{

P

Author Manuscri

'.) Check for updates

Implementation and verification of a user-defined element (UEL) for coupled thermal-hydraulic-
mechanical-chemical (THMC) processes in saturated geological media

Xiang Zhou', Yida Zhangz*

ABSTRACT

Efficient and accurate modeling of the coupled thermal-hydraulic-mechanical-chemical (THMC)
processes in various rock formations is indispensable for designing energy geo-structures such as
underground repositories for high-level nuclear wastes. This work focuses on developing and
verifying an implicit finite element solver for generic coupled THMC problems in geological settings.
Starting from the mass, momentum, and energy balance laws, a specialized set of governing
equations and a thermoporoelastic constitutive model is derived. This system is then solved by an
implicit finite element (FE) scheme. Specifically, the residuals and the Jacobians are scripted in a
user-defined element (UEL) subroutine which is then combined with the general-purpose FE
software Abaqus Standard to solve initial-boundary value problems. Considering the complexity of
the system, the UEL development follows a stepwise manner by first solving the coupled hydraulic-
mechanical (HM) and thermal-hydraulic-mechanical (THM) equations before moving on to the full
THMC problem. Each implementation step consists of at least one verification test by comparing
computed results with closed-form analytical solutions to ensure that the various coupling effects
are correctly realized. To demonstrate the robustness of the algorithm and to validate the UEL, a
three-dimensional case study is performed with reference to the in-situ heating test of ATLAS at
Belgium in 1980s. A hypothetical radionuclide leakage event is then simulated by activating the
chemical-concentration degree of freedom and prescribing a constant high concentration at the
heater’s surface. The model predicts a limited contaminated regime after six years considering both

diffusion and advection effects on species transport.
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1. Introduction

Safe and permanent storage of spent nuclear fuel and other high-level radioactive wastes
(HLWs) has been a pressing challenge given the ever-increasing amount of HLWs and the shortage of
long-term storage facilities." With multiple approaches being discussed, an international consensus
is that deep geological disposal is the preferred solution to the final management of HLW.? This
technology is based on a combined natural and engineered multi-barrier system, where the host
rock can efficiently retard the migration of hazardous radionuclides from the repository to the
biosphere should a critical event happen. Because of the large time scale at concern, an important
part of the design and performance assessment of underground HLW repositories is to predict the
long-term evolution of the strongly coupled thermo-hydraulic-mechanical-chemical (THMC)
processes in the clay buffers and the host rocks induced by material or energy release from the
waste canisters. For example, the variation of pore pressure, water content, and elevated
temperature could result in mechanical strain or even fractures in surrounding geomaterials.’ In
return, the skeleton deformation and fault displacement may alter the porosity and thus the
permeability and diffusivity of the rock mass. Temperature change could be accelerated by fluid
advection and chemical reaction. At the same time, heat transfer gives rise to thermal stresses and
impacts mass transport of fluid as well as the reactive solute. Species migration is governed by
concentration gradient but also influenced by fluid flow and thermal condition. Predicting the
spatiotemporal evolution of such a complex environment near deep geological repositories requires

reliable numerical models that can characterize all the relevant and highly nonlinear processes.*

To this end, considerable efforts have been devoted to developing solvers for the coupled
nonlinear partial differential equations (PDEs) governing the THMC processes. Among the monolithic
solvers, the OpenGeoSys (OGS) is an open-source numerical platform based on object-oriented finite
element method (FEM), which is designed for multi-field problems of applications in geoscience and
hydrology.>” HYDROGEOCHEM is a suite of modules consisting of fluid flow, reactive biogeochemical
transport, heat transfer and geomechanical displacement.® FEniCS is a popular and open-source
computing framework that enables automated solution of PDEs with great flexibility and efficiency
by a collection of FE-based libraries.” COMSOL Multiphysics is a commercial cross-platform finite
element software and efficient solver for coupled PDEs, which has been successfully applied in
THM(C) topics such as heat transfer in saturated soil,'® methane hydrate™ and CO, injection.” Apart
from models that are solely based on FEM, the Los Alamos National Laboratory (LANL) has
developed the Finite Element Heat and Mass Transfer (FEHM) code where the finite volume method
(FVM) is utilized for flow and mass balance while FEM for stress equilibrium.™ In addition, Feng et

al. proposed a method called the elasto-plastic cellular automaton (EPCA) which is inspired from
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the self-organization theory and has been used to simulate the fracturing of novaculite in a THMC
environment." Solution of coupled problems can also be achieved by combining different codes in a
staggered manner, permitting flexibility in software development. This includes schemes that
integrate reactive flow simulation with geomechanics codes such as TOUGHREACT-FLAC3D™™ and

TReactMech,?®?! or combining THM codes with geochemical simulator like MOOSE-REDBACK.** In

pt

— general, sequential coupling approach has advantage on computational memory savings as well as

implementation easiness. Whereas, solving coupled problems monolithically reduces
communication and input/output (I/0) times compared to its staggered counterpart, which greatly
benefits stability and avoids computational bottleneck.’> % It is worth to note that some of the
aforementioned codes are open-source while others are proprietary, and their detailed numerical
procedures are seldom published in scientific journal papers. This often make it challenging for users
especially beginners to modify or implement new coupled theories to accommodate for different

materials and engineering systems.

This study reports the authors’ independent effort to develop a fully implicit monolithic finite
element solution for THMC problems, with special emphasis on full disclosure of the implementation
and verification details as well as the source code. Particularly, all codes and scripts presented here
are made openly accessible via the Supplementary Materials associated with this paper. We hope
the details of the numerical procedure presented here can facilitate the numerical realization of
other THMC or general multiphysical solvers. The FE software Abaqus Standard is chosen as the
platform for our implementation considering its robust nonlinear solver that offers various implicit
solution schemes as well as the automatic time-stepping capability. We start by outlining the general
governing equations in Section 2. The thermoporoelasticity and the THM governing equations of
Coussy” was adopted as the backbone of our THMC development. A user-defined element
subroutine (UEL) is scripted in Section 3 based on the proposed governing equations. Considering
the complexity of the system, the development starts by solving only the coupled hydromechanical
equations, then extend to THM, and finally the complete THMC equations. Each implementation
stage is verified by closed-form analytical solutions in Section 4. Finally, the UEL is put to simulate
the in-situ heater test of ATLAS® in an underground research facility at Belgium (Section 5). The
predicted THM responses of the host formation are evaluated against the measurement data from
the experiment. A hypothetical leakage event is also simulated in the same FE model to examine the

rate of contaminant migration through the host formation. The main conclusions of the study and
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possible future extensions are summarized in Section 6.
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2. Governing equations

This section develops the governing equations describing the multiphysical processes in porous
geological media based on the conservation of mass, momentum, and energy. The possible THMC
processes in various host rocks has been discussed in several review papers and reports.”® To
establish a set of tangible governing equations in this initial development, we emphasize the strong
coupling between THM and their weak coupling with C. Specifically, the C component will focus on
the transport of contaminant species driven by concentration gradient and advection associated
with bulk fluid flow (i.e., THM = C). It is known that the presence of active chemical species can alter
the THM properties of the solid skeleton through adsorption,?” *® dissolution,”® and pressure
solution.* The system is also assumed to be fully saturated with no mass exchange between phases.
This is likely to be true within the host rocks but not in the clay buffer where desaturation and vapor
transportation may happen. These effects (i.e., C>THM) and phase changes may be included in
future extensions of this basic framework. The main types of coupling considered in formulating the
governing equations are summarized in Fig. 1. Based on these considerations, the set of unknown
field variables are identified, including skeleton displacement (u), fluid pressure (Pf), temperature

(T), and contaminant molar concentration (C).

porosity

change
pore pressure

change

Thermal o (\ Chemical

T C
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Fig. 1: THMC couplings considered in this study

2.1 Balance equation of mass and contaminant mole
A continuous description of a porous medium requires the analysis at macroscopic scale in

accordance with the hypothesis of continuity.? Given an arbitrary domain with volume Q, and
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boundary 0Q),, the rate of change of quantity £ (e.g., mass density, molar concentration) in the «a

phase must be equal to the source/sink rate ;° subtracts the net outflux with respect to the
observing window. The conservation of £ can be written in the following form:
D* 0

o thdg;:jgta—qu + [ o (&, ) mda= 7 (1)

