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ABSTRACT 

Efficient and accurate modeling of the coupled thermal-hydraulic-mechanical-chemical (THMC) 

processes in various rock formations is indispensable for designing energy geo-structures such as 

underground repositories for high-level nuclear wastes. This work focuses on developing and 

verifying an implicit finite element solver for generic coupled THMC problems in geological settings. 

Starting from the mass, momentum, and energy balance laws, a specialized set of governing 

equations and a thermoporoelastic constitutive model is derived. This system is then solved by an 

implicit finite element (FE) scheme. Specifically, the residuals and the Jacobians are scripted in a 

user-defined element (UEL) subroutine which is then combined with the general-purpose FE 

software Abaqus Standard to solve initial-boundary value problems. Considering the complexity of 

the system, the UEL development follows a stepwise manner by first solving the coupled hydraulic-

mechanical (HM) and thermal-hydraulic-mechanical (THM) equations before moving on to the full 

THMC problem. Each implementation step consists of at least one verification test by comparing 

computed results with closed-form analytical solutions to ensure that the various coupling effects 

are correctly realized. To demonstrate the robustness of the algorithm and to validate the UEL, a 

three-dimensional case study is performed with reference to the in-situ heating test of ATLAS at 

Belgium in 1980s. A hypothetical radionuclide leakage event is then simulated by activating the 

chemical-concentration degree of freedom and prescribing a constant high concentration at the 

heater’s surface. The model predicts a limited contaminated regime after six years considering both 

diffusion and advection effects on species transport.  
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1. Introduction 

Safe and permanent storage of spent nuclear fuel and other high-level radioactive wastes 

(HLWs) has been a pressing challenge given the ever-increasing amount of HLWs and the shortage of 

long-term storage facilities.1 With multiple approaches being discussed, an international consensus 

is that deep geological disposal is the preferred solution to the final management of HLW.2 This 

technology is based on a combined natural and engineered multi-barrier system, where the host 

rock can efficiently retard the migration of hazardous radionuclides from the repository to the 

biosphere should a critical event happen. Because of the large time scale at concern, an important 

part of the design and performance assessment of underground HLW repositories is to predict the 

long-term evolution of the strongly coupled thermo-hydraulic-mechanical-chemical (THMC) 

processes in the clay buffers and the host rocks induced by material or energy release from the 

waste canisters. For example, the variation of pore pressure, water content, and elevated 

temperature could result in mechanical strain or even fractures in surrounding geomaterials.3 In 

return, the skeleton deformation and fault displacement may alter the porosity and thus the 

permeability and diffusivity of the rock mass. Temperature change could be accelerated by fluid 

advection and chemical reaction. At the same time, heat transfer gives rise to thermal stresses and 

impacts mass transport of fluid as well as the reactive solute. Species migration is governed by 

concentration gradient but also influenced by fluid flow and thermal condition. Predicting the 

spatiotemporal evolution of such a complex environment near deep geological repositories requires 

reliable numerical models that can characterize all the relevant and highly nonlinear processes.4  

To this end, considerable efforts have been devoted to developing solvers for the coupled 

nonlinear partial differential equations (PDEs) governing the THMC processes. Among the monolithic 

solvers, the OpenGeoSys (OGS) is an open-source numerical platform based on object-oriented finite 

element method (FEM), which is designed for multi-field problems of applications in geoscience and 

hydrology.5-7 HYDROGEOCHEM is a suite of modules consisting of fluid flow, reactive biogeochemical 

transport, heat transfer and geomechanical displacement.8 FEniCS is a popular and open-source 

computing framework that enables automated solution of PDEs with great flexibility and efficiency 

by a collection of FE-based libraries.9 COMSOL Multiphysics is a commercial cross-platform finite 

element software and efficient solver for coupled PDEs, which has been successfully applied in 

THM(C) topics such as heat transfer in saturated soil,10 methane hydrate11 and CO2 injection.12 Apart 

from models that are solely based on FEM, the Los Alamos National Laboratory (LANL) has 

developed the Finite Element Heat and Mass Transfer (FEHM) code where the finite volume method 

(FVM) is utilized for flow and mass balance while FEM for stress equilibrium.13 In addition, Feng et 

al.14 proposed a method called the elasto-plastic cellular automaton (EPCA) which is inspired from 
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the self-organization theory and has been used to simulate the fracturing of novaculite in a THMC 

environment.15 Solution of coupled problems can also be achieved by combining different codes in a 

staggered manner, permitting flexibility in software development. This includes schemes that 

integrate reactive flow simulation with geomechanics codes such as TOUGHREACT-FLAC3D16-19 and 

TReactMech,20, 21 or combining THM codes with geochemical simulator like MOOSE-REDBACK.22 In 

general, sequential coupling approach has advantage on computational memory savings as well as 

implementation easiness. Whereas, solving coupled problems monolithically reduces 

communication and input/output (I/O) times compared to its staggered counterpart, which greatly 

benefits stability and avoids computational bottleneck.13, 23 It is worth to note that some of the 

aforementioned codes are open-source while others are proprietary, and their detailed numerical 

procedures are seldom published in scientific journal papers. This often make it challenging for users 

especially beginners to modify or implement new coupled theories to accommodate for different 

materials and engineering systems. 

This study reports the authors’ independent effort to develop a fully implicit monolithic finite 

element solution for THMC problems, with special emphasis on full disclosure of the implementation 

and verification details as well as the source code. Particularly, all codes and scripts presented here 

are made openly accessible via the Supplementary Materials associated with this paper. We hope 

the details of the numerical procedure presented here can facilitate the numerical realization of 

other THMC or general multiphysical solvers. The FE software Abaqus Standard is chosen as the 

platform for our implementation considering its robust nonlinear solver that offers various implicit 

solution schemes as well as the automatic time-stepping capability. We start by outlining the general 

governing equations in Section 2. The thermoporoelasticity and the THM governing equations of 

Coussy24 was adopted as the backbone of our THMC development. A user-defined element 

subroutine (UEL) is scripted in Section 3 based on the proposed governing equations. Considering 

the complexity of the system, the development starts by solving only the coupled hydromechanical 

equations, then extend to THM, and finally the complete THMC equations. Each implementation 

stage is verified by closed-form analytical solutions in Section 4. Finally, the UEL is put to simulate 

the in-situ heater test of ATLAS25 in an underground research facility at Belgium (Section 5). The 

predicted THM responses of the host formation are evaluated against the measurement data from 

the experiment. A hypothetical leakage event is also simulated in the same FE model to examine the 

rate of contaminant migration through the host formation. The main conclusions of the study and 

possible future extensions are summarized in Section 6.  
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2. Governing equations 

This section develops the governing equations describing the multiphysical processes in porous 

geological media based on the conservation of mass, momentum, and energy. The possible THMC 

processes in various host rocks has been discussed in several review papers and reports.26 To 

establish a set of tangible governing equations in this initial development, we emphasize the strong 

coupling between THM and their weak coupling with C. Specifically, the C component will focus on 

the transport of contaminant species driven by concentration gradient and advection associated 

with bulk fluid flow (i.e., THM → C). It is known that the presence of active chemical species can alter 

the THM properties of the solid skeleton through adsorption,27, 28 dissolution,29 and pressure 

solution.30 The system is also assumed to be fully saturated with no mass exchange between phases. 

This is likely to be true within the host rocks but not in the clay buffer where desaturation and vapor 

transportation may happen. These effects (i.e., C→THM) and phase changes may be included in 

future extensions of this basic framework. The main types of coupling considered in formulating the 

governing equations are summarized in Fig. 1. Based on these considerations, the set of unknown 

field variables are identified, including skeleton displacement (u), fluid pressure (Pf), temperature 

(T), and contaminant molar concentration (C).  

