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Highlights

e We introduce a fully coupled finite element/finite volume approach to simulate multiphase fluid flow and the
associated rock deformations.

e This approach highlights how the coupling between rock deformations and multiphase fluid flow impacts
short-term mechanical responses in the vicinity of the injection wells.

e The results of this numerical model are successfully verified against reference analytical solutions for
multiphase flow and wellbore problems.

e We have tested the approach using both poroelastic and poroplastic deformations on an engineering problem,
demonstrating the important effects of plasticity in CO; injection scenario.

e  This work contributes to better operational decisions for designing CO; injection operations by assessing the
containment potential of a site, and by analyzing the wellbore integrity during and after CO- injection.

Abstract In geological CO; storage operations, wellbore deformations and leakage pathways formations can occur
around injection and abandoned wells subjected to high rates and long-term CO; injection. To guide engineering
design and prevent CO; leakage risks, a full understanding of the underlying physics and robust numerical models are
necessary to evaluate the response of underground formations in the near wellbore region and in the reservoir. In this
study, a multi-scale and multi-physics open-source simulator (GEOS) is used to simulate multiphase flow and
poromechanical deformations over time in three dimensions. The governing equations for mechanical deformations
of the rock body and multiphase compositional fluid flow within the rock matrix are solved with a fully coupled finite
element and finite volume approach. The Drucker-Prager model with friction hardening is applied to simulate
elastoplastic deformation and a multiphase fluid model with power-law correlations for relative permeability is used
to model the migration of CO, plume, which are coupled with numerical implicit scheme. Simulation results are
verified against multiple analytical solutions for multiphase flow and wellbore problems, thus demonstrating the
accuracy of this advanced simulator. In two engineering applications, we highlight the impact of elastoplastic
deformation and coupled modeling for assessing induced displacements and stress perturbations, which are more
pronounced in the near wellbore regions. This work focuses on short-term processes in the vicinity of injection wells
where stress evolutions, rock deformations and multiphase compositional flow and transport are simulated jointly to
ensure wellbore stability and prevent damage. This fully coupled geomechanical model can simulate multiphase flow
and any associated poromechanical effects within the CO, storage site and in the surrounding formations. Such a
large-scale, long-term, multi-physics simulation model is useful in many ways: it can guide operational decisions for
CO: injection, assess the containment potential and risks of a site, and analyze the wellbore stability and integrity
during and after CO; injection.

Keywords multiphase flow, poromechanics, implicit coupling, near wellbore, plasticity

1. INTRODUCTION

Geological carbon sequestration is a method to reduce atmospheric carbon dioxide concentrations by storing CO> in
geological underground formations. The geomechanical deformations near CO; injectors can lead to operational and
geological hazards. With high rates and long-term injections, leakage pathways can form around abandoned wells and
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faults (Nogues et al., 2011; Gan et al., 2021). During and after CO, storage operations, it is important to preserve the
wellbore and caprock integrity and mitigate CO- leakage risks (Bachu and Bennion, 2009; Vilarrasa, 2014; Torsater
etal., 2017; Onishi et al., 2019; Joulin et al., 2022).

Geomechanical deformations are due to pressure changes during injections in the pore space. The coupling between
rock mechanical deformations and fluid flow and transport has been investigated in the literature (Rajapakse, 1993;
Cappa and Rutqvist, 2011; Shi and Durucan, 2019). Terzaghi (1923; 1925) proposed the first linear poroelastic theory
for solving one-dimensional soil consolidation problems under hydro-mechanical coupling. This theory was extended
by Biot (1935; 1941) to describe soil consolidation in three dimensions. Their theory was developed for soft formations
where the compressibility of solid grains and pore fluids is negligible. To generalize the poroelastic theory for deep
geological formations, the deformations of matrix materials and pore fluids were included. Rice and Cleary (1976)
reformulated the equations of poroelasticity with a distinction between drained and undrained conditions, accounting
for fluid compressibility. Departing from soil consolidation (Carter and Booker, 1982), Detournay and Cheng (1993)
provided governing equations and analytical solutions for different geotechnical problems in deep formations. Their
work has been used to benchmark the developments and applications of geomechanical tools in the field of carbon
storage (Goerke et al., 2011; Benisch et al., 2013; Jha and Juanes, 2014; Lu and Wheeler, 2020; Camargo et al., 2022;
Kachuma et al., 2023), hydrocarbon production (Yin et al., 2007; Roshan and Fahd, 2012; Alpak, 2015; Huang and
Ghassemi, 2015; Huang and Ghassemi, 2017) and geothermal exploitation (Zhou and Ghassemi, 2009; Siddiqui and
Roshan, 2022; Mutlu et al., 2023).

The governing equations of linear poroelasticity have since been extended to couplings with nonlinear fluid rheology
and mechanical behaviors. Within the framework of non-equilibrium thermodynamics, Heidug and Wong (1996)
derived a fully coupled chemo-poroelastic model to capture hydration swelling of saturated rocks. Using mixture
theory, they established a way to quantify the chemical fluid—solid interactions. In the extension of this chemo-
poroelastic theory, thermal effects were incorporated into constitutive equations to estimate the coupled chemo-poro-
thermoelastic effects on the perturbations of pore pressure and in-situ stresses in the near wellbore region (Ghassemi
et al., 2009; Zhou and Ghassemi, 2009; Liu et al., 2022). To account for the effects of adsorbed gas on matrix
deformations, nonlinear constitutive models were constructed to simulate gas transportation in hydrocarbon-bearing
formations (Zhao et al., 2004; Zhang et al., 2008; Huang and Ghassemi, 2015). To assess the stability of inclined
wellbores, transverse isotropic poroelastic solutions were proposed by Abousleiman and Cui (1998). These studies
paved the way to a theoretical framework for simulating single-phase flow in deformable porous media. However,
they deal with linear elasticity only, an easy form to implement for underground deformations. Linear elasticity models
are not accurate enough for predicting mechanical deformations and rock strength changes around injection and legacy
wells during long operations (Zhou and Ghassemi, 2009; Alpak, 2015; Mutlu et al., 2023).

Deep geological formations can exhibit inelastic behaviors (plastic, viscoelastic, or viscoplastic) depending on local
properties and loading conditions (Jaeger and Cook, 1979; Colmenares and Zoback, 2002; Bui et al., 2014; Chen and
Abousleiman, 2017; Huang and Ghassemi, 2017; Xie et al., 2019). In the near-well regions of both injection and
abandoned wells, stress concentrations and induced damages challenge well integrity and operation strategies (Liu et
al., 2021; Joulin et al., 2022; Mutlu et al., 2023). To mitigate operational issues, various elasto-plastic models were
proposed to assess wellbore stability and casing deformations during injections or depletions (Wang and Samuel,
2016; Xie et al., 2019; Joulin et al., 2022; Sun et al., 2022). Compared to linear elastic models, elasto-plastic models
provide a more accurate description of the mechanical behaviors of underground formations. If the stress levels are
lower than the yield strength, elastic deformations suffice to predict changes in rock size and shape. However, beyond
the yield strength, irreversible and time-dependent changes to microstructures call for plastic or viscoplastic
deformation models (Bui et al., 2014; Xie et al., 2019). Elasto-plastic models are therefore necessary to predict the
temporal and spatial mechanical responses in the near-wellbore regions and across storage sites (Alpak, 2015; Chen
and Abousleiman, 2017; Huang and Ghassemi, 2017; Liu et al., 2021; Mutlu et al., 2023).

