discharging period for time-based methods is set to 13:00 to 14:00, which is a typical 

peak period according to the RTP record [33]. The comparison results among five control 

methods are represented in Figure 10. This figure shows that the proposed method outperforms 

all other alternatives and achieves the lowest total cost under five production targets. This result 

indicates the necessity of the proposed V2M-based DR scheme, i.e., jointly considering the 
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manufacturing system scheduling and EV energy sharing, in obtaining the optimal DR control 

for manufacturers.  

  

Figure 10. The total cost comparison between the proposed V2M-based DR scheme and four 

alternatives. 

 

3.4 Sensitivity analyses 

In this subsection, sensitivity analyses are conducted to test the proposed V2M-based DR 

scheme under various RTPs and EV settings. Specifically, three RTPs in summer (denoted by S-

1, S-2, and S-3) and three RTPs in winter (denoted by W-1, W-2, and W-3) are selected to test 

the robustness of the proposed scheme. Each selected RTP has different peak periods and 

patterns, as shown in Figure 11. The production target (capacity utilization) is set to 300 (93.8%). 

The comparisons of energy demand flexibilities and total costs are shown in Tables 5 and 6, 

respectively. 
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Figure 11. The six RTPs for sensitivity analysis. 

 

Table 5 shows that the system always has larger energy demand flexibility in Scenario III. 

Specifically, the flexibility metric C�l	 in Scenario III is improved by 3.3 to 6.5 times comparing 

to Scenario II. The metric ��l	 is also improved by 3 to 5.5 times.  

Table 5. Energy demand flexibility comparison under different RTPs 

 vwxy (kWh) zwxy (h) 

 Scenario II Scenario III Scenario II Scenario III 

S-1 261.43 1173.43 0.50 2.75 

S-2 229.29 749.89 0.50 1.50 

S-3 235.71 962.40 0.50 2.25 

W-1 165.00 1077.00 0.50 2.50 

W-2 127.50 834.73 0.50 2.00 

W-3 150.00 886.81 0.50 2.25 

The results in Table 6 show that under all six RTPs, the total costs in Scenario III are always 

the lowest. More specifically, in Scenario III, the total costs are reduced by 7.53% to 10.20% 

compared to baseline in Scenario I, which means costs are further reduced by 3.37% to 6.21% 

compared to the traditional method in Scenario II. The results validate the robustness of the 

proposed DR schemes under different RTPs. 

Table 6. Total cost comparison under different RTPs 

 Scenario I Scenario II Scenario III 
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 Cost Decrease Cost Decrease Cost Decrease 

S-1 204.89 - 194.16 5.24% 183.99 10.20% 

S-2 222.08 - 213.02 4.08% 203.83 8.22% 

S-3 209.12 - 200.42 4.16% 193.37 7.53% 

W-1 177.21 - 170.43 3.83% 159.42 10.04% 

W-2 204.05 - 199.32 2.32% 188.26 7.74% 

W-3 160.01 - 154.44 3.48% 146.31 8.56% 

 

In addition, the impacts of two EV-related factors (i.e., quantity of EV and battery 

depreciation cost) on the performance of the proposed approach are investigated.  

The quantity of EV is one of the most critical factors affecting the total cost. Specifically, the 

EV quantity directly determines the maximum energy flow from EVs to the manufacturing 

facility, and thus it affects the energy sharing ability of the V2M system. As shown in Figure 12, 

the effectiveness of total cost reduction improves as the EV quantity increases. However, the 

impact of increasing EV quantity on cost reduction is diminished after the number of EVs 

exceeds a threshold. For example, if the battery depreciation charge equals ₵0.25/kWh, the total 

cost reduction is improved by 1.88% when the number of EVs increases from 10 to 20, but it 

only improves by 0.49% when EV quantity increases from 50 to 60. 

The battery depreciation cost is another critical factor. As shown in Figure 12, the 

effectiveness of cost reduction induced by the proposed V2M system improves as the 

depreciation cost decrease. The red line with ₵0/kWh shows the theoretically largest cost 

reduction. The current battery depreciation cost is between ₵0.25/kWh and ₵0.5/kWh. However, 

battery cost has already fallen by 80% from 2013 to 2017, and it is anticipated to be further 

reduced with battery technology improvement [37]. Therefore, the proposed V2M system could 

play a greater role in energy demand flexibility improvement for DR in manufacturing facilities 

in the future.  
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Figure 12. The total cost reduction of the system under different EV quantities and battery 

depreciation costs. 

4 Conclusions and future work 

In this paper, the framework of V2M energy sharing system is proposed, which can 

significantly improve the energy demand flexibility in manufacturing facilities and reduce the 

energy cost for manufacturers under DR. The interconnection among various manufacturing 

resources, impacts of production on HVAC load, multi-directional energy flows, and dynamic 

RTPs are jointly considered in the system model. A MINLP problem is formulated to obtain the 

optimal V2M-based DR scheme. The case studies results show that, compared to traditional 

manufacturing DR scheme, the proposed approach can enhance the energy demand flexibility by 

up to 6.5 times and further reduce the energy cost by 4.7% to 6.9%. 

As the first few studies considering the energy demand flexibility in manufacturing facilities 

for DR, this paper provides a foundation for future research for practical DR schemes towards 

sustainable manufacturing. For example, the effect of the V2M on the power grid stability and 

reliability improvement should be further investigated and evaluated. In addition, the impacts of 

other measures to improve energy demand flexibility, such as renewable energy and building 

thermal mass, on manufacturing DR effectiveness should be investigated. Furthermore, the most 

advanced information technologies, such as internet of things and cyber-physical systems, could 

be integrated into the energy sharing system to support intelligent automatic control.  
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