 

 

Fig. 1:  THMC couplings considered in this study 

2.1 Balance equation of mass and contaminant mole 
 A continuous description of a porous medium requires the analysis at macroscopic scale in 

accordance with the hypothesis of continuity.24 Given an arbitrary domain with volume Ωt and 
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boundary ∂Ωt, the rate of change of quantity ξ (e.g., mass density, molar concentration) in the α 

phase must be equal to the source/sink rate r subtracts the net outflux with respect to the 

observing window. The conservation of ξ can be written in the following form: 

  
t t t tt t t

D
d d da r d

Dt t



 


    


      

   v n  (1) 

where  

      x

D

Dt t






     


v   

is the particle derivative with respect to the α phase; Ωt is the domain volume; da is a unit domain 

boundary; vα is the velocity of the α phase;  x   denotes gradient operation with respect to spatial 

coordinate; α = s for solid and f for fluid in this development. As discussed previously, mass or 

species exchanges between phases are neglected in this study and thus 0r  . After applying 

divergence theorem, Equation (1) can be written in local form as: 

   0x
t







  


v   (2) 

This equation is expressed in relation to a spatially fixed observation window. For FE 

implementation, governing equations often need to be expressed with respect to a window that 

moves along with the solid skeleton. Equation (2) can be thus re-written as 

     0
s

x s x s

D

Dt
          v v v  (3)  

Let ξ be the fluid mass per unit total volume (nρf), where n is the Eulerian porosity and ρf is the 

intrinsic density of the fluid. The fluid mass balance can be written based on Equation (3) as: 

 0

ss
f

f f x s x f

DD n
n n

Dt Dt


       v q  (4) 

where qf is the relative flow vector of fluid mass: 

  f f f sn q v v   (5) 

Similarly, the solid mass balance can be established by letting ξ be the solid mass per unit total 

volume (1-n)ρs :  

    1 1 0
ss

s
s s x s

DD n
n n

Dt Dt


        v  (6)  

where ρs is the intrinsic density of the solid. Set ξ as the contaminant molar concentration nC where 

C is amount of moles per unit fluid volume. The mole conservation equation for any contaminant 

species can be similarly written as: 
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     0
s

x s x C s

D
nC nC nC

Dt
        v v v   (7) 

Define molar flux vector of contaminant relative to the bulk fluid flow 

  C C fnC q v v  (8)  

Equation (7) can then be rewritten as 

 0
s s

x s x f x C

f

D C D n C
n C Cn
Dt Dt 

 
          

 

v q q   (9) 

2.2 Mechanical equilibrium 
The balance of linear momentum of porous domain Ωt can be written as 

  1
t t t t

s f

s s t f f t t

D D
n d n d d da

Dt Dt
 

   
          v v b σ n  (10) 

where σ is the Cauchy stress tensor; b is the body force per unit volume that only includes 

gravitational force in this model (i.e. b=[nρf+(1-n)ρs]g). Equation (10) can be further written in local 

form by considering Reynold transport theorem and mass balance for solid and fluid phases: 

    1s s f f xn n         γ γ σ b  (11)  

where γα is the acceleration vector of phase α=s or f. Under quasi-static condition which is of the 

current interest, all the inertia terms can be neglected and the equilibrium equation becomes 

 0x   σ b  (12) 

2.3 Balance equation of internal energy 

For fine-grained porous media, local thermal equilibrium is a reasonable assumption considering 

the rapid conduction between the fluid and the solid phases.12 This means a single value T can be 

used to represent the absolute temperature of all phases in the representative element volume 

(REV). Neglecting the mechanical work, the balance of internal energy of the system can be written 

as  

 
 

 

1
t

t t t

s

s s f f

f f f s T T

D
n c T n c T dV

Dt

n c T dA dA r dV

 





  

   

      



  v v n q n

 (13) 

where cα is the specific heat of phase α; the first term on the right-hand side (RHS) accounts for the 

advective energy flux due to fluid escaping on the domain boundary; qT is the rate of heat flux due to 

thermal conduction. Applying the Reynold transport theorem and divergence theorem and setting 

0Tr  , the local form of energy balance can be written as: 
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 

 
1

1 0
s s f f

x s s s x f f f x T

n c T n c T
n c T n c T

t

 
 

            


v v q   (14) 

or 

   1 1 0
s

s s f f s s f f x s x f f x T

D
n c T n c T n c T n c T c T

Dt
                     v q q  (15) 

Assuming cs and cf are constant, Equation (15) can be finally expanded as: 

 

 

 
 

 

1

1
1

1 0

s

s s f f

ss s s
fs

s s s f f f

s s f f x s x f f x T

D T
n c n c

Dt

DD n D D n
T c c n c c n

Dt Dt Dt Dt

n c T n c T c T

 


 

 

   

 
     

  

            v q q

 (16) 

2.4 Constitutive relation and conduction laws 

At material level, we need to specify 1) a constitutive relation to describe the mechanical 

behavior of the REV under stress, fluid pressure, and temperature variation, and 2) a set of 

conduction laws to describe fluid flow, contaminant transport and heat transfer under their driving 

gradients. The material model shall be implemented in a hierarchical way such that different types of 

constitutive laws which may be nonlinear, inelastic, and anisotropic can be easily accommodated. 

This will be discussed in the next section. To have a starting point, we choose the thermoporoelastic 

theory by Coussy24 as the constitutive model. The expression of this model in terms of infinitesimal 

strain is given by: 

    ,0 ,0 0ij ij ijkl kl ij f f ijkl klC b P P C T T          (17) 

  ,0

0 03
f f

ij ij

P P
b T T

N
   


      (18) 

where  

  
1

2

T  ε u u  (19) 

is the infinitesimal strain tensor; ϕ the Lagrangian porosity; bij the Biot’s coefficient; αkl the thermal 

expansion coefficient of the solid; N the Biot’s tangent modulus linking pressure and porosity 

changes; 3αϕ the volumetric thermal dilation coefficient related with porosity; Cijkl the stiffness 

matrix of the skeleton; σij,0, Pf,0, T0 and ϕ0 characterize the reference initial state of the specimen. 

Equations (17) and (18) can be further simplified by assuming linear isotropic elastic response and 

isotropic thermal expansion coefficient. Additionally, a conversion between porosity ϕ to n is 

necessary to maintain consistency with the field equations. Under infinitesimal strain condition, we 
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have  1 vJn n     according to Coussy24. The relation between the increments of the two 

porosity measures can be derived as: 

 v v vd dn dn nd dn nd         (20) 

where vdn  is neglected because it is a second-order infinitesimal term. Considering the above, 

Equations (17) and (18) can be simplified to: 

    ,0 ,0 0

2
2 3

3
ij ij v ij ij f f ij ijK G G b P P K T T       

 
        

 
 (21) 

    ,0

0 03
f f

v

P P
n n b n T T

N
 


       (22) 

where K is the bulk modulus and G is the shear modulus; b and α the isotropic Biot’s coefficient and 

thermal expansion coefficient, respectively; ɛv=εii the volumetric strain; δij the Kronecker delta.  

Equations (21) and (22) can be rewritten in incremental matrix form for numerical implementation: 

 

11

22

33

23

13

12

4 2 2
0 0 0 3

3 3 3

2 4 2
0 0 0 3

3 3 3

2 2 4
0 0 0 3

3 3 3

0 0 0 2 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

1
0 0 0 3

K G K G K G b K
d

d
K G K G K G b K

d

d
K G K G K G b K

d

Gd

Gd

Gdn

b n b n b n
N






















 
     

 
 

      
 

 
 

 
      
  
 

 
 

 
 

 
 

 
  
 

    
 

11

22

33

23

13

12

f

d

d

d

d

d

dP

dT











 
 
 
 
 
 
 
 
 
 
 
  

 (23) 

Regarding the conduction laws, it is possible to write a general linear conduction law: 

 

f HH HT HC f f

T TH TT TC

C CH CT CC

P

T

C

      
     

  
     
          

q k k k g

q k k k

q k k k

 (24) 

The simplest conduction law controls fluid flow is the Darcy’s law which states a linear relation 

between qf and fP : 

  f

f x f f

k
P





   q g  (25) 

where k is the permeability and μ is the dynamic viscosity of the fluid. Similarly, the contaminant 

diffusion and heat conduction are classically described by the Fick’s and the Fourier’s law, 

respectively: 
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 C C xD C  q  (26) 

 T xT  q  (27) 

where DC is the diffusivity of contaminant species; κ is the thermal diffusivity. The diffusion 

coefficients k, DC and κ are scalars for isotropic solid, which is what we have assumed here. 

