

1 **Unconventional Desalination: The Use of Cyclone Separators in HDH** 2 **Desalination to Achieve Zero Liquid Discharge**

3 **Mohammed A. Elhashimi ^a, Michelle Gee ^b, Bahman Abbasi ^a**

4 ^a *School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, United
5 States*

6 ^b *Energy Systems Engineering, Oregon State University-Cascades, Bend, OR 97702, United States*

7 **Abstract**

8 Research in water desalination technologies is constantly growing to meet global demands for
9 freshwater. Although acting to meet these demands, the rapid growth and spread of
10 desalination technologies poses environmental issues due to the increasing brine concentrates
11 that are ultimately discharged back to nature. This article presents a cyclone separator to
12 transform a humidification-dehumidification (HDH) cycle to a dual-product cycle to produce
13 freshwater and solid salt crystals for highly saline streams. A desalination cycle equipped with a
14 cyclone separator is used to treat water with 3.5%-81% salinity. The separation efficiency is well
15 above 99% and can produce potable water from hyper saline feed in a once-through process.
16 The cyclone separator performance was tested under different conditions including: humidity
17 ratios, relative humidities, and feed stream's salinities. The cyclone separator is self-cleaning
18 and overcomes salt scaling. This behavior is a direct function of the walls' temperature and the
19 carrier air dew point. Self-cleaning capability allows the cyclone separator to treat feed water of
20 extreme salinities (up to 810,000 ppm) down to freshwater salinity with zero liquid discharge.
21 The cyclone separator was utilized in a novel HDH desalination technology to treat different
22 salinities. The product was water of salinity less than 500 ppm.

23 **1. Introduction**

24 Water desalination has grown in the previous few decades as a prominent solution for the ever-
25 rising demand of freshwater. In this process, a body of feed water of known salinity is fed
26 through a desalination technology and treated into streams of freshwater and brine by-
27 products (or solid salts in few cases). The economic viability of a desalination technology is

28 decided by the overall cycle cost from the intake saline water to the consumer product water
29 [1]. That includes the costs of saline water pre-treatment, water pumping, the nature of the
30 desalination technology, water recovery, and brine disposal means [2, 3]. The nature of the
31 desalination technology dictates the upper salinity limit which the plant is capable of treating to
32 reach a target water quality. It also defines the water recovery percentages and the discharge
33 brine salinity. The salinity of the feed water directly correlates to the maintenance costs of the
34 desalination plants as different types of fouling problems take place throughout different parts
35 of the system. The study of Mezher et al discussed how the different parameters impacts the
36 operational costs (OPEX) [2]. There are various mechanisms used in water desalination, the
37 sensitivity to the feed water quality differs significantly from one to another. In membrane-
38 based desalination, for instance, the feed water salinity impacts the process directly due to the
39 species-diffusion driven nature of the process. This section gives an overview of the existing
40 technologies, their salinity ranges, the challenges associated with them, the brine disposal
41 means and the consequent environmental impact, and a review of the existing zero liquid
42 discharge (ZLD) technologies. The article then presents a novel approach to use a cyclone
43 separator in a humidification-dehumidification technology to advance the desalination
44 technology into a dual-product cycle to produce both freshwater and solid salts. The article
45 then demonstrates how that allows the HDH desalination technology to treat extreme feed
46 water salinities in a simple fashion.

47 **1.1 Thermal Desalination**

48 Current commercial desalination technologies can be grouped into two major categories:
49 thermal technologies, and the diffusion-based (or membrane) technologies. Thermal
50 desalination technologies use electrical or thermal energy to evaporate some portion of the
51 saline water and re-condense it later as freshwater. Technologies like Multi-Effect Distillation
52 (MED) and Multi-Stage Flash (MSF) were the prominent water desalination technologies since
53 the early periods of the twentieth century until the emergence of Reverse Osmosis (RO)
54 technologies in 1965 [4]. Thermal desalination technologies can replace electrical energy with
55 low-grade thermal energy at different stages of the working cycle [5]. However, the use of
56 thermal energy is linked to high entropy generation rates and low exergic efficiencies. Which

57 leads to relatively high specific energy consumption and hence a high cost of produced water as
58 energy consumption has the largest impact on the water production cost [6]. Thermal
59 desalination technologies are least sensitive to the intake streams' salinities [7]. That's due to
60 the nature of the process where localized and controlled evaporation can be used to minimize
61 fouling rates [8]. Thermal desalination technologies are capable of desalinating a range of
62 different salinities and discharge brines whose salinity typically falls in the range [66,000 –
63 80,000] ppm [9]. The discharged brines are usually disposed back in the environment.

64 **1.2 Diffusion-Based Desalination**

65 Diffusion-based (or membrane-based) desalination makes use of semi-permeable membrane to
66 selectively separate freshwater from brine [10]. Out of diffusion-based desalination, Reverse-
67 Osmosis (RO) is the most commercially accepted desalination technology in the world
68 amounting to more than 60% of the global desalination capacity [10, 11]. This is attributed to
69 the fact that RO plants are the most energy efficient when compared to other comparable
70 membrane technologies such as: Forward Osmosis; where there is significant energy
71 requirement to regenerate the draw solution [12, 13, 14], Membrane Distillation; which
72 combines both diffusion and evaporation methods [15], and electrodialysis (ED); that uses
73 direct current to selectively separate ions through the membrane [6]. It is also outstandingly
74 more favorable over thermal technologies such as MED and MSF [6]. Membrane-based
75 desalination, however, is more influenced by the salinity levels of the feed streams. The salinity
76 of the feed dictates the water recovery rate of the RO plant. When the water recovery rate
77 increases, a smaller mass of brine is discharged with higher salinity. If the recovery rate is very
78 high, the salinity of the waste brine might exceed the solubility limits of some salts such as
79 calcium carbonate (CaCO_3), calcium sulfate (CaSO_4), calcium phosphate ($\text{Ca}_3(\text{PO}_4)_2$), and barium
80 sulfate (BaSO_4). Therefore, they precipitate and foul membranes and flow surfaces [16, 17, 18].
81 Existing RO plants have the capacity to treat brackish water, seawater, and water with TDS
82 salinity up to 50,000 ppm [19, 3, 20]. The salinity limit of this technology makes RO plants
83 economically unviable and ineffective as a stand-alone technology for higher salinity feed [20,
84 21, 3, 22].

85

86

87 **1.3 Fouling in Desalination Technologies:**

88 Fouling has always been a major challenge for desalination technologies in general, and
89 especially for membrane-desalination [23, 24]. Membrane fouling is a complex phenomenon
90 that involves different categories such as inorganic fouling (scaling), biological fouling, organic
91 fouling, and chemical oxidation or halogenation caused by the pre-treatments agents added to
92 the feed stream [23, 24]. Fouling can impose a critical impact to the performance of
93 desalination technologies by introducing additional pressure drop, inducing concentration
94 polarization near the membrane surface leading to reducing the diffusion driving force, and
95 changing the membrane separation properties. All these factors lead to increasing the OPEX
96 and shortening the membrane lifetime as influenced by the chemicals used for cleaning [23].

97 A study by Hoek et al. investigates the performance change of an RO plant for groundwater
98 treatment of only 900 ppm TDS [25]. It reveals how the pressure drop across the membrane
99 and specific energy consumption increases by more than 60% over 104 days. Some studies
100 investigated developing anti-fouling membranes to mitigate the fouling impact on the
101 performance of the desalination technology. They mainly aim at reducing fouling by enhancing
102 the membrane hydrophilicity through surface modifications [26, 27, 28]. However, fouling
103 remains an active challenge in the desalination world [24].

104 **1.4 Environmental Impact of Brine Disposal:**

105 Brine, the by-product of desalination technologies, has significant detrimental impact on the
106 environment and require effective disposal means. Brine properties depend on the nature of
107 the desalination technology [29]. The common brine disposal methods include surface water
108 discharge, disposal to sewer, deep and shallow well injections, evaporation ponds, and land
109 applications [30]. With the increased awareness of the adverse impact of disposing brines to
110 the environment, strict regulations are in place to limit the brine disposal to methods with least
111 environmental impact. These regulations may even restrict the use of some of the mentioned

112 conventional means [31, 32]. Some of the potential adverse effects of brine disposal to the
113 marine ecosystem include pH levels fluctuations, eutrophication, and pollution and toxicity [33,
114 34]. Brine disposal to sewers may overload the sewage system, inhibit the bacterial growth, and
115 restrict the reuse of sewage water for irrigation. Deep well injection and land application may
116 pollute or elevate the salinity of soil and underground water. Evaporation ponds have similar
117 impact on groundwater and soil, require large areas, and are considered an expensive option
118 [35].

119 **1.5 Advancement in Desalination Technologies/Brine Disposal:**

120 Increased environmental concerns directed interest towards the zero liquid discharge (ZLD)
121 technologies among the research and industrial communities. ZLD can be achieved in thermal
122 and membrane-based desalination. However, a cleaner and more effective ZLD desalination
123 system can be achieved through the integration of both [36, 37]. There are some technologies
124 in the art that were specifically developed for the purpose of brine disposal such as: brine
125 concentrators and brine crystallizers. Although effective in ZLD, they are associated with high
126 CAPEX and OPEX and are economically unviable [3, 35, 38]. It was found that to assemble
127 economically-viable ZLD desalination systems, the integration of an end-of-pipe scheme can be
128 cost-effective [38]. The work presented in this paper is part of research work to develop a novel
129 solar-driven ZLD humidification-dehumidification desalination technology that makes use of the
130 cyclonic separation to separate the salt crystals prior to the dehumidification stage [37]. The
131 technology uses efficient spray evaporation by optimizing the inlet conditions and flow
132 geometries prior to separating the salts in the solid state [39, 40]. Humidification-
133 dehumidification desalination is an active area of state-of-the-art research that is still in the
134 development stage [4]. A cost comparison of the different desalination and ZLD schemes is
135 provided in [41]

136 **1.6 Desalination and Cyclone Separators:**

137 Through the integration of cyclone separator in the HDH cycle, we can take advantage of the
138 low operating temperatures and pressures in the HDH cycle, and develop a dual-product cycle.
139 This cycle can produce both freshwater and solid salt crystals while staying economically viable.

140 Cyclone separators are efficient to separate a wide range of solid particle sizes from a gaseous
141 carrier. According to Perry et al., they can be used to separate solid particles larger than [3-5]
142 μm [42]. That makes them a good candidate to separate the precipitated salts from spray
143 evaporation in the HDH desalination cycles. There are some studies that employed cyclone
144 separators in desalination applications. These studies, however, mainly exploited the swirling
145 motion for phase change rather than salt separation [43, 44]. Some studies used the cyclone
146 separator as a spray evaporation chamber to achieve ZLD by providing a brine disposal method
147 [45, 46]. In the process, the brine is atomized into fine droplets and comes in contact with a
148 heat source inside the cyclone separator and evaporates into water vapor and salt crystals. The
149 salt is then separated through the cyclonic motion and the vapor is retrieved and recycled in
150 the thermal desalination process. The studies reveal how the evaporation efficiency is
151 increased by using a “cyclone evaporator” as the droplets residence time increases due to the
152 swirling motion. The study of van Wyk et al. investigated the use of a cyclone separator in a
153 supercritical desalination cycle [47]. The cyclone separator was used to separate salt crystal in
154 the size range 2-15 μm from steam while placing the cyclone separator inside a 6 kW oven.
155 Flash evaporation prior to the separation stage occurred rapidly leaving no time for salt
156 agglomeration in addition to the inefficient design of the cyclone separator. That led a salt
157 separation efficiency of only 40% through the cyclone separator.

