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ABSTRACT

High frequency thermoacoustic instabilities are problematic
for lean-premixed gas turbines. Identifying which acoustic mode
is being excited is important, in that it provides insight into po-
tential mitigation measures and mechanical stress/life. However,
the frequency spacing between modes becomes quite close for
high frequency instabilities in a can combustor. This makes it
difficult to distinguish between the modes (e.g., the first trans-
verse mode vs. a higher order axial/mixed mode) based upon
frequency calculations alone, which inevitably have uncertain-
ties in boundary conditions, temperature profiles, and combus-
tion response. This paper presents a methodology to simulta-
neously identify the acoustic mode shapes in the axial and az-
imuthal directions from acoustic pressure measurements. Mul-
tiple high temperature pressure transducers, located at distinct
axial and azimuthal positions, are flush mounted in the combus-
tor wall. The measured pressure oscillations from each sensor
are then used to reconstruct the pressure distributions by using a
least squares method in conjunction with a solution of a three di-
mensional wave equation. In order to validate the methodology,
finite element method (FEM) calculations with estimated post-
flame temperature is used to provide the candidate frequencies
and corresponding mode shapes. The results demonstrate the
reconstructed mode shapes and standing/spinning character of
transverse waves, as well as the associated frequencies, both of
which are consistent with the FEM predictions. Nodal line lo-

cation was also extracted from the experimental data during the
instabilities in the pressure data.

NOMENCLATURE

LATIN SYMBOLS
A Azimuthal amplitude m Azimuthal mode number
B Axial amplitude ṁ mass flow rate
c Sound speed N Number of grid point
d f Bandwidth n Number of sensors
DR Direction ratio P Reconstructed pressure
F Fourier transform matrix
f Frequency p Pressure signal
H Heaviside function PR Pilot ratio
H Hilbert transform R Combustor radius
i Imaginary unit R Air gas constant
Jm Bessel function of the R2 R squares error

first kind r Radial coordinate
k Axial wave number SR Spin ratio
L Spatial matrix in axial t Time

direction X Temporal matrix in
l Radial mode number axial direction
M Spatial matrix in x Axial coordinate

azimuthal direction
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GREEK SYMBOLS
αml Root of dJm/dr θn Nodal line location
γ Specific heat ratio of air φ Phasor in azimuthal
Θ Temporal matrix in direction

azimuthal direction ψ Phasor in axial direction
θ Azimuthal coordinate ω Angular frequency

OTHERS
‖‖ Frobenius norm ∠ Phase angle

INTRODUCTION
Lean premixed combustors have significant challenges with

self-excited thermoacoustic instabilities. These instabilities oc-
cur when unsteady heat release fluctuations constructively inter-
act with the one of the acoustic modes in the combustor, leading
to amplitude growth until a limit cycle is reached [1]. Avoiding
high amplitude oscillations restricts the operating conditions or,
if operating under such conditions, can lead to hardware dam-
age [2].

Thermoacoustic instabilities can occur over a wide range of
frequencies and different types of combustors. The particular
focus of this paper is on transverse modes. Annular combus-
tors are prone to exhibit low frequency transverse modes [3, 4].
On the other hand, can combustors exhibit high frequency trans-
verse modes referred to as “screech” [5–8]. This screech tone
is particularly problematic in combustion industries because its
high frequency and high amplitude pressure oscillations damage
hardware very rapidly by fatigue failure [9, 10].

Several approaches have been developed to suppress high
frequency thermoacoustic instabilities. For example, baffles have
been used to modify the acoustic resonance properties and thus
dampen the instability in a combustion chamber [11]. In ad-
dition, the distribution of propellant injection, porous injector
faceplate, and injection geometry have been used to reduce the
screech amplitudes [12]. Specifically, acoustic dampers, such
as Helmholtz or quarter-wave resonators, are commonly used
to suppress high frequency or transverse instabilities as they re-
quire physically smaller dampers [13–15]. The performance of
these acoustic dampers strongly depends on their location rel-
ative to the acoustic mode shapes of the transverse instabili-
ties [16–20]. To efficiently mitigate these transverse instabilities
by using acoustic dampers, it is significantly important to iden-
tify which acoustic mode is excited.

Different approaches have been used for identifying acous-
tic mode shapes. For example, Krebs et al. [21], Singla et al. [22]
and Bourgouin et al. [23] combined experimental measurements
with numerical results to validate a modal analysis. Hale et
al. [24] developed a screech wave analysis methodology to dif-
ferentiate between transverse, longitudinal and complex modes.
Poinsot et al. [25, 26], Wolf et al. [27, 28], and Nicoud et al. [29]
used a finite element method (FEM) to determine thermoacoustic

modes, including unsteady flame effects.
However, most of the approaches previously mentioned have

focused on multi-nozzle annular combustors, where the thin gap
assumption is applicable, i.e., the length scale of the annular gap
is much shorter than that of the combustor’s radius. This assump-
tion is not valid for can combustors, where the geometry is not
annular, but cylindrical. In addition, can combustors with a large
ratio of axial to radial dimension possess multiple transverse and
longitudinal modes with natural frequencies that are very close
to one another. Because the frequency spacing is very close, it is
difficult to distinguish between each mode solely based upon fre-
quency calculations due to the inherent uncertainty in boundary
conditions and temperature profiles.