Neglecting the coupling terms, the simplest form of Equation (24) can be written by collecting 

Equations (25) - (27): 

 

/ 0 0

0 0

0 0

f f x f f

T x

C C x

k P

T

D C

  



      
     

  
     
          

q g

q

q

 (28) 

2.5 Equation of state 

Finally, the compressibility of the fluid and the solid phases needs to be defined to close the 

system. Assuming the intrinsic fluid density is a function of pore pressure Pf and temperature T, the 

equation of state for the fluid phase can be written as 

 3
f f f

f f f f ff

f

d dP dT dP dT
P T K

  
  

 
   
 

  (29) 

where 3αf is the coefficient of volumetric thermal expansion of the fluid; Kf is fluid bulk modulus. For 

the solid phase, combining solid mass balance Equation (6) and the porosity evolution law Equation 

(22) gives 

  1 3
1

fs
s v

dP
d b d dT

n N



  

 
    

  
 (30) 

After supplying Equations (29) and (30), the final THMC governing equations are derived and 

summarized in Table 1. For conciseness, the operator Dsξ/Dt is replaced by superposed dot  ; the 

spatial gradient x is replaced by  ; sv  is essentially the volumetric strain rate v . The key 

assumptions behind the equations in Table 1 are: 1) The host rock under consideration is fully 

saturated, linear elastic, with compressible constituents undergoing small deformations, whereas 

plasticity, damage, or partial saturation of the rock are not considered;  2) The effect of stress and 

temperature on the transport coefficients (e.g., permeability, diffusivity) are neglected; 3) The 

effects of fluid chemistry on the THM properties of the host rock through processes such as 

adsorption, dissolution, and pressure solution (i.e., C→THM) are omitted. The system is to be solved 

by the finite element method, complemented by constitutive relation Equation (23) and conduction 

law Equation (28). 
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3. Finite element implementation 

In this section, the governing equations are spatially and temporally discretized and solved 

under an iterative scheme through the user-define element (UEL) subroutine combined with Abaqus 

Standard. It should be acknowledged that this development mainly follows the UEL implementation 

of a coupled diffusion-deformation theory for elastomeric gels by Chester et al.31. 

3.1 The structure of UEL  

The UEL subroutine permits user-defined variational form of the elemental Jacobian (or tangent 

stiffness) matrix (AMATRX) and the residual vector (RHS) in solving customized equation systems. 

We choose to use a three-dimensional trilinear hexahedron element (U3D8) with 6 degrees of 

freedom (DOFs) which are respectively ux, uy, uz, Pf, C and T for each node (See Appendix, Fig. A). 

Admittedly, this type of element do not satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) condition32, 

33 and can give unphysical oscillation in the results. Multiple techniques have been developed to 

avoid such spurious pressure mode.23, 34, 35 Considering these oscillations are short-lived and do not 

impair the equilibrium or the long-term solution of interest to this study, we opt for the basic low-

order element type in this first-stage development. Similar approach is also adopted in other 

coupled deformation-diffusion UEL codes.31  

The proposed UEL is hierarchically structured so that it does not contain any constitutive 

information of the material. Instead, the UEL will call a separate Material subroutine at material 

integration points to retrieve the constitutive relations. The advantage of doing so is to have the 

versatility to switch to advanced material models should the nonlinear, inelastic, and anisotropic 

responses of different rock formations be incorporated in the future. The workflow is sketched in 

Fig. 2. At the starting point, nodal coordinates (COORDS), estimated DOFs for next step (U), and 

material parameters defined in an input file (PROPS) are passed from Abaqus to the UEL. After 

interpolation from nodal values, this information computes the RHS and AMATRX at each Gauss 

point, which will be upscaled to the element level through Gauss quadrature. In addition, all solution 

dependent variables (SVARS) are updated and stored at the end of each iteration.36 Whenever the 

UEL is called, it returns the elemental RHS and AMATRX which will be later assembled for the global 

Newton-Raphson iteration in the Abaqus Standard solver. If the global RHS meets the desired 

tolerance, we say the system reaches convergence and the PDEs are numerically solved.  
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Fig. 2: Workflow of THMC modeling via Abaqus + UEL 

Visualization of the computed results is not straightforward as Abaqus cannot automatically 

extrapolate variables from Gauss points to nodes for user-customized shape functions. This can be 

addressed by coding a python script that accesses the output database and translates the data 

format to be compatible with other third-party post-processing software.37 Here a convenient 

approach that only involves Abaqus CAE is adopted: each user-defined element is overlaid by an 

Abaqus built-in element (also called the dummy element) which has the identical shape function as 

the UEL. The material-point quantities computed from the UEL are passed to the dummy element via 

subroutine UVARM, which can then be understood and visualized by Abaqus CAE. To avoid 

interferences with the FE computations, all dummy elements must be assigned with near-zero 

stiffness and T/H/C conductivity coefficients.  

Abaqus

Obtain nodal temperature T (T), fluid pressure Pf (H), 

displacement u (M), molar concentration C (C)

Initialize RHS, AMATRX

Interpolate nodal DOFs (u, T, Pf, C) to Gaussian points

Convergence 

check
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Increment adjusts

UEL 

module
Loop over 

Gaussian points

Material 

module

Run subroutine 

(Material)

Update stress σ, 

porosity n 

UEL U3D8

Last step

Subroutine UEL 

ABAQUS output 

file

Compute AMATRX and 

RHS at Gaussian points

Yes

No

Update AMATRX and RHS at elementary level
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3.2 Boundary and initial conditions 

The definition of boundary and initial conditions are required to complete the formulation of 

IBVP given a time interval  0,t T . For a domain Ω with boundary Γ=∂Ω, let 
D

  and 
N

 be a pair of 

complementary subsurface where the Dirichlet and Neumann boundary conditions are prescribed 

respectively for the β field (β=M, H, C, T), following the relation that 
D N

      and 

D N

    .  Therefore, the formal statement of initial and boundary conditions for the fully 

coupled THMC system are as follows: 

    0M(mechanical): ,0  

    

  

D

M

N

M

 
 

    
     

u x u x

u u x

σn t x

 (31) 

        ,0 0H(hydraulic): ,0  and ,0  

     

  

f f

D

f f H

N N

f f H

P P n n

P P

q

  
 

    
     

x x x x

x

q n x

  (32) 

    0

, ,

C(chemical): ,0  

       

    

 

D D

C

N N

C C C

N N

f C f C H

C C

C C

q

C q

 
 

    
 

    
     

x x

x

q n x

q n x

  (33) 

    0

, ,

T(thermal): ,0  

             

          

  

D D

T

N N

T T T

N N

f f T f T H

T T

T T

q

c T q

 
 

    
 

    
     

x x

x

q n x

q n x

 (34) 

3.3 Weak form and discretization 

We shall now construct the weak form of the THMC problem by multiplying the residual with a 

set weight functions w1, w2, w3, w4 and integrating over the whole domain for solving the unknowns 

u, Pf, C, T, respectively. In terms of integral forms for weighted residuals, trial functions for solution 

approximation must be selected from a Sobolev space Hm (of order m) with the embedded Dirichlet 

boundary conditions. Likewise, weight functions (w1, w2, w3, w4) are selected from Sobolev space 

with the same continuity and differentiability requirements but will vanish on the Dirichlet 

boundaries. Combining those derivation of integrating products, definition for weight and trial 

functions, and Neumann boundary conditions defined in Equations (31) - (34), the weak forms are 

stated as follows: 
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  

 
 