158 In the case of water desalination, the use of cyclone separator is still immature. The interaction
159 of humid air and salt crystals in swirling motion needs to be studied. Some studies investigated
160 the cyclone separator performance while some moisture or inner wall wetting is present. The
161 study of Li et al. [48] and Moallemi et al. [49] demonstrated how increasing the humidity has a
162 counter-intuitive effect as it promotes the collection efficiency of the cyclone separator. That is
163 due to the finer particles agglomeration into large masses, making them easier to separate. The
164 work of Baltrénas and Chlebnikovas [50] studied the effect of humidity on the cyclone
165 performance. The study recommended the least residence time inside the cyclone separator to
166 avoid excessive condensation as it promotes the particles adhesion to the inner walls. Which is
167 disadvantageous from a maintenance point of view. However, the study of Ahuja [51] suggests
168 that the wall wetting has a positive effect on the separation efficiency. In this study, a gravity-

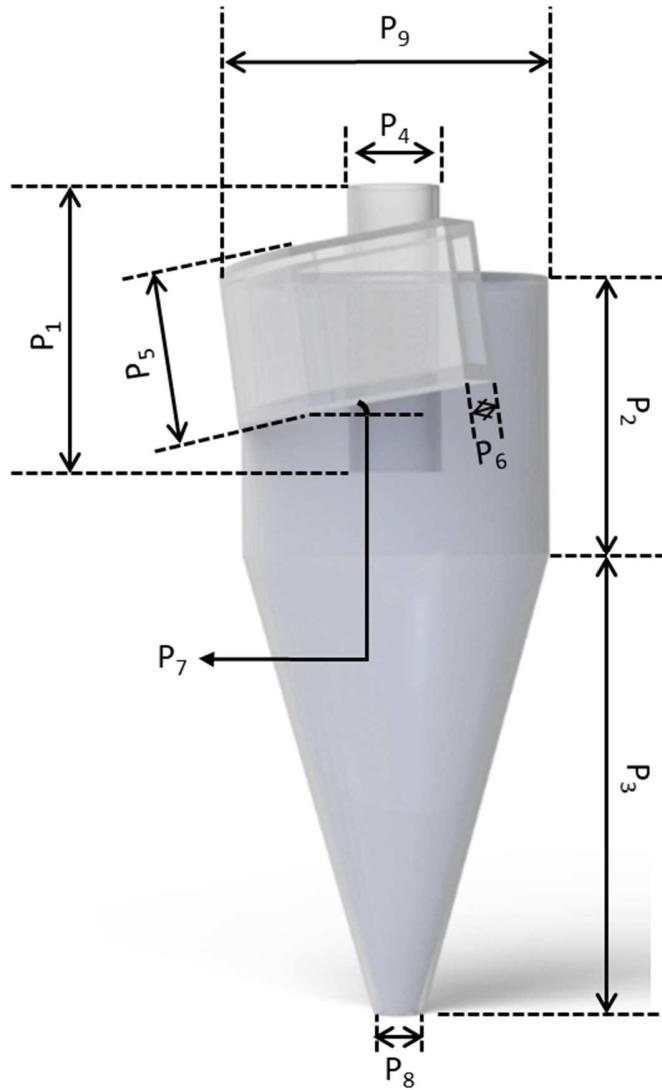
169 fed thin film of water was maintained on the inner cyclone separator's walls, which resulted in
170 capturing the smaller particles more easily compared to a dry separator which was proved
171 inefficient in capturing particles smaller than 5 μm .

172 **1.7 Motivation:**

173 In this research we investigated the efficacy of using a cyclone separator in an HDH desalination
174 technology recently developed by our research team [37] to achieve ZLD and serve as a
175 potential brine disposal method. A cyclone separator was analytically sized, numerically
176 simulated to ensure the swirling streamlined motion, and experimentally tested for different
177 sets of operating conditions including temperatures, humidity ratios, salinities, and flowrates.
178 The cyclone separator proved efficient in separating solid salts from humid air and
179 demonstrated a counter-intuitive behavior. The cyclone separator has self-cleaning
180 characteristics once the inner walls temperature rises to the dew point of the feed humid air.
181 This self-cleaning behavior allows the cyclone to treat extreme salinities and sustain the cycle
182 performance while achieving ZLD operation. Information about the operation, the self-cleaning
183 hypothesis, and how it was tested and proved are provided in details in this article. The
184 combined cyclonic separation and HDH desalination has a great potential as a standalone
185 technology or when integrated to other technologies to serve as a brine disposal mean to
186 achieve ZLD. Naturally, HDH desalination technologies are less sensitive to feed stream's
187 salinities than RO. The technology presented in this article can therefore be used to treat
188 highly-concentrated brines discharged from RO into streams of freshwater and solid salts.
189 Hence, increase the recovery rates if integrated in the downstream of RO technologies.

190 The research work presented in this article demonstrated how a cyclone separator can be used
191 in HDH desalination to achieve ZLD. The article presents how the different humidity ratios
192 present in HDH desalination influence the cyclone separator's performance. The tests even
193 went beyond the conventional limits to higher humidity ratios. The article presents how salt
194 crystals adhesion to the separator's inner walls is overwhelmed by the carrier humid air inertia
195 after few minutes of operation (self-cleaning behavior). That makes the cyclone separator a
196 great replacement for packed beds in HDH desalination to treat hyper saline streams.

197 **2. Experimental Methodology:**


198 In addition to the geometric parameters (such as: orientation of the feed stream channel,
199 heights and diameters), there are several, dynamic, and gravitational parameters that influence
200 the cyclone separator's performance. These include inlet velocity, flowrate, viscosity, and gas
201 and solid densities. In humid-air environments, however, additional factors are introduced.
202 Psychrometric parameters such as the air temperature, humidity ratio, and relative humidity
203 influence the salt particles adhesion characteristics to the cyclone separator inner walls as well
204 as the particles agglomeration.

205 A cyclone separator was designed and tested to fit in a novel ZLD-HDH desalination technology
206 that is meant to operate as a dual cycle to produce freshwater as well as have the capability to
207 dispose of highly-concentrated liquid brines (second product is solid salt) [37]. First, the cyclone
208 separator was analytically designed to effectively separate solid salt particles of a cut point
209 diameter of $5 \mu\text{m}$. Then numerical simulation was performed on the candidate design to predict
210 the velocities and ensure the uniform swirling motion and streamlined design of the cyclone
211 separator. After that, an experimental facility was built to test the cyclone performance at
212 different flowrates, temperatures, humidity ratios, and salinities. The cyclone separator has a
213 counter intuitive aspect when it comes to humidity. The cyclone separator self-cleans as the
214 humid air cleans out the salt depositions from the inner cyclone walls as the wall's temperature
215 reach the dew point of the humid air.

216 **2.1 Analytical Design:**

217 The cyclone separator dimensions were initially selected based on Stairmand's model [52].
218 Given the flowrate and humidity requirements of the HDH technology, different combinations
219 of dimensions were tested to select the optimal analytical design in terms of separation
220 efficiency, cut diameter, and pressure drop. The analytical model considers the dynamic aspects
221 such as: the inlet velocity, tangential, radial and axial velocity components, and viscosity of the
222 carrier air stream, geometric parameters such as the cyclone separator's different diameters
223 and heights -as shown in Figure 1- and the salt and carrier-air densities. It is important to note
224 how humidifying the air exhibits a counter intuitive impact on the cyclone separator's efficiency

225 when compared to the conventional dry air case. In the case of dry air, for the same solid
226 particles type, increasing the density of the carrier air reduces the separation efficiency and the
227 cyclone separator's cut diameter. However, in the case of humid air, as shown in the next
228 sections, increasing the humidity reduces the air density, but on the other hand, it leads to salt
229 particles agglomeration [48, 49] and has a positive impact on the separation efficiency. In this
230 paper, separation efficiency is defined as the ratio of collected mass of salt in the cyclone
231 separator to the total mass of salt fed to the system. Humidity ratio is defined as the mass of
232 moisture contents to the mass of dry air in a humid air stream.

233

234 Figure 1: Geometric parameters impacting the cyclone separator's performance: **P₁**: Depth of
235 the vortex finder, **P₂**: cylindrical section height, **P₃**: conical section height, **P₄**: clean humid air
236 outlet diameter, **P₅**: inlet channel height, **P₆**: inlet channel width, **P₇**: inlet channel inclination
237 angle, **P₈**: salt outlet diameter, and **P₉**: largest diameter.

238

239

240

241 **2.2 Numerical Simulation:**

242 **2.2.1 Flow simulation:**

243 The problem simulated is an incompressible fluid flow, simulated in Ansys-Fluent. The mass
244 continuity and the Reynolds averaged Navier-Stokes momentum are represented by equation 1
245 and 2 respectively:

$$\frac{\partial \bar{u}_i}{\partial x_i} = 0 \quad (1)$$

$$\rho \frac{\partial (\bar{u}_j \bar{u}_i)}{\partial x_j} = - \frac{dP}{dx_i} + \frac{\partial \tau_{ij}}{\partial x_j} \quad (2)$$

$$\tau_{ij} = \mu \left(\frac{\partial \bar{u}_i}{\partial x_i} - \rho \bar{u}'_i \bar{u}'_j \right) \quad (3)$$

246 where \bar{u}_i is the mean velocity component on the direction x_i , P is the static pressure, τ_{ij} is the
247 viscous stress tensor, μ is the dynamic viscosity, and u'_i is the turbulent fluctuating component
248 of the velocity. the Reynolds stress term $\rho \bar{u}'_i \bar{u}'_j$ cannot be solved explicitly and needs a
249 turbulent model to solve the closure problem. The turbulence model used is the
250 Renormalization Group (RNG) k - ε model. The transport equations of the model are:

$$\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho k \bar{u}_i)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\alpha_k \mu_{eff} \frac{\partial k}{\partial x_j} + G_k - \rho \varepsilon \right) \quad (4)$$

$$\frac{\partial (\rho \varepsilon)}{\partial t} + \frac{\partial (\rho \varepsilon \bar{u}_i)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\alpha_\varepsilon \mu_{eff} \frac{\partial \varepsilon}{\partial x_j} + \frac{C_{1\varepsilon} \varepsilon}{k} G_k - \frac{C_{2\varepsilon} \rho \varepsilon^2}{k} - R_\varepsilon \right) \quad (5)$$

$$\mu_{eff,0} = \frac{\rho C_\mu k^2}{\varepsilon} \quad (6)$$

$$\mu_{eff} = \mu_{eff,0} f \left(\alpha_s, \Omega, \frac{k}{\varepsilon} \right) \quad (7)$$

251 where α_k and α_ε are the effective turbulence Prandtl numbers for k and ε respectively, $C_{1\varepsilon}$, $C_{2\varepsilon}$
252 , and C_μ are model's constants, $\mu_{eff,0}$ is the eddy viscosity for non-swirling flows, Ω is a
253 characteristic swirl number, and α_s is a swirl factor [53].

254 To define and solve for humid air, a species diffusion and convection equation was solved. The
255 conservation equation takes the form:

$$\frac{\partial}{\partial t}(\rho Y_i) + \nabla \cdot (\rho \vec{v} Y_i) = -\nabla \cdot \vec{J}_i \quad (8)$$

256 where Y_i and \vec{J}_i are the mass fraction and the mass flux of species i respectively and \vec{v} is the
 257 relative velocity. Using this model, the humid air was defined as a mixture of nitrogen N_2 ,
 258 oxygen O_2 , and water vapor H_2O . The water vapor fraction is defined based on the designated
 259 humidity ratio. The salt particles were defined in an injection model. To predict the salt
 260 particles trajectory, a Lagrangian force on the particle was defined and integrated for the
 261 particle's velocity \vec{u}_p change with time.

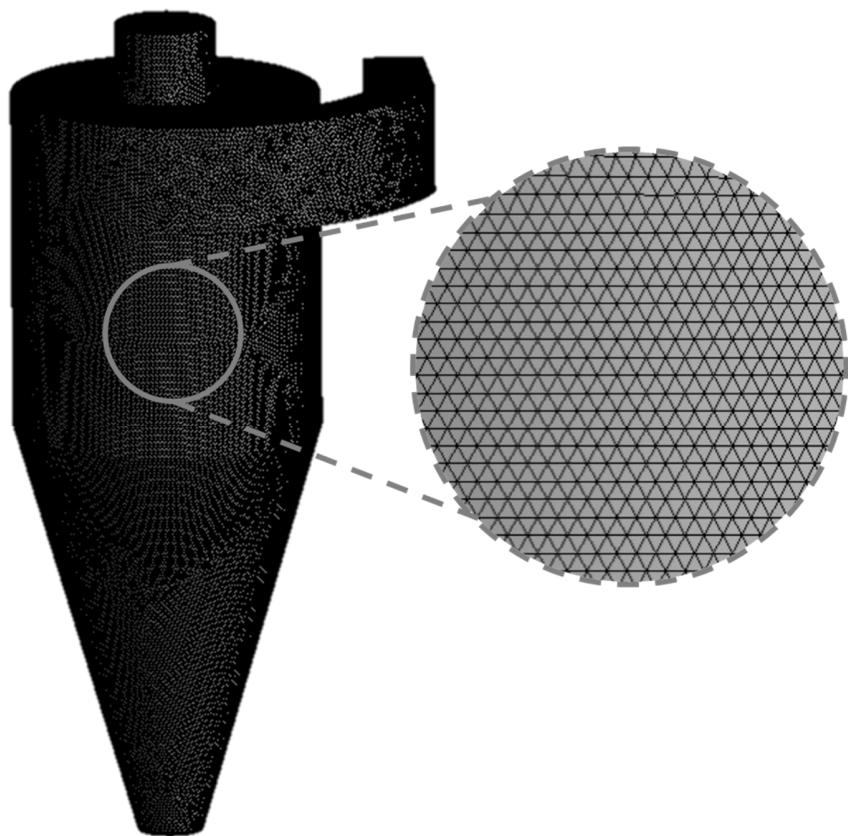
$$\frac{d\vec{u}_p}{dt} = F_D(\vec{u} - \vec{u}_p) + \frac{\vec{g}(\rho_p - \rho)}{\rho_p} + \vec{F} \quad (9)$$

$$\vec{F} = \frac{C_{vm}\rho}{\rho_p} \left(\vec{u}_p \nabla \vec{u} - \frac{d\vec{u}_p}{dt} \right) + \frac{\rho}{\rho_p} \vec{u}_p \nabla \vec{u} \quad (10)$$

262 where F_D is the drag force subjected on the salt particle –the particles are assumed to be
 263 spherical of a diameter [30-300] μm - and \vec{F} is the other forces acting on the particle like
 264 pressure forces and the shear forces required to accelerate the gas surrounding the particle.
 265 The latter one is often insignificant in the case of solid particles in gaseous streams.

