Machine Learning Application for CCUS and Fracture
Analysis

Guoxiang (Gavin) Liu*, Abhash Kumar, William Bill Harbert, Hema Siriwardane,
Evgeniy Myshakin, VVyacheslav Romanov, Dustin Crandall, Luciane Cunha

NATIONAL P o
SR, U.S. DEPARTMENT OF N

& ENERGY TL [FEsinorocy f{; 3’1/—\?| Reference: ARMA 24 — 1183

LABORATORY ~




Disclaimer

« This project was funded by the United States Department of Energy,
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Science-informed Machine Learning for Accelerating Real-Time Decisions in
Subsurface Applications (SMART) Initiative
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Backaround (cont.)
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Transforming decisions through clear vision of the present and future subsurface.
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Introduction

Why does fracture/fault matter for CO,
storage/sequestration?

What are the impacts of fracture/fault
for CO, storage in the reservoir?

How can machine learning help in the
process and overall carbon storage
decision making?

Use case: Illinois Basin —
Project (IBDP)

Decatur
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IBDP (lllinois Basin — Decatur Project ) Use Case 1

A Microseismic catalog Machine Learning Applications Fracture Plane Orientations
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Methods

Quantifying discrete microseismic time windows
Microseismic triggering fronts identification
ML-based microseismic cluster identification

 Quantification of best fitting fracture planes Unsupervised ML algorithms
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Microseismic Analysis

Spatial distribution of microseismic events at the IBDP site (center). (a) Magnitude of completeness, and (b-d) b-
value variations for three separate regions.
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Time Windows

Variations in average downhole pressure. Nineteen microseismic time windows (shaded boxes) marked by extended
period of bottomhole pressure changes.
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Microseismic time windows statistics (Duration-Event Counts
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Triggering Fronts

Discrete triggering fronts (shaded rectangles) identified within each microseismic time window by hydraulic
diffusivity analysis.
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Microseismic Analysis (cont.)

6000

Identified clusters of microseismic events within each triggering front of time window 17 (center plot).
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Fracture Mapping

3D distribution of fracture planes (shaded 2-sigma ellipsoids) around the injection well (red line) for time windows:
(a) time window 9, (b) time window 17, and (c) time window 19.
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Fracture Mapping (cont.)

(A) Previously identified fault plane solutions (green lines) for the microseismic clusters. (B) 3D distribution
of fracture network (green lines) around the injection well as determined using machine learning techniques in
the current study.
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Multi-Level Fracture Network Analysis and Visualization NATIONAL
TECHNOLOGY

« Microseismic Data Well Layout/Distance Log/Core Data Fracking/Pumping Data
« Tracer Data Production Data Pressure Interference Testing Flowback/DFI Data
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Use Case 2: HFTS-1 (Hydraulic Fracturing Test Site)
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HFTS-1 (Hydraulic Fracturing Test Site) Use Case (Cont.)

Elements: Wells Stages Fractures: Natural Hydraulic
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Use Case 3: Fracture Interference N=|narion
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Well Pads Selection N = |NATIONAL
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/* Frac-hit probability: Feature-weighted estimation, ™\
suchas: p = 0.1+ P+ 08% || + 001+ 0 +0.04 «|22| + 001« W + 0,04+ ||

* Machine learning models: LSTM + multilayer perceptron (MLP) structure

\* Frac-hit identification: Pairs interaction (one-to-one); pad interaction (muItipIe-to-one)/
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Frac-Hit Instance Examples N = [MfRNA
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e Effects of fracking well in pad 133 on production well in pad 137

* High probability of a frac-hit due to large pressure and production-rate swings
* Extra potential frac-hits outside of the selected fracking window
* Flexible probability definition based on the data features and operating conditions




Model Performance: Frac-Hit Identification

N: NATIONAL
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Remarks

« Successful assimilation of data from multiple sources (microseismic, pumping, CO, flow rate, etc.)

« Implementation of physics-based machine learning algorithms to quantify the microseismic event clusters and
time series production and pressure data are promising

 Spatial mapping of reservoir scale fracture network, enclosed volume measures, as well as frac-hit are
benefitable from MLs

« Python based ML software tools for scalable deployment for field data processing and interpretation

Following Steps

IBDP vwi ccs2  ICCS
CCS1

VW2

» More features from other datasets well logs/core testing etc.  perm
[md]

« Collaborate with other expertise from team/crossing-team p..

~=10.00

—1.00

» Leverage fracture network results and outcomes to
geological modeling, geomachenical & simulation studies
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0.01
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