The authors have already proposed a method for reconstruct-
ing the mode shape of high frequency instability in [30]. This pa-
per extends and generalizes that work. First, the method in [30]
relies on the FEM calculation to estimate sound speed, which is
a key parameter to reproduce the mode shape in the axial direc-
tion. Thus, the results, such as frequencies and the associated
mode shapes, from the experiments and FEM are dependent on
each other, which necessarily yields similar results. In contrast,
the reconstruction method in the current study removes that de-
pendency so that the FEM can be used to truly provide an inde-
pendent validation of the method. Second, the data presented in
the prior study [30] was so low that the reproduced mode shape
was noisy even though the signals were bandpass filtered. How-
ever, the intensity in this paper was strong enough that the clear
mode shapes had been reproduced. In addition, the two distinct
frequencies with narrow spacing were clearly observed, which
occurs in a can combustor with a high aspect ratio.

1. EXPERIMENTAL SETUP AND OPERATING CONDI-
TION
Experimental Rig

Figure 1 shows the experimental facility. Air from four in-
lets enters near the axial midpoint of the rig and flows through
an annular section in the upstream direction, cooling the cham-
ber wall. At the front of the test article, the preheated air passes
through the eight outer and center pilot nozzles (Fig. 1 (b)) where
fuel injectors are located so that the air premixes with methane.
The swirl direction of the pilot and outer nozzles are clockwise
(CW) and counter-clockwise (CCW), respectively. Fuel flow
through the outer and pilot is controlled separately, quantified
by the pilot ratio, PR =

ṁp
ṁp+ṁo

where ṁp and ṁo are the fuel
flow rate through the pilot and a single outer nozzle, respectively.
The combustor liner consists of a metal liner whose diameter and
length is 0.29 m and 1.2 m, respectively. The combustor product
accelerates near the downstream contraction area and exits the
system through the water cooled exhaust.

Copyright © 2020 ASMEV04BT04A051-2

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/G

T/proceedings-pdf/G
T2020/84133/V04BT04A051/6615375/v04bt04a051-gt2020-16130.pdf by G

eorgia Institute of Technology user on 30 July 2024



FIGURE 1. EXPERIMENTAL RIG (a) IMAGE OF THE COMBUSTOR (b) IMAGE OF MULTI-NOZZLE (c) SIDE-SCHEMATIC OF THE COM-
BUSTOR (d) SENSOR CONFIGURATION IN AZIMUTHAL DIRECTION.

Dynamic Pressure Measurement

Five 6021A Kistler pressure sensors (sensitivity: 6200
pC/kPa, range: 10 MPa, accuracy: ±10%) are used to measure
the dynamic pressure signals in the post-flame region. Sensors
1-3 are flush mounted at different axial (x = −0.93,−0.18, and
−0.03 m from the origin in Fig. 1 (c)) but the same azimuthal
locations, and sensor 2, 4 and 5 are at different azimuthal, but the
same axial locations (Fig. 1 (d)). All sensors are water cooled,
and they are connected to a Kistler 5181A differential charge am-
plifier (sensitivity: 10mV/pC, range: ±10V, accuracy: ±0.2%).
A pressure time series is recorded during the entire test run at the
sampling frequency of 20 kHz, and then the signals are digitized
by a National Instrument (NI 9215) board.

Operating Conditions

Self-excited instabilities occurred at approximately 1600 Hz
under a wide range of operating conditions. This paper examines
one exemplary test condition, which is summarized in Tab. 1, for
acoustic mode identification. At this test condition, two acoustic
modes were self-excited during the instabilities.