266 2.2.2 Boundary conditions

267 The boundary conditions defined for the cyclone separator were defined as the following. First,
 268 the inlet boundary conditions were defined as velocity inlet. The velocity as well as Reynolds
 269 stress components and the turbulence intensity were defined. The nature of the salt particles
 270 injection model was also defined. The clean humid air outlet was defined as a pressure outlet
 271 boundary condition and different scenarios for the pressure drop were simulated. The solid salt
 272 particles outlet at the bottom of the cyclone separator was defined as a pressure outlet
 273 boundary condition as well. Finally, the salt particles collision on cyclone wall was defined to
 274 simulate the reflection of the particles as they collide on the walls at different angles.

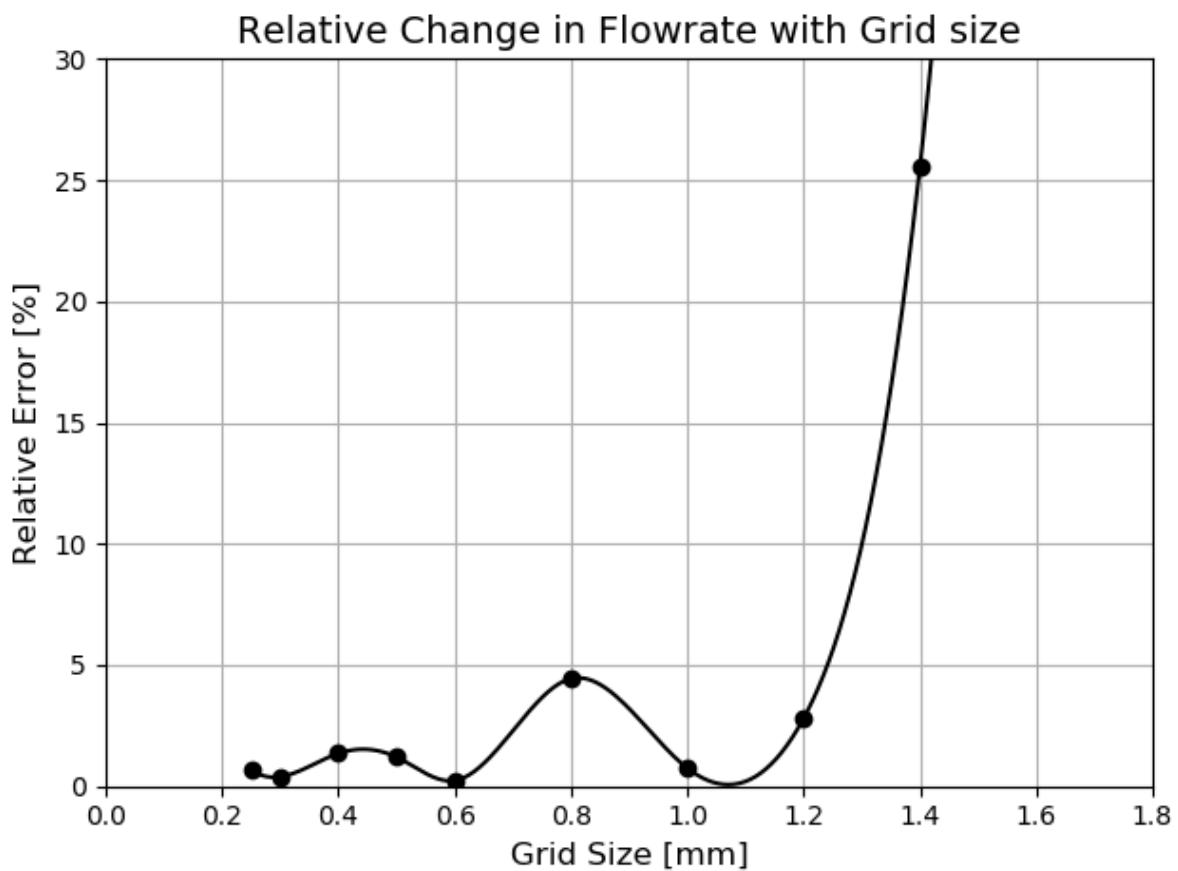

275

276

277

278 **2.2.2 Flow field**

279 The cyclone separator's flow field computational grid used for the numerical simulation is
280 shown in Figure 2. The cyclone separator's flow field was divided into 8,925,402 tetrahedral
281 cells.

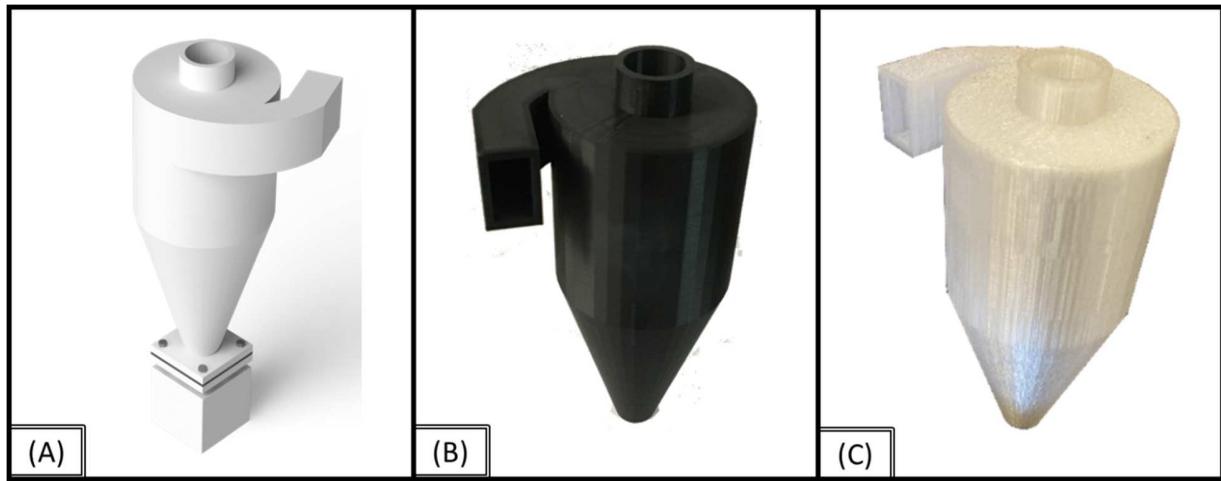

282

283 Figure 2: Cyclone separator's computational grid.

284 **2.2.2 Grid independence**

285 The clean humid air mass flowrate escaping from the top of the cyclone separator was
286 determined for different grid sizes under similar boundary conditions. A relative error of 1%
287 was selected as an acceptable error for grid independence. As shown in Figure 3, grid
288 independence was achieved for grid sizes less than 0.4 mm. The results of the numerical
289 simulations are presented in section 3.1.

290


291

292 Figure 3: Grid independence study. The mass flowrate changes insignificantly below grid size of
293 0.4 mm.

294 **2.3 Experimental Setup and Procedures:**

295 The analytical and numerical simulations of the cyclone separator were preliminary steps to
296 ensure the streamlined swirling motion, have a prediction of the collection efficiency, and
297 acceptable pressure drop. The next step was to fabricate the candidate cyclone separator.
298 Polylactic acid filaments were used to 3D print the cyclone separator. Figure 4 shows the 3D
299 printed cyclone separators. The left hand side polymer (PLA-Black, Figure 4B) was used for dry
300 air and low humidity ratios (low temperatures). The right-hand side polymer (PLA-Transparent,
301 Figure 4C) was used for the higher temperature operation for testing higher humidity ratios
302 (the temperature is elevated to augment the moisture holding capacity). Table 1 presents the

303 dimensions of the cyclone separators used in the experiments and presented in sections 2.3.1
304 through 2.3.3. These 2 designs were used for different ranges of flowrates. Design 2 is a scaled
305 down version with some modifications to be used for smaller flowrates.

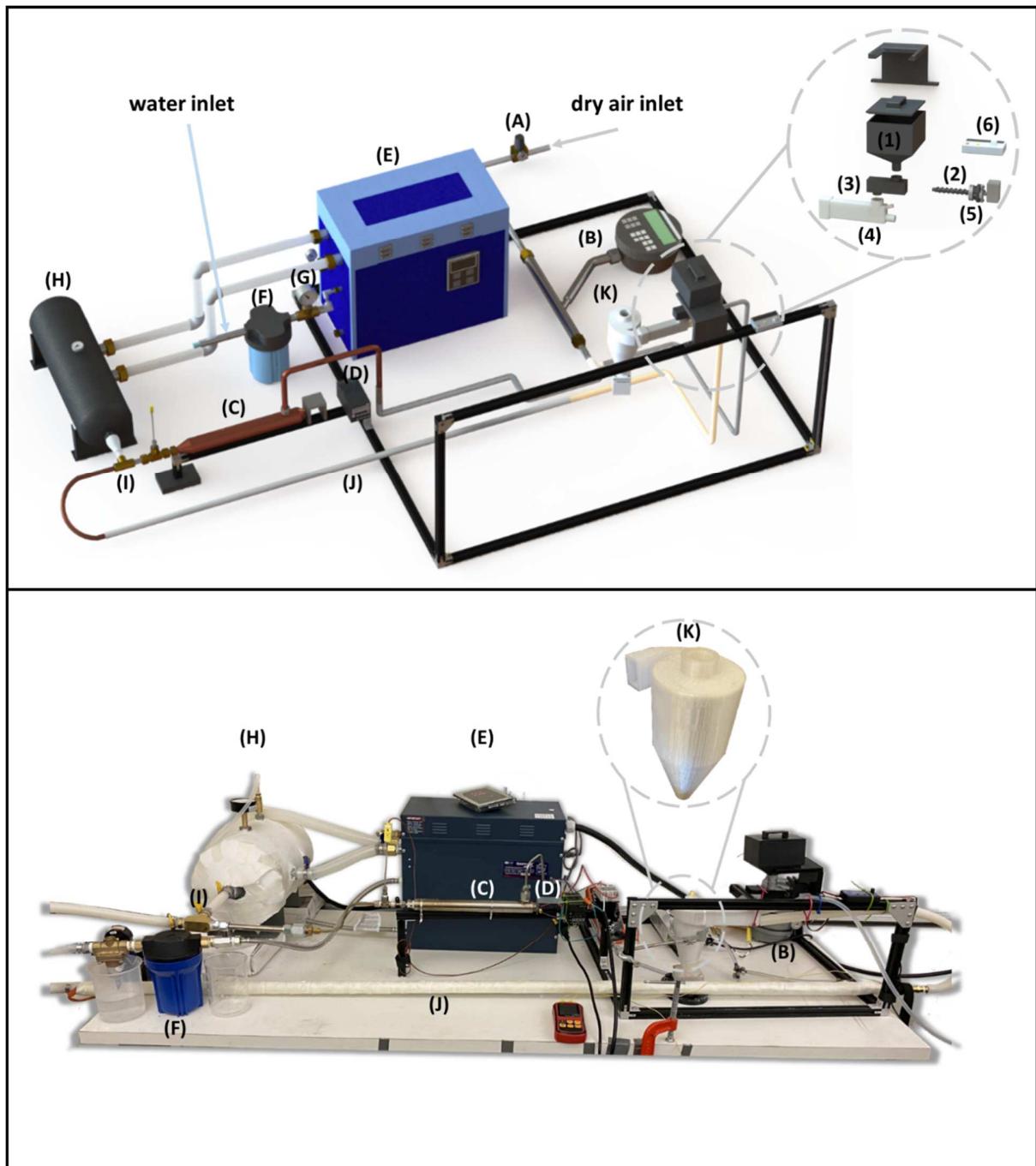
306
307 Figure 4: The designed and implemented cyclone separator. (A) CAD of the cyclone separator
308 with the collection tank on the bottom. (B) low temperature cyclone separator (PLA-Black for
309 dry air or low humidity ratios), (C) high temperature cyclone separator (PLA-Transparent for $T >$
310 50°C).

311 Table 1: Dimensions of the designed and implemented cyclone separator. Explanation of the dimensions
312 is provided in Figure 1

Design	P_1 [cm]	P_2 [cm]	P_3 [cm]	P_4 [cm]	P_5 [cm]	P_6 [cm]	P_7 [°]	P_8 [cm]	P_9 [cm]
1	8.3	8.5	10	2.4	2.6	1.4	0	1.5	7.4
2	5.0	5.4	7.5	1.3	1.5	0.5	0	1.0	5.2

313
314 In addition to the cyclone separator design, the flow dynamics influence the carrier air
315 streamlines and thus the centrifugal forces acting on the salt particles. In the case of humid air,
316 however, additional parameters come into consideration. Humidity alters the salt adhesion
317 characteristics to the inner walls and might lead to premature condensation at high values of
318 relative humidity. That influence the cyclone separator's performance from both collection

efficiency and maintenance standpoints. As was mentioned in the previous section, it was proven in the art that the added humidity promotes the cyclone separator's performance by clumping up the small particles into larger masses. In this study we focused on studying the cyclone separator's performance with different carrier air's humidity ratios and relative humidities. The collection efficiency was measured for a different operating conditions corresponding to a novel ZLD-HDH technology developed in our laboratory [37]. As for the cyclone separator's operation and maintenance cycle, the hypothesis (that was proved as shown in the results section) suggests that the cyclone separator's have a self-cleaning characteristic that is a direct function of the inner wall temperature.