1 1 1

1

1

1 1

M: 1    

:     

: 0 

T

s f s

D D

M

D

M

d n n d

H

H

  
          
     
 

     

 w σ w t w g

u u u x

w w x

 (35) 

 
 

 

 

2 2

2 2 2

1

1

2 2

3
H:  

0 

:    

:   w 0   

f

f f f f f

N

f v f f

D D

f f f H

D

H

w nd w n P K T d

w n d w q w d

P H P P

w H

   

 

 



   
 
       
 
     
 

      

 

 q

x

x

 (36) 

 
 

 

 

 

3 3 3

3 , 3 3 3

1

1

3 3

C:  
0

:     

:   w 0   

v

N N

C f f f f C C

D D

C

D

C

w nCd w Cnd w Cn d

w q C w d w q w d

C H C C

w H



 

  

 

   
 
         
 
     
 

      

  

 q q

x

x

  (37) 

 

   

   

 

 

 

4

4 , 4 4 4

1

1

4

1 1 3

3
T:

1

0

:       

: 

s s f f s s v f

f

f f s s f f f f

s s f f v

N N

f T f f f T T

D D

T

n c n c T Tc b P N T

w T c c n Tc n P K T d

n c T n c T

w c Tq c T w d w q w d

T H T T

w H

    

   

  



 

            
 
     
 

      

       

    

 



 q q

x

4

 

 w 0     D

T

 
 
 
 
  
 
 
 
 
 

    x

 (38) 

The finite element formulation is established by applying the Bubnov-Galerkin method, where the 

solution can be approximated by using the identical shape function N for trial and weight functions, 

namely: 

M: with u Nu  and 1 1w Nw  

    1 0T T T

f sd n n d  
        B σ u N t N g   (39) 

H: with f fP PN  and 2 2w wN  

 
 

 

3

0

T T f

f f f f f

TT T N

f v f f

nd n K P T d

n d q d

   

 

 

 

  

     

 

 

N N

N N N q
 (40)  

C: with  C CN and 3 3w wN  
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 

, 0

T T T

v

T N T T N

C f f f f C C

nCd Cnd Cn d

q C d q d



 

 

 

  

       

 

 

N N N

N N q N q N
 (41)  

T: with T T N  and 4 4w wN  

 

   

   

 

,

1 1 3

3

1

0

T T

s s f f s s v f

T T f

f f s s f f f f

T

s s f f v

T N T N

f T f f f T T

n c n c T Tc b P N T d

T c c nd Tc n P K T d

n c n c T d

c q c T d q d

    

   

  

 

 



 

           

    

     

       

 

 



 

N N

N N

N

N q N N q N

 (42)  

where 

 

1 2

1 2

1 2

1 1 2 2

1 1 2 1

1 1 2 1

0 0 0 0 ... 0 0

0 0 0 0 ... 0 0

0 0 0 0 ... 0 0

0 0 ... 0

0 0 ... 0

0 0 ... 0

n

n

n

s

n n

n n

n n

NN N

x x x

NN N

y y y

NN N

z z z

N NN N N N

z y z y z y

N NN N N N

z x z x z x

N NN N N N

y x y x y x

 
   


 
   


 
   

   
    

      


    
     

    

     

B N















 
 
 
 

  (43) 

More details about the element type and expanded shape function are presented in Appendix A.  

3.4 UEL implementation 

During each iteration attempt, the elemental Jacobian K=AMATRX and the residual R=RHS 

must be evaluated to solve all nodal unknowns x  via: 

  K x R  

or 

 

3 3 3 3 3

3

3

3

e e e e e e e e

e e e ee e e e

e e e e e e e e

e e e ee e e e

t t t t t t t t

uu uP uC uT

n n n n n n n n

t t t t t t t t

Pu PP PC PT

n n n nn n n n

t t t t t t t t

Cu CP CC CT

n n n n n n n n

t t t t t t t t

Tu TP TC TT

n n n nn n n n

   

   

   

  

   

   

   

  

K K K K

K K K K

K K K K

K K K K

3 13 1

11

1 1

1
1

AMATRX RHS

ee

ee

e
e

e

e

t t

nn

t t

Hf

nn

t t

C

n n

t t

T
n

n

RP

RC

T R



















 






                                                      

MRu

  (44) 
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where ne is the number of nodes which equals to 8 for the current element type U3D8. According to 

Equations (39) - (42), the residual R  at t t  step is given below: 

  1t t T t t T T t t t t

f sd n n d    

 
       
  MR B σ N t N g  (45) 
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 
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 

  
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 (46)  
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 (48)  

To explicitly write the Jacobian matrix, the derivatives of residuals (RM, RH, RC, RT) with respect to 

increments of unknown variables (u , fP , C , T ) must be derived. The accuracy of the derived 

Jacobian K will determine the convergence performance of the global iteration thus influencing the 

computation efficiency especially in some highly nonlinear problems.38 Therefore, great care was 

taken in deriving the Jacobian for the THMC system here. Note that R and K matrixes contain many 

definite integral terms over the element. One needs to evaluate these integrals by Gaussian 

quadrature after mapping them from global coordinates (x, y, z) to local reference coordinates (ξ, η, 

ζ) under the isoparametric element scheme. The final expressions of R and K are summarized in 

Appendix A. They are then coded in the UEL to be used together with Abaqus Standard to achieve 

monolithic solution of THMC problems. The user-defined subroutines, the input files of the 

verification/validation tests presented in Section 4 and 5, and an instruction manual are available 

through the Supplementary Materials associated with this paper.  

4. Verification tests 

Considering the large size and the highly coupled nature of the system, the development and 

verification of the UEL shall follow a step-by-step strategy from the simple HM model to the THM 

model, and finally the comprehensive THMC model. Existing coupled HM and THM problems that 
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have closed-form solutions include: (1) Terzaghi’s one-dimensional (1D) consolidation;39 (2) Mandel’s 

problem;40 (3) thermoporoelastic bar subjected to temperature change on one end;41 (4) cylindrical 

heat source in infinite porous medium.42 Some of these solutions are based on assumptions and 

constitutive laws that differ from the ones adopted in this study. In order to verify our UEL which 

uses a specific thermoporoelastic model of Coussy24 some of the aforementioned analytical solution 

must be revisited. In what follows, we will rederive the analytical solutions for problems #1 and #3 

and refer to the solution of Cheng and Detournay43 and McTigue41 for problems #2 and #4, 

respectively. Finally, the THMC coupling will be examined through testing chemical species migration 

along a 1D thermoporoelastic bar. 

4.1 Test #1 (HM): one-dimensional consolidation 
Consider the classical 1D consolidation problem: a saturated porous layer with thickness Hdr 

for the one-way drainage condition subjected to constant vertical loading as shown in Fig. 3. 