Several elasto-plastic models have been developed for specific lithologies or loading conditions (Maiolino and Luong,
2009; Colmenares and Zoback, 2002; Aublivé-Conil et al., 2020). Most models derive from the generalized theory of
Mohr-Coulomb (Mohr, 1900). A linear form of the Mohr—Coulomb failure criterion has, for instance, been developed
and applied for modelling deformations of various soils and rocks (Jaeger and Cook, 1979; Mogi, 2007). In this model,
the yield strength was defined as a function of a cohesion criterion and a friction angle. These two properties are
measured from triaxial tests (Colmenares and Zoback, 2002; Mogi, 2007). However, the yield function was assumed
independent of the mean stress, ignoring the impact of the intermediate principal stress on the yield strength (Labuz
and Zang, 2012; Pan et al., 2016; Liu et al., 2021). Consequently, the deviatoric shape of the Mohr-Coulomb yield
surface (the boundary between plastic and elastic regions) is an irregular hexagon (Colmenares and Zoback, 2002;
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Conil et al., 2004; Maiolino and Luong, 2009). Working on a yield surface with sharp corners degrades the
convergence of numerical models of Mohr-Coulomb (Conil et al., 2004; Labuz and Zang, 2012).

To overcome this numerical obstacle, a dependence of the yield strength on hydrostatic stress levels was introduced
in the Drucker-Prager model (Drucker and Prager, 1952; Armero, 1999; Alejano and Bobet, 2012; Vilarrasa, 2014;
Singh et al., 2019; Liu et al., 2020). In this model, the yield strength is governed by the deviatoric and hydrostatic
stress (the first two stress invariants). In the stress space, the yield surface forms a cone whose deviatoric shape is a
circle (Maiolino and Luong, 2009; Alejano and Bobet, 2012). Originally, the Drucker-Prager model was expressed in
a linear form. It was then extended into exponential and hyperbolic forms (Alejano and Bobet, 2012). Then, to account
for pore collapse under volumetric compression, different cap models were added to the Drucker-Prager yield surface
(Lubarda et al. 1996; Choo and Sun, 2018; Liu et al., 2021). Finally, the compressive failure and pressure dependence
of elastic properties were captured in the Modified Cam-Clay model, originally developed for saturated soils (Borja
et al., 1997; Charlez, 1997). In all these enrichments, Drucker-Prager models have smooth yield surfaces and good
numerical behaviors. They are thus common in reservoir simulations (Armero, 1999; Conil et al., 2004; Alpak, 2015).

Drucker—Prager model and its extensions have been applied to geomechanical problems for a variety of materials,
including both soil and rocks (Colmenares and Zoback, 2002). Several subsurface energy production and underground
storage problems have been handled with this elastoplastic constitutive model, including reservoir compaction,
wellbore stability, fracture propagation, fault stability and caprock integrity. Armero (1999) proposed a formulation
and finite element implementation of coupled poroplasticity based on stable staggered schemes. An associated
Drucker-Prager model was chosen to mimic soil consolidation and compression tests. Based on triaxial compression
tests and non-associated Drucker-Prager criterion, Conil et al. (2004) developed an anisotropic poroplastic damage
model to simulate material degradations of claystone considering the influence of anisotropic microcracks on the
poromechanical coupling. Vilarrasa (2014) evaluated caprock integrity during COz injection by adopting the Drucker-
Prager failure criterion at different stress regimes. He concluded that the fluid pressure evolution and its impact on
caprock stability varies significantly if injecting through horizontal or vertical wells. Chen and Abousleiman (2017)
analytically solved the tunnel excavation and related wellbore stability problems with both friction hardening and
hardening-softening Drucker-Prager models. The same wellbore problem was numerically handled by Liu and Chen
(2017), who employed a Drucker-Prager model with a return mapping scheme. White et al. (2018) developed a
compositional reservoir simulator coupled with a hardening Drucker-Prager model for predicting wellbore failure and
modeling field scale CO, storage. Choo and Sun (2018) coupled a phase field approach with a Drucker—Prager model
to capture the mechanical transition between brittle failure and ductile flow for geomaterials subject to loading and
reservoir conditions typically encountered in subsurface energy production and CO, sequestration. To allow yield
under hydrostatic stress, a compression cap model was incorporated into the original Drucker-Prager model. Similarly,
Liu et al. (2021) combined a Drucker—Prager model with a cap plasticity model to explore the mechanical stability of
production wells drilled in shallow sediments, which were characterized as weakly consolidated or even
unconsolidated formation. Sun et al. (2024) developed an analytical wellbore stability model to investigate casing-
reservoir interaction during hydrate depressurization production. In their work, a modified Drucker-Prager model with
cohesion weakening caused by hydrate decomposition was considered.

When loading rock samples beyond the yield strength, stress-strain curves move either up or down, indicating
irreversible changes in rock strength. Multiple hardening laws (Charlez, 1997; Armero, 1999; Liu and Chen, 2017;
Choo and Sun, 2018), or softening laws (Roshan and Fahad, 2012; Lv et al., 2019; Guan et al., 2022) enrich elasto-
plastic models to represent this strain strengthening or weakening behavior. These laws correlate changes in shape
and position of yield surfaces to the plastic strain and to several other variables such as the cohesion, friction angle or
dilatancy coefficient (Armero, 1999; Conil et al., 2004; Choo and Sun, 2018; Liu et al., 2021; Lu et al., 2022). The
Drucker-Prager model with friction hardening was used to analytically solve the tunnel excavation problem (Chen
and Abousleiman, 2017). In their model, the initial position of the failure envelope is determined by the initial cohesion
and friction angle, and its slope depends on the internal friction angle, a quantity linearly related to the accumulated
plastic strain and capped by the residual value. Their analytical solution has then been verified by solving the same
problem using a finite element model (Liu and Chen, 2017). In our work, we have implemented this elastoplastic
model with strain hardening to simulate the inelastic response of underground formations when injecting CO.. We
verify our numerical results with the analytical solution of Chen and Abousleiman (2017).

To have a better understanding of the coupling effects between rock deformations and pore fluid diffusion, the
elastoplastic nonlinear mechanical behaviors are added into Biot's theory (Abousleiman et al., 1993; Yale, 2002;
Roshan and Fahad 2012; Huang and Ghassemi, 2017; White et al., 2017; Tsopela et al., 2022). These coupled
poromechanical models were developed for porous media saturated with a single-phase fluid (Yin et al., 2007; Bui et
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al., 2014; Jha and Juanes, 2014). Considering the existence of multiphase mixtures (gas/oil/water) in underground
geological formations, a more general theory is required for modeling geological carbon storage (Goerke et al., 2011;
Jha and Juanes, 2014; Pan et al., 2016; Shi and Durucan, 2019; Bui et al., 2020; Camargo et al., 2022; Tsopela et al.,
2022). Poromechanical coupling with multiple phases create stronger nonlinearity effects (Shi and Durucan, 2019).
Multiphase flow, fluid saturation, phase compressibility, capillary effect, gas adsorption and desorption, pore size,
pore connection, and compaction have a cumulative impact on pore fluid movements in the pore space and into faults
and fractures (Jha and Juanes, 2014; Onishi etal., 2019). These displacements of reservoir fluids and their compression
(or expansion) cause stress changes and induce mechanical deformations (Pan et al., 2016). Consequently, inelastic
deformations and fault reactivations can occur (Cappa and Rutqvist, 2011; Jha and Juanes, 2014; Liu et al., 2021,
Tsopelaetal., 2022). Multiphase geomechanical models were used to select monitoring techniques to assess formation
uplift and caprock integrity (Camargo et al., 2022). Gas desorption, thermal and chemical interactions can further
strengthen coupling effects between fluid flow and rock deformations (Huang and Ghassemi, 2010; Alpak, 2015;
Torsaeter et al., 2017; Khan et al., 2018; Siddiqui and Roshan, 2022) and affect CO, trapping mechanisms (Goerke et
al., 2011).