2. POST PROCESSING

Pressure Data

After recording the data, 1 second of measured signals dur-
ing the instabilities are extracted for post-processing, which pro-
vides approximately 1600 cycles. We explored these same tech-
niques with longer sampling times, but the results changed neg-
ligibly. The data at different time sections has been used for
repeatability. A time-series pressure signal, given by p(t), is
bandpass filtered around each peak frequency, fp, with a width
d f = 60 Hz to isolate each acoustic mode from the other modes
and the broadband noise [31]:

TABLE 1. OPERATING CONDITION DURING TRANSVERSE
INSTABILITIES

Preheat
temp. (K)

Air flow
rate (kg/s)

Equivalence
ratio

Pressure
(kPa)

Pilot ratio

620 1.474 0.562 190 0.071

Copyright © 2020 ASMEV04BT04A051-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/G

T/proceedings-pdf/G
T2020/84133/V04BT04A051/6615375/v04bt04a051-gt2020-16130.pdf by G

eorgia Institute of Technology user on 30 July 2024



p′(t) = F−1
[
F{p(t)} ·H

(
f −
(

fp−
d f
2

))
·H
(
− f +

(
fp +

d f
2

))] (1)

Here, p′(t) is a filtered pressure signal, F is the Fourier trans-
form, and H is the Heaviside function. The bandwidth is deter-
mined such that it is wide enough, but includes only a single peak
frequency such that p′(t) contains only one acoustic mode. The
filtered signal is then transformed into an analytic signal, p̂(t),
by applying Hilbert transform, H [31]:

p̂(t) = p′(t)+H [p′(t)] (2)

This analytic signal is then fitted to the solution of wave equation
described in the next section.

General Solution of Wave Equation
In the following development, we assume (i) perfectly cylin-

drical geometry, (ii) no mean flow due to low Mach number
(M < 0.2), and (iii) uniform temperature and density after the
flame. Then, the solution of the Helmholtz equation of the acous-
tic wave in a cylindrical duct is given by [1]

p̂(x,r,θ , t) =[A+eimθ +A−e−imθ ]

· [B+eikx +B−e−ikx]Jm

(
αmlr

R

)
e−iωt (3)

where A± are slowly time varying amplitudes of CCW(+) and
CW(−) waves, B± are slowly time varying amplitudes of right
(RW, +) and leftward (LW, −) waves, m is an azimuthal mode
number, k is an axial wave number, and ω is the angular fre-
quency. Note that m must be an integer, owing to the periodicity
of the azimuthal angle. Jm is the Bessel function of the first kind,
R is combustor radius, and l is a radial mode number. αml is the
root of d

dr Jm(αml) = 0. The set of αml for the different radial and
azimuthal mode number is tabulated in Tab. 2.

Here, we would like to clarify terminologies used through-
out the paper. When m = l = 0, the acoustic mode is “purely”
longitudinal where the pressure varies only in the axial direction.
Otherwise, the mode is transverse where the pressure varies not
only in the axial but also in the azimuthal and radial direction.
This transverse mode is classified into azimuthal (m 6= 0, l = 0),
radial (m = 0, l 6= 0), and mixed modes between azimuth and ra-
dial (m 6= 0, l 6= 0). If the transverse mode has an axial nodal line
within the chamber, we call it as a mixed mode between longitu-
dinal and transverse.

TABLE 2. ROOTS OF d
dr Jm(αml) = 0

αml/2π m = 0 m = 1 m = 2 m = 3

l = 0 0 0.2930 0.4861 0.6686

l = 1 0.6098 0.8485 1.0673 1.2757

l = 2 1.1166 1.3586 1.5867 1.8058

Pressure Reconstruction in Azimuthal Direction
Consider sensors at the same axial and radial, but different

azimuthal location. The difference in pressure signals from these
sensors is then attributed to only the azimuthal term in Eqn. (3),
i.e., the axial and radial terms can be treated as a constant. This
constant is set to unity for simplicity, which yields the following
model equation in the azimuthal direction.

p̂θ (θ , t) = (A+eimθ +A−e−imθ )e−iωt (4)

Here, the first and the second terms of the right hand side in Eqn.
(4) correspond to CCW and CW waves, respectively.

The slowly time varying amplitude can be further decom-
posed into its magnitude and phasor [32], i.e.

p̂θ (θ , t) = (Â+ei(mθ+φ+)+ Â−e−i(mθ−φ−))e−iωt (5)

where Â± are positive real valued magnitudes and φ± are real
valued phasors. Given multiple sensor measurements, Eqn. (5)
can be rewritten in matrix form:


p̂θ (θ1, t)
p̂θ (θ2, t)

...
p̂θ (θn, t)


︸ ︷︷ ︸

Pθ

=


eimθ1 e−imθ1

eimθ2 e−imθ2

...
...

eimθn e−imθn


︸ ︷︷ ︸

M

×
[

Â+ei(φ+−ωt)

Â−ei(φ−−ωt)

]
︸ ︷︷ ︸

Θ

(6)

Here, n is the number of sensors and θ j ( j = 1,2, ..,n) is the
azimuthal location of the jth sensor. The matrix, Θ, can then be
estimated by using a method of least squares [23], i.e.

Θ = (M∗M)−1M∗Pθ (7)
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where M∗ is the complex transpose of M. The error of the least
squares fit can be quantified by an R squares value, R2 [22], i.e.