0

(=2 (v, 5.0

is the particle derivative with respect to the a phase; Q, is the domain volume; da is a unit domain

b*
Dt

boundary; v, is the velocity of the a phase; V_ () denotes gradient operation with respect to spatial
coordinate; a = s for solid and f for fluid in this development. As discussed previously, mass or
species exchanges between phases are neglected in this study and thus i’ . After applying

divergence theorem, Equation (1) can be written in local form as:

o0&
24V . =0
=V (¢v,) (2)

This equation is expressed in relation to a spatially fixed observation window. For FE
implementation, governing equations often need to be expressed with respect to a window that

moves along with the solid skeleton. Equation (2) can be thus re-written as

E(§)+§VX'VS+Vx'[(Va—Vs)§]=0 (3)
Let £ be the fluid mass per unit total volume (npy), where n is the Eulerian porosity and py is the

intrinsic density of the fluid. The fluid mass balance can be written based on Equation (3) as:

D’n Dspf
+n :

Dt

Py +nprx-vS+Vx~qf=0 (4)

where gy is the relative flow vector of fluid mass:
a,=np, (v, -V,) (5)
Similarly, the solid mass balance can be established by letting £ be the solid mass per unit total
volume (1-n)p;:
D’n D’p,

o +(1—n) Y +(1_”)PSVX'VS= (6)

—Ps

where p; is the intrinsic density of the solid. Set £ as the contaminant molar concentration nC where
C is amount of moles per unit fluid volume. The mole conservation equation for any contaminant

species can be similarly written as:
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%;(nc)_'_ncvx "V +Vx'[(VC—VS)nC:|:O (7)

Define molar flux vector of contaminant relative to the bulk fluid flow

{

qcan(VC—vf) (8)
Qquation (7) can then be rewritten as
H I
DS DS
W2 Pl o, v 4y, | S, |4V, q.=0 (9)
Dt Dt P

2.2 Mechanical equilibrium
The balance of linear momentum of porous domain Q; can be written as

N Df
1o P (1-n)v,dQ, + L:, p,nv,dQ, = IQ, bdQ, + jmr 6-nda (10)
where o is the Cauchy stress tensor; b is the body force per unit volume that only includes
gravitational force in this model (i.e. b=[nps(1-n)ps]g). Equation (10) can be further written in local

form by considering Reynold transport theorem and mass balance for solid and fluid phases:
[p.(1=n)]v,+(p/n)y, =V, -c+b (11)

where y, is the acceleration vector of phase a=s or f. Under quasi-static condition which is of the

current interest, all the inertia terms can be neglected and the equilibrium equation becomes

V. -6+b=0 (12)

2.3 Balance equation of internal energy
For fine-grained porous media, local thermal equilibrium is a reasonable assumption considering

the rapid conduction between the fluid and the solid phases.” This means a single value T can be
used to represent the absolute temperature of all phases in the representative element volume
(REV). Neglecting the mechanical work, the balance of internal energy of the system can be written
as
DS
— l-n)p,cT+np,c.T |dV
oo l0-mpeT npie ] "
:—I aQtnpfch(Vf —Vs)-ndA—J‘an qr -ndA+J‘Qtf
where ¢, is the specific heat of phase a; the first term on the right-hand side (RHS) accounts for the

advective energy flux due to fluid escaping on the domain boundary; qr is the rate of heat flux due to
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thermal conduction. Applying the Reynold transport theorem and divergence theorem and setting

i , the local form of energy balance can be written as:
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6[(1—n)psc;T+npfch] .
t

V.- (1-n)peTv +V, -np,c,Iv,+V -q, =0 (14)

Q— 1 npchT+npfch] [1 npvch+npfch]V v,+V, -¢,Tq,+V,-q, =0 (15)

mmmmmm Assuming ¢, and ¢y are constant, Equation (15) can be finally expanded as:

D'T
1- c, |—
[( n)pxcs+npfcf] D
D*(1-n) D'p, D'p
+T csps—+cs(1—n) Dr +cfpf7t+cfn th (16)

+[(1-n)pe,T+np,c,T |V v +V, c,Tq, +V, -q; =0

2.4 Constitutive relation and conduction laws
At material level, we need to specify 1) a constitutive relation to describe the mechanical

behavior of the REV under stress, fluid pressure, and temperature variation, and 2) a set of
conduction laws to describe fluid flow, contaminant transport and heat transfer under their driving
gradients. The material model shall be implemented in a hierarchical way such that different types of
constitutive laws which may be nonlinear, inelastic, and anisotropic can be easily accommodated.
This will be discussed in the next section. To have a starting point, we choose the thermoporoelastic
theory by Coussy** as the constitutive model. The expression of this model in terms of infinitesimal

strain is given by:

0y =00 = Cuiy =y (P = Pro) = et (T=T,) (17)
P -P
¢—¢0:bij8ij+%—3a¢(T—]})) (18)
where
~L(vu+vu’) (19)
2

is the infinitesimal strain tensor; ¢ the Lagrangian porosity; b; the Biot’s coefficient; oy the thermal
expansion coefficient of the solid; N the Biot’s tangent modulus linking pressure and porosity
changes; 3a, the volumetric thermal dilation coefficient related with porosity; Cjy the stiffness

matrix of the skeleton; 00, Pro, To and ¢, characterize the reference initial state of the specimen.

Author Manuscr

Equations (17) and (18) can be further simplified by assuming linear isotropic elastic response and
isotropic thermal expansion coefficient. Additionally, a conversion between porosity ¢ to n is

necessary to maintain consistency with the field equations. Under infinitesimal strain condition, we
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have ¢ =Jn z(1+8v)n according to Coussy®*. The relation between the increments of the two
porosity measures can be derived as:

dp~dn+edn+nde, ~dn+nde, (20)

where & dn is neglected because it is a second-order infinitesimal term. Considering the above,

Equations (17) and (18) can be simplified to:

o, 0, = (K—%ngva,.j +2Ge, —b(P, - P, )3, -3aK (T -T,)3, (21)
P,—P
n—n0=(b—n)gv+%—3a¢(T—]})) (22)

where K is the bulk modulus and G is the shear modulus; b and a the isotropic Biot’s coefficient and
thermal expansion coefficient, respectively; €,=¢; the volumetric strain; &; the Kronecker delta.

Equations (21) and (22) can be rewritten in incremental matrix form for numerical implementation:

K+EG K—EG K—%G 0 0 0 —-b 3aK
~ _ 3 3 3 de,
do,, 2 4 2
K-2G K+-G K-2G 0 0 0 -b -3aK | dé,
doy, 3 3 3 i
do 2 2 4 =
33 K-—G K-—G K+-G 0 0 0 -b 3aK|| de,
doy|=| 3 3 3 J (23)
do,, 0 0 0 26 0 0 0 0 &3
dc., 0 0 0 0 26 0 0 o0 ||%
n 0 0 o 0o 0 26 0 o ||
- - 1 dT
b—n b—n b—n 0 0 0 — 3o
L N i
Regarding the conduction laws, it is possible to write a general linear conduction law:
q, Ky Kyr Kye || VB~ P8
A |[=—| K Ky K \Z (24)
qC kCH kCT kCC VC

The simplest conduction law controls fluid flow is the Darcy’s law which states a linear relation

between g;and VP, :

k
4= (VP -p (25)

Author Manuscri

where k is the permeability and u is the dynamic viscosity of the fluid. Similarly, the contaminant
diffusion and heat conduction are classically described by the Fick’s and the Fourier's law,

respectively:
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q.-=-D.V.C (26)

q, =—kV.T (27)

L

where D, is the diffusivity of contaminant species; k is the thermal diffusivity. The diffusion

coefficients k, Dc and k are scalars for isotropic solid, which is what we have assumed here.