Mechanical deformations of porous media are tightly coupled with fluid flow and transport. To solve poromechanical
problems numerically, several coupling schemes have been proposed such as implicit, iterative, explicit, and pseudo
(Benisch et al., 2013; Alpak, 2015; Lu and Wheeler, 2020). Among them, fully implicit couplings are used most
frequently, with fluid flow and rock deformation equations solved simultaneously (Huang and Ghassemi, 2015;
Kachuma et al., 2023). This method requires preconditioners to solve the large ill-conditioned linear systems resulting
from the discretization of tightly coupled equations (Lu and Wheeler, 2020). Bui et al. (2020) proposed a scalable
physics-based block-triangular preconditioning framework based on Multi-Grid Reduction (MGR) capable of solving
basin-scale poromechanical problems. In this work, we use a fully implicit coupling strategy.

To detect operational risks in carbon storage sites, we need a tool that simulates poromechanical deformations of
geological formations coupled to the transport of multiphase fluids in the pore space due to CO; injection and
migration. This is one of the objectives of GEOS, an open source multiphysics numerical simulator (Settgast et al.,
2022). In this paper, we benchmark the modeling capabilities, potential applications, and improvements of GEOS in
carbon sequestration design and near-wellbore risk analysis. We use the Drucker-Prager model with friction hardening
to simulate elastoplastic deformations and a multiphase fluid model with power-law relative permeability to model
the migration of a CO; plume. Mechanical deformations and fluid flow are coupled in a fully implicit way and solved
with MGR preconditioning techniques.

To capture inelastic rock deformation reported in carbon sequestration operations, plastic models have been added to
GEOS and coupled with multiphase flow solvers. In the current version of GEOS, we have four elasto-plastic
constitutive models: Drucker-Prager with cohesion hardening, extended Drucker-Prager with friction hardening,
Modified Cam-Clay, and Delft Egg. The Drucker—Prager model and its extended formulations have been used
extensively to solve geomechanical problems including CO2 storage. Therefore, we chose this model for the near-
wellbore risk analysis in this study. First, we review the theoretical foundations required to address the geomechanical
problems. Then, we show GEOS results for five examples of multiphase flow and wellbore problems with known
analytical solutions. This demonstrates the accuracy of the extended Drucker-Prager model and the poromechanical
framework. Finally, we present two engineering problems focused on the coupling between mechanical deformation
(elastic or plastic) and multiphase fluid flow near CO2 injection wells. From these results, we discuss the advantages
and limitations of the extended Drucker-Prager model coupled with multiphase flow. We point out that the poroelastic
model with single-phase flow is not capable of predicting the formation of a CO2 plume and of a plastic zone in the
vicinity of the injection wells. This highlights the importance of elastoplastic deformations and multiphase flow for
modeling CO2 injection and migration in underground formations and demonstrates the applicability of the Drucker-
Prager poroplastic model for designing carbon sequestration operations. Our goal for implementing these poroplastic
models into GEOS is to run large-scale poromechanical simulations for CO2 storage on distributed, high-performance
computing platforms (Camargo et al., 2022; Kachuma et al., 2023). We also offer insights on the impact of plasticity-
induced permeability changes and saturation-dependent rock properties, but will address these questions in subsequent
works.

2. THEORY

When multiphase fluids flow through a porous medium, spatiotemporal evolutions of rock deformations governed by
fluid-fluid and fluid-rock interactions occur. These evolutions have been investigated and simulated at different scales.
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The difficulty of modeling multiphase flow in porous medium originates primarily from non-linear couplings between
four processes: (i) mechanical deformations of the medium and associated porosity and permeability changes; (ii)
fluid flow and induced pore pressure variations; (iii) complex rheology of compositional fluids; (iv) relative
permeability of each phase and capillary effects. These non-linear equation systems are closed with conservation laws
on mass, force, and energy. The equations governing nonlinear multiphase poromechanics consists of a momentum
balance equation and a set of mass balance equations. In this formulation, compressible immiscible two-phase flow
and quasi-static small-strain deformation are considered.

For isotropic and isothermal reservoirs without chemical influences, the balance of linear momentum can be written
as (Coussy 2004; Bui et al., 2020; Camargo et al., 2022):

V-o+p,g=0 @

where o represents the Cauchy total stress tensor, g denotes the gravity vector, and the bulk density p,, of a porous
medium is given as:

pr=0—0)ps+DXrpeSe )
where @ is the porosity, p; is the rock density, p, and S, denote the fluid density and saturation of phase ¢.

The mass conservation equation for each fluid phase ¢ is expressed as:

d
TV w,—q, =0 @)

where m, represents the mass content of phase £ (mass per unit volume of porous medium), w, and q, denote the
mass flux (mass flow rate per unit area) and source term (mass content rate per unit volume) of phase £, which are
defined as:

my = 0%, peSe 4)
W, =Yy Pe Ve ®)
where v, is the fluid velocity of phase £. Neglecting capillary pressure, the phase velocity is computed through
Darcy’s law:

kkrp
He

V(pp + e 9) (6)

where p,, is the pore fluid pressure, u, is the viscosity of the fluid phase ¢, k,, is the relative permeability of phase
¢, k is the absolute permeability of the formation. Non-Darcy flow is not considered in this work.

v, =

The Brooks-Corey relationship is employed to compute the relative permeabilities of the CO2-rich phase (k,,) and
the aqueous phase (k) as a function of the phase saturations (S,) and (S, ):
kre = kpp(S™ (7

where k2, denotes the maximum relative permeability of phase £; n, is the Corey exponent; the scaled volume
fraction (saturation) of phase ¢ is given as:

Sp=S
S* — £720r 8
¢ T 1-Sgr—Swr 8)

where Sy, and S,,,- are the residual saturations of the CO-rich and aqueous phases.

Based on Biot’s theory, the constitutive equation is proposed to link the changes in total stress with changes in strain
(Detournay and Cheng, 1993; Jha and Juanes, 2014; Huang and Ghassemi, 2015; Cheng, 2016). In incremental form,
the effective stress (¢”) is defined as a function of the total stress (o), pore fluid pressure p, and Biot coefficient (b)
(tension is considered positive):

b0 =60’ — bdp,1 9)
0’ =Cy: € (10)

where €4, denotes drained elasticity tensor; 1 represents the identity tensor; & is the strain tensor, which can be linked
to the displacement vector u:



£= 2(Vu+9Tu) (11)

T2

Fluid flow is coupled with mechanics though the change in porosity computed as:

0 — B0 = b(es — £0) + (=22) (B — Ppo) (12)

Ks

where @y, &40, Ppo represent the porosity, volumetric strain, and pore fluid pressure at the reference state respectively;

b=1 —% denotes the Biot coefficient with K4, and K, representing the drained bulk modulus of the porous
S

medium and the bulk modulus of the solid constituent.

Extending into the plasticity regime with small strain assumption, the total strain & is expressed as the sum of elastic
(£°) and plastic (&P) strains:

e= g+ & (13)
The plastic strain tensor is determined from the flow rule:

se? = AL (14)

Where A is the plastic strain rate and f denotes the plastic potential. Then, the stress-strain relationship is given as:
b0’ = C,y: 6¢ (15)
Where C,, is the stiffness tensor for elasto-plastic materials.

An extended Drucker-Prager model (Chen and Abousleiman, 2017) is implemented into the geomechanical model,
whose yield surface is defined as:

- A
fe.9=qa+B(p-5)=0 (16)
where p and g represent the mean and deviatoric stress respectively; c; is the initial cohesion intercept; 8 and §;
denote the slope of current and initial yield surface in the p — g space, which can be related:

B =B +—(B —B) (17

@+
where 1 is the accumulated deviatoric plastic strain; ¢ is a controlling parameter of the hardening rate.

In this plasticity model, the initial position of the yield surface is determined by the initial friction angle and cohesion.
With plastic deformations, the friction angle changes (hardens or softens) and asymptotically approaches a residual

angle. However, the vertex of the Drucker-Prager cone remains fixed atp = % in the p - g space. This way, the
cohesion intercept evolves with the friction angle.