To test this hypothesis, an experimental test setup shown in Figure 5 was developed. The facility comprises dry air and steam lines that were mixed at designated quantities while controlling the temperatures at different locations and thus controlling the moisture holding capacity and the humidification rate of air, allowing for the production of humid air with high moisture contents. Dry air flowrate and pressure were controlled via a flow regulator valve (A). The dry air flowrate was then measured using a KURZ (model 504 FTB-8) mass flowmeter (B). Then, dry air moisture holding capacity was controlled by controlling the temperature using a preheater(C), an Omega AHPF-121 inline heater. The inline heater was controlled by an ITC-100VH temperature PID controller (D).

The steam was produced by using an industrial steam generator (Model D-1200 SteamSpa) (E). The steam conditions were controlled by controlling the inlet water pressure via a water pump (F) and a pressure regulating valve (G). An accumulator (H) was used to stabilize the fluctuations in steam flowrate and ensure continuous feeding. The steam was then mixed with the pre-conditioned dry air through a mixing junction (I). After well mixing with the dry air, the produced humid air was passed through a power-controlled re-heater (BriskHeat-BSAT051020) (J) to ensure the homogeneity of the humid air mixture. In the event of feeding excessive amount of steam beyond the air moisture holding capacity, an inhomogeneous mixture of steam and humid air is produced. The re-heater was used to augment the moisture holding capacity by reducing the relative humidity of the produced humid air and providing additional room for moisture to be absorbed. The humidity ratio and relative humidity of the produced

348 humid air were measured by taking the dry and wet bulb temperatures - before introducing the
349 salt - using K-type thermocouple probes.

350 The next stage was to feed the salt to the humid air to emulate the precipitated salt from a
351 spray evaporation processes. A weighed amount of salt –using a high-precision electronic lab
352 scale (Bonvoisin)- was fed to the cyclone separator. For that purpose, a salt feeding mechanism
353 was designed, 3D printed, and assembled. The salt feeding components are shown in the zoom-
354 out in Figure 5. The salt feeding assembly comprises of a salt hopper (1), a screw pump (2) with
355 casing (3), a mixing channel (4), a motor (5), and a controller (6) to control the motor rotating
356 speed and thus the salinity of the humid air. The collected amount of salt was measured again
357 after each experiment. The pressure drop through the cyclone separator was measured using a
358 differential pressure transducer (Setra Model DPT 260).

359 The salt-humid air mixture was then fed to the cyclone separator (K). The cyclone separator
360 performance was measured for 2 different goals. First, to test the collection efficiency of the
361 cyclone separator at different flowrates, humidity ratios, temperatures, and salinities. Second,
362 to study the fouling of the cyclone separator in such harsh environments. The cyclone separator
363 demonstrated a self-cleaning behavior within a few minutes of starting the experiments.

364

365 Figure 5: Experimental test setup. Top: CAD figure, Bottom: A picture of the test setup. (A) flow
 366 regulator valve, (B) mass flowmeter, (C) preheater, (D) PID controller, (E) steam generator, (F)
 367 water pump, (G) pressure regulating valve, (H) accumulator, (I) mixing junction, (J) re-heater,
 368 (K) cyclone separator, (1) salt hopper, (2) screw pump (3), (4) mixing channel, (5) motor, and (6)
 369 controller.

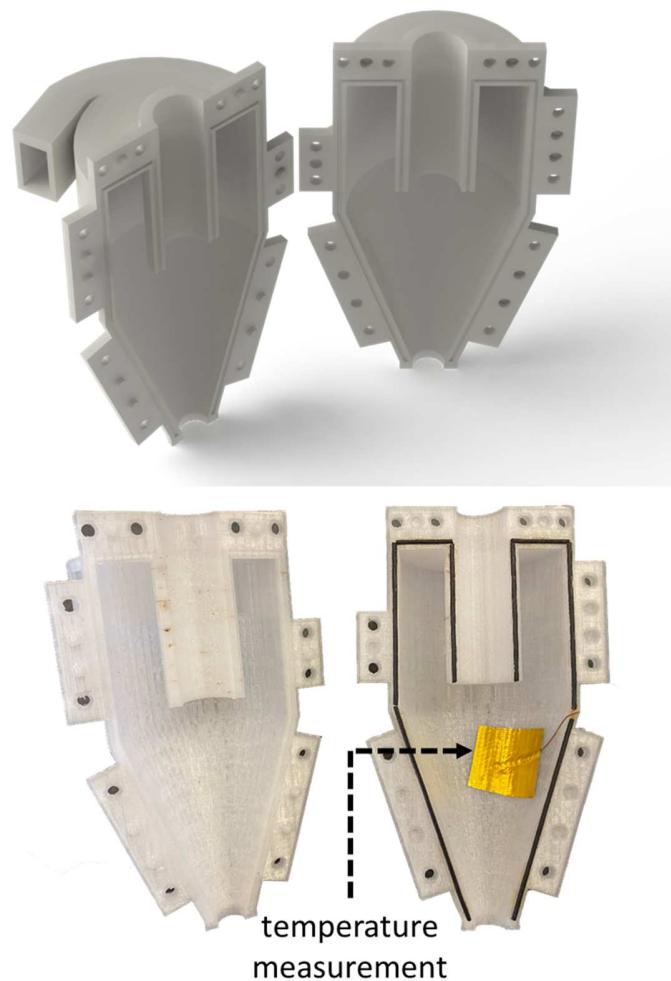
370 **2.3.1 Experimental procedures to measure the cyclone separator's collection efficiency:**

371 A measured amount of salt was fed to the salt hopper and then the salt was fed to the humid
372 air at different salinities as shown in Table 2. Salinity was measured as the ratio between added
373 salt flowrate to the water vapor flowrate as defined by the humidity ratio. The experiments
374 were run for durations of [10 – 70] minutes and then another set of weight measurements
375 were performed. The final weight measurements were taken of the salt collection tank at the
376 bottom of the cyclone separator as well as the entire salt feeding assembly to consider the
377 small amounts of salt trapped at different parts inside the salt feeding assembly. The collection
378 efficiency was then determined from the knowledge of the amount of salt escaped with the
379 clean humid air from the top of the cyclone separator. The tests were performed using sodium
380 chloride salt NaCl. The experiments started first by using only dry air to assess the cyclone
381 separator performance in normal conditions (without introducing the humidity). Then, after
382 ensuring the effective design of the cyclone separator's, the humidity was introduced and the
383 same procedures were followed. The experimental test matrix for the cyclone separator's
384 performance is shown in Table 2.

385 Table 2: Cyclone separator's performance experimental test matrix

Dry Air Flowrate [kg/hr]	Salt Flowrate [kg/hr]	Humidity Ratio [-]	Relative Humidity [%]	Salinity [ppm]
7.2	0.07	0	0	25,000
9.7	0.08	0.05	40	33,000
10.1	0.09	0.06	47	59,000
10.8	0.10	0.07	54	63,000
12.5	0.11	0.09	65	67,000
12.6	0.12	0.14	80	88,000
13.0	0.13	0.23	90	92,000
13.7	0.14	0.32	95	93,000
14.0	0.20	0.34	98	94,000
14.3	0.23	0.35	100	99,000

14.8	0.70	114,000
15.8	0.80	119,000
	1.60	147,000
		163,000



386

387 **2.3.2 Experimental procedures to test the cyclone separator's self-cleaning:**

388 It was hypothesized that the rate of salt deposition on the cyclone separator's inner walls is a
 389 direct function of the wall temperature and the humid air dew point. The hypothesis was that
 390 the rate of salt adhesion to the walls is very high at the initial stages of the cyclone separator's
 391 operation due to the excessive premature condensation from the humid air. As the wall
 392 temperature rises via convective heat transfer, the rate of salt deposition will decline until the
 393 dew point temperature is reached on the walls. At that point of time, if the humid air flowrate
 394 is high enough, it overwhelms the salt adhesion to the walls and cleans out the cyclone
 395 separator's inner walls. After which point the salt deposition is insignificant.

396 To prove this hypothesis, a split cyclone separator was designed, and 3D printed as shown in
 397 Figure 6. Experiments were run in a similar methodology to that mentioned in section 2.3.1. In
 398 these experiments, however, the inner wall temperature was recorded. The split cyclone
 399 separator was dissembled after each experiment and the amount of salt deposition (scaling)
 400 was observed. Experiments were run for 3 different time intervals to observe the self-cleaning
 401 with respect to wall temperature and time. The humidity ratio was measured by averaging the
 402 values from the feed stream temperatures and the dew point measured inside the cyclone
 403 separator. Experiments were performed using sodium chloride salt NaCl. After proving the
 404 concept, 1-hour duration tests were performed using artificial salt of the compositions shown in
 405 Table 3. The experimental test matrix for the self-cleaning tests is shows in Table 4. The salt
 406 particles sizes for this test were in the range of [100-350] μm .

407

408 Figure 6: Split cyclone separator for the self-cleaning tests. Top: CAD design, bottom: A picture
409 of the cyclone separator.

410

411

412

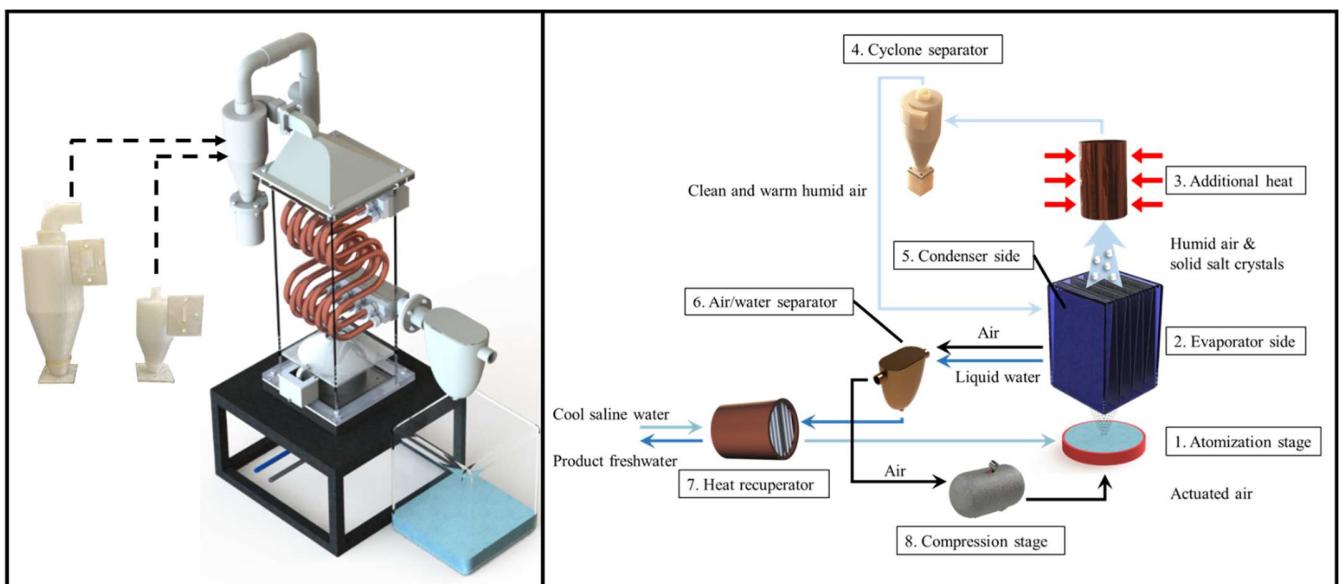
413

414 Table 3: Artificial salts' compositions

Salt	Chemical Formula	Percentage Weight (%)	
		Composition (1)	Composition (2)
Sodium chloride	NaCl	85.4	68.1
Sodium sulfate	Na ₂ SO ₄	9.9	13.5
Calcium chloride	CaCl ₂	2.9	10.5
Potassium chloride	KCl	1.8	7.9

415

416 Table 4: Cyclone separator's self-cleaning experimental test matrix


Dry Air Flowrate	Humidity Ratio	Salinity	Tests' Duration
[kg/hr]	[-]	[ppm]	[minutes]
8.6	0.25	100,000	2.5
9	0.38	110,000	5.0
9.4	0.41	190,000	10.0
9.8	0.46	210,000	30.0
10.5	0.50	250,000	60.0
		400,000	
		810,000	

417

418 **2.3.3 Experimental procedures to test the cyclone separator's performance in our ZLD-HDH
419 technology:**

420 After testing the cyclone performance and the impact of humidity on the separation efficiency,
 421 the cyclone separator was integrated to the novel HDH desalination technology shown in Figure
 422 7 (US Patent 2021-0039008 A1) [37] to assess the performance of the overall cycle. In this case,
 423 two different cyclone separators designs shown in Table 1 were used corresponding to different
 424 flowrates. In this HDH cycle, saline water is atomized through an anti-clogging atomizer (1) and
 425 then evaporated in a heat exchanger (2) [39, 40]. Additional thermal energy is then added to

426 the resulting humid particle-laden stream (3). The salt is thereafter collected using the cyclone
 427 separator (4). The clean humid air is then dehumidified (5) and the freshwater is separated in
 428 an air/water separator (6) and then collected and used to preheat intake brine (7). Air is re-
 429 compressed (8) and re-cycled again to stage 1. The salinity of the freshwater is measured using
 430 a salinity tester (Omega CDH-7021). Table 5 shows the experimental matrix for the solar
 431 desalination module. Different salinities ranging from brackish water salinity up to the salinity
 432 of a typical RO plant brine discharge were used in the tests to test the range of applicability of
 433 the cyclone separator.