P

eglecting the coupling terms, the simplest form of Equation (24) can be written by collecting

Equations (25) - (27):

q, pfk/ﬂ 0 0 vxp'_pfg
q, |=—-| O Kk 0 v.T (28)
qc 0 0 D, v.C

2.5 Equation of state

Finally, the compressibility of the fluid and the solid phases needs to be defined to close the
system. Assuming the intrinsic fluid density is a function of pore pressure Ps and temperature T, the
equation of state for the fluid phase can be written as

_%y

%Py Py

dp;

where 3oy is the coefficient of volumetric thermal expansion of the fluid; K is fluid bulk modulus. For
the solid phase, combining solid mass balance Equation (6) and the porosity evolution law Equation
(22) gives
dp, = _—’D{(l—b)dgv —di+3a¢dT} (30)
I-n N

After supplying Equations (29) and (30), the final THMC governing equations are derived and
summarized in Table 1. For conciseness, the operator D°¢/Dt is replaced by superposed dot (:. ; the
spatial gradient V _is replaced by V; V-v_is essentially the volumetric strain rate { . The key

assumptions behind the equations in Table 1 are: 1) The host rock under consideration is fully
saturated, linear elastic, with compressible constituents undergoing small deformations, whereas
plasticity, damage, or partial saturation of the rock are not considered; 2) The effect of stress and
temperature on the transport coefficients (e.g., permeability, diffusivity) are neglected; 3) The
effects of fluid chemistry on the THM properties of the host rock through processes such as

adsorption, dissolution, and pressure solution (i.e., C>THM) are omitted. The system is to be solved
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by the finite element method, complemented by constitutive relation Equation (23) and conduction

law Equation (28).
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3. Finite element implementation

In this section, the governing equations are spatially and temporally discretized and solved
under an iterative scheme through the user-define element (UEL) subroutine combined with Abaqus
Standard. It should be acknowledged that this development mainly follows the UEL implementation

f a coupled diffusion-deformation theory for elastomeric gels by Chester et al.*".

3.1 The structure of UEL
The UEL subroutine permits user-defined variational form of the elemental Jacobian (or tangent

stiffness) matrix (AMATRX) and the residual vector (RHS) in solving customized equation systems.
We choose to use a three-dimensional trilinear hexahedron element (U3D8) with 6 degrees of
freedom (DOFs) which are respectively u,, uy, u,, P, C and T for each node (See Appendix, Fig. A).
Admittedly, this type of element do not satisfy the Ladyzhenskaya—Babuska—Brezzi (LBB) condition®”
3 and can give unphysical oscillation in the results. Multiple techniques have been developed to

233435 Considering these oscillations are short-lived and do not

avoid such spurious pressure mode.
impair the equilibrium or the long-term solution of interest to this study, we opt for the basic low-
order element type in this first-stage development. Similar approach is also adopted in other

coupled deformation-diffusion UEL codes.*

The proposed UEL is hierarchically structured so that it does not contain any constitutive
information of the material. Instead, the UEL will call a separate Material subroutine at material
integration points to retrieve the constitutive relations. The advantage of doing so is to have the
versatility to switch to advanced material models should the nonlinear, inelastic, and anisotropic
responses of different rock formations be incorporated in the future. The workflow is sketched in
Fig. 2. At the starting point, nodal coordinates (COORDS), estimated DOFs for next step (U), and
material parameters defined in an input file (PROPS) are passed from Abaqus to the UEL. After
interpolation from nodal values, this information computes the RHS and AMATRX at each Gauss
point, which will be upscaled to the element level through Gauss quadrature. In addition, all solution
dependent variables (SVARS) are updated and stored at the end of each iteration.*® Whenever the
UEL is called, it returns the elemental RHS and AMATRX which will be later assembled for the global
Newton-Raphson iteration in the Abaqus Standard solver. If the global RHS meets the desired

tolerance, we say the system reaches convergence and the PDEs are numerically solved.

This article is protected by copyright. All rights reserved.

85UB01 SUOWWOD A1) 8|qeol[dde 8y} A peusenob aJe SsjpnJe YO 9sn JO SNl Joj AriqIT 8UIUQ A8]IM UO (SUONIPUOD-PUE-SUIBI/LIO" A3 1M AeIq Ul [UO//ScnL) SUORIPUOD pue swie 1 8y} 89S *[Z0z/80/6T] Uo ArIqITauliuQ A8]i/M ‘UOTIEWIOJU] [ED1ULDS L PUY IJUBIS JO 89140 Aq 955€ Beu/z00T 0T/I0p/wod Ae|im Arelq Ul juo//:sdny wolj pepeojumod ‘TT ‘€202 ‘€586960T



Ipt

Author Manuscr

Subroutine UEL

UEL Material ~ Loop over
module module Gaussian points
N
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displacement u (M), molar concentration C (C)

y
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: (Material)
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v

Update AMATRX and RHS at elementary level
I

L 2
Assemble AMATRX and RHS for global domain

Yes No
Convergence

W

Fig. 2: Workflow of THMC modeling via Abaqus + UEL

Visualization of the computed results is not straightforward as Abaqus cannot automatically
extrapolate variables from Gauss points to nodes for user-customized shape functions. This can be
addressed by coding a python script that accesses the output database and translates the data
format to be compatible with other third-party post-processing software.’” Here a convenient
approach that only involves Abaqus CAE is adopted: each user-defined element is overlaid by an
Abaqus built-in element (also called the dummy element) which has the identical shape function as
the UEL. The material-point quantities computed from the UEL are passed to the dummy element via
subroutine UVARM, which can then be understood and visualized by Abaqus CAE. To avoid

interferences with the FE computations, all dummy elements must be assigned with near-zero

stiffness and T/H/C conductivity coefficients.
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3.2 Boundary and initial conditions
The definition of boundary and initial conditions are required to complete the formulation of

IBVP given a time interval ¢ € [O,T]. For a domain Q with boundary =0Q, let F? and FZ be a pair of
complementary subsurface where the Dirichlet and Neumann boundary conditions are prescribed

espectively for the 8 field (=M, H, C, T), following the relation that rzr;’urg and
FZ(\FZ =({J. Therefore, the formal statement of initial and boundary conditions for the fully
coupled THMC system are as follows:

M(mechanical): u(y N\ —n (x) (31)
- -D

H(hydraulic): { P, (x,0)=P,,( * " (x,0)=n,(x) (32)
Po=: --- Th
an=s, oI}
C(chemical): [ C(v ™ -7 (x) (33)
C=C vxeT?
qcn = e
Cqm=q ,.._ ¢y
T(thermal): et T (x) (34)
T=4% vxe I'?
q,n= ;1 X e 1—‘ZTV
e Tqm=y,, - Tpy

3.3 Weak form and discretization

We shall now construct the weak form of the THMC problem by multiplying the residual with a
set weight functions wy, w,, ws, w, and integrating over the whole domain for solving the unknowns
u, P, C, T, respectively. In terms of integral forms for weighted residuals, trial functions for solution
approximation must be selected from a Sobolev space H™ (of order m) with the embedded Dirichlet
boundary conditions. Likewise, weight functions (wy, w,, ws, w,) are selected from Sobolev space
with the same continuity and differentiability requirements but will vanish on the Dirichlet
boundaries. Combining those derivation of integrating products, definition for weight and trial
functions, and Neumann boundary conditions defined in Equations (31) - (34), the weak forms are

stated as follows:
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M: J.QVSTWIGdQ=W1: ) in.-no,+(1—n)ps:|ng (35)
ueH'(Q):u=2 .__Ty
w, eH (Q):w, =0vxely,

IQWpr’. 4’2”(pr. ) ,
: i (36)
+W27’lpf£. :j Jun Y AO) =)
Pf-EHl(Q): 1)f:1\/f VACFZ
w,e H'(Q): w,=0 vxelj
¢ Cr Cn)¢
.. IQwin - wG v, (Cn)e ) 1 )
+W3 L1(,,]//"’/ J Q\Tyyryp ) 3T T J QTaC RS- Mt =
CEHI(Q): C:C VAcfg
w,eH' (Q): w,=0 Vxely
[(l—n)pscs—i-npfcf]i' o .
IQW4 +T(cfpf—csps)1' (1 ) '/ Q
T: . (38)
+[(1=n) p,c,T +np,c,T]:
+W4ch‘:1/1,] .' LIyr= Ty 4Tt eT o "4;/ T4t T T O
TeH' (Q): T=% vacl}
w,eH'(Q): w,=0 Vxel}

The finite element formulation is established by applying the Bubnov-Galerkin method, where the
solution can be approximated by using the identical shape function N for trial and weight functions,

namely:

M: with u=NZ and w, =N/

[oB'o(udQ-N"C | oiv | np, +(1-n)p, |gdQ=0 (39)