Displacement and pore water flow is permitted only along the vertical direction. The celebrated 

solution by Terzaghi39 assumes incompressible fluid and solid grain which is apparently no longer 

valid in Coussy’s poroelasticity and thus requires a revisit. In the absence of thermal effect, fluid 

density evolution Equation (29) reduces to:  

 / f

f f fP K     (49) 

Substituting Equations (49) and (22) into the fluid mass balance Equation (4) and trimming all 

thermal related terms gives: 

 
1 1

0v f ff

f

n
b P

N K




 
     
 

q  (50)  
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Fig. 3: Schematic diagram for 1D consolidation of a saturated porous column 

Under 1D condition, volumetric strain equals to vertical strain  v xx xx fbP M      

according to Equation (21), where M=K+4G/3 is the constrained modulus of porous medium. Using 

this relation to eliminate v  and supply the Darcy’s law Equation (25) into Equation (50), the PDE for 

1D consolidation problem can be expressed as: 

 

2

2

f fxx
v v

P Pb
C C

t Mk t x

 
  

  
 (51)  

or  

 

2

2

f f

v

P P
C

t x

 


 
 (52)  

considering the case of constant total vertical load (i.e., ∂σxx/∂t=0 for t>0).  Here the pore fluid 

pressure  ,fP x t  is the only unknown and Cv is the updated coefficient of consolidation: 

 
21

v

f

k
C

n b

N K M



 

  
 

 (53) 

Equation (52) is formally identical to Terzaghi’s consolidation equation and its solution can be readily 

achieved by using the updated coefficient of consolidation Cv in Terzaghi’s solution. Numerical wise, 

a 10m-high porous column is modeled in Abaqus as shown in Fig. 3. The top boundary is set as 

drained and subjected to a constant surface pressure of 5 KPa. The bottom and the four lateral 
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boundaries are all constrained along its normal direction with an impermeable surface. The initial 

pore pressure for the entire porous column is zero and stress free. At t = 0, a vertical stress of 8 KPa 

is applied at the top boundary. Other parameters used are: E=10 MPa; ν=0.3; k=1×10-15 m2; μ=0.001 

Pa·s; ρs =1.25×103 kg/m3; ρf =1.0×103 kg/m3; ϕ0=0.2; Kf =2000 MPa; N=100 MPa; b=0.9.  

The solution of Equation (52) and the FE results are plotted together in Fig. 4 in terms of 

dimensionless time factor Tv=Cvt/Hdr
2, dimensionless depth X =x/Hdr, and degree of consolidation 

Ux=[Pf,0-Pf(x,t)]/Pf,0, where Pf,0 is the initial pore pressure. The perfect agreement between the 

numerical and the analytical solutions verifies the coupled HM capability of the UEL in a 1D setting. 

 
Fig. 4: 1D consolidation simulation results vs. analytical solution 

4.2 Test #2 (HM): Mandel’s problem 

The second example aims to verify the HM coupling capability in 2D scenarios. We chose the 

Mandel’s problem which consists of a 2a×2b porous rectangular sample sandwiched by two 

rigid, frictionless, and impermeable plates resulting a reaction force of 2F as shown in Fig. 5. The 

sample is fully drained and stress free along the horizontal direction. Solution of the Mandel’s 

problem given by Coussy24 is derived for constant-force condition. This means the top boundary 

is force-controlled and meanwhile can only have uniform vertical displacement. Numerically, 

only a quarter of the sample is simulated by the UEL to reduce computational cost as illustrated 

by Fig. 5. The following initial and boundary conditions are enforced on the quarter domain: 

 

   
   

   
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
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  (54) 
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Fig. 5: Schematics of Mandel’s problem44 and the finite element model 

The major challenge in numerical realization of this problem is the reproduction of the uniform 

vertical displacement on the top boundary in a force-controlled mode. The rigid upper plate cannot 

be easily represented, as the interaction between a rigid frictionless shell and a user-defined porous 

medium always induce numerical difficulties. The method adopted here is to approximate the top 

surface with a constant-pressure boundary, and at the same time using a sufficiently slender domain 

(low width-to-height ratio) to minimize the impact of unevenly distributed displacement at the top 

surface. It is found that when the width-to-height ratio reaches 0.2, the results become insensitive to 

further changes of the geometry. Fig. 6 plots the UEL results together with the analytical solution by 

Cheng and Detournay43 Here the same poromechanical parameters as the previous verification test 

are used. Pressure is normalized by its initial value and the dimensionless time is defined as 

2/vt C t a  where Cv is defined in Equation (53). A satisfactory agreement is observed, confirming 

the HM capability of the UEL. It is worth noting that at early stage ( 0.01, 0.1t t  ), the pore 

pressure at the central region rises above the initial value even when the lateral boundaries are 

drained. This signature feature of Mandel’s problem is due to poroelastic effect at the system level, 

which is also successfully captured by the numerical model. 
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Fig. 6: Pressure distribution from Abaqus + UEL simulation and analytical solution43 

4.3 Test #3 (THM): heating a 1D thermoporoelastic bar 

Consider a semi-infinite thermoporoelastic bar, initially at a uniform temperature and pore 

pressure, subjected to a sudden temperature increase Td at the boundary x=0. This boundary 

then remains drained and stress-free. The initial and boundary condition is defined as 

 
     

     

,0 ,0 ,0 0;    0

0, 0, 0,  0, ;  0

xx f

d

f

x P x T x x

u t P t T t T t

    


   

 (55) 

McTigue41 provided a solution for this problem but again with a different set of constitutive 

relations. A new closed-form solution consistent with the proposed governing equations therefore 

must be developed for verification purpose. Substituting the Darcy’s law Equation (25) into the mass 

balance of fluid Equation (4) yields 

 23 0
f f

f f f f v f ff

P k
n n n T n P

K


     


        (56) 

Define αm=αϕ+nαf, consider porosity evolution from Equation (22), and substitute them into 

Equation (56): 

 
21

3 0v m f ff

n k
b T P P

N K
 



 
      

 
 (57) 

Simplifying the constitutive law Equation (21) for 1D case and considering the stress boundary 

condition, the volumetric strain increment can be expressed as: 

 
3f

v xx

bdP KdT
d d

M


 


   (58)  

Substituting Equation (58) into Equation (57) gives: 

 

2

2

1 f f

v

P PT
A

C t t x

 
 
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 (59) 
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where 

 
3

3 m

bK
A

k M

 


 
  

 
 (60)  

and Cv is the same as defined in Equation (53). Introducing normalized variables / d

f f fP P P  and 

/ dT T T , where Td is the prescribed temperature at x=0 and 
d

fP  is defined such that 

/ 1d d

v fC AT P  , Equation (59) now reduces to a standard wave equation: 
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2

f f

v

P PT
C

t t x

 
 
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 and 

d d

f vP C AT  (61) 

On the other hand, the energy balance equation can be rewritten in terms of normalized variables 

by substituting Equations (27) and (58) into Equation (16) and considering 1D scenario: 

 
  2

2

f ff
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B D E
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 (62)  

where 
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 (63) 
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b f f m f f s s

D
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 (64) 

 
 3 3 /b f f m f f s s

E
c c T bc c KT M



    


  
 (65) 

and  1b s s f fc n c n c     is the bulk heat capacity per unit volume of porous media.  

For typical values of parameters for geomaterials, the coefficients B and D are usually quite small 

and can be neglected,24, 41 reducing Equation (62) into: 

 
2T

E T
t


 


  (66) 

This conveniently decouples the heat equation Equation (16) from the H or M processes so that it 

can be solved separately. The analytical solution to Equation (66) associated with the initial 

boundary conditions Equation (55) is given by: 

 1
2

x
T erf

Et

 
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 
 (67) 
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Substituting Equation (67) into Equation (61), the problem reduces to a standard parabolic PDE with 

respect to the normalized fluid pressure fP , the solution of which under condition (55) is given by:  

 

1

1
2 2

v
f

v

C x x
P erf erf

E C t Et

      
               

 (68) 

The finite element model corresponding to this problem is shown in Fig. 7. To approximate 

the semi-infinite condition, the length-to-width ratio of model is made sufficiently large as 100. 

Lateral surfaces are impermeable, adiabatic, and can only move along the x-direction to ensure 

1D condition. Initially, both Pf and T are zero everywhere. The left end is fixed, drained, and 

subjected to a constant temperature Td=1 K. The right end is drained, constant temperature and 

stress free. All hydromechanical parameters are still the same with the verification test #1. The 

thermal parameters are specified as: cs=800 J/(kg·K); cf=4000 J/(kg·K); α=1.0×10-4 K-1; αf =3.0×10-4 

K-1; αϕ =0.4×10-4 K-1. 