In this formulation, changes in the fluid pressure cause an effective stress perturbation and the deformation of the
porous medium. Simultaneously, fluid mass transport and pressure evolution are influenced by the mechanical
deformation of the porous medium. This formulation has been implemented in GEOS, the open-source high-fidelity
numerical simulator employed in this study.

To simplify the problem, here, the thermodynamic behavior of the fluid mixture is described with an immiscible
compressible two-phase model. The simulator uses a fully implicit, fully coupled finite element/finite volume
approach to simulate multiphase fluid flow and the associated porous rock deformation. The momentum and mass
conservation equations are solved on a discretized medium to update simultaneously the mechanical and flow primary
variables at each time step. A two-point approximation of the flux (TPFA) is used to discretize the mass flux between
cells (Kachuma et al., 2023).

3. VERIFICATION

In this section, the accuracy and applicability of GEOS are demonstrated. First, GEOS results are verified against
analytical solutions of two classic consolidation problems and a Buckley-Leverett problem, thus testing poroelasticity



and multiphase flow capabilities. Then, two wellbore cases are simulated to verify the implementation of coupled
poroelasticity and plasticity models for operational wellbore problems.

3.1.  Terzaghi’s consolidation problem

In this first example, we simulate a one-dimensional consolidation problem with simple loading conditions. The
analytical solutions of this problem are well-known references and can be used to check the accuracy of numerical
predictions (Detournay and Cheng,1993; Ferronato et al., 2010; Huang and Ghassemi, 2017).

Fig.1 shows the setup for this problem, consisting of a poroelastic 1x1x10 m porous column under a constant load and
drained through the top surface. Rock properties for this example are listed in Table 1, which corresponds to Ruhr
sandstone from literature (Detournay and Cheng, 1993; Cheng, 2016). The column is elastic, homogeneous, isotropic,
and fully saturated with fluid. GEOS solves an oedometric deformation in the vertical direction with drainage through
the top surface. The lateral surfaces and basement are fixed and impermeable.

A uniform compressive traction of 1.0 MPa is applied instantaneously on the top surface at time ¢t = 0. Note that
throughout this paper, compressive stresses and strains are negative. Due to coupling effect, the induced overpressure
and the corresponding settlement gradually propagate across the poroelastic column. Fig.2 provides comparisons
between the numerical simulations from GEOS and the analytical solutions (Detournay and Cheng,1993; Ferronato et
al., 2010) on pore pressure (Fig.2a) and vertical displacement (Fig.2b). Our numerical results are in good agreement
with the analytical results.

Next, we test the same configuration using different boundary conditions. Instead of a compressive traction, the upper
surface is loaded with a constant fluid pressure p = 1.0 MPa attime t = 0. Like before, we assume that the top surface
is the only moving boundary. The analytical solution of this problem was derived by Detournay and Cheng (1993). In
Fig.3, the pore pressure and vertical displacement along depth are solved by GEOS and compared to the corresponding
analytical solutions. In Fig.3a, the pore pressure within the column increases with time until reaching the constant
value at the top surface. The increase of pore pressure causes a dilation of the porous column. Numerical results match
the analytical solutions and confirm the rebound of the top surface and the increase of pore pressure upon fluid loading.

These two tests show that GEOS matches analytical responses for oedometric deformations and elastic responses of
a simple porous media. In the following sections, we test GEOS on more complex geometries, loading conditions, and
mechanical behaviors to compare its numerical results against reference solutions.

3.2. Mandel’s Problem

After Terzaghi’s consolidation problem, we use GEOS to solve Mandel’s 2D consolidation problem, a classic
poroelasticity benchmark (Mandel, 1953; Jha and Juanes, 2014; Lu and Wheeler, 2020). This example serves to further
verify our implementation of coupled poroelasticity.

As shown in Fig.4, we simulate the consolidation of a poroelastic slab between two rigid and impermeable plates
subject to a constant normal force. The slab is fully saturated, homogeneous, isotropic, and infinitely long in the y-
direction. A uniform compressive load is applied in the vertical direction. This force leads to a change of pore pressure
and causes mechanical deformations of the sample that evolve with time due to fluid diffusion and coupling effects.
The numerical model represents a plane strain deformation and allows lateral drainage without confinement. Only a
quarter of the computational domain in the x-z plane is modeled and the rest follows by symmetry. We assume single-
phase flow to reproduce the conditions of the analytical solution.

A 1x1x0.1 mslab is discretized with 20x1x20 hexahedra. Mechanical properties are given in Table 2, which represents
the sand sample used by Ferronato et al. (2010). A uniform load F = 10* N/m is applied on the top surface. The
analytical solution (Cheng and Detournay, 1988) is used to verify the accuracy of the simulations on induced pore
pressure and the corresponding settlement. The lateral surface is traction-free and allows drainage. The remaining
parts of the outer boundaries are subject to roller constraints.

We use fully coupled simulations to obtain the temporal and spatial solutions for pore pressure and displacements. On
Fig.5, we compare results from GEOS (marks) to the corresponding analytical solution (lines) for pore pressure along
the x-direction (Fig.5a) and vertical displacements along the z-direction (Fig.5b). GEOS reliably captures the short-
term Mandel-Cryer effect and always shows excellent agreement with the analytical solution.

3.3.  Buckley-Leverett Problem
We simulate a core flood experiment representing the immiscible transport of a two-phase flow through a porous
medium (Buckley and Leverett, 1942). This benchmark is used to validate numerical tools simulating multiphase flow.



As shown in Fig.6, we model the immiscible displacement of a wetting phase by a non-wetting-phase in a porous core.
The domain is horizontal, homogeneous, isotropic, and isothermal. Before injection, the core is saturated with the
wetting phase. To match the analytical example configuration, the non-wetting phase is injected from the inlet at a
constant flow rate. We assume linear and horizontal flow, incompressible and immiscible phases, negligible capillary
pressure and gravitational forces, and no poromechanical effects. Upon injection, the fluid front forms the classical
Buckley-Leverett solution, with a traveling shock and a rarefaction wave.

The model dimensions are 0.1x0.1x0.002 m, discretized with 1000x1x1 hexahedra. The domain is initially saturated
with brine in a uniform pressure field. A constant injection rate of the non-wetting-phase is applied at the fluid inlet.
All input parameters are given in Table 3 and extracted from Ekechukwu et al. (2022). The relative permeabilities for
both phases (a CO.-rich phase and an aqueous phase) are modeled with the power-law Brooks-Corey relation shown
in Fig. 7. We use the multiphase flow solver in GEOS to obtain the temporal evolution of saturations along the flow
direction and verify the solution against Buckley-Leverett analytical solutions (Buckley and Leverett, 1942; Arabzai
and Honma, 2013).

Fig.8 compares the results from GEOS (dashed curves) to the corresponding analytical solution (solid curves) for the
change of phase saturation for the non-wetting phase (S,) along the flow direction. The simulation results match the
analytical solution in the formation and the progress of a sharp front in the saturation profiles. We conclude that GEOS
reliably captures the immiscible transport of two-phase flow.

3.4.  Wellbore Problem with Single Phase Flow

In this example, we compute the deformation of rocks near a vertical well using a fully coupled flow and
geomechanical model implemented in GEOS. We assume single-phase flow and elastic deformations to match the
specifications of the reference analytical solution (Carter and Booker, 1982; Detournay and Cheng, 1993; Cheng,
2016).

The well is vertical, drilled in a porous material, and subject to a non-hydrostatic horizontal stress (o5, and ;) and
vertical stress (a,), as shown in Fig.9. By changing the traction and pore pressure on the wellbore wall at t = 07, a
mechanical deformation of the reservoir rock is induced under plane strain condition. This deformation evolves with
time, due to the coupling with fluid diffusion. Simulations with GEOS are obtained with the parameters in Table 4.
The sandstone in the consolidation example is also used for this analysis, and its mechanical properties are provided
in Table 1. We compare numerical simulation results to analytical solutions (Carter and Booker, 1982; Detournay and
Cheng, 1993).