H: with P, :N:f and w, =N,

Noi Nulp, KT | o
. - T

+[ oN"np, Sy /N) q,dQ=0

g

c:with C=NC and w, =N
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N"n(
+N'C

o N Cr

Ye, gy e

T:with T=Ni and w, =N,

I N [(1 —n)pc, + npfcf]f

where

Author Manuscri

+I QNTT(cfpf —csps);'
[ oN'[(1=n) pe, +np,c, [T

T -
N ¢y, JuTroy
L
ox
0 ON,
oy
0 0
B=V N=
N,
0z
VR
0z
v, oy,
| Oy Ox

3.4 UEL implementation
During each iteration attempt, the elemental Jacobian K=AMATRX and the residual R=RHS

_KH—At

uu
3n,x3n,
KH—At
Pu
n,x3n,

KH—A[

Cu

n,x3n,

t+At
KTu

ON,
0z
ON,
E)
ON,
ox

K1‘+At
uP
3n,xn,
Kt+At
PP
n,xn,
Kl‘+Al‘
CP
n,xn,

t+At
I(TP

Iy

NT(Cn)i

v -

A )

0

ON,
oz
ON,

oy

Ko~
1+ t+A1 ]

KuC KuT
3n,xn, 3n,xn,

t+At t+At
KPC I<PT
n,xn, n,xn,

t+At t+At
KCC KCT
n,xn, n,xn,

t+At t+At
KTC KTT

Y I

\ITchnpf (1

J (9 Vi

on,
Oox

must be evaluated to solve all nodal unknowns o~ via:

ac J QTaC

v

oN,

0z
ON,

oN,

Awvinna
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ON, 0

ox
0 ON,
y
0 0
.. 0 ON,
oy oz
ON, 0

ox 0z
ON, ©ON,
oy  Ox

More details about the element type and expanded shape function are presented in Appendix A.

(41)

(42)

(43)

(44)
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where n, is the number of nodes which equals to 8 for the current element type U3D8. According to

Equations (39) - (42), the residual R at 7+ At step is given below:

Ipt

R, :_j B0 dQ-N"C 1 o Ln'+A’pf+(l—n”At) ps]ng (45)
Ry ==[oN'p  N'n(pd o
1 T t+At . T~ T t+A? (46)
—EIQN np, N W(YN) g, A0
Rcz+Az _ _[QNTnHAz(' . \ITCH-At)- _ \IT (Cz+Aznt+At \)z' .
_N7 ‘;(;J -y +IQ(CHN qft+At /pf)VNdQ_NT;L .y QqCHAt .VNJOQ

RTHAt _ _J‘ QNT [(l_ntmt)pscs +nt+A[prf:|j-

+[ oN'T™e,p, [ (1-b)<

-

_I oN'T™ oy, —csps)f - N n™p, (1 ' : (48)
_ALt QNT [(l_ntJrAz)pscs +I’lt+Al,Ofo]THAte' cf;[’j

+J‘ Q(cht+Atqft+At ) . VNdQ _ NT;I ¥ QthJrAt . VNdQ

To explicitly write the Jacobian matrix, the derivatives of residuals (Rw, R4, Rc, R7) with respect to
increments of unknown variables (5‘7,,51} oL, 5':) must be derived. The accuracy of the derived

Jacobian K will determine the convergence performance of the global iteration thus influencing the
computation efficiency especially in some highly nonlinear problems.*® Therefore, great care was
taken in deriving the Jacobian for the THMC system here. Note that R and K matrixes contain many
definite integral terms over the element. One needs to evaluate these integrals by Gaussian
guadrature after mapping them from global coordinates (x, y, z) to local reference coordinates (£, n,
{) under the isoparametric element scheme. The final expressions of R and K are summarized in
Appendix A. They are then coded in the UEL to be used together with Abaqus Standard to achieve
monolithic solution of THMC problems. The user-defined subroutines, the input files of the
verification/validation tests presented in Section 4 and 5, and an instruction manual are available

through the Supplementary Materials associated with this paper.

4. Verification tests

Considering the large size and the highly coupled nature of the system, the development and
verification of the UEL shall follow a step-by-step strategy from the simple HM model to the THM

model, and finally the comprehensive THMC model. Existing coupled HM and THM problems that
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have closed-form solutions include: (1) Terzaghi’s one-dimensional (1D) consolidation;* (2) Mandel’s
problem;*° (3) thermoporoelastic bar subjected to temperature change on one end;*! (4) cylindrical

heat source in infinite porous medium.** Some of these solutions are based on assumptions and

{

constitutive laws that differ from the ones adopted in this study. In order to verify our UEL which

uses a specific thermoporoelastic model of Coussy** some of the aforementioned analytical solution

P

must be revisited. In what follows, we will rederive the analytical solutions for problems #1 and #3

SCI

and refer to the solution of Cheng and Detournay® and McTigue®* for problems #2 and #4,
respectively. Finally, the THMC coupling will be examined through testing chemical species migration

along a 1D thermoporoelastic bar.

4.1 Test #1 (HM): one-dimensional consolidation
Consider the classical 1D consolidation problem: a saturated porous layer with thickness H,,

for the one-way drainage condition subjected to constant vertical loading as shown in Fig. 3.
Displacement and pore water flow is permitted only along the vertical direction. The celebrated
solution by Terzaghi®® assumes incompressible fluid and solid grain which is apparently no longer
valid in Coussy’s poroelasticity and thus requires a revisit. In the absence of thermal effect, fluid

density evolution Equation (29) reduces to:

/ (49)

Substituting Equations (49) and (22) into the fluid mass balance Equation (4) and trimming all

thermal related terms gives:

be —j[ q, =0 (50)
p,

Author Manu
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Fig. 3: Schematic diagram for 1D consolidation of a saturated porous column
Under 1D condition, volumetric strain equals to vertical strain/

according to Equation (21), where M=K+4G/3 is the constrained modulus of porous medium. Using
this relation to eliminate ¢ and supply the Darcy’s law Equation (25) into Equation (50), the PDE for

1D consolidation problem can be expressed as:

oP b les o’P
o s ot (51)
ot Mk ot ox
or
oP o0*P
—L=c—L (52)
ot ox
considering the case of constant total vertical load (i.e., do,,/0t=0 for t>0). Here the pore fluid
pressure Pf (x,t) is the only unknown and C, is the updated coefficient of consolidation:
C - k (53)

R R A

MNTK M
Equation (52) is formally identical to Terzaghi’s consolidation equation and its solution can be readily
achieved by using the updated coefficient of consolidation C, in Terzaghi’s solution. Numerical wise,

a 10m-high porous column is modeled in Abaqus as shown in Fig. 3. The top boundary is set as

drained and subjected to a constant surface pressure of 5 KPa. The bottom and the four lateral
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boundaries are all constrained along its normal direction with an impermeable surface. The initial

pore pressure for the entire porous column is zero and stress free. At t = 0, a vertical stress of 8 KPa

I ' is applied at the top boundary. Other parameters used are: E=10 MPa; v=0.3; k=1x10""> m% u=0.001
Pa-s; p, =1.25x10° kg/m?; p;=1.0x10> kg/m?>; ¢,=0.2; K;=2000 MPa; N=100 MPa; b=0.9.

The solution of Equation (52) and the FE results are plotted together in Fig. 4 in terms of

P

= mmmmmm dimensionless time factor T,=C,t/H,>, dimensionless depth X =x/H,, and degree of consolidation
Uy=[Pso-PAx,t)1/Pro, Where Py, is the initial pore pressure. The perfect agreement between the

numerical and the analytical solutions verifies the coupled HM capability of the UEL in a 1D setting.

