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Abstract:

The U.S. manufacturing sector accounts for 77% of the industrial energy consumption, but its
participation in demand response (DR) programs is largely lagged behind. The relatively limited
flexibility in production scheduling under high capacity utilization and the lack of DR schemes
incorporating energy demand flexibility measures are deemed as major barriers. In this study, the
framework of an interactive vehicles-to-manufacturing (V2M) energy sharing system is proposed
to improve the energy demand flexibility of the aggregated system and enhance the DR
effectiveness for manufacturers. The V2M-based DR scheme aims to reduce the energy cost by
load shifting through joint production and energy sharing control, and it can eventually promote
manufacturing DR implementation even under high capacity utilization requirements and
dynamic real-time electricity prices. The V2M system is modeled based on a discrete-Markov
chain considering the complex interconnections among various manufacturing resources and
multi-directional energy flows among manufacturing facilities, electric vehicles, and the power
grid. Based on the system model, a mixed-integer nonlinear programming (MINLP) problem is
formulated to identify the optimal DR scheme. The effectiveness of the proposed approach is
validated through comparisons with traditional manufacturing DR schemes. The results show
that a 2.1 to 6.5 times energy demand flexibility improvement and an additional 4.7% to 6.9%

energy cost reduction can be achieved by the proposed approach.
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Nomenclature

Parameters
By Occupancy of the buffer n at time t
c Heat capacity of air (kWh/kg °C)
Ct RTP rate ($/kWh)
C, Cost of grid electricity ($)
Ceyp EV battery depreciation cost ($)
Cy Maximum capacity of the buffer n
ecH Electricity consumption of the HVAC system at time t (kWh)
ecM Electricity consumption of the manufacturing system at time t (kWh)
e fte”'mf Energy flow from EVs to manufacturing facility at time t (kWh)
e ftg”d'e” Energy flow from power grid to EVs at time t (KkWh)
efd ridmf Energy flow from power grid to manufacturing facility at time t (kWh)
effa Efficiency of machine n
GQ, Heat emission from the manufacturing system at time t (kWh)
k Thermal conductivity of manufacturing facility
L Average thickness of the walls and roofs (m)
i’ Unit depreciation cost ($/kW)
P, Rated power of machine n (kW)
PR, Production rate of machine n
PA Production target
PT Production throughput of the entire manufacturing system
Q; Energy required to maintain the indoor temperature (kWh)
fﬁo Heat transfers between the indoor and outdoor environment (kWh)
S Surface area of the manufacturing facility (m?)
SO0C;; SOC of the i-th EV’s battery at time t
Tem%n Indoor temperature at time t (°C)
Tem@“t Outdoor temperature at time t (°C)
Temte” Target indoor temperature at time t (°C)
%4 Volume of the manufacturing facility (m?)
Zs Operation state of the HVAC system
n¢ Cooling efficiencies of the HVAC system
nh Heating efficiencies of the HVAC system
nsh EV charging efficiencies
pdisch EV discharging efficiencies
Nn Energy efficiency of machine n
) Density of air (kg/m°)
Decision variables
Xnt Binary variable deciding the operation state of the n-th machine at time t
Vit Binary variable deciding the charging state of the i-th EV at time ¢t
Zit Binary variable deciding the discharging state of the i-th EV at time t
Plcth Continuous variable controlling the charging power of the i-th EV at time t

disch
Pit

Continuous variable controlling the discharging power of the i-th EV at time ¢t




1 Introduction

With the rapid development of smart grid technologies, the demand response (DR) is
considered a promising strategy in promoting energy efficiency [1], reducing carbon emissions
[2], and enhancing the energy distribution network’s reliability and stability [3], [4]. The DR
programs enable energy consumers to actively adjust their demand in response to the time-
varying prices, reducing their energy cost while helping reshape the load profile and alleviate
power grid congestion [5]. In particular, the manufacturing sector contributes 77% of the total
industrial energy consumption in the U.S. in 2020 [6], and thus the DR schemes for
manufacturing facilities have attracted widespread attention [7]-[9].

In the current literature, most DR studies for manufacturing facilities focus on the
management of manufacturing systems. For example, Dababneh et al. proposed an analytical
modeling-based approach for DR-driven production decision-making for serial production lines
[10]. In addition, Lu et al. developed a data-driven DR scheme and validated it through a metal
powder production line [11]. Recently, some studies extended these research efforts and
considered other auxiliary systems in the manufacturing facility. For example, Sun et al.
optimized the DR scheduling for combined manufacturing and heating, venting, and air-
conditioning (HVAC) system [12]. Furthermore, Yun et al. proposed a DR scheme for
manufacturing facilities considering the high power demand of the electric material handling
equipment with fast charging stations [13]. Despite the impact of auxiliary systems on the total
power demand, the manufacturing system is still the primary energy consumer and
fundamentally determines the DR scheme. In general, the current DR schemes for manufacturing
contribute to energy demand flexibility and load shifting/shedding by manufacturing system
scheduling under production capacity utilization constraints, which adopted a foundational
assumption that the capacity utilization rate of a manufacturing system should be limited, i.e., the
desired production target should be significantly less than the maximum production throughput.
Specifically, the capacity utilization rates in these DR studies are usually less than 70%.
Otherwise, the effectiveness of load shifting/shedding in these DR schemes would be
significantly diminished since the production line needs to be fully loaded even during some
peak periods to achieve high production target.