As shown in Fig.10, the model dimensions are 10x5x2 m with a vertical wellbore of 0.1 m initial radius. We simulate
only half of the rock domain and assume symmetry. All the numerical elements are hexahedra, and a refinement is
performed to conform to the wellbore geometry. The model is initialized with anisotropic in-situ stresses and zero
initial pore pressure. A compressive traction and fluid loading (10 MPa) are applied at the wellbore wall. Three
different loading modes are simulated with analytical solutions (Carter and Booker, 1982; Detournay and Cheng,
1993; Cheng, 2016). The outer boundaries are subject to roller and no-flow conditions.

Figs. 11 and 12 show comparisons between GEOS results (marks) and analytical solutions (solid curves) for pore
pressure, radial displacement, and effective radial and tangential stresses along the minimum and maximum horizontal
stress directions. The dimensionless time is defined as t* = ct/a? with ¢ = 5.2 x 1073 m?/s.

All the results confirm that the poroelastic coupling effects are accurately captured by GEOS. Wellbore problems with
various boundary conditions are also correctly simulated. GEOS can thus be trusted to assess stress states and help
design wells and fluid injection schemes for optimal stability.

3.5.  Wellbore Contraction Problem with Plasticity

This example illustrates the use of the extended Drucker-Prager elastoplastic model to simulate irreversible
deformations near a vertical well. We compare GEOS numerical results against a reference analytical solution (Chen
and Abousleiman, 2017).

We use a drained wellbore subject to isotropic horizontal stress (o,) and vertical stress (a;,). By lowering the wellbore
supporting pressure (p,), the wellbore contracts, and the reservoir rock undergoes elastoplastic deformation. A plastic
zone develops in the near-wellbore region. To simulate this phenomenon, the strain hardening extended Drucker-
Prager model with an associated plastic flow rule is used in GEOS. To mimic the conditions of the analytical solution,
only mechanical deformations are considered, and fluid flow is excluded.



The mesh shown in Fig.8 is used. Table 5 summarizes the mechanical properties and loading conditions, which are
adopted from Chen and Abousleiman (2017). The model is initialized with an isotropic horizontal stress (11.25 MPa)
and vertical stress (15.0 MPa). To reach equilibrium, a compressive traction (11.25 MPa) is instantaneously applied
at the wellbore wall at time t = 0 s and is gradually reduced to a lower value of 2.0 MPa to let the wellbore contract.
The outer boundaries are subject to roller constraints.

Displacement and stress fields around the wellbore are simulated and compared with the analytical solutions. When
reducing the wellbore pressure to 2 MPa, Fig.13 shows the modeling predictions for the distributions of normal stress
components (radial, tangential, and vertical stresses) along the radial distance normalized to the wellbore radius.
Substantial relaxations of these stress components (reduction in their magnitudes) are observed near the wellbore,
indicating the development of a plastic zone. The boundary between the elastic and plastic regions are marked by the
red dashed line in Fig.13.

Fig.14 shows the numerical results for the stress path in the p - q space for a point on the wellbore wall. During
drilling, the reservoir rock initially experiences elastic deformations. The stress path moves vertically until hitting the
initial yield surface (blue dashed line). Following that, plastic hardening occurs, and the yield surface expands to
accommodate stress changes. Finally, the stress path approaches the residual yield surface (yellow dashed line) and
heads toward the vertex of the Drucker-Prager cone.

Variations in the wellbore radius with changes of pressures are plotted in Fig.15. Initially, a linear reduction of the
wellbore radius is observed when decreasing wellbore support pressure. After reaching the yield point (red point in
Fig. 15), plastic deformations cause a rapid exponential decay of the wellbore radius, matching the analytical solution.

The comparisons between numerical results and analytical solutions in Fig.13, 14, and 15 confirm that the predictions
obtained using GEOS match the analytical results. The numerical model can be used as a base for more complex
analysis, such as wellbore drilling, fluid injection and storage scenarios.

4. APPLICATION

In fully coupled geomechanics and flow problems, analytical solutions for stress states and reservoir responses can be
derived for simplistic scenarios. They do not extrapolate to cases of practical complexity, such as modeling a CO;
plume migration with mechanical deformations of the reservoir and its surroundings in a realistic geological setting.
Moreover, these analytical solutions are only applicable for the scenarios in which some of the coupling between the
underlying physics (fluid flow, matrix deformation and rock failure) are simplified, or ignored. Closed-form analytical
solutions accounting for all aforementioned coupling processes are not available — numerical methods must be used
to solve them. In this section, a multiphase wellbore problem with poroplasticity and a reservoir scale simulation with
an egg-shaped aquifer are shown to demonstrate such complex coupling capabilities in GEOS and quantify the impact
of elastoplastic deformation and coupling effect in the vicinity of CO; injectors.

4.1.  Wellbore Scale Problem
Instead of limiting the simulation to single-phase flow, the wellbore problem in Section 3.4 is extended to a poroelastic
case with multiphase flow, representing CO; injection and immiscible transport of two-phase flow near the injector.

First, we compare the poroelastic models using multiphase flow and single-phase flow to demonstrate the impacts of
multiphase flow in reservoir responses during CO; injection. We use the mesh shown in Fig.10 and assume isothermal
conditions and immiscible two-phase flow for the case with multiphase flow. Modelling parameters are given in
Table 4 and mechanical properties of the reservoir rock are provided in Table 1, representing Ruhr sandstone
(Detournay and Cheng, 1993; Cheng, 2016). In the case with multiphase flow, the relative permeabilities for both
phases (CO-rich phase and an aqueous phase) are described with the power-law Brooks-Corey correlation (n, =
n,, = 2.0, Sy = 0.05, S, = 0.3). Capillary effects are not considered. Constant and identical reservoir permeability
and rock properties are assumed for both cases. The domain is initially saturated with brine in a uniform pressure field
(1 MPa), and pure CO is injected at the wellbore wall at a constant pressure (10 MPa). We use both the single-phase
flow and multiphase flow model to estimate the pore pressure, displacements, and stress fields around the injection
well.

Fig.16 shows the evolutions of the pore pressure (p,) along the radial distance, plotted for multiple values of the
dimensionless time t* = ct/a? and the dimensionless coordinate r; = r/a,. As indicated in Fig.16, the pore pressure
front radiates away from the injector and the pore pressure near the injector increases with time for both cases. The
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corresponding results for the distribution of the radial displacements (Fig.17), radial (Fig.18) and tangential (Fig.19)
effective stresses are also plotted and compared between the poroelastic cases with multiphase flow and single-phase
flow. These comparisons include the mechanical deformations along both the minimum and maximum horizontal
stress directions. Initially (at t* = 5.0), nearly identical results for pore pressure and mechanical variables are
obtained; however, after that time, differences between the poroelastic models with multiphase flow and single-phase
flow increase with time. Similar trends are observed along all directions.

Discrepancies between poroelastic models using multiphase and single-phase flow formulations are highlighted. In
the multiphase flow model, each phase has its own properties (phase viscosity and permeability) and the relative
permeabilities for both phases are not constant. They depend on saturation, and hence also time. In the single-phase
model, constant fluid properties are assumed. Therefore, the single-phase flow model is inadequate for solving the
mechanical deformation here.

Next, we test the linear poroelastic model and a full non-linear poroplastic model with multiphase flow. We compare
poroelastic and poroplastic deformations and highlight the important effects of plasticity in CO; injections. The
geometric settings, fluid properties, and loading conditions are kept the same as those of the previous case. Table 6
summarizes the mechanical properties for the poroplastic case, whose elastic parameters correspond to Ruhr sandstone
(Detournay and Cheng, 1993; Cheng, 2016) and plastic parameters are extracted from Chen and Abousleiman (2017).
In this configuration, the deformation of the rock can be either poroelastic or poroplastic. We use both a linear elastic
isotropic model and an extended Drucker-Prager poroplastic model to compute the pore pressure, displacements, and
stress fields around the well.