10

’ a
I :
' :
| S
v :
08} » 'S
\ :
\ ‘A
. 2
06 ' ‘A
5 3

Depth ratio, x /H,,

04Ff ' a
Model: T,=0.1 N
- - - Model: T,=0.4
o2l Model: T,=0.8

= Analytical: T,=0.1
® Analytical: 7,=0.4
00 A Analytical: T,=0,8 i : P

00 02 0.4 0.6 0.8 1.0

Degree of consolidation, U,
Fig. 4: 1D consolidation simulation results vs. analytical solution

4.2 Test #2 (HM): Mandel’s problem

The second example aims to verify the HM coupling capability in 2D scenarios. We chose the
Mandel’s problem which consists of a 2a X 2b porous rectangular sample sandwiched by two
rigid, frictionless, and impermeable plates resulting a reaction force of 2F as shown in Fig. 5. The
sample is fully drained and stress free along the horizontal direction. Solution of the Mandel’s
problem given by Coussy®* is derived for constant-force condition. This means the top boundary
is force-controlled and meanwhile can only have uniform vertical displacement. Numerically,
only a quarter of the sample is simulated by the UEL to reduce computational cost as illustrated

by Fig. 5. The following initial and boundary conditions are enforced on the quarter domain:

Author Manuscr

u(x,y,O):O, Pf(x,y,O):O; 0<x<a,0<y<b
ux(O,y,t):O, qf(O,y,t)ZO; t>0,0<y<b
uy(x,O,t)zo, qf(x,O,t)=0; t>0,0<x<a
O'H(a,y,t):O,Pf(a,y,t):O; t>0,0<y<b
o, (x,b,t):F/a, uxy(x,b,t):O, q, (x,b,t)ZO; t>0,0<x<a
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Fig. 5: Schematics of Mandel’s problem* and the finite element model

The major challenge in numerical realization of this problem is the reproduction of the uniform
vertical displacement on the top boundary in a force-controlled mode. The rigid upper plate cannot
be easily represented, as the interaction between a rigid frictionless shell and a user-defined porous
medium always induce numerical difficulties. The method adopted here is to approximate the top
surface with a constant-pressure boundary, and at the same time using a sufficiently slender domain
(low width-to-height ratio) to minimize the impact of unevenly distributed displacement at the top
surface. It is found that when the width-to-height ratio reaches 0.2, the results become insensitive to
further changes of the geometry. Fig. 6 plots the UEL results together with the analytical solution by
Cheng and Detournay® Here the same poromechanical parameters as the previous verification test

are used. Pressure is normalized by its initial value and the dimensionless time is defined as

t = Cvt/a2 where C, is defined in Equation (53). A satisfactory agreement is observed, confirming

the HM capability of the UEL. It is worth noting that at early stage (¢ =0.01,7 =0.1), the pore

pressure at the central region rises above the initial value even when the lateral boundaries are
drained. This signature feature of Mandel’s problem is due to poroelastic effect at the system level,

which is also successfully captured by the numerical model.
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Fig. 6: Pressure distribution from Abaqus + UEL simulation and analytical solution®
4.3 Test #3 (THM): heating a 1D thermoporoelastic bar
Consider a semi-infinite thermoporoelastic bar, initially at a uniform temperature and pore
pressure, subjected to a sudden temperature increase T° at the boundary x=0. This boundary
then remains drained and stress-free. The initial and boundary condition is defined as
{aﬂ (x,0)=P,(x,0)=T(x,0)=0; x>0
u(0,¢)="P,(0,£)=0, T(0,¢)=T"; t>0
McTigue® provided a solution for this problem but again with a different set of constitutive
relations. A new closed-form solution consistent with the proposed governing equations therefore
must be developed for verification purpose. Substituting the Darcy’s law Equation (25) into the mass

balance of fluid Equation (4) yields

Py -—Jnafpfi' ’ 72Pf =0 (56)

n . y7
Define an,=a,+nay, consider porosity evolution from Equation (22), and substitute them into
Equation (56):
b¢
\N K ) u
Simplifying the constitutive law Equation (21) for 1D case and considering the stress boundary
condition, the volumetric strain increment can be expressed as:
def +3aKdT
de,=de  =—"——
M
Substituting Equation (58) into Equation (57) gives:
2
L_apf +A8_T — a Pf
- 2
C, ot ot ox
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where

A=ﬁ(3abK—3amJ
k\ M

and C, is the same as defined in Equation (53). Introducing normalized variables 131, = P/ /1:7 and
T =T/Td, where T? is the prescribed temperature at x=0 and P,fl is defined such that

CVATd /Pfd =1, Equation (59) now reduces to a standard wave equation:

oP. oT o’P
—L+—=C,—L and Pf =C AT’
ot ot ox
On the other hand, the energy balance equation can be rewritten in terms of normalized variables

by substituting Equations (27) and (58) into Equation (16) and considering 1D scenario:

oP. or  Olc, T 27
34T ip (¢.74) T

o ot ox ox’
where
bc,p,—c Th
cfpr{l+nJ+( Pr=ep.) P!
N K,
= (b )aKT
3\bc,p, —c.p, |
1Py~ 5P
¢, —3p,ca, T+ i T
1
D= y
[cb—3pfcfamT+3(bcfpf—csps)aKT/M}T
E= K

c, —3pfcfamT+3(bcfpf —csps)aKT/M

and ¢, = (1 —n)pscs +np,c, is the bulk heat capacity per unit volume of porous media.

For typical values of parameters for geomaterials, the coefficients B and D are usually quite small
and can be neglected,“’ “a reducing Equation (62) into:
oT _
—=EV’T
ot
This conveniently decouples the heat equation Equation (16) from the H or M processes so that it

can be solved separately. The analytical solution to Equation (66) associated with the initial

Author Manuscri

boundary conditions Equation (55) is given by:

— x
T=1- — 67
of (7] =
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Substituting Equation (67) into Equation (61), the problem reduces to a standard parabolic PDE with

respect to the normalized fluid pressure f_’f , the solution of which under condition (55) is given by:

- cY' X X
p-_|1-% _X e 2 68
! ( Ej f 2,/Ct erf(%/Etj (68)

The finite element model corresponding to this problem is shown in Fig. 7. To approximate
the semi-infinite condition, the length-to-width ratio of model is made sufficiently large as 100.
Lateral surfaces are impermeable, adiabatic, and can only move along the x-direction to ensure
1D condition. Initially, both P; and T are zero everywhere. The left end is fixed, drained, and
subjected to a constant temperature T°=1 K. The right end is drained, constant temperature and
stress free. All hydromechanical parameters are still the same with the verification test #1. The
thermal parameters are specified as: ¢,=800 J/(kg-K); ¢=4000 J/(kg-K); @=1.0x10* K*; a;=3.0x10™
K*; as=0.4x10" K™

0 10 20 30 40 100
X
| ] ] ] l_--- LI I
Cd

- impermeable adiabatic
VAR A R S S S 4 /£ / VA4 £ V4 L/ Z /7 / /

VA 7 / 7 /7 /7 7 7/ / 7/ 7/ /7 /7 7/ / T=0
impermeable adiabatic

Fig. 7: Finite element model of a 1D thermoporoelastic bar

The numerical results and the analytical solutions are plotted in Fig. 8 and Fig. 9 in terms of

normalized temperature T, normalized pore pressure Pf , and normalized x-coordinate

x =x/4JCt for different values of R which is defined as the ratio between the diffusion

coefficient in Equation (53) and the thermal coefficient in Equation (65) (i.e., R=C,/E). Thermal
conductivity coefficient k is determined as (k = 91.3, 11.4, 5.7 W/(m-K)) corresponding to the
selected R values (R=0.25, 2, 4) in respect. Perfect agreements between the FE model and the
analytical solution are observed at a random time t=1.12x10° s regardless of the choice of R in

this 1D THM coupling analysis.
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are all undrained and adiabatic. Final parameters used in verification is the same with test #3 except

Fig.
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Fig. 9: Normalized pressure profile at t=1.12x10° s

4.4 Test #4 (THM): cylindrical heat source in an infinite space
For 3D THM verification, we investigate the problem of cylindrical heat source embedded in an

infinite space. This geometry has been studied by Booker and Savvidou** to represent the problem
of a canister of radioactive waste buried in saturated soil. The finite element mesh is shown in Fig.
10. A constant heat flux is applied on the heat source region marked in red. All five boundary
surfaces are fixed in its normal direction. Fully drained and constant temperature boundary
conditions are assigned to the exterior surface (i.e., ECD and ABED). Because the model represents a

one-eighth of the full domain, the interior surfaces (i.e., OADC, OCEB, and OAB) in the current model

for k=1.14x102 W/(m-K). The power of the heat source is specified as 1 W/m?.
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Fig. 12: Pore pressure evolution near a cylindrical heat source (analytical solution from Booker and

Savvidou

42)

Normalized Temperature, T=T/T,,

Normalized pressure, P=P{/P,,

Fig. 10: Finite element model of an axisymmetric domain containing a cylindrical heat source
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Fig. 11: Temperature evolution near a cylindrical heat source (analytical solution from Booker and

Savvidou™)
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In Fig. 12 and Fig. 13, the temperature and pressure histories are compared with analytical
solutions respectively, at three locations (ry, 2ro, and 5ry) away from the heat source where ry is the
radius of the canister. The temperature is normalized by a maximum value Ty at the midpoint on the
surface of the heat source; pressure is normalized by Py, which represents the maximum pressure if

soil is impermeable (C,=0). Time scale is also normalized by a factor t' =r,’/k. The agreements for the

pt

= mmmmmm €Mperature and pore pressure histories are excellent at all locations. This agreement, together with
the previous three verification results, confirms that the THM governing equations are correctly

solved by the UEL.