 

 

Fig. 7: Finite element model of a 1D thermoporoelastic bar  

The numerical results and the analytical solutions are plotted in Fig. 8 and Fig. 9 in terms of 

normalized temperature T , normalized pore pressure fP , and normalized x-coordinate 

/ vx x C t  for different values of R which is defined as the ratio between the diffusion 

coefficient in Equation (53) and the thermal coefficient in Equation (65) (i.e., R=Cv/E). Thermal 

conductivity coefficient κ is determined as (κ = 91.3, 11.4, 5.7 W/(m K)) corresponding to the 

selected R values (R=0.25, 2, 4) in respect. Perfect agreements between the FE model and the 

analytical solution are observed at a random time t=1.12×106 s regardless of the choice of R in 

this 1D THM coupling analysis.  
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Fig. 8: Normalized temperature profile at t=1.12×106 s 

 

Fig. 9: Normalized pressure profile at t=1.12×106 s 

 

4.4 Test #4 (THM): cylindrical heat source in an infinite space 

For 3D THM verification, we investigate the problem of cylindrical heat source embedded in an 

infinite space. This geometry has been studied by Booker and Savvidou42 to represent the problem 

of a canister of radioactive waste buried in saturated soil. The finite element mesh is shown in Fig. 

10. A constant heat flux is applied on the heat source region marked in red. All five boundary 

surfaces are fixed in its normal direction. Fully drained and constant temperature boundary 

conditions are assigned to the exterior surface (i.e., ECD and ABED). Because the model represents a 

one-eighth of the full domain, the interior surfaces (i.e., OADC, OCEB, and OAB) in the current model 

are all undrained and adiabatic. Final parameters used in verification is the same with test #3 except 

for κ=1.14×10-2 W/(m K). The power of the heat source is specified as 1 W/m3.  
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Fig. 10: Finite element model of an axisymmetric domain containing a cylindrical heat source 

 

Fig. 11: Temperature evolution near a cylindrical heat source (analytical solution from Booker and 

Savvidou42) 

 

Fig. 12: Pore pressure evolution near a cylindrical heat source (analytical solution from Booker and 

Savvidou42) 
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In Fig. 12 and Fig. 13, the temperature and pressure histories are compared with analytical 

solutions respectively, at three locations (r0, 2r0, and 5r0) away from the heat source where r0 is the 

radius of the canister. The temperature is normalized by a maximum value TN at the midpoint on the 

surface of the heat source; pressure is normalized by PN, which represents the maximum pressure if 

soil is impermeable (Cv=0). Time scale is also normalized by a factor t' =r0
2/κ. The agreements for the 

temperature and pore pressure histories are excellent at all locations. This agreement, together with 

the previous three verification results, confirms that the THM governing equations are correctly 

solved by the UEL.  

4.5 Test #5 (H-C): chemical species migration along a 1D thermoporoelastic bar 

Verification of the UEL is not complete until the THM-C coupling is checked. Most past studies 

end their verification up to THM coupling, given the challenges involved in deriving closed-form 

solutions when chemical processes present. The current formulation assumes one-way coupling 

between THM and C, which entails a decoupled solution scheme where chemical molar 

concentration can be computed independently after the THM fields have been solved or prescribed. 

Considering the THM part has already been verified, the task here is to focus on verifying the HC 

coupling capability. Let us inspect chemical field equation first: 

     0v f C

f

C
nC Cn Cn 



 
       

 
 

q q   (69) 

Since  
1

3v fn b n P T
N

     , 
3f

v

bP KT

M





  and C CD C  q , Equation (69) can be 

reorganized for 1D condition as: 

 
2 2

2

1
3f f C

f

b K C C
C P C b T nC D
M N M x x

 


     
                

q  (70)  

Following the same normalization approach in Section 4.2.2 such that
d

f f fP P P , 
dT T T  and 

dC C C , a dimensionless expression for Equation (70) follows: 

   
2

2

f

f

P T C C
H I L C R

t t t x x

    
   

    
q  (71)  

where 

 
2 1 d

f

b
H CP

Mn Nn

 
  
 

 (72) 
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 3 d
Kb M

I CT
Mn

 
  (73) 

 
1

f

L
n

  (74) 

 
CDR
n

   (75) 

For the case of steady-state fP  and T profiles (i.e., 0fP t    and 0T t   ), Equation (71) 

reduces to an inhomogeneous convection-diffusion equation describing solute transport.  

  
2

2 f f

C C C
R L C L

t x x x

   
  

   
q q   (76) 

 Equation (76) is coupled with H through the advective term fL Cq  (or fv C at 1D condition and 

vs=0) originated from the motion of the solute-carrying fluid.45 In predicting the transport of radio 

nuclide over a long time-span, the validity of solution will be impaired if the contribution of 

advection is neglected.46 Great efforts have been made in the past decades to develop solution to 

convection-diffusion-reaction (CDR) equations from the condition of constant velocity47 to spatially 

dependent velocity.48, 49 Considering an initial and boundary condition as follows: 

 

( ,0) 0,   ( ,0) 0, 1 ,                0

(0, ) , mol/L, (0, ) 0.025 ;         0

( , ) 0,  ( , ) 0.025 ;                      0

f

d

f

f

C x P x T K x l

C t C v t m s t

C l t v l t m s t

     


   
   

 (77) 

Zoppou and Knight49 provides solution for this type of unsteady hyperbolic PDE in 1D finite domain, 

which will be used for comparison with numerical results given by the UEL.  

  
1 1

, exp
2 22 2

f f fx v t v x x v t
C x t erfc erfc

RRt Rt

      
      

     
 (78) 

The simulation is built on the same geometry and mesh used for the verification test #3 (section 

4.2.1). All hydromechanical parameters remain the same. The chemical diffusion coefficient Dc is set 

to 0.2 m2/s. For the initial condition, we let Pf=0 MPa and C=0 mol/L everywhere in the domain. A 

constant contaminant molar concentration (0 mol/L→1 mol/L) and a constant fluid flux qf is then 

enforced on the left and right end of domain for t>0. Since all lateral surfaces are impermeable, 

mass transfer is constrained in the x-direction. The resultant C profiles under different imposed flow 

rates at different times are plotted in Fig. 13. It is obvious that the chemicals transport faster when 

the bulk fluid flow direction is aligned, and the process is retarded when the bulk flow is against the 
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direction of concentration gradient drop. This implies that advection can greatly facilitate species 

migration near underground HLW repositories as the concentration and pressure gradients are 

always aligned. This coupling between H and C during mass transfer is expected and is encoded in 

the governing equations. Finally, the excellent match between the numerical and the analytical 

solutions presented in Fig. 13 certifies the successful realization of HC coupling by the UEL. 

Combining the THM and HC verification results, it is confirmed that the developed THMC UEL has 

correctly implemented the governing equations and can now be applied for full-scale case studies.  

 

 

Fig. 13: Distribution of species molar concentration in a 1D porous bar (analytical solution 
from Zoppou and Knight49) 

5. Simulation of the ATLAS in-situ test 

5.1 ATLAS experiment 
Many in-situ tests have been conducted in the past decades to study the THM responses of host 

rocks due to heating generated by HLW canisters. One of them is the Admissible Thermal Loading for 

Argillaceous Storage (ATLAS) test conducted in the underground research facility HADES-URF (see 

Fig. 14) in Mol, Belgium at a depth of 223m.50 The host formation, Boom clay, is an over-

consolidated clay whose behavior can be roughly captured by thermo-elasticity in the small-strain 

regime.10, 50 The ATLAS experiment consists of a horizontal main borehole (length=19 m, 

diameter=0.19 m) drilled from the test drift (diameter=3.5-4.7 m), with electrical heaters installed in 

the last 8 m of borehole.51  According to François et al.50, the first heating phase happened in July 

1993 with the power of 900 W. About 3 years later, the second heating phase started by a sudden 
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increase of the power to 1800 W. The test is then terminated one year later followed by a natural 

cooling phase. Fig. 15 presents the history of heat flux from heaters on the main borehole.  