R2
θ = 1− ||Pθ −M ·Θ||2

||Pθ ||2
(8)

where ‖Pθ‖ denotes the Frobenius norm of Pθ . Here, R2
θ
= 1

indicates zero error between the fitting and the experimental data.
The time varying magnitude of each wave is obtained by

taking an absolute value of Θ, i.e., Â± = |Â±ei(φ±−ωt)|. Then,
the spin ratio, SR, which quantifies the dominant mode between
standing and spinning modes, is defined as [23]:

SR =
Â+− Â−
Â++ Â−

(9)

Here, SR = 0 indicates a pure standing mode, SR = ±1 means
a pure spinning mode in CCW (+) or CW (−) direction. Other-
wise, the mode is a combination of standing and spinning modes.

Furthermore, the pressure distribution in the entire az-
imuthal direction can be reconstructed by using the matrix, Θ,


p̂θ (θ

′
1, t)

p̂θ (θ
′
2, t)

...
p̂θ (θ

′
N , t)


︸ ︷︷ ︸

P′
θ

=


eiθ ′1 e−imθ ′1

eiθ ′2 e−imθ ′2

...
...

eiθ ′N e−imθ ′N


︸ ︷︷ ︸

M′

×Θ (10)

where θ ′j ( j = 1,2, ..,N) is the azimuthal position ranging from
0 to 2π , and N is the number of grid points. Given the complex
spatio-temporal pressure matrix, P′

θ
, one can plot the magnitude

and phase distributions along the azimuthal direction at each re-
alization. However, the actual distributions significantly vary in
time, which hinders identification of the mode shape. Thus, to
minimize the variation of the distributions,

1. The magnitude distribution at each realization is normalized
by its spatial average.

2. The phase distribution at each realization is plotted with re-
spect to one of the sensors.

3. Then, the temporal averaged of both distributions with the
error bar are plotted to visualize the mode shape.

Last, the nodal line position, given by θn, is defined as the lo-
cation where the pressure magnitude is minimum. Given that the

azimuthal distribution of the pressure can be written as a super-
position of a standing and spinning wave, this definition neces-
sarily locates the nodal line of the standing wave portion. More-
over, it becomes meaningless for a pure spinning wave. This
nodal line location can be calculated by taking the partial deriva-
tive of |p̂θ (θ , t)|2 with respect to θ .

θn(t) =
jπ− (φ+−φ−)

2m
, where j = 1,3,5.. (11)

The right hand side in Eqn. (11) is evaluated by subtracting the
angle of each wave in matrix, Θ, i.e.,φ±−ωt =∠(Â±ei(φ±−ωt)).
Then, the pressure magnitude square is rewritten as:

|p̂θ (θ)|2 = Â2
++ Â2

−+2Â+Â− cos(2m(θ −θn)+ jπ) (12)

Equation (12) explicitly shows that the pressure magnitude at a
given sensor location depends on both the wave amplitudes, Â±,
and the location of the nodal line. Specifically, the effect of the
nodal line position on the pressure magnitude is maximized when
Â+ = Â−(or standing mode). In this case, the magnitude is zero
at the nodal line (θ = θn), and maximum at the anti-nodal line
(θ = θn±π/2m). This magnitude dependency on the nodal line
diminishes as the Â+Â− product gets smaller, such as when the
mode converges to a spinning mode, i.e., Â+ = 0 or Â− = 0. In
this case, the magnitude is constant regardless of the sensor posi-
tion, and the nodal line cannot be defined. Therefore, considering
the uncertainty of the data, the nodal line is defined only when
|SR|< 0.9.

Pressure Reconstruction in Axial Direction
Similarly, considering sensors at the same radial and az-

imuthal, but different axial locations, the acoustic wave in the
axial direction can be modeled as a combination of RW and LW
waves with time dependent magnitudes and phasors, i.e.

p̂x(x, t) = (B̂+ei(kx+ψ+)+ B̂−e−i(kx−ψ−))e−iωt (13)

where B̂± and ψ̂± are magnitudes and phasors of RW (+) and
LW (−) waves, respectively. Given multiple sensor measure-
ments at the same radial and azimuthal, but different axial loca-
tions, Eqn. (13) can be rewritten as a matrix form, i.e.
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
p̂x(x1, t)
p̂x(x2, t)

...
p̂x(xn, t)


︸ ︷︷ ︸

Px

=


eikx1 e−ikx1

eikx2 e−ikx2

...
...

eikxn e−ikxn


︸ ︷︷ ︸

L

×
[

B̂+ei(ψ+−ωt)

B̂−ei(ψ−−ωt)

]
︸ ︷︷ ︸

X

(14)

where x j ( j = 1,2, ..,n) denotes the axial location of jth sensor. It
should be noted that, unlike the azimuthal mode number, the ax-
ial wave number is not necessarily an integer. Therefore, it must
be evaluated in advance to apply a least squares method. This
paper estimates the axial wave number that minimizes a least
squares error, using a procedure detailed in the Appendix. Once
the axial wave number is obtained, the matrix, X , can be esti-
mated by a least squares fit.