4.5 Test #5 (H-C): chemical species migration along a 1D thermoporoelastic bar
Verification of the UEL is not complete until the THM-C coupling is checked. Most past studies

end their verification up to THM coupling, given the challenges involved in deriving closed-form
solutions when chemical processes present. The current formulation assumes one-way coupling
between THM and C, which entails a decoupled solution scheme where chemical molar
concentration can be computed independently after the THM fields have been solved or prescribed.
Considering the THM part has already been verified, the task here is to focus on verifying the HC

coupling capability. Let us inspect chemical field equation first:

/ -~
n( ' ;qf]+V-(qC)=0 (69)
\#r
Since 1 ¢ ' L v and q. =—-D.VC, Equation (69) can be
reorganized for 1D condition as:
2 . : 7 2
C b_+i i ) , =DC6—Sv (70)
M N)- M ) ox\ p, - ox

Following the same normalization approach in Section 4.2.2 such that Pf = P;f_’f , T = 7T and

C=C"C, a dimensionless expression for Equation (70) follows:

Author Manuscr

oP, oTf oC o . _0C
H—L+I—+—=+—(Lq,C)=R— 71
o o ot ax( 9,C) o (7]
where
2
H = (b—+ij CP! (72)
Mn Nn
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For the case of steady-state 1_)f and T profiles (i.e., dP, /or=0 and 0T /ot=0), Equation (71)

reduces to an inhomogeneous convection-diffusion equation describing solute transport.

oC _0°C oC ~- 0
a ae Wi 8x( a,)

Equation (76) is coupled with H through the advective term quC_f (or vf(,: at 1D condition and

v,=0) originated from the motion of the solute-carrying fluid.** In predicting the transport of radio
nuclide over a long time-span, the validity of solution will be impaired if the contribution of
advection is neglected.®® Great efforts have been made in the past decades to develop solution to
convection-diffusion-reaction (CDR) equations from the condition of constant velocity*’ to spatially

48, 49

dependent velocity. Considering an initial and boundary condition as follows:

C(x,0)=0, Pf.(x,O):O,T:lK, O<x<l!
C(0,¢)=C", mol/L,v,(0,¢) = £0.025m/s; >0
Cl,t)=0,v,(,H)=7F Is; t>0

Zoppou and Knight* provides solution for this type of unsteady hyperbolic PDE in 1D finite domain,

which will be used for comparison with numerical results given by the UEL.

(_?( t) 1 y x—vf.t 1 VX y x+vft
X,t)=—erfc — |+—exp| — |erfc| ——
2 2Rt 2 P R 2\ Rt

The simulation is built on the same geometry and mesh used for the verification test #3 (section

4.2.1). All hydromechanical parameters remain the same. The chemical diffusion coefficient D, is set
to 0.2 m?/s. For the initial condition, we let P=0 MPa and C=0 mol/L everywhere in the domain. A
constant contaminant molar concentration (0 mol/L->1 mol/L) and a constant fluid flux gy is then
enforced on the left and right end of domain for t>0. Since all lateral surfaces are impermeable,
mass transfer is constrained in the x-direction. The resultant C profiles under different imposed flow
rates at different times are plotted in Fig. 13. It is obvious that the chemicals transport faster when

the bulk fluid flow direction is aligned, and the process is retarded when the bulk flow is against the
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direction of concentration gradient drop. This implies that advection can greatly facilitate species
migration near underground HLW repositories as the concentration and pressure gradients are
always aligned. This coupling between H and C during mass transfer is expected and is encoded in
the governing equations. Finally, the excellent match between the numerical and the analytical
solutions presented in Fig. 13 certifies the successful realization of HC coupling by the UEL.
Combining the THM and HC verification results, it is confirmed that the developed THMC UEL has

correctly implemented the governing equations and can now be applied for full-scale case studies.

Model: t=100 s, v=0.025 m/s

10 ¢ - - - Model: =100 s, v~ - 0.025 m/s
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Fig. 13: Distribution of species molar concentration in a 1D porous bar (analytical solution
from Zoppou and Knight*®)

5. Simulation of the ATLAS in-situ test

5.1 ATLAS experiment

Many in-situ tests have been conducted in the past decades to study the THM responses of host
rocks due to heating generated by HLW canisters. One of them is the Admissible Thermal Loading for
Argillaceous Storage (ATLAS) test conducted in the underground research facility HADES-URF (see
Fig. 14) in Mol, Belgium at a depth of 223m.” The host formation, Boom clay, is an over-
consolidated clay whose behavior can be roughly captured by thermo-elasticity in the small-strain

1039 The ATLAS experiment consists of a horizontal main borehole (length=19 m,

regime.
diameter=0.19 m) drilled from the test drift (diameter=3.5-4.7 m), with electrical heaters installed in
the last 8 m of borehole.”® According to Francois et al.”’, the first heating phase happened in July

1993 with the power of 900 W. About 3 years later, the second heating phase started by a sudden
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increase of the power to 1800 W. The test is then terminated one year later followed by a natural

cooling phase. Fig. 15 presents the history of heat flux from heaters on the main borehole.

First shaft
18801982

URL

1982-1083
Test drift

1987

Second shaft Cmmchng gam
1997-1999 2001-2002

PRACLAY gallery Experimental works
2007 1983-1984

Fig. 14: Schematic view of the HADES Underground Research Facility in Mol, Belgium *

Time, years
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0 1 1 1 1
0 500 1000 1500 2000 2500
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Fig. 15: Thermal loading history of the heater

5.2 Numerical simulation setup

Fig. 16a sketches the dimensions of the ATLAS test. The main borehole was accompanied by two
parallel boreholes with instrumentation installed at 15 m away from the test drift. One of the
observation boreholes (AT85E), was drilled 1.515 m away from the main borehole in the same
horizontal plane, which is used to record changes in temperature, pore water pressure and total
stress.>® For numerical analysis here, the domain of interest is bounded by a 3D axisymmetric
cylindrical surface (diameter=height=200 m) with the heater located at the center (Fig. 16b). At such
a large scale, the disturbance of the THM field by the test drift which only occupies a small volume
(3.5~4.7 m in diameter) can be neglected. Therefore, the problem is approximately axisymmetric,

and only one-eighth of the domain is simulated in the FE model (Fig. 16c).
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Although the ATLAS test was designed to monitor the coupled THM processes in the host
formation, our simulation will also examine the spread of containment species following a
hypothetical leakage event at t=0. Given the lack of leakage events documented in the literature for
a realistic case study, the purpose of simulating a hypothetical leakage is merely to show the

capability of the UEL in handling a full THMC boundary value problem. The boundary conditions for

pt

p— displacement (M), thermal flux (T), water flux (H), and species concentration (C) are applied at the
heater-rock interface marked with red color in Fig. 16c. Note that the heater itself is not directly
simulated in the FE model. To replicate the full loading history in ATLAS, the imposed thermal flux Q;
is made consistent with the thermal loading history presented in Fig. 15. The hypothetical leakage
event is simulated by imposing a constant molar concentration (C=2 mmol/L) of the contaminate
species at the heater’s surface. The outer boundary of the domain ABDE and BCE (highlighted by
blue wavy lines in Fig. 16c) are water/chemical permeable, heat conducting, and pressurized by in-

situ geostatic stresses (i.e., Ps= 2.025 MPa, C=0.01 mol/L, T=16.5'C, 0,=0,=4.5 MPa). The symmetric

boundaries OABC, ODEC and OAD are fixed in normal direction with no water, chemical and thermal

fluxes allowed.

v z o.=4.5 MPa
I <«—100m ——» E
vy 4 ‘ Y v
Test drift ‘ :
I
\ (¢} | /
‘ P ! «
PR /7/// = . B ¢
L z | ‘
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Heater 47m
Measurement =
borehole z - 200m >

Exterior boundary. Initial conditions

T=16.5 °C, C=0.01 mmol/ L T=16.5°C, C=0.01 mmol/ L radius=0.095 m

P;=2.025 MPa P,;=2.025 MPa C=2 mmol/ L

o, =0n=4.5 MPa 0. =0,=4.5 MPa impervious, thermal flux Q; Y

(a) (b) ()

Fig. 16: a) schematic of the ATLAS experiment; b) idealization of the problem with boundary and
initial conditions; c) the finite element model

The THMC parameters used for numerical modeling are presented in

Author Manuscr

This article is protected by copyright. All rights reserved.