434
 435 Figure 7: The use of the cyclone separator in the novel HDH desalination technology [37]. Left:
 436 the technology's working module. Right: the technology's working cycle.

437 Table 5: Test matrix for the cyclone separator in the HDH technology

Cyclone Separator's Design	Dry Air Flowrate [kg/hr]	Humidity Ratio [-]		Salinity of the Feed Water [ppm]
		0.12	0.26	
1	3.6	0.15	0.32	35,000
		0.16	0.36	50,000
		0.17	0.39	75,000

	10.8	0.19	0.40	100,000
	16.2	0.20	0.42	150,000
2		0.22	0.47	
		0.24	0.50	

438 **2.4 Uncertainty Analysis:**

439 **2.4.1 Instruments uncertainty**

440 The air mass flowmeter (KURZ-504 FTB-8) has an accuracy to \pm (1% of the reading + 0.065
441 kg/hr). The thermocouple probes used to measure the dry and wet bulb temperatures has a
442 maximum error of 1.1°C. The differential pressure transducer (Setra Model DPT 260) has an
443 accuracy of 6.2 Pa. The electronic scale has a readout accuracy of 0.01 grams. The salinity tester
444 used in section 2.3.3 has an accuracy of 20 ppm.

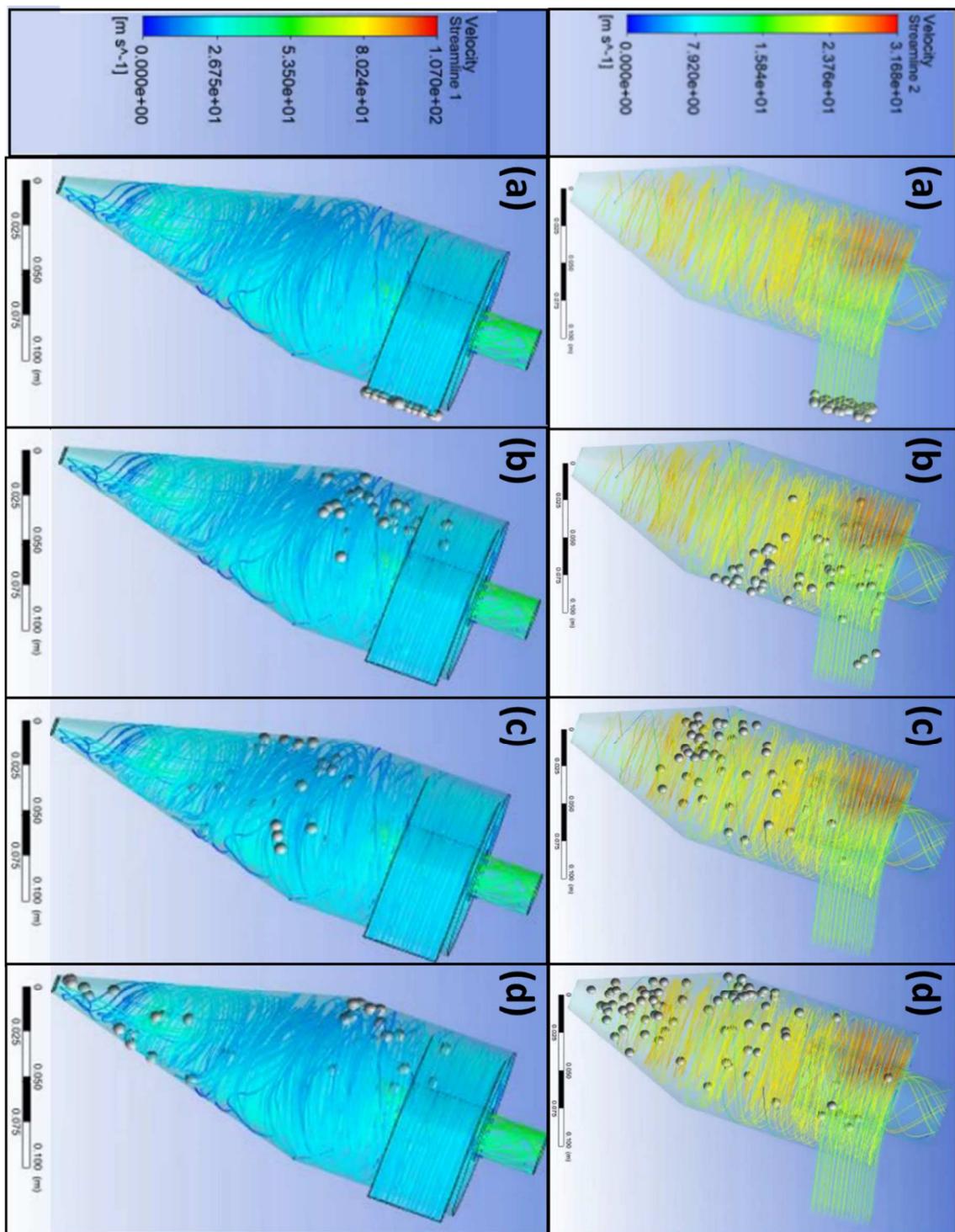
445 **2.4.2 Salinity and humidity measurements**

446 The uncertainties in the salinity and humidity ratio measurements were determined using the
447 engineering approach in [54, 55]. The uncertainty in measuring the salinity was determined
448 using

$$u_S = \sqrt{ \left(\frac{\partial S}{\partial \dot{m}_v} u_{mv} \right)^2 + \left(\frac{\partial S}{\partial \dot{m}_s} u_{ms} \right)^2 } \quad (11)$$

449 where S is the salinity, \dot{m}_v is the water vapor flowrate, which is obtained by measuring the
450 carrier air humidity, \dot{m}_s is the salt flowrate, and u_S, u_{mv} , and u_{ms} are the measurement
451 uncertainties of salinity, vapor flowrate, and salt flowrate respectively. The uncertainty in
452 measuring the humidity is found by

$$u_\omega = \sqrt{ \left(\frac{\partial \omega}{\partial T_{db}} u_{db} \right)^2 + \left(\frac{\partial \omega}{\partial T_{wb}} u_{wb} \right)^2 } \quad (12)$$

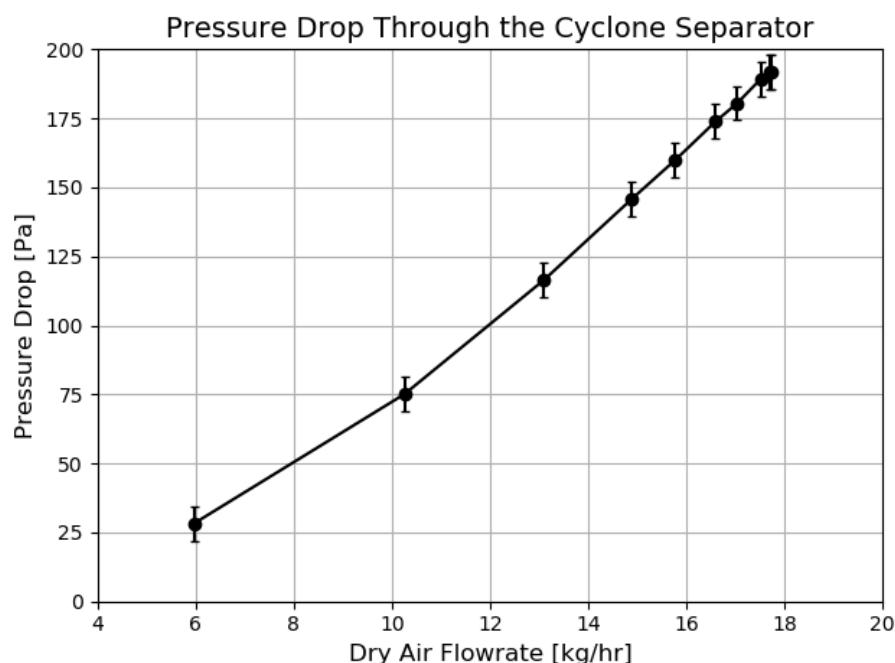

$$u_\phi = \sqrt{ \left(\frac{\partial \phi}{\partial T_{db}} u_{db} \right)^2 + \left(\frac{\partial \phi}{\partial T_{wb}} u_{wb} \right)^2 }$$

454 where ω is the humidity ratio, ϕ is the relative humidity, T_{db} is the dry bulb temperature, T_{wb}
455 is the wet bulb temperature, and u_ω , u_{db} , u_{wb} , and u_ϕ are the uncertainties for humidity
456 ratio, relative humidity, dry bulb temperature, and wet bulb temperature respectively. The
457 humidity ratio has an average relative uncertainty of 8% of the corresponding reading, the
458 relative humidity has an average uncertainty of 7% of the reading, and the salinity has an
459 uncertainty of 8% of the reading.

460 **3. Results and Discussion:**

461 **3.1 Analytical and Numerical Simulation:**

462 The cyclone separator designs presented in Table 1 were selected based on the analytical and
463 numerical simulation results. The analytical models were used to study the overall effect of
464 inlet velocity, tangential, radial and axial velocity components, viscosity of the carrier air
465 stream, and the different geometric parameters on the cyclone separator's performance (i.e.
466 salt collection efficiency, salt cut diameter, and the cyclone separator's pressure drop). The
467 numerical simulations were then used to ensure the well-streamlined design, and get
468 preliminary estimations for the collection efficiency. Figure 8 shows the numerical simulations
469 steady state results at different flow stages. Stage (a) represents the start point of operation.
470 Stage (b) is when salt particles enter the cyclone separator main body and start swirling. Stage
471 (c) is when the larger particles are pushed towards the walls with centrifugal forces. Stage (d)
472 shows how most of the salt particles escapes from the bottom except for the smaller particles
473 overwhelmed by the flow inertia which escapes with humid air.


474

475 Figure 8: Steady state results of the numerical simulation at different flow stages. The radial
 476 velocity gradient is larger at the bottom design which leads to a higher collection efficiency.

477 From the simulations, it was found out that increasing the radial velocity gradient increases the
478 collection efficiency. In Figure 8, the radial velocity gradient was altered by changing the flow
479 area either by changing the largest diameter P_9 or the vortex finder diameter P_4 . If the velocity
480 gradient is large enough, then increasing the conical height P_3 augments the collection
481 efficiency. On the other hand, in the cases of small gradients. Increasing the inlet channel
482 inclination angle P_7 was found to have detrimental effect on the collection efficiency. For the
483 cyclone separator size and flowrate constraints, increasing the angle reduces the overall swirls,
484 and impacts the pressure distribution and hence the cyclonic motion negatively resulting in
485 reducing the effectiveness of the cyclone separator.

486 **3.2 Pressure Drop Through the Cyclone Separator:**

487 Figure 9 presents the measured pressure drop through the cyclone separator against different
488 air mass flowrate. It can be observed how minimal values for pressure drop can be obtained
489 using the cyclone separator. The maximum pressure drop recorded was less than 200 Pa for
490 flowrate of around 18 kg/hr.

493 **3.3 Experimental Tests Using Dry Air:**

494 The cyclone separator collection efficiency was initially tested using dry air to investigate the
495 effects of flow dynamics and cyclone's design on the collection efficiency. The results were in
496 good agreement with the analytical and numerical designs, were repeatable, and demonstrated
497 that the cyclone separator's design was efficient to separate suspended solid particles in the
498 size of 100 μm and larger from the air. Table 6 presents the results of testing the cyclone
499 separator using dry air. The next step was to test the counter intuitive effect of adding humidity
500 to the air.