X = (L∗L)−1L∗Px (15)

The error of the fitting is given by

R2
x = 1− ||Px−L ·X ||2

||Px||2
. (16)

The direction ratio is then defined as

DR =
B̂+− B̂−
B̂++ B̂−

(17)

Here, DR = 0 indicates a pure standing mode, and DR = ±1
means pure RW (+) and LW (–) traveling modes. Otherwise,
it is a combination of standing and traveling modes. The axial
pressure distribution can then be reproduced as follows:


p̂x(x′1, t)
p̂x(x′2, t)

...
p̂x(x′N , t)


︸ ︷︷ ︸

P′x

=


eikx′1 e−ikx′1

eikx′2 e−ikx′2

...
...

eikx′N e−ikx′N


︸ ︷︷ ︸

L′

×X (18)

where x′j( j = 1,2, ..,N) is an axial coordinate. By plotting the
pressure in the axial direction, one can visualize the axial mode
shape. Notice that this reconstruction method is not applicable
across the flame or the contraction area due to assumptions (i)
and (iii).

FIGURE 2. MESH, BOUNDARY CONDITIONS, AND FLAME
SHAPE.

FIGURE 3. TRANSVERSE ACOUSTIC MODE SHAPES OB-
TAINED FROM FEM. ‘L’ AND ‘T’ STAND FOR LONGITUDINAL
AND TRANSVERSE, RESPECTIVELY.

3. COMPUTATIONAL ANALYSIS
The FEM solver COMSOL Multiphysics is used to calculate

the acoustic mode shapes at the experimental conditions. Figure
2 shows a two-dimensional slice of the entire computational do-
main. The acoustic boundary condition for the inlet is set to rigid
because of the choked orifices, and the outlet to pressure release.
All other solid surfaces including walls are regarded as a rigid
boundary with infinite impedance. The flame is regarded as a
cone shape, and the temperature of the domains before and after
the flame is set to uniform with preheat and combustion temper-
ature, respectively. The detail description of estimation of com-
bustion temperature is illustrated in the Appendix. The compu-
tational domain is meshed with 2,495,747 tetrahedral elements,
which gives 3,811,121 of degrees of freedom to be resolved. The
FEM is then carried out to solve the Helmholtz equation to pre-
dict eigenfrequencies and the corresponding mode shapes. Based
upon the frequencies observed from the experiments, this study
considers only the first four transverse modes, which are shown
in Fig. 3. It was found that the boundary conditions at the outlet
have a negligible effect on the eigenfrequencies and the associ-
ated mode shapes. This is because the cutoff frequency drops
at the area contraction, thus, the wave magnitude exponentially
decays in axial direction, preventing it from interacting with the
outlet boundary.

4. RESULTS
Frequency Spectrum

Figure 4 shows the frequency spectrum measured from sen-
sor 1 and 3 for 1s during the instabilities. The peak frequency
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FIGURE 4. MEASURED FREQUENCY SPECTRUM FROM SEN-
SOR 1 AND 3. (a) ZOOM OUT (b) ZOOM IN. FREQUENCY AND
PRESSURE AMPLITUDE ARE NORMALIZED BY ITS PEAK FRE-
QUENCY AND STATIC PRESSURE, RESPECTIVELY.

of the instability was around 1600 Hz. The rough calculation
from the FEM provides that the frequencies of the second az-
imuthal (m= 2) and the first radial (l = 1) modes occur at approx-
imately 2700 and 3500 Hz, respectively, which are much greater
than the observed frequencies. This confirms that the instabilities
are either a pure longitudinal (m = 0, l = 0) or azimuthal mode
(m = 1, l = 0).

Notice that two distinct peaks appeared in the spectrum, the
first peak at fp1/ fp1 = 1 and the second at fp2/ fp1 = 1.03, il-
lustrating these closely spaced natural frequencies. The acoustic
mode identification is carried out for each peak.

Acoustic Mode Identification
This section describes the pressure dynamics and the acous-

tic mode shapes during the instabilities. We will investigate the
azimuthal and axial dependency separately.

Azimuthal Dependency. Figure 5 (a) shows the pres-
sure signals from each sensor filtered at fp1±d f/2. Notice that
the magnitudes (or envelopes) of each signal are similar to each
other, but the phases are different. This observation clearly in-
dicates that the instability is not only the first azimuthal mode
(m = 1) but also close to a spinning mode. CCW and CW waves
are extracted by using a least squares fit given by Eqn. (7). Then,
the spin ratio and the nodal line are evaluated and plotted in Fig.
5 (c) and (e). The spin ratio is close to unity indicating that the
mode is CCW dominant.