Fig.20 and 21 show the evolutions of the saturation of CO-rich phase (S4) and pore pressure (p,,) along the radial
distance. These two fields are plotted for several values of the dimensionless time t* = ct/a? and the dimensionless
coordinate r; = r/a,. As expected in this injection problem, both the saturation front of COz-rich phase and pore
pressure front radiate away from the well. Therefore, both the CO, saturation and the pore pressure in the near wellbore
region progressively increase with time. The CO; saturation front diffuses slower than the pore pressure front, and the
area of the CO. plume is smaller than the pore pressure perturbation area. This cannot be predicted by a single-phase
formulation. Constant and identical rock permeability values are assumed for both poroelastic and poroplastic cases,
so the impact of plasticity on fluid diffusion is excluded in this analysis (Roshan and Fahd, 2012; Alpak, 2015).

GEOS simulation results of the mechanical deformations are shown along the direction of both minimum horizontal
stress (o3,) and maximum horizontal stress (o) for detailed comparisons. The radial displacements (Fig.22), radial
(Fig.23) and tangential (Fig.24) effective stresses of the poroplastic case are plotted, together with the corresponding
poroelastic values. These comparisons are shown for the displacement and stress profiles along both the minimum
and maximum horizontal stress directions. Similar variations are shown along different directions, but differences
attributed to stress anisotropy are visible. Because of fluid diffusion and coupling effects, the mechanical variables
change over time for both cases.

As shown in Fig.24, relaxations of the tangential stress are detected because of the plastic response of the reservoir
rock. Due to stress concentration and CO; injection, the stress state in the vicinity of the injecting well did reach the
yield strength and forced the surrounding rock to deform plastically, as explained in section 3.5. The formation of this
plastic zone is the most important difference between mechanical responses in the near-wellbore region between the
two scenarios. In the far-field region, the poroelastic and poroplastic responses become almost identical, and the rock
deformations are governed by poroelasticity laws.

We discuss the advantages and limitations of the extended Drucker-Prager poroplastic model coupled with multiphase
flow. First, the comparison between poroelastic models with single-phase or multiphase flow formulations shows that
a single-phase formulation cannot represent long-term geomechanical deformations accurately. Multiphase
formulations give the shape of the CO2 plume over time. This information is necessary to evaluate how the formation
responds to the injection. Then, comparing results for poroelastic and poroplastic multiphase models, we observe that
the stress state reaches the yield point, and that the plastic behavior dominates mechanical deformations near the
wellbore where stress concentrates. This plastic deformation can jeopardize the integrity of injection wells, and elastic
models cannot quantify this risk. However, pore pressures and CO2 saturations are almost identical in the poroelastic
and poroplastic cases because our models assume a constant matrix permeability and do not include the impact of
plasticity on fluid diffusion. These mechanisms could further differentiate poroplastic and poroelastic models.
Research along these directions is underway.
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4.2.  Reservoir Scale Problem

Lastly, we simulate the migration of CO; injected into a large-scale aquifer. Using immiscible isothermal two-phase
flow and a full poromechanical coupling, we compare poroelastic and poroplastic models. Although we simulate the
entire geological domain, we will focus our attention primarily on the near wellbore region.

A synthetic reservoir derived from the “Egg” model is used here to simulate CO; injection at field scale. The original
Egg model consisted of one reservoir layer and was designed for fluid-only simulations (Jansen et al., 2014). To set
up a fully coupled geomechanics and flow simulation of CO; injection, we add an overburden, an underburden, and a
sideburden, as shown in Fig. 25. We also include one CO; injection well, one aquifer and a surrounding aquitard.
Fig. 25(a) and 25(b) illustrate the geometry and position of the injector and the aquifer. The egg-shaped aquifer is at
the center of the domain (1,181.8x1,181.8x569.4 m). The top of the domain is located at 200 m below ground level,
and the depth of the aquifer ranges from 470.7 m to 498.7 m. The entire box-shaped domain consists of 570,000
hexahedra elements of various sizes. As depicted in Fig. 25(c), small elements (8x8x4 m) are used in the target aquifer,
and the element size gradually increases when moving away from the aquifer.

The CO; and brine phases are assumed immiscible and mutual solubility is excluded. Fluid properties for each phase
(density and viscosity) and rock mechanical properties remain constant during the simulation. In both the poroelastic
and poroplastic case, the relative permeabilities for both phases (CO2-rich phase and an aqueous phase) are described
using a power-law Brooks-Corey correlation (ng = n,, = 2.0, Sy = 0.05, S, = 0.3). Capillary effects are
neglected. The domain is isotropic, with different mechanical properties (bulk and shear moduli) and permeabilities
assigned for the aquifer and aquitard. For the poroplastic case, only the aquifer experiences plastic deformations
(simulated with the extended Drucker-Prager model), and elastic deformations are enforced in the aquitard. All
material parameters are summarized in Table 7, representing a sandstone reservoir in the Gulf-of-Mexico (Camargo
etal., 2022).

The initial pore pressure is determined by hydrostatic conditions and initial stresses are due to gravity only. At time
t = 0, the reservoir is in hydrostatic equilibrium with a fluid pressure of 2.0 MPa at 200 m depth. The domain is
saturated with brine and a uniform value (1.0) of brine saturation is assigned to all layers. For the mechanical
equilibrium, a compressive traction (10.0 MPa) is instantaneously applied at the top of the domain at time t = 0 s and
stress gradients are determined by specified densities and constitutive relationships. The top surface is free to move,
and the remaining boundaries are subject to roller constraints. No drainage is allowed through any outer boundary.
Prior to simulating the injection, it is necessary to run a few steps of fully coupled geomechanical simulation to reach
the equilibrium state. Fig. 26(a) and 26(c) show the spatial distributions of initial pore pressure and effective vertical
stress. Tectonic strain is not considered, so the pressure and stress conditions at lateral boundaries are constant over
time. Fig. 26(b) shows that no CO, exists within the domain after initialization, as expected. After reaching a
mechanical equilibrium, we set all displacements to zero, as shown in Fig. 26(d). These initial distributions of pressure,
saturation and stress conditions are then used for modeling the subsequent CO> injection.

The injection well is vertical and perforated across the entire aquifer interval (470.7 m to 498.7 m). A constant
injection rate of CO, of 0.1 kg/s is applied for a 6-month period. The initialized poromechanical model is used to
predict the migration of the CO; plume and the induced rock deformation. The mechanical response of the aquifer is
simulated with either a linear elastic model or a poroplastic extended Drucker-Prager model. Fig. 27 shows a cross-
section with the pore pressure and CO; saturation for both the poroelastic and poroplastic solutions after 6 months.
The distribution patterns of CO, and pore pressure perturbations obtained from the poroelastic case are similar to those
from the poroplastic case. Upon injection, both the saturation front of CO, and pore pressure front move away from
the injector. Changes in these flow solutions become more noticeable over time, especially in the near wellbore region.
Comparing to the area of induced pore pressure (Fig.27(a) and (b)), the area of the CO, plume (Fig.27(c) and (d)) is
much smaller, and the CO; front propagates slower than the pore pressure perturbation. Due to high permeability
contrasts between the aquitard and aquifer, the CO; plume is safely contained within the target formation. In this
example, we see only small differences between the poroelastic and poroplastic solutions. This observation is in
agreement with the reference work (Roshan and Fahd, 2012; Alpak, 2015).