However, this assumption is questionable in practice for industrials that require high capacity

utilization rates. For example, to meet the increased chip demand, the semiconductor



manufacturers are substantially increasing their fab capacity utilization, especially under a
worldwide “chips shortage” during the COVID-19 pandemic. The traditional DR schemes only
consider the control of manufacturing resources, and thus the energy demand flexibility of the
manufacturing facility is limited under high capacity utilization requirements. In addition, this
flexibility issue is even more severe for the real-time price (RTP) based DR programs.
Specifically, the RTP reflects the actual supply-demand relationship of the electricity market,
which provides more benefit to the power system than the day-ahead price tariff in terms of
reducing the peak demand and flattening the load profile, but it also requires a more flexible and
timely DR control strategy [14]. Since the energy demand flexibility issue is hard to be addressed
merely by production scheduling along, an energy storage system could potentially provide
additional demand flexibility to manufacturing facilities [15]. In the current literature, integrating
stationary energy storage systems with manufacturing systems, such as cement plant [16] and
assembly plant [17], has been proved to be a feasible solution for demand flexibility
improvement. However, stational energy storage systems require a vast capital investment,
which may not be economically attractive to some manufacturers [18].

With the rapid growth of the electric vehicle (EV) market, the energy sharing between EVs
and other energy systems presents a large potential to improve the aggregated energy demand
flexibility with limited investment [19]. Hence, the energy sharing system with EVs could be a
promising solution to the above-mentioned problem. Specifically, EVs in the smart grid are
capable of not only drawing energy from the power grid, but also delivering energy to other
systems to achieve the peak demand reduction of the aggregated energy system [20]. In the
current literature, various research efforts have been devoted to DR schemes considering EVs in
residential and commercial applications, which are referred to as Vehicle to Home (V2H) [21],
[22] and Vehicle to Building (V2B) [23], [24]. Although these studies provide insights into the
energy demand flexibility improvement for the aggregated system under DR, they cannot be
directly integrated with manufacturing systems. In manufacturing systems, turning off one
machine can potentially affect the operation status and the production throughput of the entire
production line due to machine starvation and blockage [25]. In addition, the heat emission from
machine operation can also affect the thermal load of the heating, ventilation, and air
conditioning (HVAC) system [12]. Therefore, unlike the demand loads from appliances in V2H

and V2B systems, which can be freely scheduled with limited constraints, the scheduling and



control of demand loads from machines, HVAC systems, and energy sharing between EVs and
manufacturing facilities should be decided considering their complex interconnection. A DR
scheme for manufacturing facilities that can reap the benefit of energy sharing system with EVs
is still lacking.

To fill the above-mentioned research gap, a vehicle to manufacturing (V2M) energy sharing
system and the V2M-based DR scheme are proposed in this study. The contributions of this
study are summarized as follows.

1. The framework of the V2M system is proposed, where the EVs can provide
electricity storage to manufacturing facilities for additional energy demand flexibility
without compromising production capacity utilization under RTP-based DR program.

2. A discrete-time Markov decision process-based approach is applied to model the
V2M energy sharing system, which systematically considers the impacts of
production schedules and multidirectional energy interactions on production
throughput and peak power demand.

3. A mixed-integer nonlinear programming (MINLP) optimization model is formulated
and solved to find the optimal RTP-responsive DR scheme that can enhance the
economic viability of the system.

The outcomes of this study provide a practical strategy to improve energy demand flexibility
for manufacturers and allow them to reduce their energy costs even under high capacity
utilization requirements through RTP-based DR programs.

The rest of this paper is organized as follows. In Section 2, the framework of the V2M
system, system modeling, and optimization problem formulation are presented. The performance
evaluation, comparative analyses, and sensitivity analyses of the proposed V2M-based DR

scheme are discussed in Section 3. The conclusions and future work are provided in Section 4.

2 Proposed method

2.1 Description of V2M system
The V2M system enables energy sharing among the power grid, manufacturing facilities, and
EVs. The framework of the proposed V2M energy sharing system is shown in Figure 1. More

specifically, a V2M controller collects information such as RTP signals, manufacturing power



demand, and EV battery state of charge (SOC), and then optimizes the production scheduling
and power flow within the system. In the manufacturing facility, the energy demands from the
manufacturing system and heating, ventilation, and air conditioning (HVAC) system are
considered in this study since these two systems are the largest energy consumers for direct
process and direct non-process end uses in the U.S. manufacturing sector [26]. Machines in the
manufacturing system consume energy for part fabrication, and the production schedule can be
actively adjusted in response to RTP. The HVAC system consumes energy to maintain a desired
indoor temperature. Due to the impact of heat emission from the machine operation on indoor
temperature, the operation and energy consumption of the HVAC system are affected by the
production schedule. EVs in the parking lot need to be charged to a desired battery level before
departure, and their battery can be discharged to share the stored energy with the manufacturing
facility. The EV charging/discharging activities are determined by controller after jointly
considering the RTP and energy consumption of manufacturing facility. The possible energy
flows and information flows in the proposed V2M system are represented by red lines and blue

lines in Figure 1, respectively.
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Figure 1. Framework of the proposed V2M energy sharing system.
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Figure 2. The layout of the manufacturing system.

In this study, the V2M energy sharing system is modeled based on a discrete-time Markov
chain. The production horizon is evenly divided into T time slots, and the duration of each time
slott € [1, ..., T] is At. The manufacturing system is represented by a serial production line with
N machines and N — 1 work-in-process buffers (as shown in Figure 2), and let n denote the
index of machine and buffer. In addition, assume a total of M EVs are connected to the V2M
system and let i denote the index of EV. In order to obtain the optimal control of the V2M
system, three binary and two continuous decision variables are considered in this study. More
specifically, binary variable x,, ; decides the operation state of the n-th machine at time ¢; binary
variables y;, and z;, determine the charging/discharging states of the i-th EV at time t,
respectively. In addition, continuous variables Pﬂ‘ and Pf,f“h control the charging/discharging
power of the i-th EV at time t, respectively. The binary decision variables are formally defined
as follows:

‘. = {1, if the nt" mahcine is turn on at time t !
nt o, otherwise (D

o {1, if the i EV is charging at time t
it 0, otherwise 2)

7 = {1, if the i*" EV is discharging at time t
N (1} otherwise 3)

The process of optimizing the production and energy sharing schedules and calculating the
corresponding energy cost is shown in Figure 3. The models of manufacturing and HVAC
systems in the manufacturing facility are discussed in Section 2.2.1, the EV charging/discharging
model is presented in Section 2.2.2, and the optimization problem formulation is shown in
Section 2.3. Note that since the actual RTP is not known at the scheduling stage, the price
prediction is used to obtain the optimum schedule. Then, the actual RTP is applied to calculate

the real energy cost and evaluate the optimal schedule.
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Figure 3. Flow chart of optimization and energy cost calculation.