In Fig. 5 (e), the nodal line hovers at around −10◦ and it
jumps in CCW direction at t = 0.4s to around 170◦. The simi-
lar behavior is observed at t = 0.05s, but in this case, the nodal
line jumps in the other direction. This behavior seems to occur at
the spin ratio near unity. The possible explanation for this phe-
nomenon is that when the mode becomes an instantaneously pure
spinning mode, the nodal line disappears, and when the mode
comes back to a mixed mode, the nodal line reappears. This

FIGURE 5. MEASURED PRESSURE SIGNALS IN TIME SERIES
FILTERED AT (a) fp1±d f/2 AND (b) fp2±d f/2. THE PRESSURE
IS NORMALIZED BY STATIC PRESSURE. SPIN RATIO ((c) fp1, (d)
fp2) AND NODAL LINE ((e) fp1, (f) fp2) IN TIME SERIES.

re-established nodal line may now be located at completely dif-
ferent locations from the initial location, which appears to be a
nodal line jumping. The similar explanation is described in [33].
In addition, bearing in mind that the nodal line is straight, the
line at −10◦ is the same at 170◦, which implies that the nodal
line seems to hover at a fixed location. This may be attributed to
the non-uniformity of the temperature or flow field in azimuthal
direction. Lastly, the nodal line is closest to sensor 5 and furthest
from sensor 2, yielding the minimum magnitude at sensor 5 and
maximum magnitude at sensor 2 in Fig. 5 (a). As mentioned be-
fore, however, the magnitude difference is small because of the
nearly spinning mode.

Figure 5 (b) shows the pressure signals filtered at fp2 ±
d f/2. Notice that the pressure magnitudes are also similar to
each other, implying that the mode is close to the spinning mode.
This is obvious in the spin ratio plot in Fig. 5 (d) where the spin
ratio is close to unity. However, unlike fp1, the nodal line is pre-
dominantly rotating in CCW direction.

The pressure magnitude and phase distributions along the
azimuthal direction are reconstructed by Eqn. (10) and plotted in
Fig. 6. Here, the black solid line is the temporal averaged pres-
sure distribution and the dashed lines denote the standard error.
The red cross represents the temporal averaged magnitude or the
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FIGURE 6. PRESSURE MAGNITUDE ALONG THE AZ-
IMUTHAL DIRECTION: (a) fp1 (b) fp2. THE MAGNITUDE IS
NORMALIZED BY ITS SPATIAL AVERAGED VALUE. PRESSURE
PHASE ALONG THE AZIMUTHAL DIRECTION: (c) fp1 (d) fp2.
THE PHASE IS PLOTTED WITH RESPECT TO SENSOR 2.

phase from each sensor. The blue dash line denotes the distribu-
tion for 1T-a (Fig. 6 (a), (c)) and 1L1T-a (Fig. 6 (b), (d)) modes
from the FEM results in Fig. 3. The axial location in FEM is
selected at the same axial position of sensor 2.

In Fig. 6 (a), the pressure magnitude of fp1 varies in the
azimuthal direction, indicating that it is not a pure longitudinal,
but an azimuthal mode. In addition, non-zero magnitude at the
nodal line implies that the mode is not standing, but rather close
to the spinning mode. Last, the phase distribution from the ex-
periments in Fig. 6 (c) shows almost linear relationship with θ ,
which is the characteristic of the spinning mode.

It should be emphasized that the FEM, which solves the
Helmholtz equation, provides two orthogonal standing mode so-
lutions. The actual mode is then a linear combination of two
solutions. For example, if either of two solutions is negligible,
then the resultant mode is pure standing, whereas if the two solu-
tions are equally dominant, the resultant mode is pure spinning.
In real combustors, however, the dominance of each solution de-
pends on the test conditions, providing standing, spinning or a
combination of both modes [33–36]. In Fig. 6, the two orthogo-
nal solutions are linearly combined such that the resultant mode
is similar to those from the experiments.

Figure 6 (b) and (d) also shows a spinning mode shape, but
the detail description is omitted here as the general features are
similar to those in Fig. 6 (a) and (c).

FIGURE 7. MEASURED PRESSURE SIGNALS IN TIME SERIES
FILTERED AT (a) fp1±d f/2 AND (b) fp2±d f/2. THE PRESSURE
IS NORMALIZED BY STATIC PRESSURE. DIRECTION RATIO IN
TIME SERIES: (c) fp1 (d) fp2.