 

Fig. 14: Schematic view of the HADES Underground Research Facility in Mol, Belgium 25 

 

Fig. 15: Thermal loading history of the heater 

5.2 Numerical simulation setup 
Fig. 16a sketches the dimensions of the ATLAS test. The main borehole was accompanied by two 

parallel boreholes with instrumentation installed at 15 m away from the test drift. One of the 

observation boreholes (AT85E), was drilled 1.515 m away from the main borehole in the same 

horizontal plane, which is used to record changes in temperature, pore water pressure and total 

stress.52 For numerical analysis here, the domain of interest is bounded by a 3D axisymmetric 

cylindrical surface (diameter=height=200 m) with the heater located at the center (Fig. 16b). At such 

a large scale, the disturbance of the THM field by the test drift which only occupies a small volume 

(3.5~4.7 m in diameter) can be neglected. Therefore, the problem is approximately axisymmetric, 

and only one-eighth of the domain is simulated in the FE model (Fig. 16c). 
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Although the ATLAS test was designed to monitor the coupled THM processes in the host 

formation, our simulation will also examine the spread of containment species following a 

hypothetical leakage event at t=0. Given the lack of leakage events documented in the literature for 

a realistic case study, the purpose of simulating a hypothetical leakage is merely to show the 

capability of the UEL in handling a full THMC boundary value problem. The boundary conditions for 

displacement (M), thermal flux (T), water flux (H), and species concentration (C) are applied at the 

heater-rock interface marked with red color in  Fig. 16c. Note that the heater itself is not directly 

simulated in the FE model. To replicate the full loading history in ATLAS, the imposed thermal flux QT 

is made consistent with the thermal loading history presented in Fig. 15. The hypothetical leakage 

event is simulated by imposing a constant molar concentration (C=2 mmol/L) of the contaminate 

species at the heater’s surface. The outer boundary of the domain ABDE and BCE (highlighted by 

blue wavy lines in Fig. 16c) are water/chemical permeable, heat conducting, and pressurized by in-

situ geostatic stresses (i.e., Pf = 2.025 MPa, C=0.01 mol/L, T=16.5  C, σv=σh=4.5 MPa). The symmetric 

boundaries OABC, ODEC and OAD are fixed in normal direction with no water, chemical and thermal 

fluxes allowed.  

 

Fig. 16: a) schematic of the ATLAS experiment; b) idealization of the problem with boundary and 
initial conditions; c) the finite element model 

The THMC parameters used for numerical modeling are presented in  

  

, C=0.01 mmol/ L , C=0.01 mmol/ L
C=2 mmol/ L

Exterior

radius=0.095 m

v h
v h

v

h
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Table 2. The THM parameters are selected according to the reported properties for Boom clay in 

ATLAS experiments10, 51 and the typical values of thermoporoelastic properties for geomaterials 

summarized in Coussy24 The chemical diffusivity is estimated based on the effective diffusion 

coefficients for dissolved species in Boom Clay measured by Jacops et al.53. In the Abaqus, the FE 

mesh is assigned with the developed THMC UEL. An element located 1.42 m away from the heater 

surface will play the role of measurement borehole in the model. The values of field variables 

extracted from this element will be used for benchmarking and inferring contaminant condition 

along with all near field nodes.  

5.3 Results and discussion 

The comparison between the results obtained from the current study and ATLAS experiment are 

presented in Fig. 17-19. Fig. 17 shows the temperature variation history at measurement point in 

2500 days caused by the prescribed heating history described in Fig. 15. The simulated results are in 

good agreement with experiment data, indicating that heat transfer occurring at the near field is 

well captured by current model. Fig. 18 compares the predicted thermal-induced pore pressure 

variation with the field data. It is observed that, during the first heating phase, pressure surge rapidly 

at the beginning and then smoothly dropped even the power of the heater is kept same. Similar 

response occurs in the second heating phase except with a slightly steeper tendency in decline. The 

pore pressure rapidly reduces after the heater is turned off, and then gradually dissipates in the 

remaining time. Overall, the predicted pressure history matches well with the measured data in 

terms of the aforementioned pressure change characteristics. The slight discrepancy between the 

predicted and the measured minimum pore pressure (around t = 1500 days) may be remediated by 

incorporating more physics in the governing equations (e.g., temperature dependency of the 

dynamic viscosity). Our parametric study (not shown here) also suggests that thermal-induced 

pressurization is positively correlated with thermal expansion coefficient (αf), while inversely 

dependent on the fluid flux rate (qf), and the compressibility of the pore fluid (1/Kf) and the porous 

material (1/G and 1/K). 
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Fig. 17: Temperature evolution at the measurement borehole (experiment data from François et 
al.50) 

 
Fig. 18: Pore pressure evolution at the measurement borehole (experiment data from François et 
al.50) 

Fig. 19 presents the predicted and the measured variations of total circumferential stress with 

time. The agreement is satisfactory during the first heating phase. However, the simulated results 

start to deviate from the field data near the end of the second heating and the cooling phases. A 

closer observation shows that the predicted stress increases or maintains relatively constant during 

heating and monotonically decreases in cooling, while the field data suggests some degree of stress 

relaxation in heating and stress restoration in cooling. Similar discrepancy has been reported in 

other numerical simulation of the ATLAS test,54 but no consensus has arrived regarding its causes 

yet.50 Bernier and Neerdael55 suggested that such deviation might be due to thermal interferences 

on the measurement devices. We suspect that some viscoelastic or viscoplastic deformations56 have 

occurred in the Boom clay formation, which caused the relaxation of the thermal-induced stresses 

surrounding the heater. Furthermore, the host rock (Boom Clay) may develop some degree of 
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desaturation under the effect of heating, which may have also contributed to the discrepancy 

between the model prediction and the field data.  

 
Fig. 19: Circumferential stress variation at the measurement borehole (experiment data from 

François et al.50) 

Fig. 20 shows the time history of contaminant concentration at three locations, following an 

assumed leakage event at t=0. It is apparent that the concentration increases faster close to the 

canister. Such growth slows down at larger times but still maintains an increasing tendency even at 

t=2500 days. Note that oscillations for several curves near t=1000 days and 1500 days are caused by 

the abrupt change of the heater power at the beginning and the end of the second phase. These 

sudden changes of the boundary condition are also responsible for the similar oscillations observed 

in the fluid pressure and the stress histories shown in Figs. 18 and 19, respectively. This is a common 

byproduct of using conventional Galerkin method on transient advection-diffusion problems. 