501

502 Table 6: Salt collection efficiency using dry air

Dry Air Flowrate [kg/hr]	Inlet velocity [m/s]	Salt Flowrate [kg/hr]	Salt Content [%wt of dry air]	Collection Efficiency [%]
10.8	7.8	0.8	7.4	100
7.2	5.7	0.7	9.7	99.8
14.8	10.7	1.6	10.8	99.7

503

504 **3.4 Experimental Tests Using Humid Air:**

505 Humidity was introduced to the air in different levels and conditions and the corresponding
506 collection efficiencies were recorded. The clean humid air coming out of the cyclone separator
507 had the salinity of drinkable water at almost all the data points shown in Table 7. Salinities of
508 different bodies of water from seawater salinity up to highly-concentrated brine discharges
509 were used in these tests.

510 The Discharge Salinity column in Table 7 depicts the salinity assuming all the uncaptured salt
511 crystals escaped with the clean humid air. In real cases, however, some minor scaling takes
512 place on the cyclone separator's inner walls. Thus, the discharge salinities values depicted on

513 the table serve as an upper limit. It is observed that this majorly happens when the carrier
 514 humid air is characterized by high humidity ratios. The premature condensation promotes the
 515 salt adhesion to the cyclone separator's inner walls. However, when we look at the feed
 516 salinities these numbers are still insignificant compared to the high feed salinities. This suggests
 517 that the salt adhesion ceases at some point throughout the process. While running the tests, it
 518 was observed that salt layers built on the cyclone separator's inner walls up to a point where
 519 the humid air swirling motion overwhelms the salt deposited on the walls and cleans it out. The
 520 next section presents the cyclone separator's self-cleaning mechanics that was observed during
 521 the experiments.

522 Table 7: Salt collection efficiency using humid air

Dry Air Flowrate	Temperature	Relative Humidity	Humidity Ratio	Intake Salinity	Separation Efficiency	Clean Water Salinity
[kg/hr]	[°C]	[%]	[-]	[ppm]	[%]	[ppm]
14.04	42	95	0.05	94,000	99.7	282
15.84	42	90	0.05	114,000	99.8	228
14.76	46	95	0.07	93,000	99.7	279
14.04	43	95	0.06	163,000	99.5	815
13.68	50	100	0.09	92,000	99.7	276
13.0	47	80	0.09	99,000	99.7	297
14.3	40	80	0.06	147,000	99.9	147
12.6	59	100	0.14	63,000	99.8	126
14.04	58	98	0.14	59,000	99.7	177
10.08	96	40	0.34	67,000	98.6	938
10.08	90	54	0.23	88,000	98.6	1232
9.72	91	47	0.32	25,000	99.9	25
9.72	86	65	0.35	33,000	99.7	99
7.92	91	49	0.37	33,000	99.1	297

	7.92	95	44	0.32	84,000	99.4	504
--	------	----	----	------	--------	------	-----

523

524 **3.5 The Cyclone Separator's Self-cleaning Design:**

525 As the cyclone operation progressed in time, the inner wall temperature rises and approaches
 526 the humid air's dew point. At that point of time condensation (de-humidification) minimizes
 527 and the flow inertia overwhelms the salt adhesion forces and the humid air starts cleaning out
 528 the salt depositions.

529 **3.5.1 Experiments using sodium chloride (NaCl):**

530 Table 8 presents the testing conditions for the results shown in Figure 10 and Figure 11. All the
 531 tests were performed at high salinities to prove that the cyclone separator can be a useful asset
 532 for HDH desalination, not just for the seawater salinity, but also for higher salinities and serve
 533 as a brine disposal method. Large values of the humidity ratio were maintained throughout all
 534 the test. At lower humidity ratio, the cyclone separator performance approaches the
 535 performance when using dry air as shown in Table 7. These tests were investigated the self-
 536 cleaning attribute and the cyclone behavior at higher humidity ratios.

537 Figure 10 shows the section view and the salt depositions on the cyclone separator's inner
 538 walls. Observations were recorded in 3 different time intervals: 2.5 minutes, 5 minutes, and 10
 539 minutes. In case (A), once the particle-laden stream entered the cyclone separator, premature
 540 condensation took place immediately and promoted salt adhesion and scaling. As the dew
 541 point was approached, the cyclone separators started cleaning out, as in the period of [5-10]
 542 minutes. In this case, however, the salinity was still within the safe margins. At high humidity
 543 ratios, close to saturation state, if the salinity goes beyond a safe upper limit, excessive scaling
 544 disrupts the swirling motion. Which drops the collection efficiency and might lead to clogging
 545 the salts outlet (P_8), as in case (B). In case (B) the combination of high salinity, high humidity
 546 ratio, and high relative humidity resulted in excessive salt depositions before reaching the self-
 547 cleaning stage. The thick layer of salt adds a thermal resistance that slows the process of

548 heating the inner walls significantly. Case (B) serves as the operating limitation of the cyclone
549 separator.

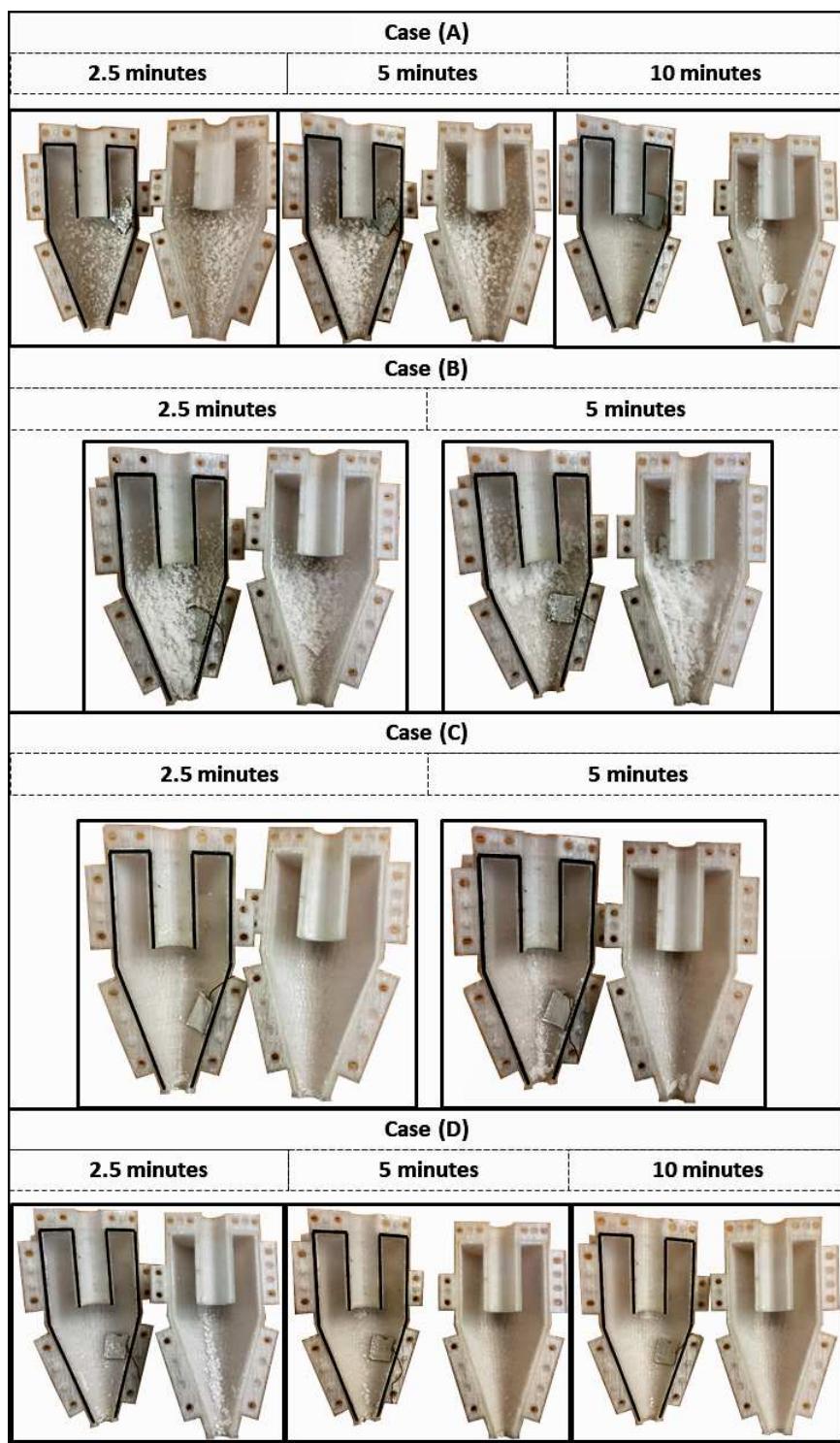
550 Cases (C) and (D) show examples of how controlling the wall temperature or the psychrometric
551 properties of the carrier humid air can help in avoiding the detrimental effect shown in Case
552 (B). To avoid the excessive salt deposition at high salinity and almost saturated flows, the
553 cyclone separator's walls were preheated beyond the dew point by running some warm humid
554 air for few minutes prior to introducing the salt. The cyclone separator walls were almost clean
555 after the 2.5 and 5 minutes intervals. In case (D), another approach was followed. The relative
556 humidity of the carrier humid air was reduced to around 30% to delay the premature
557 condensation at the initial stages of operation. A minimal amount of salt was observed after 2.5
558 minutes. The small amount of salt cleans out rapidly as seen in the 5- and 10-minute intervals.
559 Controlling the humid air psychrometric properties can give the cyclone separator the ability to
560 treat very high salinities. Figure 11 shows a case where the salinity was increased to 400,000
561 ppm (40%), which exceeds the salinity of the Dead Sea. After 10 minutes of operation, dry
562 crusts of salts were observed at the lower parts of the cyclone separator. The next step was to
563 test the cyclone separator for longer periods and test different salt compositions.

564 Table 8: test conditions for experiments with NaCl

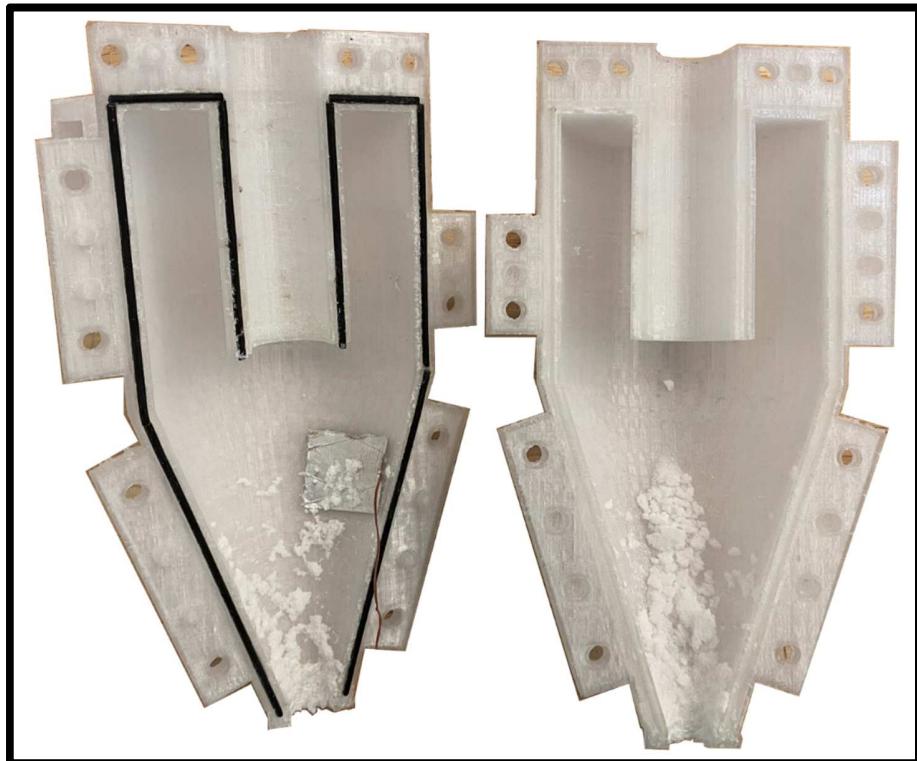
Case	Case Description	Humidity	Dry Air	Salinity
		Ratio [-]	Flowrate kg/hr	ppm
(A)	<ul style="list-style-type: none">• High humidity ratio• Close to saturation ($\phi \sim 100\%$)• RO discharge brine salinity	0.38	8.6	110,000
(B)	<ul style="list-style-type: none">• Cyclone separator's limitation• Very high humidity ratio• Close to saturation ($\phi \sim 100\%$)• Hypersaline water	0.46	8.6	250,000

	<ul style="list-style-type: none"> • Very high humidity ratio 			
(C)	<ul style="list-style-type: none"> • Preheated cyclone separator's inner walls 	0.46	9	190,000
	<ul style="list-style-type: none"> • Hypersaline water 			
(D)	<ul style="list-style-type: none"> • Very high humidity ratio • Reduced relative humidity ($\phi \sim 30\%$) • Hypersaline water 	0.41	9.8	210,000
(E)	<ul style="list-style-type: none"> • Very high humidity ratio • Reduced relative humidity ($\phi \sim 30\%$) • Extreme Hypersaline water (higher than the salinity of the Dead Sea) 	0.50	9.8	400,000