CO; injection into the porous aquifer increases the pore pressure near the injector, thus reducing the effective stresses
and causing matrix dilation. This deformation propagates away from the injection site. In a stiff rock formation, it
generates an uplift of the aquifer top. Similar patterns for the distribution of stresses (Fig.28) and displacements
(Fig.29) are observed for both poroplastic and poroelastic solutions. Differences between the poroelastic and
poroplastic solutions are visible on the mechanical responses in the near wellbore region. Fig. 28 shows the 3D view
of the effective vertical stress after six months for the poroelastic and poroplastic cases. Fig. 28(c) compares
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poroplastic and poroelastic solutions for the effective vertical stress along a horizontal line at the aquifer top.
Relaxations of the effective vertical stress (reduction in the magnitude) are observed around the injection wellbore,
indicating the development of a plastic zone. Fig. 29 shows the vertical displacements for the poroelastic and
poroplastic cases. Fig. 29(c) plots the poroplastic and poroelastic solutions of the vertical displacements on top of the
aquifer. Due to the reservoir and injection conditions, the stress state close to the injector reaches the yield strength in
the poroplastic model and induces a plastic deformation of the surrounding rock. Consequently, in the plastic case,
lower vertical displacements on the top of the aquifer are expected.

As a summary, in this example, we have injected CO; into a large aquifer initially at mechanical equilibrium, and we
have tested how the rock deforms in a poroelastic and a poroplastic scenario. Initially, the differences are visible
mostly near the injection site, consistently with the example in section 4.1. We see that in both scenarios, the injection
and plume migration create pressure build-ups that trigger mechanical deformations over the entire domain. With
time, the plastic zone expands away from the well and the differences between poroelastic and poroplastic models
amplify. Ignoring plastic deformations will, therefore, lead to inaccurate predictions of near-wellbore and long-term
states, underestimating integrity risks (Liu et al., 2021). The multiphase poromechanics simulation shown here can be
extended to various operational scenarios (excavation, depletion, injection, and pressurization), where the coupling
between multiphase flow and geomechanical deformations plays a key role.

Table 8 is added to summarize the number of elements, number of time-steps, time increments, computation times
and number of CPUs for all examples. Runs were performed on an internal high-performance computing system
(HPC). For simple analytical problems (e.g., consolidation and Mandel problem), the cases would run fine on a
consumer-grade desktop. However, field scale simulations (e.g., egg model) benefit from the firepower of distributed
HPCs. The objective of implementing these poroplastic models into GEOS is to run large scale simulations (several
millions of elements) for CO2 storage in parallel on HPCs (Camargo et al., 2022; Kachuma et al., 2023). Due to time
and memory constrains, it is impossible to execute these simulations on a single desktop. The cases shown in this
study are used to benchmark the accuracy and applications of the poroplastic models. The efficiency of numerical
simulations is beyond the scope of this work and shown here for information only.

5. CONCLUSION

We use GEQS, an open-source, high-fidelity numerical simulator, to detect and mitigate operational risks in geological
carbon storage. GEOS uses a fully coupled finite element/finite volume approach to simulate multiphase fluid flow
and the associated rock deformations. After verifying the results obtained in five examples with analytical reference
solutions, we simulate poromechanical deformations in more complex field-scale problems.

Injecting CO; alters stress conditions and fluid phase compositions in the near-well and far-field regions, thus changing
their transport and mechanical properties. To simulate these phenomena, we use the Drucker-Prager model with
friction hardening and a multiphase fluid model with power-law correlations for relative permeability. We show two
engineering problems highlighting the differences between poroelastic and poroplastic behaviors. Both cases
demonstrate the importance of poroplastic effects for accurate predictions of mechanical deformations and stress
perturbations during CO- injection in underground formations.

GEOS can simulate short-term processes near the injectors with coupled stress evolutions, rock deformations, and
multiphase compositional flow and transport. GEOS can also simulate similar effects in large-scale, long-term CO;
storage sites and their surrounding formations. Such large-scale and long-term multiphysics simulations help guide
operational decisions for CO, injection. In particular, these models help to assess containment potential and wellbore
stability during and after CO; injection.

In this work, we have considered only isothermal conditions and neglected chemical interactions between rocks and
fluids. We will include these thermal and chemical effects in future works.
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Bulk Modulus, K

1.3x10%° Pa

Shear Modulus, G 1.3x10%° Pa
Grain Bulk Modulus, K 3.6x10°Pa
Porosity, @ 0.02

Fluid Density, py 1000 kg/m?®
Fluid Viscosity, us 0.001 Pa-s
Fluid Compressibility, ¢, 3.72x10°%0 pat
Permeability, k 2.0x10%6 m?
Column Length, L 100m

Table 1 Input parameters for 1D consolidation problem.

Bulk Modulus, K 6.67x107 Pa
Shear Modulus, G 4.0x10" Pa
Grain Bulk Modulus, K 1.0x10%" Pa
Force per Unit Length, F -10* N/m
Porosity, @ 0.375

Fluid Density, ps 1000 kg/m?®
Fluid Viscosity, us 0.001 Pa-s
Fluid Compressibility, ¢, 4.4x101° pa’t
Permeability, k 1012 m?2
Slab Length, 2a 20m

Slab Height, 2b 20m

Table 2 Input parameters for Mandel’s problem.

Max Relative Permeability of Gas, k7y 1.0
Max Relative Permeability of Water, k2, | 1.0
Corey Exponent of Gas, n, 35
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Corey Exponent of Water, n,,, 3.5

Residual Gas Saturation, S, 0.0

Residual Water Saturation, S, 0.0

Porosity, @ 0.2
Permeability, k 9.0x1013 m?
Gas Viscosity, 11, 2.3x10°Pa-s
Water Viscosity, u,, 5.5x10*Pa-s
Total Flow Rate, Qr 2.5x107 m¥/s
Domain Length, D, 0.1lm
Domain Width, Dy, 1.0m
Domain Thickness, Dy 0.002 m

Table 3 Input parameters for the Buckley-Leverett problem.

Minimum Horizontal Stress, g;, 9.0x10° Pa
Maximum Horizontal Stress, oy 1.1x107Pa
Vertical Stress, o, 1.2x107 Pa
Initial Wellbore Radius, a, 0.1m

Traction at Wellbore, 7, 1.0x107 Pa
Fluid Pressure at Wellbore, p, 1.0x107 Pa

Table 4 Input parameters for the single-phase wellbore problem.

Bulk Modulus, K 5.0x108 Pa
Shear Modulus, G 3.0x108 Pa
Cohesion, C 0.0 Pa
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Initial Friction Angle, @; 15.27 Degree
Residual Friction Angle, @; 23.05 Degree
Hardening Rate, ¢, 0.01
Horizontal Stress, g, 1.125x107 Pa
Vertical Stress, a,, 1.5x107 Pa
Initial Wellbore Radius, a, 0.1lm

Fluid Pressure at Wellbore, p, 2.0x10°¢ Pa

Table 5 Input parameters for the wellbore contraction problem with plasticity.

Bulk Modulus, K 1.3x10%° Pa
Shear Modulus, G 1.3x10%° Pa
Cohesion, C 1.0x106 Pa
Initial Friction Angle, @; 15.0 Degree
Residual Friction Angle, @; 23.0 Degree
Hardening Rate, ¢, 0.01
Reservoir Permeability, k 2.0x1016 m2
CO; Density, pcoz 848 kg/m3
Brine Density, pprine 1173 kg/m?®
CO; Viscosity, g, 8.1x10°Pa-s
Brine Viscosity, tyrine 1.0x10%Pa-s

Table 6 Input parameters for the poroplastic case.

Bulk Modulus of Aquifer, K 9.4x10° Pa
Shear Modulus of Aquifer, G 5.64x10° Pa
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Cohesion of Aquifer, C

2.0x10° Pa

Initial Friction Angle of Aquifer, @; 15.0 Degree
Residual Friction Angle of Aquifer, @; 20.0 Degree
Hardening Rate of Aquifer, ¢, 0.01
Porosity of Aquifer, @ 0.2
Permeability of Aquifer, k 1.0x10°*5 m?2
Bulk Modulus of Burdens, Kg 1.15x10%° Pa
Shear Modulus of Burdens, Gg 5.31x10° Pa
Porosity of Burdens, @5 0.05
Permeability of Burdens, kg 1.0x108 m?2
Grain Bulk Modulus, Kj 1.0x10%" Pa
Rock Density, p, 2700 kg/m?®
CO; Density, peoz 479 kg/m?3
Brine Density, ppy ine 1045 kg/m?®

CO; Viscosity, tep;

3.95x10° Pa-s

Brine Viscosity, tp ine

2.535x10* Pa-s

Injection Rate, q;,;

0.1 kg/s

Table 7 Input parameters for the Egg model.