Although they disappear in later time steps and are not likely to impair overall results in current case 

study, the oscillations can be circumvented by adopting advanced finite element methods, such as 

the Subgrid Scale/Gradient Subgrid Scale (SGS/GSGS) method,46 Streamline Upwind Petrov-Galerkin 

(SUPG)57, 58 or Finite Increment Calculus (FIC) procedure.59  

Fig. 21 shows the C distribution along the radius at different times. The model predicts that the 

contaminant is unlikely to reach 3 m away from the canister after 2500 days, even though the 

species migration has been accelerated by the advective bulk fluid flow since the beginning of 

heating. This demonstrates the excellent sealing properties of Boom clay in retarding the leakage of 

contaminants following a critical event.  
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Fig. 20: Molar concentration evolution near the leakage source  

 

Fig. 21: Distribution of molar concentration along the radius of the domain 

6. Concluding remarks 

In this paper, a THMC UEL with a thermoporoelastic constitutive model is successfully 

implemented. A comprehensive set of verification tests have been conducted to check the 

correctness of the implementation at each coupling level. In this process, several analytical solutions 

are revisited and rederived to be consistent with the specific governing and constitutive equations 

adopted in this study. The verified UEL is then applied to simulate a full-scale heater test, and the 

modeling results exhibit good agreement with the field measurements. The ability to simulate 

diffusion and advection of chemical species coupled with THM loading makes the developed UEL a 

versatile and efficient tool in addressing geological HLW disposal problems.  
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The full implementation details including the derivation of governing equations, discretization, 

residuals, and Jacobian terms are presented. The UEL codes, the input files associated with each 

verification test and the ATLAS case study, and a user instruction are provided via Supplementary 

Materials. We hope the details of the numerical procedure presented here can facilitate the 

numerical realization of other THMC or general multiphysical solvers. Specifically, expansions can be 

made regarding the physical processes at concern by upgrading the field equations, material models, 

and element types. The Material module unlocks the potential of the code to integrate with 

advanced constitutive models for more precise modeling of different rock formations. In this regard, 

the authors is currently implementing a time-dependent microcrack damage model60 in Material to 

couple with the proposed THMC UEL with the goal to evaluate the long-term microstructural 

evolution of host rocks subjected to sustained heating. Another possible extension at the Material 

level is to incorporate possible coupling between various diffusion mechanisms in the conduction 

laws (i.e., the generalized Darcy’s and Fick’s laws61). This is important for capturing in coupled mass 

transport phenomena such as osmotic flow,62 buoyancy effect,63 and Soret effect64 in porous 

geological materials.   
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Appendix A: Implementation details of the THMC UEL 

Three dimensional isoparametric element 

Over an element Ωe, we define the coordinate mapping using nodal shape functions as follows: 

    x ξ N ξ x  (A1) 

where N is the shape function matrix, ξ=(ξ, η, ζ) constitute a reference coordinate system shown in 

Fig. A.  

 

Fig. A: Three dimensional trilinear hexahedral isoparametric reference element 

For the three-dimensional 8 node trilinear hexahedral element, the node ordering in the natural 

coordinates is shown in Fig. A. Accordingly, the shape functions for this type of element with respect 

to the reference coordinates are given by: 

 

       

       

       

       

1 2

3 4

5 6

7 8

1 1
1 1 1 ,  1 1 1 ,

8 8
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1 1 1 ,  1 1 1 ,
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1 1
1 1 1 ,  1 1 1 ,

8 8

1 1
1 1 1 ,  1 1 1

8 8

N N

N N

N N

N N

     

     

     

     


       


        


        


        


 (A2) 

The infinitesimal strain ɛ can be subsequently defined as: 

1 2

34

5 6

78

ξ

ζ η

1 2

4 3

5 6

78
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  
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 
   

ε Nu  (A3) 

This can be further simplified by relating with Equation (43) as ε Bu . 

Jacobian 

In addition to residuals, the Jacobian terms in Equation (44) are also required by the iterative 

solver which uses the Newton-Rapson scheme. For conciseness, all kinematics and state variables 

are referred at the next time step with the notation (t+Δt) omitted.  

Jacobian of M equation 

First, recalling Equation (45), the Jacobian for the M equation can be derived as: 

 

 

 

1

1

T T

f s

uu

T

f sT

d n n d

n n n
d d

n
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 
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   

 




M
B σ N gR

K
u u u

N gσ u
B

u u u

  (A4) 

Considering u Nu , we have  


u
N

u
, then mm s mm

    
   

    

σ u σ ε u
D N D B

u u ε u u
. Further 

noticing 
 s

nm nm

n n    
  

   

uε
D D B

u ε u u
 and  0 0 0nm b n b n b n   D , 

Equation (A4) can be rewritten as: 

  T

uu mm s f nmd d      K B D B g D B  (A5) 

where  
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ε
  

Similarly, for the HM coupling term, we have  
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 (A6) 

where  0 0 0
T

mh b b b   D  and 
1

nh
N

D . 

Obviously 0uC K  and the last term writes: 
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  (A7) 

where 3nt  D  and  3 3 3 0 0 0
T

mt K K K     D .   

Jacobian of H equation 

Recalling Equation (46), the HM coupling Jacobians can be expanded as 

  
   1

T t t t

f fTH
Pu ff

dR n
P d

t K
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
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


N u u
K N

u u u
  (A8) 

Since 
T T

v   u Nu  with 
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Equation (A8) can be rewritten as 
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 (A9) 

Regarding the Jacobian of H equation with respect to pressure, we have 

 

 

 

3T T f

f f f f fH
PP

f f f

TT t t

f v f

f f

nd n P K T dR

P P P

n d d

P P

   

 

 



 

    
   

  

    
 

 

 

 

N N
K

N N q
  (A10) 

According to 
 
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Ν Ν , Equation (A10) finally gives: 
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Similarly, 0PC K and PTK  can be written as: 
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Jacobian of C equation 

Considering Equation (47), the first component Kcu can be derived as:  
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Regarding the Jacobian of C equation with respect to pressure, we have 
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Considering  
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The last component can be similarly derived as: 
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Jacobian of T equation 

Regarding Equation (48), the TM coupling Jacobians can be expanded as: 
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(A17) 

For the TH coupling term, we have   
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Obviously 0TC K  and the last term writes:  
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 (A19) 

Numerical integration 

Targeting at the generalized 3D analysis, a cubic eight‐node element (C3D8) with 2×2×2 Gaussian 

quadrature points is employed for numerical integration in terms of an arbitrary function f: 
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 (A20) 

where J is also called Jacobian matrix in isoparametric mapping defined by: 
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The final expressions of residuals and Jacobians implemented in the UEL are summarized below. 

Note the surface flux terms in residuals Equations (45) - (48) are excluded in the final 

implementation since the natural boundary conditions of the M, H, C and T fields applied on t  
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(Equation (31)), N

H  (Equation (32)), N

C  and ,

N

C f  (Equation (33)), N

T  and ,

N

T f  

(Equation (34)) are handled by Abaqus CAE. 
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Table 1  Governing equations* for the coupled THMC processes 

Physics unknowns Governing equations 

M (mechanical) u 0  σ b  with  1f sn n     b g  

H (hydraulic)  3 0
f

f f f f f v ff
n n P T n

K


    

 
     

 
q   

C (Chemical)  0v f C

f

C
nC Cn Cn



 
      

 

q q   

T (Thermal) T 

 

 

   

   

1

1 3

3

1 0

s s f f

s s v f

f

f f s s f f f f f

s s f f v f f T

n c n c T

c b P N T
T

c c n c n P K T

n c T n c T c T



 

  

    

  

    

       
 
     

        q q

  

* Note that σ, n, εv, qf, qc, qt are intermediate variables. They can be expressed in terms of the 

unknowns [u, Pf, C, T] via constitutive relation Equation (23), strain-displacement relation 

Equation(19), and conduction laws Equation (28). 
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Table 2: Material properties for FE simulation 

Parameter Symbol Value Unit 

Shear modulus G 300 MPa 

Bulk modulus K 300 MPa 

Solid density ρs 2670 kg/m3 

Fluid density Ρf 1000 kg/m3 

Fluid tangent bulk modulus Kf 3000 MPa 

Initial porosity n0 0.4  

Permeability k 2.6×10-19 m2 

Dynamic viscosity μ 0.001 Pa s 

Biot tangent modulus N 3.0×105 MPa 

Biot coefficient b 0.9  

Diffusivity Dc 8.0×10-10 m2/s 

Thermal conductivity κ 1.4 W/(m K) 

Solid specific heat cs 835 J/(kg K) 

Fluid specific heat cf 4202 J/(kg K) 

Solid thermal expansion coefficient α 5.0×10-5 K-1 

Thermal expansion coefficient related to 

porosity 
αϕ 4.0×10-5 K-1 

Fluid thermal expansion coefficient αf 1.0×10-4 K-1 
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