2.2 V2M system modeling
2.2.1 Manufacturing facility

According to material balance, the buffer occupancy can be calculated as:

Bnt = Bni—1+Xne PRy effn - At = Xpy1¢ " PRyyq - €f fnya - AL 4)
where B, ; is the buffer occupancy of the n-th buffer at time t; specifically, By, o is the initial
occupancy of the n-th buffer; PR,, is the production rate of the n-th machine (unit per hour); and
ef fn is the efficiency of the n-th machine.

The production throughput (PT) of the entire manufacturing system is defined by the product

processed by the last machine N,which can be calculated as:
PT:thN,t.PRN.effN.At (5)

The electricity consumption of the manufacturing system, denoted by (ec/™), can be

calculated as:

ech = Zn(x"'t - B, - At) (6)

where B, is the rated power of the n-th machine.
The heat emission from the manufacturing system (denoted by GQ;) can affect the HVAC

load to maintain the desired indoor temperature, which can be calculated by:
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where 7,, is the energy efficiency of the n-th machine.
The heat transfers between the indoor and outdoor environment, denoted by Qi", can be

calculated as:

. S . 8
o=k T At - (Tem{™ — Tem¥t) ®)

where k is the thermal conductivity of the walls and roofs of the facility; L is the average
thickness of the walls and roofs; S is the surface area of the manufacturing facility; and Tem™
and Tem?"* are indoor and outdoor temperature of the facility at time t, respectively. Note that
the indoor-outdoor temperature difference determines whether Q‘;’ is positive or negative.

The energy (Q) required to maintain the indoor temperature can be calculated as:

Qe=c-p-V-(Temi® —Tem") + Qf — GQ, )

where c is the heat capacity of air; p is the density of air; V is the volume of the manufacturing
facility; and Temt®" is the target indoor temperature of the facility at time t.

Let Z; denote the operation state of the HVAC system. Whether the HVAC system is in
heating state (Z; = 1) or cooling state (Z; = 0) is determined by Q; as:

Zt—{l’ if Q. =0

0, otherwise (10)

The electricity consumption of the HVAC system, denoted by (ecf?), can be calculated as:

i ol
ARy ATE o

ec

where 0" and n° are the respective heating and cooling efficiencies of the HVAC system.
According to the conservation of energy, the total energy that flows into the manufacturing
facility, i.e., from the power grid (e ftg ridmf ) and EVs (e ftev’mf ), equals the energy consumed by
manufacturing system and HVAC system.
ef,I M 4 ef '™ = ecM + ech (12)
2.2.2 EV changing/discharging

According to the conservation of energy, the EV battery state of charge (SOC) can be

calculated as:

SOC;y =SOC;e_ 1 + yie - PE - At — 7 - PES" - At (13)



where SOC;, represents the SOC of the i-th EV’s battery at time t. Specifically, SOC;
represents the initial SOC when the i-th EV arrives the parking lot.

The energy flows from EVs to the manufacturing facility and from the power grid to EVs

(e ftg rid’ev) are determined by the EV charging and discharging power, as shown in the following

equations:
eftev,mf — ngll;sch . Z_Pi(,itiSCh “Zie At (14)
L
i
eftgn ev _ zplcgl “yie At /nSh (15)
l

where S and %" are the respective charging and discharging efficiencies.

2.3 MINLP problem formulation
The MINLP problem can be formualted as:

xn,t:yi_t.zl;lepri}:?ngtiSCh cosT=¢C,+C,, (16)
s.t. 0< B, <Gy, vn,t (17
Byo = Bur) vn (18)
PT = PA (19)
Yietzie <1, Vi, t (20)
PL™ < PR < PR, vi,t 1)
Pilicen < P{t°" < Pich vi,t (22)
S0C™™" < SOC;, < SOC™*, Vit (23)
SO0C;r = soc4er, Vi (24)

The objective of the optimization problem is to minimize the total cost of the V2M energy
sharing system. The total cost includes two parts: the cost of grid electricity for the V2ZM system

(C.) and the EV battery depreciation cost (C,,,). The cost of grid electricity can be calculated as:
Ce — z ¢ - (eftgrid,ev + eftgrid,mf) (25)
t

where c; is the RTP at time t. Note that the predicted RTP is used for solving the optimization
problem and find the optimal schedule since the actual RTP is not known in the day-ahead
production scheduling stage. Whereas the actual RTP is applied to evaluate the obtained optimal

solution.
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The batteries in EVs usually have a fixed cycle life, i.e., the number of charge and discharge
cycles that a battery can complete before losing performance [27]. Since EVs participating in the
V2M system need to be charged and discharged more frequently, the batteries in these EVs are
anticipated to have a shorter lifetime. Therefore, the EV owners should be paid for the battery

depreciation, which can be estimated by the charging/discharging power as:

Cep = Z [Pie v Z (P + PEE™) - At (26)
i t

where p{” is unit depreciation cost per kWh.

The first three constraints are related to the manufacturing facility. Constraint (17) shows that
the occupancy of buffer n should be between zero and its maximum buffer capacity C, .
Constraint (18) shows that the buffer occupancy before and after the production horizon should
maintain the same level to ensure long-term production stability. Constraint (19) represents the
product throughput requirement, i.e., the throughput should be no less the desired production
target (denoted by PA).

The rest five constraints are related to the EV charging/discharging activities. Constraint (20)
indicates that an EV cannot be charged and discharged at the same time. Constraints (21) and (22)
define the charging/discharging power limits, where P*™ and P™** are minimal and maximal
allowed charging power, respectively; and P7:%, and PJ'%% are minimal and maximal allowed
discharging power, respectively. Constraint (23) shows that batteries cannot be overcharged or
overdischarged, i.e., the battery SOC should be in a range from SOC™™ to SOC™%*. The last
constraint indicates that EV should be charged to a desired battery level (denoted by SOC%¢P)

before departure.

