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Disclaimer

• This project was funded by the United States Department of Energy, 
National Energy Technology Laboratory, in part, through a site support 
contract. Neither the United States Government nor any agency thereof, 
nor any of their employees, nor the support contractor, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its 
use would not infringe privately owned rights.  Reference herein to any 
specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof.
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Background
Science-informed Machine Learning for Accelerating Real-Time Decisions in 
Subsurface Applications (SMART) Initiative



Background (cont.)



• Why does fracture/fault matter for CO2 

storage/sequestration?

• What are the impacts of fracture/fault 

for CO2 storage in the reservoir?

• How can machine learning help in the 

process and overall carbon storage 

decision making?

• Use case: Illinois Basin – Decatur 

Project (IBDP)

Introduction



IBDP (Illinois Basin – Decatur Project ) Use Case 1
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Machine Learning Applications



Methods

• Quantifying discrete microseismic time windows

• Microseismic triggering fronts identification

• ML-based microseismic cluster identification 

• Quantification of best fitting fracture planes

➢Standard deviational ellipsoids

➢Eigen vector extraction



Spatial distribution of microseismic events at the IBDP site (center). (a) Magnitude of completeness, and (b-d) b-
value variations for three separate regions.

Microseismic Analysis



Variations in average downhole pressure. Nineteen microseismic time windows (shaded boxes) marked by extended 
period of bottomhole pressure changes.

Time Windows



Microseismic time windows statistics (Duration-Event Counts)



Discrete triggering fronts (shaded rectangles) identified within each microseismic time window by hydraulic 
diffusivity analysis.

Triggering Fronts



Identified clusters of microseismic events within each triggering front of time window 17 (center plot).

Microseismic Analysis (cont.)



3D distribution of fracture planes (shaded 2-sigma ellipsoids) around the injection well (red line) for time windows: 
(a) time window 9, (b) time window 17, and (c) time window 19.

Fracture Mapping



(A) Previously identified fault plane solutions (green lines) for the microseismic clusters. (B) 3D distribution 
of fracture network (green lines) around the injection well as determined using machine learning techniques in 
the current study.

Fracture Mapping (cont.)
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HFTS-1 Dataset 

• Microseismic Data       Well Layout/Distance       Log/Core Data                          Fracking/Pumping Data      

• Tracer Data                   Production Data               Pressure Interference Testing   Flowback/DFI Data

Multi-Level Fracture Network Analysis and Visualization

URTeC: 5159

Fracture network segmental 
level of ML testing 

C



Use Case 2: HFTS-1 (Hydraulic Fracturing Test Site)
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• Well level: pressure interference test,  

DFIT/Flowback

• Segment level: Tracer data, pumping data, 

well trajectory/distance 

• Stage level: Pumping data, microseimic data, 

log/core data  

Well level

Segment level

Stage level
Tracer Testing Layout

URTeC: 3723466
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HFTS-1 (Hydraulic Fracturing Test Site) Use Case (Cont.)
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Texas

Use Case 3: Fracture Interference

• Midland basin (local field with many 
active pads and a total of several 
hundred wells)

• Proprietary oil and gas field operations 
data:

➢ Incomplete and partially accessed 
production details

➢ Well distance

➢ Pressure



Well Pads Selection
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• Pad 137 was the point of interest in 
the within-pad frac-hits study
➢ 12 interacting wells identified
➢ Fracking was primarily done in 

two batches

• Pads 133 and 138 were selected to 
study inter-pad interactions

• Emphasis was made on the 
pressure and production anomalies 
and fracking time

137
133 138

Well Pads (Top View)



• Frac-hit probability: Feature-weighted estimation,

    such as:  𝑝 = 0.1 ∗ 𝑃 +0.8 ∗
𝑑𝑃

𝑑𝑡
+0.01 ∗ 𝑂 +0.04 ∗

𝑑𝑂

𝑑𝑡
+0.01 ∗𝑊+0.04 ∗

𝑑𝑊

𝑑𝑡

• Machine learning models: LSTM + multilayer perceptron (MLP) structure

• Frac-hit identification:  Pairs interaction (one-to-one); pad interaction (multiple-to-one)

Methodology
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• Effects of fracking well in pad 133 on production well in pad 137
• High probability of a frac-hit due to large pressure and production-rate swings
• Extra potential frac-hits outside of the selected fracking window 
• Flexible probability definition based on the data features and operating conditions 

Frac-Hit Instance Examples
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Pressure Oil Water

𝒑 = 𝟎.𝟏 ∗𝑷+𝟎.𝟖 ∗
𝒅𝑷

𝒅𝒕
+𝟎.𝟎𝟏 ∗𝑶+𝟎.𝟎𝟒 ∗

𝒅𝑶

𝒅𝒕
+𝟎.𝟎𝟏 ∗𝑾+𝟎.𝟎𝟒 ∗

𝒅𝑾

𝒅𝒕



Model Performance: Frac-Hit Identification
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Frac-hit due to the 
inter-well interactions

Frac-hit due to the 
intra-well interactions



Frac-Hit Economic Impact
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With Lost Production calculated for complete 

dataset of 287 wells, historical oil price ($/bbl) 

was correlated with the collected dates of ‘Shut-

in’ and ‘Frac-hit’ periods.

Well biography for the “Colt 45 5HB” well, 

indicating the range used to estimate lost oil 

production for the well.

Estimated total loss: $30 million due to ‘Shut-in’ and 

‘Frac-hit’ events

Details were reported in ML4SS FWP final report, 2022



• Successful assimilation of data from multiple sources (microseismic, pumping, CO2 flow rate, etc.)

• Implementation of physics-based machine learning algorithms to quantify the microseismic event clusters and 

time series production and pressure data are promising

• Spatial mapping of reservoir scale fracture network, enclosed volume measures, as well as frac-hit are 

benefitable from MLs 

• Python based ML software tools for scalable deployment for field data processing and interpretation

Remarks

Following Steps

• More features from other datasets well logs/core testing etc. 

• Collaborate with other expertise from team/crossing-team

• Leverage fracture network results and outcomes to 

geological modeling, geomachenical & simulation studies
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