Cases 3.1- 31- 32 33 34 35 41- 41- 41- 42- 42-
traction fluid elastic elastic plastic elastic plastic
loading | loading with with with with with

single- multi- multi- multi- multi-
phase phase phase phase phase
Number of 25 25 400 1,000 | 16,000 | 16,000 | 16,000 | 16,000 | 16,000 | 570,000 | 570,000
Elements
Number of 901 901 405 7078 | 1008 54 101 133 128 36 36
Time Steps
Time 1,000,0 | 1,000,0
Increment (5 10 10 0025 | 001 |00099 | 002 9.69 9.69 9.69 00 00
Computational | ¢ ¢ 5.5 970 | 1850 | 33783 | 133 | 4289 | 3667 | 3732 | 627.7 | 556.9
Time (s)
Number of
el 1 1 1 1 16 1 16 16 16 128 128

Table 8 Numerical settings and computational time for all presented examples.
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Fig.1 Sketch of the setup for 1D consolidation problem.
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Fig.2 Comparisons between GEOS numerical results (marker) and analytical solutions (lines) for the 1D consolidation
problem subject to traction loading: (a) pore pressure; (b) vertical displacement.
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Fig.3 Comparisons between GEOS numerical results (marker) and analytical solutions (lines) for the 1D consolidation
problem subject to fluid loading: (a) pore pressure; (b) vertical displacement.
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Fig.4 Sketch of the setup for Mandel’s problem.

1.2
a wes Analytical: t =0.05 s b
000 ¢ (a) i-l-"' ® GEOS:t=0.05s (
1.0 ¢ 1: Analytical: t =0.5 s
S 3 ¢ GEOS:t=05s
‘% wes Analytical: t =0.05 s ?;'* 12 Analytical: t =5.0 s
¢ ® GEOS:t=005s L n B GEOS:t=505 . {
. Analytical: t =0.5 5 ¢ £ 1.0} = Analytical: t =10.0
§ 0.8  GEO%:t w05 s " v — A GEOS:t=10.0s & p
n = Analytical: t =5.0 s E &
d B GEOS:t=50s ¢ v 0.8 g
o 06 — Analytical: t =10.0 s 8
g A GEOS:t=100s \ %
N o 06
® 0.4 -
(7]
E NO.4
> ]
0.2 £ 0.2
50
=
%80 02 04 06 08 10 %8% 02 04 06 08 1.0
Normalized Distance, x/a Normalized Distance, z/b

Fig.5 Comparisons between GEOS numerical results (marker) and analytical solutions (lines) for the evolution of (a)
pore pressure along the x-axis; (b) vertical displacement along the z-axis.
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Fig.6 Sketch of the setup for the Buckley-Leverett problem.
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Fig.7 Relative permeabilities of two phases (CO2-rich phase and an aqueous phase).

23



1.0

s Analytical: t*=0.062
@ GEOS: t*=0.062
Analytical: t*=0.123
¢ GEOS: t*=0.123
» Analytical: t*=0.185
® GEOS: t¥*=0.185
= Analytical: t*=0.247
A GEOS: t*=0.247
Analytical: t*=0.308
e GEOS: t*=0.308
mamm Analytical: t*=0.37
» GEOS: t*¥=0.37
Analytical: t*=0.432
© GEOS: t*=0.432

0.8}

0:21

080 0z 04 06 08 10

Fig.8 Comparison between GEOS numerical results (marker) and analytical solutions (lines) for the evolution of the
non-wetting phase saturation along the flow direction.
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Fig.9 Sketch of the setup for a vertical wellbore problem.

Sh

Fig.10 Mesh used for the vertical wellbore problem.
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Fig.11 Comparisons between GEOS numerical results (marker) and analytical solutions (lines) for the evolution of (a)
pore pressure, (b) radial displacement, (c) effective radial stress and (d) effective tangential stress along the gy,

direction.
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Fig.12 Comparison between GEOS numerical results (marker) and analytical solutions (lines) for the evolution of
(a) pore pressure, (b) radial displacement, (c) effective radial stress and (d) effective tangential stress along the oy,
direction.
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Fig.13 Comparison between GEOS numerical results (marker) and analytical solutions (lines) for the distribution of

stress fields and location of elastic-plastic boundary (red dash line).
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Fig.14 Comparison between GEOS numerical results (marker) and analytical solutions (lines) for stress path at the

wellbore wall.

27

2.5 15.0 17.5 20.0



Analytical
10 e GEOS
1 8
o
2 6
3
& 4
2z —
Poo 1.02 1.04 1.06 1.08 1.10

ao/a

Fig.15 Comparison between GEOS numerical results (marker) and analytical solutions (lines) for normalized borehole
radius under different wellbore support pressures.
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Fig.17 Comparisons between the poroelastic models with multiphase flow (marker) and single-phase flow (lines) for
the distribution of induced radial displacements along: (a) g3, direction; (b) oy direction.
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Fig.18 Comparisons between the poroelastic models with multiphase flow (marker) and single-phase flow (lines) for
the distribution of effective radial stress along: (a) g, direction; (b) o, direction.
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Fig.19 Comparisons between the poroelastic models with multiphase flow (marker) and single-phase flow (lines) for
the distribution of effective tangential stress along: (a) 3, direction; (b) oy direction.
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Fig.20 Comparisons between the poroelastic (marker) and the poroplastic (lines) models for the saturation of CO»-
rich phase along the radial distance at various times.
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Fig.21 Comparisons between the poroelastic (marker) and the poroplastic (lines) models for the distribution of pore
pressure along the Radial distance at various times.
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Fig.22 Comparisons between the poroelastic (marker) and the poroplastic (lines) models for the distribution of induced
radial displacements along: (a) gy, direction; (b) oy, direction.
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Fig.23 Comparisons between the poroelastic (marker) and the poroplastic (lines) models for the distribution of
effective radial stress along: (a) gy, direction; (b) oy direction.
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Fig.24 Comparisons between the poroelastic model (marker) and poroplastic (lines) for the distribution of effective
tangential stress along: (a) oy, direction; (b) ay direction.

Fig.25 Reservoir geometry and used mesh for the Egg problem: (a) aquifer and injection well (black line); (b) aquifer,
injection well (black line) and under burden; (c) entire domain.
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Fig.26 Initial conditions for the Egg problem: (a) pore pressure; (b) CO; saturation; (c) effective vertical stress; (d)
vertical displacement.
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Fig.27 The location of injection well (black line) and cross section of the spatial distributions of pore pressure change
((a) poroelastic model and (b) poroplastic model) and CO; saturation ((c) poroelastic model and (d) poroplastic model)
after 6-month injection.
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Fig.28 The location of injection well (black line) and the spatial distributions of effective vertical stress from (a)
poroelastic model, (b) poroplastic model after 6-month injection. (c) Comparisons between poroplastic results
(marker) and poroelastic solutions (lines) for the distribution of effective vertical stress along a horizontal line on top
of the aquifer (white dashed line in (a)).
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Fig.29 The location of injection well (black line) and the spatial distributions of vertical displacement from (a)
poroelastic model, (b) poroplastic model after 6-month injection. (c) Comparisons between poroplastic results
(marker) and poroelastic solutions (lines) for the distribution of vertical displacement along a horizontal line on top
of the aquifer (white dashed line in (a)).
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