3 Results and discussions

3.1 Case study settings

In this study, the manufacturing system is assumed to be a five-machine-four-buffer serial
production line. All machine-related parameters, i.e., production rate, power, and energy
efficiency, are listed in Table 1. In addition, the buffer-related parameters, i.e., initial buffer

occupancy, and maximum buffer capacity, are listed in Table 2. The production horizon is set to
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an eight-hour shift from 9:00 to 17:00. The production horizon is evenly divided into 32 time
slots, and the length of each time slot At is 15 min.

The manufacturing facility is assumed to be a building whose floor area is 40m by 40m and
the height is 10m. The thermal conductivity of the walls and roofs of the facility is 0.001695
kW/m °C [28]. The specific heat capacity of air is 0.00028 kWh/kg °C. The target indoor
temperature of the manufacturing facility is set to be 20 °C, and the outdoor temperature is
adopted from the recent weather records in New York [29]. The cooling and heating efficiencies
of HVAC are assumed to be 70% and 80%, respectively.

Table 1. Machine parameters

Production rate Energy
Machine Power (kW)
(unit/h) efficiency
M1 40 60 0.85
M2 40 80 0.85
M3 40 100 0.80
M4 40 100 0.85
M35 40 80 0.80

Table 2. Buffer parameters

Buffer Initial occupancy Maximum capacity
B1 20 80
B2 20 80
B3 25 100
B4 20 80

In this study, the EV battery capacity is set to be 30 kWh, and both charging/discharging
efficiencies are set to be 95% [30]. Forty EVs are assumed to arrive at the parking lot at the
beginning of the production horizon with different battery levels. Specifically, it is assumed that
twenty EVs arrive with a low battery level (20%), and the other twenty EVs arrive with a high
battery level (50%). All EVs are assumed to depart the parking lot at the end of the production
horizon with the minimum required departure battery level of 80%. The minimum

charging/discharging rates are assumed to be 2kW. The maximum charging/discharging rates are
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respectively set to 19.2kW and 9.6kW based on Ford charge station pro [31]. The depreciation
cost for EV batteries is assumed to be €0.25/kWh [32].

The actual RTP is adopted from New York Independent System Operator (NYISO) [33],
whereas the predicted RTP is obtained using long short-term memory (LSTM). LSTM is an
artificial recurrent neural network architecture specialized for processing sequential data, which
is widely used in problems such as speech recognition and market price trend prediction. The
actual and predicted RTPs used in this study are shown in Figure 4. The predicted RTP is used
for MINLP formulation, and the actual RTP is applied to evaluate the optimal production
schedule. The optimization problems are solved using LINGO on a laptop with an Intel® Core™

i7 CPU and an 8 GB memory, and the optimality tolerance in LINGO is set to 107.
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Figure 4. Actual RTP and predicted RTP on Dec. 19, 2020.

In this study, three scenarios are established and compared to evaluate the effectiveness of
the proposed V2M system in improving the energy demand flexibility in manufacturing facilities
and reducing energy cost for manufacturers. The details of three scenarios are described as
follows:

1) Scenario I (baseline): in this scenario, the manufacturing facility and EVs are controlled

independently. In addition, the manufacturing facility control strategy aims to minimize
electricity consumption, i.e., the RTP-based DR program is not considered in this

scenario.
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2) Scenario II (without V2M): in this scenario, the traditional manufacturing DR control
method is adopted, where the manufacturing facility is controlled independently in
response to RTP without energy sharing between EVs and manufacturing facility

(ensured by the following equation).

Pl =0 27)
3) Scenario III (with V2M): in this scenario, the proposed V2M system is applied for DR
control, i.e., the EVs can share energy with manufacturing facility to achieve the

minimum energy cost of the entire V2M system under DR.

3.2 Performance evaluation of the proposed V2M energy sharing system

In this subsection, the superiority of the proposed V2M system in energy demand flexibility
improvement and energy cost reduction are evaluated and compared with the other two scenarios
under various production targets (capacity utilization rates). More specifically, the maximum
production throughput of the manufacturing system in case studies is 320, i.e., the production
throughput achieved when all machines are turned on during the entire production horizon (the
capacity utilization rate is 100%). Five production targets (capacity utilization rates), from 240
(75%) to 320 (100%), are evenly selected for performance evaluation. The MINLP problem
under each case setting is solved five times, and the calculation takes around 3.8 seconds. The
solutions in all five trials converge to the same value.

The energy demand flexibilities are represented by two metrics from different aspects, i.e.,

the quantitative metric (Ef;,) showing the amount of energy that can be shifted during the
production horizon, and the temporal metric (tf;,) showing the total duration of the shifted

energy demand [34]. These two metrics can be calculated as follows:

Efe = ZtmaX(O, ec?ase — ecPR) (28)

tre = At - |{t|ec??s® — ecPR > 0} (29)
where ec?®s¢ is the energy demand from the power grid at time t in baseline scenario (Scenario
D), and ecPR is the energy demand from the power grid at time t in DR control scenario
(Scenarios II and IIT). The comparison of energy demand flexibilities in Scenarios II and III are

shown in Table 3.
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Table 3. Energy demand flexibility comparison

Production target Ef. (kWh) trie (h)

(capacity utilization) Scenario I  Scenario III Scenario I Scenario I11
240 (75.0%) 647.81 1385.93 2.00 2.75
260 (81.3%) 474.69 1319.99 1.50 2.75
280 (87.5%) 330.00 1202.94 1.00 2.75

300 (93.8%) 165.00 1077.00 0.50 2.50

320 (100.0%) 0 912.00 0 2.50

The results show that in the case of 100% capacity utilization, the energy demand flexibilities
represented by two metrics are equal to zeros under the traditional DR scheme in Scenario II,
whereas the proposed V2M-based DR scheme can still ensure decent levels of energy demand
flexibility. In the other four cases, compared to Scenario II, the proposed approach in Scenario
III can improve the metric Ef;, by 2.1 to 6.5 times and the metric tf;, by 1.4 to 5 times.