85UB01 SUOWWOD A1) 8|qeol[dde 8y} A peusenob aJe SsjpnJe YO 9sn JO SNl Joj AriqIT 8UIUQ A8]IM UO (SUONIPUOD-PUE-SUIBI/LIO" A3 1M AeIq Ul [UO//ScnL) SUORIPUOD pue swie 1 8y} 89S *[Z0z/80/6T] Uo ArIqITauliuQ A8]i/M ‘UOTIEWIOJU] [ED1ULDS L PUY IJUBIS JO 89140 Aq 955€ Beu/z00T 0T/I0p/wod Ae|im Arelq Ul juo//:sdny wolj pepeojumod ‘TT ‘€202 ‘€586960T



Table 2. The THM parameters are selected according to the reported properties for Boom clay in

10, 51

ATLAS experiments and the typical values of thermoporoelastic properties for geomaterials

{

summarized in Coussy®* The chemical diffusivity is estimated based on the effective diffusion

P

oefficients for dissolved species in Boom Clay measured by Jacops et al.>>. In the Abaqus, the FE
mesh is assigned with the developed THMC UEL. An element located 1.42 m away from the heater
surface will play the role of measurement borehole in the model. The values of field variables
extracted from this element will be used for benchmarking and inferring contaminant condition

along with all near field nodes.

5.3 Results and discussion
The comparison between the results obtained from the current study and ATLAS experiment are

presented in Fig. 17-19. Fig. 17 shows the temperature variation history at measurement point in
2500 days caused by the prescribed heating history described in Fig. 15. The simulated results are in
good agreement with experiment data, indicating that heat transfer occurring at the near field is
well captured by current model. Fig. 18 compares the predicted thermal-induced pore pressure
variation with the field data. It is observed that, during the first heating phase, pressure surge rapidly
at the beginning and then smoothly dropped even the power of the heater is kept same. Similar
response occurs in the second heating phase except with a slightly steeper tendency in decline. The
pore pressure rapidly reduces after the heater is turned off, and then gradually dissipates in the
remaining time. Overall, the predicted pressure history matches well with the measured data in
terms of the aforementioned pressure change characteristics. The slight discrepancy between the
predicted and the measured minimum pore pressure (around t = 1500 days) may be remediated by
incorporating more physics in the governing equations (e.g., temperature dependency of the
dynamic viscosity). Our parametric study (not shown here) also suggests that thermal-induced
pressurization is positively correlated with thermal expansion coefficient (o), while inversely
dependent on the fluid flux rate (gy), and the compressibility of the pore fluid (1/K;) and the porous
material (1/G and 1/K).
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Fig. 17: Temperature evolution at the measurement borehole (experiment data from Frangois et
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Fig. 18: Pore pressure evolution at the measurement borehole (experiment data from Francois et
al.*)

Fig. 19 presents the predicted and the measured variations of total circumferential stress with
time. The agreement is satisfactory during the first heating phase. However, the simulated results
start to deviate from the field data near the end of the second heating and the cooling phases. A
closer observation shows that the predicted stress increases or maintains relatively constant during
heating and monotonically decreases in cooling, while the field data suggests some degree of stress
relaxation in heating and stress restoration in cooling. Similar discrepancy has been reported in
other numerical simulation of the ATLAS test,>* but no consensus has arrived regarding its causes
yet.” Bernier and Neerdael® suggested that such deviation might be due to thermal interferences
on the measurement devices. We suspect that some viscoelastic or viscoplastic deformations>® have
occurred in the Boom clay formation, which caused the relaxation of the thermal-induced stresses

surrounding the heater. Furthermore, the host rock (Boom Clay) may develop some degree of
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desaturation under the effect of heating, which may have also contributed to the discrepancy

between the model prediction and the field data.
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Fig. 19: Circumferential stress variation at the measurement borehole (experiment data from
Francois et al.*")

Fig. 20 shows the time history of contaminant concentration at three locations, following an
assumed leakage event at t=0. It is apparent that the concentration increases faster close to the
canister. Such growth slows down at larger times but still maintains an increasing tendency even at
t=2500 days. Note that oscillations for several curves near t=1000 days and 1500 days are caused by
the abrupt change of the heater power at the beginning and the end of the second phase. These
sudden changes of the boundary condition are also responsible for the similar oscillations observed
in the fluid pressure and the stress histories shown in Figs. 18 and 19, respectively. This is a common
byproduct of using conventional Galerkin method on transient advection-diffusion problems.
Although they disappear in later time steps and are not likely to impair overall results in current case
study, the oscillations can be circumvented by adopting advanced finite element methods, such as
the Subgrid Scale/Gradient Subgrid Scale (SGS/GSGS) method,* Streamline Upwind Petrov-Galerkin

(SUPG)>”® or Finite Increment Calculus (FIC) procedure.”

Fig. 21 shows the C distribution along the radius at different times. The model predicts that the
contaminant is unlikely to reach 3 m away from the canister after 2500 days, even though the
species migration has been accelerated by the advective bulk fluid flow since the beginning of
heating. This demonstrates the excellent sealing properties of Boom clay in retarding the leakage of

contaminants following a critical event.
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6. Concluding remarks

In this paper, a THMC UEL with a thermoporoelastic constitutive model is successfully
implemented. A comprehensive set of verification tests have been conducted to check the
correctness of the implementation at each coupling level. In this process, several analytical solutions
are revisited and rederived to be consistent with the specific governing and constitutive equations
adopted in this study. The verified UEL is then applied to simulate a full-scale heater test, and the
modeling results exhibit good agreement with the field measurements. The ability to simulate
diffusion and advection of chemical species coupled with THM loading makes the developed UEL a

versatile and efficient tool in addressing geological HLW disposal problems.

This article is protected by copyright. All rights reserved.

85UB01 SUOWWOD A1) 8|qeol[dde 8y} A peusenob aJe SsjpnJe YO 9sn JO SNl Joj AriqIT 8UIUQ A8]IM UO (SUONIPUOD-PUE-SUIBI/LIO" A3 1M AeIq Ul [UO//ScnL) SUORIPUOD pue swie 1 8y} 89S *[Z0z/80/6T] Uo ArIqITauliuQ A8]i/M ‘UOTIEWIOJU] [ED1ULDS L PUY IJUBIS JO 89140 Aq 955€ Beu/z00T 0T/I0p/wod Ae|im Arelq Ul juo//:sdny wolj pepeojumod ‘TT ‘€202 ‘€586960T



The full implementation details including the derivation of governing equations, discretization,
residuals, and Jacobian terms are presented. The UEL codes, the input files associated with each

verification test and the ATLAS case study, and a user instruction are provided via Supplementary

{

Materials. We hope the details of the numerical procedure presented here can facilitate the

numerical realization of other THMC or general multiphysical solvers. Specifically, expansions can be

P

made regarding the physical processes at concern by upgrading the field equations, material models,
and element types. The Material module unlocks the potential of the code to integrate with
advanced constitutive models for more precise modeling of different rock formations. In this regard,
the authors is currently implementing a time-dependent microcrack damage model® in Material to
couple with the proposed THMC UEL with the goal to evaluate the long-term microstructural
evolution of host rocks subjected to sustained heating. Another possible extension at the Material
level is to incorporate possible coupling between various diffusion mechanisms in the conduction
laws (i.e., the generalized Darcy’s and Fick’s laws®'). This is important for capturing in coupled mass

63

transport phenomena such as osmotic flow,* buoyancy effect,”® and Soret effect® in porous

geological materials.
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Appendix A: Implementation details of the THMC UEL

Three dimensional isoparametric element
Over an element Q°, we define the coordinate mapping using nodal shape functions as follows:

x(8)=N(¢)x

pt

where N is the shape function matrix, é&=(¢, n, ) constitute a reference coordinate system shown in

Fig. A.
7 A /‘ n

5 6
AV
| Bl >
s - = 3 ¢
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/ /
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Fig. A: Three dimensional trilinear hexahedral isoparametric reference element

to the reference coordinates are given by:

N =g (=)(1=n)(1=0). N, =L (1+£)(1-n)(1-¢).