565

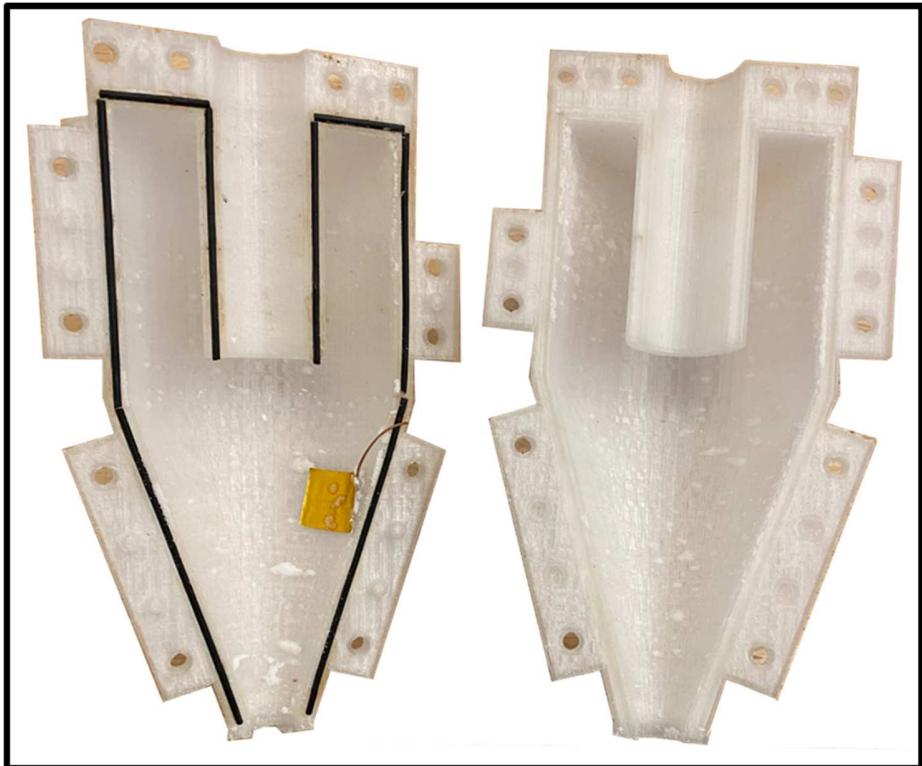

566 **3.5.2 Experiments using different salt compositions:**

567 Table 9 presents the testing conditions for the results shown in Figure 12 and Figure 13.
 568 Different salt compositions (shown in Table 3) were used for longer duration tests. The
 569 recorded observations showed that the cyclone separator was almost clean after 30-minutes
 570 and 1-hour duration tests. Maintaining the cyclone separator's walls temperatures and the
 571 incoming humid air psychrometric properties should allow the performance to sustain for
 572 longer periods. Figure 12 shows the observation after 30 minutes of operation where the
 573 salinity was around 100,000 ppm (10%), a salinity found normally in the RO brine discharge.
 574 Then the test was run for an hour long duration as shown in Figure 13. In this case, the salinity
 575 was increased to an extreme level of 810,000 ppm (81%) that is improbable in a body of water.
 576 Operating at such high salinity shows how the cyclone separator can be used to treat a wide
 577 range of water bodies including the most concentrated brines by controlling the humidification

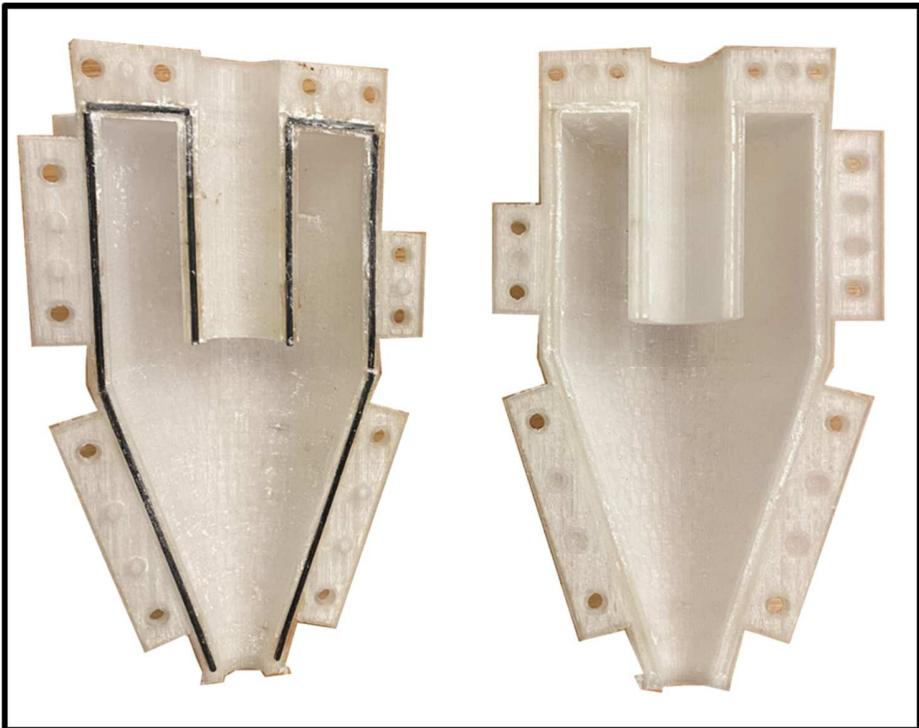

578 of the carrier air. The clean humid air coming out of the cyclone separator in this case had the
 579 salinity of freshwater (< 500 ppm). It was also observed that the salt collected at the bottom of
 580 cyclone was almost dry, indicating the insignificant amount of water lost to the salt through the
 581 cyclonic separation making the process suitable for HDH desalination.

582 Table 9: test conditions for different compositions and longer durations

Case	Case Description	Humidity Ratio [-]	Dry Air Flowrate [kg/hr]	Salinity [ppm]	Test Duration [min]	Salt composition
(F)	<ul style="list-style-type: none"> • High humidity ratio • Reduced relative humidity ($\phi \sim 30\%$) • RO discharge brine salinity 	0.37	9.4	100,000	30	Table 3, Composition (1)
(G)	<ul style="list-style-type: none"> • High humidity ratio • Reduced relative humidity ($\phi \sim 30\%$) • Very Extreme salinity (more than twice the Dead Sea salinity) 	0.25	10.5	810,000	60	Table 3, Composition (2)



584 Figure 10: Cyclone separator self-cleaning while only using NaCl. The salt deposition is a direct
585 function of the wall temperature. After 10 minutes it was steady state and no further salt
586 accumulation was observed.


587
588 Figure 11: Case (E), reducing the relative humidity to treat 40% salinity water. The picture was
589 taken after 10 minutes of operation.

590

591

Figure 12: Case (F), observation after 30 minutes for 10% salinity. Composition (1).

592

593 Figure 13: Case (G), observation after 1 hour for extreme salinity of 81%. Composition (2).

594 **3.6 Integrating the Cyclone Separator to a Novel ZLD-HDH Desalination Technology:**

595 The two designs of the cyclone separators shown in Table 1 and Figure 7 were integrated into a
596 novel HDH desalination cycle developed in our research laboratory [37]. The technology is
597 briefly explained in section 2.3.3. Table 10 shows the salinity of the water produced from the
598 HDH cycle. The results were repeatable. Many data points were repeated at least 3 times; Table
599 9 shows a sample of the results. A range of feed water salinities was used, from seawater
600 salinity (35,000 ppm) to concentrated brine salinity (150,000 ppm). The HDH module
601 maintained freshwater salinity (<500 ppm) for the range of salinities and humidity ratios used,
602 further proving the applicability of the cyclone separator in ZLD-thermal desalination.

603 Table 10: product water salinities from a novel HDH technology employing the cyclone
 604 separator

Cyclone	Dry Air	Humidity	Feed Water	Separation	Clean Water
Separator Design	Flowrate	Ratio	Salinity	Efficiency	Salinity
#	kg/hr	-	ppm	%	ppm
1	16.2	0.17	35,000	99.6	145
	16.2	0.17	50,000	99.5	255
	16.2	0.16	50,000	99.6	200
	16.2	0.16	75,000	99.6	286
	16.2	0.16	100,000	99.7	302
2	3.6	0.47	35,000	99.9	18
	3.6	0.4	35,000	99.9	25
	3.6	0.41	50,000	99.9	27
	3.6	0.44	50,000	99.9	26
	3.6	0.5	50,000	99.9	29
	3.6	0.39	75,000	99.9	38
	3.6	0.42	75,000	99.9	48
	3.6	0.5	75,000	99.9	44
	3.6	0.31	100,000	99.9	68
	3.6	0.36	100,000	99.9	66
	3.6	0.32	100,000	99.9	61
	3.6	0.19	150,000	99.7	419
	3.6	0.38	150,000	99.9	171
	3.6	0.32	150,000	99.8	230
	3.6	0.32	150,000	99.9	160
	7.2	0.19	150,000	99.7	447

	7.2	0.21	150,000	99.9	55
	7.2	0.22	150,000	99.9	35
	7.2	0.24	150,000	99.9	40
	7.2	0.23	150,000	99.9	70
	7.2	0.22	150,000	99.9	29
	7.2	0.16	150,000	99.9	39
	7.2	0.2	150,000	99.9	46
	7.2	0.26	150,000	99.9	20
	10.8	0.12	150,000	99.8	340
	10.8	0.15	150,000	99.9	28
	10.8	0.19	150,000	99.8	353
	10.8	0.16	150,000	99.9	148
	10.8	0.17	150,000	99.9	30

605

606 **4. Conclusions:**

607 The applicability of using of a gas-solids cyclone separator in thermal desalination was
 608 investigated analytically, numerically, and proved experimentally. Utilizing a cyclone separator
 609 provides a compact and simple salts management technique that can bring the desalination
 610 community a step closer towards economically viable ZLD techniques. This article briefly
 611 covered the effects of the flow dynamics and geometrical aspects of the cyclone separator's
 612 design on its performance. Then, it highlighted the counter-intuitive behavior of the cyclone
 613 separator once humidity is introduced to the air. The research described in this article provided
 614 detailed investigation including:

615 1) The cyclone separators investigated in this study demonstrated the ability to treat high-
 616 salinity water streams into freshwater stream and solid salts crystals in a once-through
 617 process.

618 2) Introducing humidity to the air has a counter-intuitive impact on the cyclone separator's
619 performance compared to the correlation captured through analytical models.
620 Theoretically, introducing humidity reduces the density of the carrier air, which
621 negatively impacts the solids separation. However, introducing the humidity was proven
622 to not have a significant detrimental impact on the performance of the cyclone
623 separator. This article presents how two different designs of cyclone separators could
624 treat incoming streams of high humidity ratios and extreme salinities into freshwater
625 salinity with zero liquid discharge.

626 3) In the case of high humidity ratios, salt scaling takes place on the cyclone separator's
627 inner walls at initial stages due to premature condensation which promotes salt
628 adhesion. However, this behavior is countered by a self-cleaning stage once the walls'
629 temperatures approaches the dew point of the carrier humid air after few minutes.

630 4) The self-cleaning behavior allowed the cyclone separator to perform well even at
631 extreme salinities. The cyclone separator demonstrated the ability to separate solid salt
632 crystals from 810,000 ppm salinity feed stream. Such high salinities might not be
633 present in any relevant scenario. However, being able to treat such high salinity down to
634 freshwater salinity proves the cyclone separator's potential to treat a wide range of
635 different salinities with zero liquid discharge.

636 5) The cyclone separator was employed in novel HDH desalination cycle developed in our
637 research laboratory and was used to treat a range of different salinities starting from
638 the seawater salinity. The product water has the salinity of freshwater (< 500 ppm).

639 6) The cyclone separator is significantly less sensitive to the salinity compared to RO
640 membranes and requires a minimal pressure drop. Salt scaling inside the cyclone
641 separator can mainly be constrained by controlling the psychrometric properties of the
642 carrier humid air.

643 7) Looking at the salinity ranges treatable by the cyclone separator, we see the potential of
644 the HDH technology utilizing the cyclone separator to be integrated downstream of RO
645 plants. Therefore, recovering the water from the high-salinity brine byproducts and
646 achieve ZLD, which is the optimal environmental solution.

647 Future work will involve testing wider ranges of flowrates and salt particles sizes. This research
648 will expand to test different salt compositions and other minerals that can be found in different
649 water bodies. Additionally, smoother materials to fabricate the cyclone separator will be
650 investigated to characterize how much would that improve the process and impact the self-
651 cleaning behavior.

652 **Acknowledgement**

653 This research was conducted under an award from the United States of America Department of
654 Energy – Solar Energy Technologies Office, award number DE-EE0008402.