In addition, the costs achieved in Scenario I are treated as baseline costs (100%). The costs
achieved in Scenarios II and III are compared to the baseline costs, and the results are shown in
Figure 5. The results show that the proposed V2M-based DR scheme outperforms the traditional
DR scheme under all five cases. Specifically, Scenario III can further reduce the total cost by 4.7%
to 6.9% compared to Scenario II. In addition, the results in Figure 5 show that the cost reduction
effect under DR control diminishes with increasing capacity utilization. Specifically, the cost
reductions achieved by traditional method in Scenario II are reduced from 10.5% when capacity
utilization is 75% to 0% when capacity utilization is 100%. Since the traditional method can only
adjust the machine operation schedule to avoid the electricity peak period, this method loses
effectiveness when machines must be in operation state for a longer time to achieve a higher
capacity utilization. Especially under the 100% capacity utilization, the traditional method is
completely invalid. In comparison, since the proposed V2M-based DR scheme provides more
energy demand flexibility, the total cost can still be reduced by 6.9% through the energy sharing

between the manufacturing facility and EVs even under the highest capacity utilization.
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Figure 5. The cost percentage of three scenarios compared with Scenario I under five different

capacity utilization rates.

Specifically, the details of production schedules, EV charging/discharging activities, power
demands, and cost analysis under the production target 300 (93.8% capacity utilization) are
discussed next as an example to show the difference between the traditional method in Scenario
IT and the proposed method in Scenario III.

Figure 6 shows the optimal production schedules obtained in Scenarios II and III. The results
indicate that production schedules tend to avoid high electricity prices during peak periods in
both two scenarios. More specifically, since production schedule adjustment is the only
mechanism responding to peak demand in Scenario II, all five machines are turned off from
12:00 to 12:30 to avoid the highest electricity price, as shown in Figure 6 (a). However, in order
to achieve high capacity utilization, machines can only be turned off for a limited time. Hence,
the production schedule in Scenario II cannot respond to other peak periods, such as the period
from 13:30 to 14:15 (as shown in Figure 4). In comparison, Figure 6 (b) shows a more flexible
DR control method in Scenario III. Specifically, attributed to the energy sharing between EVs
and the manufacturing facility, machines can use electricity from EVs instead of from the power
grid during peak periods. Therefore, in this scenario, manufacturers can turn some machines on
from 12:00 to 12:30 without paying for the highest RTP. Consequentially, machines can be
turned off during other periods in response to more peak electricity price while satisfying high

capacity utilization.
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Figure 6. The optimal production schedules in (a) Scenario II and (b) Scenario III.

The changes in power demands of manufacturing and HVAC systems in Scenario III are
shown in Figure 7. Specifically, results in Figure 7 (a) show that the manufacturing power
demand is reduced by 140 to 180 kW during two peak periods based on the production schedule
in Figure 6 (b). In addition, the power demand of the HVAC system reacts to the outdoor
temperature and electricity price, and the results are shown in Figure 7 (b). Since the temperature
data on a winter day is applied in this case, the HVAC system is used to warm up the
manufacturing facility. Therefore, in general, the power demand of the HVAC system decreases
with the increasing outdoor temperature. In addition, since the power demand of the

manufacturing system is reduced during two peak periods, the heat emission from the
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manufacturing system is also reduced during these periods. Therefore, the HVAC system should
consume more energy to keep the desired indoor temperature during these two periods. Although
the power demand of the HVAC system increases by 30 kW to 45 kW during peak periods,
considering the demand reduction of the manufacturing system, the total power demands of the

manufacturing facility are still reduced by 95 to 150 kW during peak periods based on the

proposed DR scheme.
600 0.09
0.08
500
0.07
~ 400 006 =
= z
= 0.05 =
= 300 A
2 0.04 o
: 2
&~ 200 0.03 &
0.02
100
0.01
0 0
9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
=== Manufacturing power demand Electricity price
(@)
160 7
140 g
5~
; 120 8
=l
= 100 i E
S =]
£ 3 8
s =3
& £
80 s
2 =
60 1
40 0
9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
=—=HVAC power demand Qutdoor temperature
(b)

Figure 7. The changes in power demands of manufacturing and HVAC systems due to DR in

Senario I11.
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The EV charging and discharging power shown in Figure 8 further explains the reason for
the differences between two production schedules. As shown in Figure 8 (a), since there is no
energy sharing in Scenario II, EVs only charge twice during off-peak periods to ensure 80% of
battery level before departure. On the contrary, in Scenario III, EVs need to charge more
frequently during off-peak periods to store enough electricity for energy sharing. Consequently,
as shown in Figure 8 (b), EVs are able to discharge and share the stored energy with the
manufacturing facility during three peak periods, i.e., around 10:30, from 11:45 to 13:15, and
from 13:30 to 14:15. Combining the energy sharing and manufacturing scheduling, the proposed
V2M system can help manufacturers reduce power demand from the grid during all three peak

periods even under high capacity utilization.
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Figure 8. The charging and discharging power of EVs in (a) Scenario II and (b) Scenario III.

Figure 9 shows the total power demand required from the grid in Scenarios II and III. The
results indicate that the traditional method in Scenario II can only respond to one peak period
from 12:00 to 12:30 under high capacity utilization. However, due to the energy consumption of
the HVAC system, the manufacturing facility still needs 183 kW from the grid during this period,
even if all five machines are temperately turned off. In comparison, the V2M-based DR scheme
in Scenario III is more flexible. The V2M system can respond to all three peak periods and
significantly reduce the power demand from the grid during these periods. In general, the V2M
system can shift the power demand from peak periods to off-peak periods. Therefore, it can
eventually alleviate congestion on the power system and help manufacturers reduce energy cost.
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Figure 9. Total power demand from the grid in Scenario II and Scenario III.