Axial Dependency. Even though we found the instabil-
ities to be the first azimuthal modes, they may also have an axial
dependency. Given the frequency and the estimated sound speed,
the axial wave number for fp1 was found to be purely imaginary,
implying that the pressure magnitude exponentially decays in the
axial direction. This evanescent wave occurs due to a tempera-
ture jump across the flame [37]. This feature is evident in the
pressure magnitude distribution in Fig. 8 (a).

Figure 7 (a) and (b) describe the pressure signals filtered at
fp1±d f/2 and fp2±d f/2, respectively. In Fig. 7 (a), the pres-
sure magnitude is maximum for sensor 1 and minimum for sen-
sor 3, whereas in Fig. 7 (b), the magnitude is maximum for sen-
sor 2 and minimum for sensor 1. Figure 7 (c) and (d) show that
the direction ratios for both peaks fluctuate at a positive value,
implying that the mode is slightly propagating in the RW di-
rection. For fp1, however, recall that the axial wave number is
imaginary, yielding the magnitude in RW and LW direction to be
B̂±e∓kix where ki = k/i; i.e., the magnitude depends on the axial
position as well as B̂±. In other words, the acoustic wave gener-
ated by the flame propagates in the RW direction, but the magni-
tude of the RW wave exponentially decays, which then leads to
an extremely small magnitude in the LW wave at the reflection
boundary. Therefore, the magnitude of the LW wave would be
negligible compared to that of the RW wave, leading to a nearly
traveling wave in RW direction. The reason for the direction ra-
tio far from the unity in Fig. 7 (c) is that Eqn. (17) does not
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FIGURE 8. PRESSURE MAGNITUDE ALONG THE AXIAL DI-
RECTION: (a) fp1 (b) fp2. PRESSURE PHASE ALONG THE AXIAL
DIRECTION: (c) fp1 (d) fp2. THE PHASE IS PLOTTED WITH RE-
SPECT TO SENSOR 1.

account for the axial dependent term, e∓kix, when the axial wave
number is imaginary.

Figure 8 presents the pressure magnitude and the phase dis-
tributions along the reference line indicated in Fig. 2. Here,
x = 0 corresponds to the axial location at the area contraction in
the combustor. The FEM is plotted for 1T-a (Fig. 8 (a), (c)) and
1L1T-a (Fig. 8 (b), (d)) modes from Fig. 3. In Fig. 8 (a) and
(c), notice that FEM also predicts the evanescent wave for fp1.
However, the discrepancy between the experiments and the FEM
appears at the right end of the domain. This difference origi-
nates from the fact that for evanescent wave, FEM predicts only
the RW wave, resulting in a monotonically decreasing magnitude
and constant phase, whereas the reconstruction method takes into
account both RW and LW waves in Eqn. (13). Whether to in-
clude the LW wave or not is indeterminate, but without the LW
wave, the phase variation between the sensors in Fig. 8 (c) would
not be explained. Except for this deviation, the magnitude and
the phase from the experiments are in good agreement with those
from the FEM. For fp2 in Fig. 8 (b) and (d), the experimental
data shows the slightly RW propagating mode, whereas the FEM
predicts the perfect standing mode. This may be attributed to the
effect of mean flow [1] or the boundary condition at the outlet,.
i.e., some of the acoustic energy leaves the domain through the
exhaust. However, considering the nodal line location in Fig. 8
(b) and phase variation in Fig. 8 (d), the experimental data is
close to the FEM results.

TABLE 3. R2 VALUES AND COMPARISON BETWEEN EXPER-
IMENTAL AND FEM RESULTS.

Frequency Mode ∆ f/ fFEM (%) R2

fp1 1T-a 0.139
R2

θ
0.9961

R2
x 0.9543

fp2 1L1T-a 0.422
R2

θ
0.9940

R2
x 0.8912

To sum up the acoustic mode shapes, we can conclude that
fp1 and fp2 correspond to 1T-a and 1L1T-a modes, respectively,
which are described in Fig. 3 (a) and (c) from the FEM results.
The R2 values of each direction and the frequency comparison
between the experimental and the FEM results are summarized
in Tab. 3. Here, ∆ f = | fexp− fFEM|.

5. CONCLUSION
In this study, the acoustic mode shapes of transverse insta-

bilities in a multi-nozzle can combustor have been investigated.
During these instabilities, two strong distinct peaks were ob-
served, which is a common observation in a can combustor with
a longer axial than radial dimension. The rough calculation from
the FEM suggests that the observed frequencies were either a
pure longitudinal or azimuthal mode. Then, the different pres-
sure signals between the sensors at distinct azimuthal locations
confirm that the instabilities correspond to the first azimuthal
modes. However, the axial dependency of each mode is diffi-
cult to be identified solely from the FEM as the eigenfrequencies
of each mode are too close to each other, which motivates the
current study.