655 **Declaration of Interests**

656 The authors report no conflict of interest.

657 **Nomenclature**

\bar{u}_i	mean velocity component
\vec{u}_p	particle's velocity
α_k & α_ε	effective turbulence Prandtl numbers for k and ε respectively
$C_{1\varepsilon}, C_{2\varepsilon}, C_\mu$	constants
\vec{F}	surface forces on the particle
F_D	drag force on the salt particle
J_i	mass flux of species i
Y_i	mass fraction of species i
u'_j	turbulent fluctuating component of the velocity
\vec{v}	relative velocity
x_i	flow direction
α_s	swirl factor
$\mu_{eff,0}$	eddy viscosity for non-swirling flows
μ_{eff}	turbulence effective viscosity
τ_{ij}	viscous stress tensor

P	static pressure
P_1	depth of the vortex finder
P_2	cylindrical section height
P_3	conical section height
P_4	clean humid air outlet diameter
P_5	inlet channel height
P_6	inlet channel width
P_7	inlet channel inclination angle
P_8	salt outlet diameter
P_9	largest diameter
Ω	characteristic swirl number
μ	dynamic viscosity
ρ	density

658 References

659

- [1] S. Liyanaarachchi, L. Shu, S. Muthukumaran, V. Jegatheesan and K. Baskaran, "Problems in seawater industrial desalination processes and potential sustainable solutions: A review," *Reviews in Environmental Science and Biotechnology*, vol. 13, no. 2, pp. 203-214, 2014.
- [2] T. Mezher, H. Fath, Z. Abbas and A. Khaled, "Techno-economic assessment and environmental impacts of desalination technologies," *Desalination*, vol. 266, no. 1-3, pp. 263-273, 2011.
- [3] A. Panagopoulos, K. J. Haralambous and M. Loizidou, "Desalination brine disposal methods and treatment technologies - A review," *Science of the Total Environment*, vol. 693, p. 133545, 2019.
- [4] J. Eke, A. Yusuf, A. Giwa and A. Sodiq, "The global status of desalination: An assessment of current desalination technologies, plants and capacity," *Desalination*, vol. 495, p. 114633, May 2020.
- [5] R. Semiat, "Energy issues in desalination processes," *Environmental Science and Technology*, vol. 42, no. 22, pp. 8193-8201, 2008.
- [6] A. Al-Karaghoudi and L. L. Kazmerski, "Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes," *Renewable and Sustainable Energy Reviews*, vol. 24, pp. 343-356, 2013.
- [7] A. Panagopoulos, "A comparative study on minimum and actual energy consumption for the

treatment of desalination brine," *Energy*, vol. 212, p. 118733, 2020.

- [8] S. Ahmadvand, B. Abbasi, B. Azarfard, M. Elhashimi, X. Zhang and B. Abbasi, "Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination," *water*, vol. 11, no. 4, 2019.
- [9] S. Miller, H. Shemer and R. Semiat, "Energy and environmental issues in desalination," *Desalination*, vol. 366, pp. 2-8, 2015.
- [10] I. Wenten, Khoiruddin, A. P.T.P. and H. A.N., "Scale-up Strategies for Membrane-Based Desalination Processes: A Review," *Journal of Membrane Science & Research*, vol. 2, no. 2, pp. 42-58, 2016.
- [11] I. Ullah and M. G. Rasul, "Recent developments in solar thermal desalination technologies: A review," *Energies*, vol. 12, no. 1, 2019.
- [12] R. K. McGovern and J. H. Lienhard V, "On the potential of forward osmosis to energetically outperform reverse osmosis desalination," *Journal of Membrane Science*, vol. 469, pp. 245-250, 2014.
- [13] P. Menchik and C. I. Moraru, "Nonthermal concentration of liquid foods by a combination of reverse osmosis and forward osmosis. Acid whey: A case study," *Journal of Food Engineering*, vol. 253, pp. 40-48, 2019.
- [14] A. Altaee, G. Zaragoza and H. R. v. Tonningen, "Comparison between Forward Osmosis-Reverse Osmosis and Reverse Osmosis processes for seawater desalination," *Desalination*, vol. 336, pp. 50-57, 2014.
- [15] J. Li, Y. Guan, F. Cheng and Y. Liu, "Treatment of high salinity brines by direct contact membrane distillation : Effect of membrane characteristics and salinity," *Chemosphere*, vol. 140, pp. 143-149, 2015.
- [16] S. T. Mitrouli, M. Kostoglou and A. J. Karabelas, "Calcium carbonate scaling of desalination membranes: Assessment of scaling parameters from dead-end filtration experiments," *Journal of Membrane Science*, vol. 210, pp. 293-305, 2016.
- [17] D. M. Warsinger, E. W. Tow, L. A. Maswadeh, G. B. Connors, J. Swaminathan and J. H. Lienhard V, "Inorganic fouling mitigation by salinity cycling in batch reverse osmosis," *Water Research*, vol. 137, pp. 384-394, 2018.
- [18] S. Shirazi, C. J. Lin and D. Chen, "Inorganic fouling of pressure-driven membrane processes - A critical review," *Desalination*, vol. 250, no. 1, pp. 236-248, 2010.
- [19] J. Kim, K. Park, D. R. Yang and S. Hong, "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," *Applied Energy*, vol. 254, no. August, p. 113652, 2019.
- [20] A. B. Schantz, B. Xiong, E. Dees, D. R. Moore, X. Yang and M. Kumar, "Prospects and challenges for

high-pressure reverse osmosis in minimizing concentrated waste streams," *Environmental Science: Water Research & Technology*, pp. 1-25, 2018.

- [21] R. D. Aines, T. J. Wolery, W. L. Bourcier, T. Wolfe and C. Hausmann, "Fresh water generation from aquifer-pressured carbon storage: Feasibility of treating saline formation waters," *Energy Procedia*, vol. 4, pp. 2269-2276, 2011.
- [22] R. Valladares Linares, Z. Li, V. Yangali-Quintanilla, N. Ghaffour, G. Amy, T. Leiknes and J. S. Vrouwenvelder, "Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery," *Water Research*, vol. 88, pp. 225-234, 2016.
- [23] Q. She, R. Wang, A. G. Fane and C. Y. Tang, "Membrane fouling in osmotically driven membrane processes: A review," *Journal of Membrane Science*, vol. 499, pp. 201-233, 2016.
- [24] P. S. Goh, W. J. Lau, M. H. Othman and A. F. Ismail, "Membrane fouling in desalination and its mitigation strategies," *Desalination*, vol. 425, pp. 130-155, 2018.
- [25] E. M. Hoek, J. Allred, T. Knoell and B. H. Jeong, "Modeling the effects of fouling on full-scale reverse osmosis processes," *Journal of Membrane Science*, vol. 314, no. 1-2, pp. 33-49, 2008.
- [26] D. J. Miller, D. R. Dreyer, C. W. Bielawski, D. R. Paul and B. D. Freeman, "Surface Modification of Water Purification Membranes," *Angewandte Chemie - International Edition*, vol. 56, no. 17, pp. 4662-4711, 2017.
- [27] M. Elimelech and W. A. Phillip, "The future of seawater desalination: Energy, technology, and the environment," *Science*, vol. 333, no. 6043, pp. 712-717, 2011.
- [28] H. R. Chae, J. Lee, C. H. Lee, I. C. Kim and P. K. Park, "Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance," *Journal of Membrane Science*, vol. 483, pp. 128-135, 2015.
- [29] A. Pérez-González, A. M. Urtiaga, R. Ibáñez and I. Ortiz, "State of the art and review on the treatment technologies of water reverse osmosis concentrates," *Water Research*, vol. 46, no. 2, pp. 267-283, 2012.
- [30] M. Mickley, "Updated and Extended Survey of U.S. Municipal Desalination Plants," Bureau of Reclamation, U.S. Department of the Interior, Denver, 2018.
- [31] N. Ahmad and R. E. Baddour, "A review of sources, effects, disposal methods, and regulations of brine into marine environments," *Ocean and Coastal Management*, vol. 87, pp. 1-7, 2014.
- [32] J. P. Scott Jenkins, P. Roberts, D. Schlenk and J. Weis, "Management of Brine Discharges to Coastal Waters Recommendations of a Science Advisory Panel," Southern California Coastal Water Research Project, Costa Mesa, CA, 2012.
- [33] N. Heck, K. Lykkebo Petersen, D. C. Potts, B. Haddad and A. Paytan, "Predictors of coastal stakeholders' knowledge about seawater desalination impacts on marine ecosystems," *Science of*

the Total Environment, vol. 639, pp. 785-792, 2018.

- [34] K. L. Petersen, A. Paytan, E. Rahav, O. Levy, J. Silverman, O. Barzel, D. Potts and E. Bar-Zeev, "Impact of brine and antiscalants on reef-building corals in the Gulf of Aqaba – Potential effects from desalination plants," *Water Research*, vol. 144, pp. 183-191, 2018.
- [35] J. S. Chang, "Understanding the role of ecological indicator use in assessing the effects of desalination plants," *Desalination*, vol. 365, pp. 416-433, 2015.
- [36] X. Zhang, Y. Liu, X. Wen, C. Li and X. Hu, "Low-grade waste heat driven desalination with an open loop heat pipe," *Energy*, vol. 163, pp. 221-228, 2018.
- [37] B. Abbasi, M. A. Elhashimi, D. Sharma and X. Zhang. US Patent 62882953, 2020.
- [38] F. Mansour, S. Y. Alnouri, M. Al-Hindi, F. Azizi and P. Linke, "Screening and cost assessment strategies for end-of-Pipe Zero Liquid Discharge systems," *Journal of Cleaner Production*, vol. 179, pp. 460-477, 2018.
- [39] M. A. Elhashimi, X. Zhang and B. Abbasi, "Empirical prediction of saline water atomization pressure loss and spray phase change using local flow pressure analysis," *Desalination*, vol. 514, p. 115156, 2021.
- [40] D. Sharma, D. P. Ghosh, J. N. Rote, S. J. Dennis, M. Messer, X. Zhang and B. Abbasi, "Development of an anti-clogging perforated plate atomizer for a zero liquid discharge humidification-dehumidification desalination system," *Desalination*, vol. 515, p. 115195., 2021.
- [41] S. v. Wyk, A. G. v. d. Ham and S. R. Kersten, "Potential of supercritical water desalination (SCWD) as zero liquid discharge (ZLD) technology," *Desalination*, vol. 495, p. 114593, 2020.
- [42] R. H. Perry, D. W. Green and J. O. Maloney, PERRY'S CHEMICAL ENGINEERS' HANDBOOK, New York: McGraw-Hil, 1997.
- [43] D. S. Likhachev, F. C. Li and V. A. Kulagin, "Experimental study on the performance of a rotational supercavitating evaporator for desalination," *Science China Technological Sciences*, vol. 57, no. 11, pp. 2115-2130, 2014.
- [44] J. Stengler, K. Schaber and S. Mall-Gleissle, "Experimental study on low temperature desalination by flash evaporation in a novel compact chamber design," *Desalination*, vol. 448, no. July, pp. 103-112, 2018.
- [45] C. Shi, S. Bu, L. Zhang, H. Yuan, W. Xu, L. Liu and Z. M. Zhang, "Experimental and numerical investigation on the evaporation performance of a cyclone-type spray desalination chamber," *Desalination*, vol. 467, no. January, pp. 125-135, 2019.
- [46] "Study on a novel spray-evaporation multi-effect distillation desalination system," *Desalination*, vol. 473, no. August 2019, p. 114195, 2020.

[47] S. van Wyk, S. O. Odu, A. G. van der Ham and S. R. Kersten, "Design and results of a first generation pilot plant for supercritical water desalination (SCWD)," *Desalination*, vol. 439, no. April, pp. 90-92, 2018.

[48] Y. Li, G. Qin, Z. Xiong, Y. F. Ji and L. Fan, "The effect of particle humidity on separation efficiency for an axial cyclone separator," *Advanced Powder Technology*, vol. 30, no. 4, pp. 724-731, 2019.

[49] A. Moallemi, M. Saidi and H. B. Tabrizi, "HUMIDITY EFFECT ON THE SEPARATION EFFICIENCY OF CYLINDRICAL CYCLONE SEPARATOR," in *Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition - IMECE2014*, Montreal, 2014.

[50] P. Baltrénas and A. Chlebnikovas, "The investigation of the structure and operation of a multi-channel cyclone, separating fine solid particles from an aggressive dispersed gas and vapour flow," *Powder Technology*, vol. 333, pp. 327-338, 2018.

[51] S. M. Ahuja, "Wetted wall cyclone - A novel concept," *Powder Technology*, vol. 204, no. 1, pp. 48-53, 2010.

[52] A. C. Hoffman and L. E. Stein, *Gas Cyclones and Swirl Tubes: Principles, Design, and Operation*, 2nd ed., New York: Springer, 2008.

[53] S. Orszag, V. Yakhot, W. Flannery, F. Boysan, D. Choudhury, J. Maruzewski and B. Patel, "Renormalization Group Modeling and Turbulence Simulations," in *International Conference on Near-Wall Turbulent Flows*, Tempe, Arizona, 1993.

[54] H. W. Coleman and W. G. Steele, "Engineering application of experimental uncertainty analysis," *AIAA Journal*, vol. 33, 1995.

[55] J. Chen and C. Chen, "Uncertainty Analysis in Humidity Measurements by the Psychrometer Method," *sensors*, 2017.

660

661