The detailed energy and cost comparisons between Scenarios II and III are presented in Table
4. Compared with Scenario II, the manufacturing facility in Scenario III is less dependent on the
grid, and its electricity consumption is significantly reduced by 23.3%. At the same time, the
EVs in Scenario III consume more electricity from the grid for energy sharing, which results in a
slightly higher total electricity consumption (i.e., 2.2% in this case). In addition, due to the
frequent EV charging and discharging, the EV battery cost in Scenario III is also higher than
Scenario II. However, even though Scenario III is associated with slightly higher total electricity

consumption and battery cost, it successfully reduces power demand during peak periods. As a
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result, the proposed V2M-based DR scheme eventually reduces the electricity and total costs by

9.4% and 6.5% than the traditional manufacturing DR scheme.

Table 4. The energy and cost comparisons between Scenarios 11 and II1

Electricity consumption from the grid (kWh) EV battery Electricity = Total

Manufacturing facility EVs Total cost ($) cost ($) cost ($)
Scenario 11 3921.70 568.42  4490.12 1.35 169.08 170.43
Scenario 111 3009.70 1578.95  4588.65 6.15 153.27 159.42
Decrease 9.4% 6.5%

3.3 Comparative analyses

In this subsection, the performance of the proposed V2M-based DR scheme is compared with
some other rule-based energy sharing schemes [35], [36], in which the manufacturing system
scheduling is not jointly optimized with the EV energy sharing. Specifically, the alternative
schemes include price-based method without facility power demand information (PBWO), price-
based method with facility power demand information (PBW), time-based method without
facility power demand information (TBWO), and time-based method with facility power demand
information (PBW). In the four alternatives, the EV charging/discharging timing is only
determined by the power grid signals. In two price-based methods, EVs discharge and share
energy with the manufacturing facility when the predicted RTP is higher than a predefined
threshold. Whereas in two time-based methods, EVs discharge during a fixed period. In all four
alternatives, EVs are charge during off-peak periods. In addition, if the manufacturing facility’s
power demand information is not available, EVs discharge at the maximum power; otherwise,
EVs discharge to meet the power demand of manufacturing facility. In this study, the threshold
for price-based methods is set to 70% of the maximum predicted RTP during production horizon.
The fixed discharging period for time-based methods is set to 13:00 to 14:00, which is a typical
peak period according to the RTP record [33]. The comparison results among five control
methods are represented in Figure 10. This figure shows that the proposed method outperforms
all other alternatives and achieves the lowest total cost under five production targets. This result

indicates the necessity of the proposed V2M-based DR scheme, i.e., jointly considering the
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manufacturing system scheduling and EV energy sharing, in obtaining the optimal DR control

for manufacturers.
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Figure 10. The total cost comparison between the proposed V2M-based DR scheme and four

alternatives.

3.4 Sensitivity analyses

In this subsection, sensitivity analyses are conducted to test the proposed V2M-based DR
scheme under various RTPs and EV settings. Specifically, three RTPs in summer (denoted by S-
1, S-2, and S-3) and three RTPs in winter (denoted by W-1, W-2, and W-3) are selected to test
the robustness of the proposed scheme. Each selected RTP has different peak periods and
patterns, as shown in Figure 11. The production target (capacity utilization) is set to 300 (93.8%).
The comparisons of energy demand flexibilities and total costs are shown in Tables 5 and 6,

respectively.
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Figure 11. The six RTPs for sensitivity analysis.

Table 5 shows that the system always has larger energy demand flexibility in Scenario III.
Specifically, the flexibility metric Ef;, in Scenario III is improved by 3.3 to 6.5 times comparing
to Scenario II. The metric ty, is also improved by 3 to 5.5 times.

Table 5. Energy demand flexibility comparison under different RTPs

Efi. (kWh) trie (h)
Scenario IT Scenario III Scenario II Scenario III
S-1 261.43 1173.43 0.50 2.75
S-2 229.29 749.89 0.50 1.50
S-3 235.71 962.40 0.50 2.25
W-1 165.00 1077.00 0.50 2.50
W-2 127.50 834.73 0.50 2.00
W-3 150.00 886.81 0.50 2.25

The results in Table 6 show that under all six RTPs, the total costs in Scenario III are always
the lowest. More specifically, in Scenario III, the total costs are reduced by 7.53% to 10.20%
compared to baseline in Scenario I, which means costs are further reduced by 3.37% to 6.21%
compared to the traditional method in Scenario II. The results validate the robustness of the

proposed DR schemes under different RTPs.

Table 6. Total cost comparison under different RTPs

Scenario I Scenario 11 Scenario 111
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Cost Decrease Cost Decrease Cost Decrease

S-1 204.89 - 194.16  5.24% 183.99  10.20%
S-2 222.08 - 213.02  4.08% 203.83 8.22%
S-3 209.12 - 20042  4.16% 193.37 7.53%
Ww-1 177.21 - 170.43 3.83% 159.42  10.04%
W-2 204.05 - 199.32  2.32% 188.26 7.74%
W-3 160.01 - 154.44  3.48% 146.31 8.56%

In addition, the impacts of two EV-related factors (i.e., quantity of EV and battery
depreciation cost) on the performance of the proposed approach are investigated.

The quantity of EV is one of the most critical factors affecting the total cost. Specifically, the
EV quantity directly determines the maximum energy flow from EVs to the manufacturing
facility, and thus it affects the energy sharing ability of the V2M system. As shown in Figure 12,
the effectiveness of total cost reduction improves as the EV quantity increases. However, the
impact of increasing EV quantity on cost reduction is diminished after the number of EVs
exceeds a threshold. For example, if the battery depreciation charge equals C0.25/kWh, the total
cost reduction is improved by 1.88% when the number of EVs increases from 10 to 20, but it
only improves by 0.49% when EV quantity increases from 50 to 60.