N, =é(1+5)(“’7)(1‘5)’ N, =é(1—§)(1+f7)(1—§),

V=5 (1=6)(1=m)(1+€). N =2 (1+£)(1-7)(1+£).

N, = (L)1 n)(1+€). Ny = (1=E) (1) (1+€)

The infinitesimal strain € can be subsequently defined as:
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(A1)

For the three-dimensional 8 node trilinear hexahedral element, the node ordering in the natural

coordinates is shown in Fig. A. Accordingly, the shape functions for this type of element with respect

(A2)
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This can be further simplified by relating with Equation (43)as =B~ .
Jacobian

In addition to residuals, the Jacobian terms in Equation (44) are also required by the iterative
solver which uses the Newton-Rapson scheme. For conciseness, all kinematics and state variables

are referred at the next time step with the notation (t+At) omitted.

Jacobian of M equation

First, recalling Equation (45), the Jacobian for the M equation can be derived as:

or A RadO [ N'Tno +(1-n\n ledO

W .z .
(A4)
06 O rﬁNTrnnﬂ+(1—n\n—|o Aun
ZIQB =22 3
ou 0_ ... o
- " 06 O A= A A
Considering W=N_, we have Qv , then s 3 =D B . Further
- u o R
O~ A= A A7 w)
noticing 5_; 3 » and D, =[b—n b-n b-n 0 0 O] )

Equation (A4) can be rewritten as:

where
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Similarly, for the HM coupling term, we have
Al Tean Al NThIN
K,=-2 . .
alf Ulf Ulf
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= J. QBTDthdQ + (ps — Py )j QNTgDnhNdQ

1
where D, =[-b ~b b 0 0 0] and D, TR

Obviously K . =0 and the last term writes:

Al Tean Al NThIN

OK

Kir=-—- - -
01 (7} (71

_I T 86 84

1o A =
oT 01 urL vir UL

= [4B'D,NdQ+(p, - p,) [ oN"gD, NdQ

where D, =-3a, and D, =[—3aK -3aK -3aK 0 O O]T.

Jacobian of H equation

Recalling Equation (46), the HM coupling Jacobians can be expanded as

oP ol No lvi(u v .(w o . A A
K, =-

T oz o

Since £, =V u=V'N_ with
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= mmsmmm Equation (A8) can be rewritten as
_ op ! T 1 T T
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Regarding the Jacobian of H equation with respect to pressure, we have
or Al NT A v Nl A T
KPP = —5\, - -
/ f / (A10)
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According to J‘—v = —IQ(VN) L(VN)G'Q, Equation (A10) finally gives:

Or Hy

: 1 P,
Kyp=-"_ ijNTDnthQ+Ej QNTnFNdQ

S .
+ QNTDnhN[%fJ o ) (A11)
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Similarly, K, =0and K, can be written as:
K, = —%I‘; N [ oN"D, NdQ
+% oN'D,, NI L (A12)

3p,a, T r -
— [oaN'nTNdQ+[ ,N' .
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Jacobian of C equation

Considering Equation (47), the first component K., can be derived as:
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P - pa iy - pa iy - Aan
KCu = _8_v - - -

o = . = .
= [N"D,,B( y [oN"CD,,BdQ+ [ N'CD,, B/

Regarding the Jacobian of C equation with respect to pressure, we have

aj N NT N\ v A0y . Al (e Y onan
Q
K., =

~ ~ ~

al f (7} f (7} f }Jf (74 f

= [oN"D,,NC y [oN"CD,,NdQ

+[ JNCD,,N; [ aC(VNY VNaQ

,LL

5]’ 0 - INAO ;
Considering —aC —I Q(VN) D VNdQ, Kcc can be written as:
oF .
Ke=-"o N'#NdQ+ [ ,N'N;
+f oN"nNi [ oN"q,VNdQ+ [ ,(VN) DVN4©
Fr

The last component can be similarly derived as:
or ' "CD, NdQ "CD, N
Ko == D N( » [oN"CD, NdQ+ [ ,N"CD, N
Jacobian of T equation

Regarding Equation (48), the TM coupling Jacobians can be expanded as:

oP - A
KTu = __av - -
1 GIQNT [(l—n)pscs+npfr?~—|7"(V~u”A’—V-u’)dQ
i o=
]' ,\ o 1. A - -~
+c py K—“f—jaf1 = 5: B E B B
=-pc,[ oN'D,, BT yJoN'D,, BT
+iIQNT [(l—n)pscs +npfcf:|TVTNdQ+cfpf(1'J , J B 340
~[oN"p,c,D,, BT _
(A17)

For the TH coupling term, we have
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K,, = —%‘; JoND, N7 )
f
e _ij JN'Te p, %Nd(ﬂi JoN'T .p,)D,NdQ -
Q +ALtJ.QNTchn%NdQ+cfpf(f” o
W — +[ oN"[=p.c, + pc, D, NTZ ;f—Kj »T(VN)' VNdQ
Obviously K, =0 and the last term writes:

K, = —%} u N'[(1-n) p,c, +npfcf]NdQ—6csA#jQNTTa¢NdQ

+(c,0,—cp, )(i] oN'TD,,NdQ+ [ ;N7 /

+[aN"Ne,np, (1 L o (A19)

_6p;
A

+(pre,—pe,)[ aN'D, NIV [oN"(q,) VNdQ+ [ 4(VN)" k(VN)O

“rr 1“TchnNalQ+[(l—n)/oscs““”Pfcf].[QNTlW

Numerical integration
Targeting at the generalized 3D analysis, a cubic eight-node element (C3D8) with 2x2x2 Gaussian

guadrature points is employed for numerical integration in terms of an arbitrary function f:

[of (ry.z)d@=[ [ [ detdf(&m.&Wédndg

2 2 2 (A20)
222 2 W W, detdf (£.11.€)
i=1 j=1 k=1
where J is also called Jacobian matrix in isoparametric mapping defined by:
]
o 05 0
0 0 0
j=| £ 2= (A21)
on on oOn
& oy &
L 0¢ 0¢ 0¢

Author Manuscr

The final expressions of residuals and Jacobians implemented in the UEL are summarized below.

Note the surface flux terms in residuals Equations (45) - (48) are excluded in the final

implementation since the natural boundary conditions of the M, H, C and T fields applied on GQt
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(Equation (31)), 6Q) (Equation (32)), 6Q) and an’f (Equation (33)), 6Q) and 8(2?{/,

(Equation (34)) are handled by Abaqus CAE.
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Table 1 Governing equations* for the coupled THMC processes

Physics unknowns Governing equations
Q M (mechanical) u V-6+b=0 with bz[npf+(1—n)ps]g
N E— T .
H (hydraulic) Pf Pff i ) =0
\IX i . ’ } ’
/ -
C (Chemical) C n( : ’_qf}_v.qc =0
\Fr

[(l—n)pscs +npfcf}]'

T (Thermal) T T TGP [(l_b)i‘ ST . 1
+(cfpf—csps);' .,
+|:(l—n)pscsT+npfch]a' qu)+v'qT=0

* Note that o, n, €,, 95, q,, q; are intermediate variables. They can be expressed in terms of the
unknowns [u, Py, C, T] via constitutive relation Equation (23), strain-displacement relation
Equation(19), and conduction laws Equation (28).
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Table 2: Material properties for FE simulation
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H Parameter Symbol Value Unit
Q Shear modulus G 300 MPa
I
! Bulk modulus K 300 MPa
O Solid density Ps 2670 kg/m?
m Fluid density P; 1000 kg/m?
Fluid tangent bulk modulus K; 3000 MPa
: Initial porosity N 0.4
C Permeability k 2.6x107™"° m?
m Dynamic viscosity U 0.001 Pa-s
Biot tangent modulus N 3.0x10° MPa
E Biot coefficient b 0.9
Diffusivity D, 8.0x10™ m*/s
s Thermal conductivity K 1.4 W/(m-K)
O Solid specific heat Cs 835 1/(kgK)
Fluid specific heat o 4202 1/(kgK)
c Solid thermal expansion coefficient o 5.0x10° K*
Thermal expansion coefficient related to
: _ o 4.0x10° K
porosity
< Fluid thermal expansion coefficient o 1.0x10™ K*
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