This paper has introduced the methodology to reconstruct
the pressure distributions in axial and azimuthal direction by us-
ing measured signals from multiple pressure sensors as well as
the solution of the wave equation in a cylindrical cavity. The
results from the reconstruction method are compared with those
from the FEM to validate the method. For the azimuthal distribu-
tion, both peaks indicated that the modes are close to a spinning
wave. The axial distribution for the first peak showed evanescent
wave, and, for the second peak, it manifested propagating wave.
These distributions show a good agreement between the exper-
iments and the FEM results, validating the first and the second
peaks as 1T-a and 1L1T-a modes, respectively. In conclusion,
the methodology presented in this paper can be used to identify
the high frequency transverse acoustic modes even though their
frequencies are close to each other.
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Appendix: Sound Speed Estimation
In order to utilize Eqn. (15), we must determine the axial

wave number in advance, which depends on the sound speed.
The axial wave number and the sound speed are related by the
dispersion relation. For homogeneous sound speed with no mean
flow in a cylindrical cavity, the dispersion relation is given by [1]

f =
c

2π

√(
αml

R

)2
+ k2 (19)

where c is sound speed. Given the frequency spectrum in Fig.
4 and the dispersion relation, we can reduce the number of un-
knowns to one, which is sound speed in this case.

Without any noise, R2
x given by Eqn. (16) would be unity.

However, the noise is inevitable in a turbulent combustion envi-
ronment, resulting in R2

x less than unity. Therefore, R2
x is evalu-

ated for a range of values of sound speed, and the optimal sound
speed is determined as the value that maximizes R2

x [22].

copt = argmax
c∈[cl ,cu]

R2
x (20)

where cl/u are the lower and the upper bounds for the sound
speed values, which are estimated from the measured tempera-
ture at the exhaust (1200 K) and the adiabatic flame temperature
(1800 K), respectively. R2

x was evaluated at the range of sound
speed given each peak, fp1 and fp2, yielding two plots of R2

x
with respect to sound speed values as shown in Fig. 9. Here, R2

x,1
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FIGURE 9. R2
x WITH RESPECT TO SOUND SPEED FOR EACH

PEAK.

and R2
x,2 denote the R2

x value of fp1 and fp2, respectively. The
optimal sound speed is supposed to maximize each R2

x simulta-
neously, but the trends of each R2

x are quite different. Therefore,
the optimal value is selected such that it maximizes the product
of each R2

x or R2
x,1 ·R2

x,2. In Fig. 9, the two red dots represent
the first and the second local maxima of R2

x,1 ·R2
x,2. As shown in

the result section, the sound speed of the first maxima, which is
794 m/s, shows a good agreement with the results from the FEM,
validating the method of sound speed estimation. For reference,
this sound speed value corresponds to a temperature of 1570 K.
However, considering the uncertainty of the least squares fit, the
value at the other local maxima, which is 763 m/s, is also inves-
tigated here.

Figure 10 illustrates the eigenfrequencies of each mode ob-
tained from the FEM depending on the sound speed at the com-
bustion region. Note that the eigenfrequencies of 1T-a and 1T-b
modes saturate at high sound speed because of the frequencies
being lower than the cutoff frequency. Given the sound speed of
763 m/s, fp1 and fp2 from the experiments are close to 1L1T-a
and 1L1T-b modes from the FEM, respectively. Therefore, the
pressure distribution along the axial direction for these modes
are compared in Fig. 11.

Figure 11 illustrates the pressure magnitude and phase dis-
tribution from the experiments and the FEM in axial direction
for 1L1T-a and 1L1T-b modes. Notice that for 1L1T-a mode,
a discrepancy between the experiments and the FEM appears,
i.e., the nodal line location is not consistent, and the phase rela-
tionship between the sensors does not match. Specifically, sen-
sor 1 is nearly in phase with sensor 2 and 3 in the experiments,
which is not in the FEM. 1L1T-b mode from the FEM is rela-
tively close to that from the experiment, but the optimal sound
speed is supposed to provide a good agreement for both modes

FIGURE 10. SOUND SPEED VERSUS EIGENFREQUENCY OF
EACH MODE OBTAINED FROM FEM.

FIGURE 11. PRESSURE MAGNITUDE AND PHASE DISTRIBU-
TIONS ALONG THE AXIAL DIRECTION FOR c = 763 m/s. (a), (c):
1L1T-a MODE. (b), (d): 1L1T-b MODE.

simultaneously. Therefore, one can conclude that not only is 794
m/s the optimal sound speed, but also estimating the sound speed
by minimizing a least squares error is acceptable. Once the sound
speed is determined, the associated temperature can be estimated
from the ideal gas assumption, i.e., c =

√
γRT where γ and R

are specific heat ratio and the gas constant for air, respectively,
under lean condition.
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