The battery depreciation cost is another critical factor. As shown in Figure 12, the
effectiveness of cost reduction induced by the proposed V2M system improves as the
depreciation cost decrease. The red line with CO/kWh shows the theoretically largest cost
reduction. The current battery depreciation cost is between €0.25/kWh and C0.5/kWh. However,
battery cost has already fallen by 80% from 2013 to 2017, and it is anticipated to be further
reduced with battery technology improvement [37]. Therefore, the proposed V2M system could
play a greater role in energy demand flexibility improvement for DR in manufacturing facilities

in the future.

24



14.00%
12.00%
10.00%
8.00%
6.00%
4.00%

Total Cost Reduction

2.00%

0.00% ‘
0 10 20 30 40 50 60

EVs' Number

== (C0/kWh C0.1/kWh €0.25/kWh C0.5/kWh C1/kWh

Figure 12. The total cost reduction of the system under different EV quantities and battery

depreciation costs.

4 Conclusions and future work

In this paper, the framework of V2M energy sharing system is proposed, which can
significantly improve the energy demand flexibility in manufacturing facilities and reduce the
energy cost for manufacturers under DR. The interconnection among various manufacturing
resources, impacts of production on HVAC load, multi-directional energy flows, and dynamic
RTPs are jointly considered in the system model. A MINLP problem is formulated to obtain the
optimal V2M-based DR scheme. The case studies results show that, compared to traditional
manufacturing DR scheme, the proposed approach can enhance the energy demand flexibility by
up to 6.5 times and further reduce the energy cost by 4.7% to 6.9%.

As the first few studies considering the energy demand flexibility in manufacturing facilities
for DR, this paper provides a foundation for future research for practical DR schemes towards
sustainable manufacturing. For example, the effect of the V2ZM on the power grid stability and
reliability improvement should be further investigated and evaluated. In addition, the impacts of
other measures to improve energy demand flexibility, such as renewable energy and building
thermal mass, on manufacturing DR effectiveness should be investigated. Furthermore, the most
advanced information technologies, such as internet of things and cyber-physical systems, could

be integrated into the energy sharing system to support intelligent automatic control.

25



Acknowledges

The authors sincerely appreciate the funding support from the U.S. Department of Energy
under Grant Number DE-EE0009714.

References

(1]

(2]

[3]

[4]

[5]

[6]
(7]

[8]

[9]

[10]

[11]

[12]

K. Wohlfarth, E. Worrell, and W. Eichhammer, “Energy efficiency and demand response
— two sides of the same coin?,” Energy Policy, vol. 137, p. 111070, Feb. 2020, doi:
10.1016/j.enpol.2019.111070.

M. Fleschutz, M. Bohlayer, M. Braun, G. Henze, and M. D. Murphy, “The effect of price-
based demand response on carbon emissions in European electricity markets: The
importance of adequate carbon prices,” Appl. Energy, vol. 295, p. 117040, Aug. 2021, doi:
10.1016/j.apenergy.2021.117040.

W. Zhong, S. Xie, K. Xie, Q. Yang, and L. Xie, “Cooperative P2P Energy Trading in
Active Distribution Networks: An MILP-Based Nash Bargaining Solution,” IEEE Trans.
Smart Grid, pp. 1-1, 2020, doi: 10.1109/TSG.2020.3031013.

W. Zhong, K. Xie, Y. Liu, S. Xie, and L. Xie, “Nash Mechanisms for Market Design
based on Distribution Locational Marginal Prices,” IEEE Trans. Power Syst., pp. 1-1,
2022, doi: 10.1109/TPWRS.2022.3152517.

L. P. Qian, Y. J. A. Zhang, J. Huang, and Y. Wu, “Demand Response Management via
Real-Time Electricity Price Control in Smart Grids,” IEEE J. Sel. Areas Commun., vol. 31,
no. 7, pp. 1268-1280, Jul. 2013, doi: 10.1109/JSAC.2013.130710.

U.S. Energy Information Administration, “Annual Energy Outlook 2020,” 2020.

F. Dababneh and L. Li, “Integrated Electricity and Natural Gas Demand Response for
Manufacturers in the Smart Grid,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4164-4174,
Jul. 2019, doi: 10.1109/TSG.2018.2850841.

S. Ma, Y. Zhang, Y. Liu, H. Yang, J. Lv, and S. Ren, “Data-driven sustainable intelligent
manufacturing based on demand response for energy-intensive industries,” J. Clean. Prod.,
vol. 274, p. 123155, Nov. 2020, doi: 10.1016/j.jclepro.2020.123155.

L. Yun, S. Ma, L. Li, and Y. Liu, “CPS-enabled and knowledge-aided demand response
strategy for sustainable manufacturing,” Adv. Eng. Informatics, vol. 52, p. 101534, Apr.
2022, doi: 10.1016/j.2€1.2022.101534.

F. Dababneh, L. Li, R. Shah, and C. Haefke, “Demand Response-Driven Production and
Maintenance Decision-Making for Cost-Effective Manufacturing,” J. Manuf. Sci. Eng.,
vol. 140, no. 6, Jun. 2018, doi: 10.1115/1.4039197.

R. Lu, R. Bai, Y. Huang, Y. Li, J. Jiang, and Y. Ding, “Data-driven real-time price-based
demand response for industrial facilities energy management,” Appl. Energy, vol. 283, p.
116291, Feb. 2021, doi: 10.1016/j.apenergy.2020.116291.

Z. Sun, L. Li, and F. Dababneh, “Plant-level electricity demand response for combined
manufacturing system and heating, venting, and air-conditioning (HVAC) system,” J.

26



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Clean. Prod., vol. 135, pp. 1650-1657, Nov. 2016, doi: 10.1016/].jclepro.2015.12.098.

L. Yun, L. Li, and S. Ma, “Demand response for manufacturing systems considering the
implications of fast-charging battery powered material handling equipment,” Appl. Energy,
vol. 310, p. 118550, Mar. 2022, doi: 10.1016/j.apenergy.2022.118550.

S. Paul and N. P. Padhy, “Real-Time Bilevel Energy Management of Smart Residential
Apartment Building,” IEEE Trans. Ind. Informatics, vol. 16, no. 6, pp. 3708-3720, Jun.
2020, doi: 10.1109/T11.2019.2941739.

W. Zhong, K. Xie, Y. Liu, C. Yang, and S. Xie, “Multi-Resource Allocation of Shared
Energy Storage: A Distributed Combinatorial Auction Approach,” IEEE Trans. Smart
Grid, vol. 11, no. 5, pp. 41054115, Sep. 2020, doi: 10.1109/TSG.2020.2986468.

X. Zhang, G. Hug, J. Z. Kolter, and 1. Harjunkoski, “Demand Response of Ancillary
Service From Industrial Loads Coordinated With Energy Storage,” IEEE Trans. Power
Syst., vol. 33, no. 1, pp. 951-961, Jan. 2018, doi: 10.1109/TPWRS.2017.2704524.

H. Cui and K. Zhou, “Industrial power load scheduling considering demand response,” J.
Clean. Prod., vol. 204, pp. 447-460, Dec. 2018, doi: 10.1016/j.jclepro.2018.08.270.

J. Mullan, D. Harries, T. Brédunl, and S. Whitely, “The technical, economic and
commercial viability of the vehicle-to-grid concept,” Energy Policy, vol. 48, pp. 394406,
Sep. 2012, doi: 10.1016/j.enpol.2012.05.042.

Y. Zhou, S. Cao, J. L. M. Hensen, and A. Hasan, “Heuristic battery-protective strategy for
energy management of an interactive renewables—buildings—vehicles energy sharing
network with high energy flexibility,” Energy Convers. Manag., vol. 214, p. 112891, Jun.
2020, doi: 10.1016/j.enconman.2020.112891.

C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and Challenges of Vehicle-to-
Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies,” Proc. IEEE, vol. 101, no.
11, pp. 24092427, Nov. 2013, doi: 10.1109/JPROC.2013.2271951.

D. T. Nguyen and L. B. Le, “Joint Optimization of Electric Vehicle and Home Energy
Scheduling Considering User Comfort Preference,” IEEE Trans. Smart Grid, vol. 5, no. 1,
pp- 188-199, Jan. 2014, doi: 10.1109/TSG.2013.2274521.

H. Turker and S. Bacha, “Optimal Minimization of Plug-In Electric Vehicle Charging
Cost With Vehicle-to-Home and Vehicle-to-Grid Concepts,” IEEE Trans. Veh. Technol.,
vol. 67, no. 11, pp. 10281-10292, Nov. 2018, doi: 10.1109/TVT.2018.2867428.

C. Pang, P. Dutta, and M. Kezunovic, “BEVs/PHEVs as Dispersed Energy Storage for
V2B Uses in the Smart Grid,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 473-482, Mar.
2012, doi: 10.1109/TSG.2011.2172228.

A. Buonomano, “Building to Vehicle to Building concept: A comprehensive parametric
and sensitivity analysis for decision making aims,” Appl. Energy, vol. 261, p. 114077, Mar.
2020, doi: 10.1016/j.apenergy.2019.114077.

J. Li and S. M. Meerkov, Production systems engineering. Springer Science & Business
Media, 2008.

U.S. Energy Information Administration, “Manufacturing Energy Consumption Survey
(MECS),” Washington DC., U.S., 2002. [Online]. Auvailable:
https://www.eia.gov/consumption/manufacturing/index.php

Z. Zhang, J. Wang, and X. Wang, “An improved charging/discharging strategy of lithium
batteries considering depreciation cost in day-ahead microgrid scheduling,” Energy
Convers. Manag., vol. 105, PP- 675-684, Nov. 2015, doi:
10.1016/j.enconman.2015.07.079.

27



[28]

[29]
[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

I. Asadi, P. Shafigh, Z. F. Bin Abu Hassan, and N. B. Mahyuddin, “Thermal conductivity
of concrete — A review,” J. Build. Eng., vol. 20, pp. 81-93, Nov. 2018, doi:
10.1016/j.jobe.2018.07.002.

timeanddate, ‘“Past Weather in New York, New York, USA — December 2020.”

A. Ouammi, “Peak load reduction with a solar PV-based smart microgrid and vehicle-to-
building (V2B) concept,” Sustain. Energy Technol. Assessments, vol. 44, p. 101027, Apr.
2021, doi: 10.1016/j.seta.2021.101027.

Ford, “Ford intelligent backup power.” https://www.ford.com/trucks/f150/f150-
lightning/features/intelligent-backup-power/ (accessed Jun. 09, 2022).

A. O. David and I. Al-Anbagi, “EVs for frequency regulation: cost benefit analysis in a
smart grid environment,” IET Electr. Syst. Transp., vol. 7, no. 4, pp. 310-317, Dec. 2017,
doi: 10.1049/iet-est.2017.0007.

“ENERGY MARKET & OPERATIONAL DATA,” NYISO, 2021.

A. Kathirgamanathan er al., “Towards standardising market-independent indicators for
quantifying energy flexibility in buildings,” Energy Build., vol. 220, p. 110027, Aug. 2020,
doi: 10.1016/j.enbuild.2020.110027.

L. Gan, U. Topcu, and S. H. Low, “Optimal decentralized protocol for electric vehicle
charging,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 940-951, 2013, doi:
10.1109/TPWRS.2012.2210288.

E. L. Karfopoulos and N. D. Hatziargyriou, “A multi-agent system for controlled charging
of a large population of electric vehicles,” IEEE Trans. Power Syst., vol. 28, no. 2, pp.
1196-1204, 2013, doi: 10.1109/TPWRS.2012.2211624.

BloombergNEF, “Electric Vehicle Outlook 2021, 2021.

28





