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Abstract—Large language models (LLMs) have garnered sig-
nificant attention in both the AI community and beyond.
Among these, the Generative Pre-trained Transformer (GPT)
has emerged as the dominant architecture, spawning numerous
variants. However, these variants have undergone pre-training
under diverse conditions, including variations in input data,
data preprocessing, and training methodologies, resulting in a
lack of controlled comparative studies. Here we meticulously
examine two prominent open-sourced GPT architectures, GPT-
NeoX and LLaMA, leveraging the computational power of
Frontier, the world’s first Exascale supercomputer. Employing the
same materials science text corpus and a comprehensive end-to-
end pipeline, we conduct a comparative analysis of their training
and downstream performance. Our efforts culminate in achieving
state-of-the-art performance on a challenging materials science
benchmark. Furthermore, we investigate the computation and
energy efficiency, and propose a computationally efficient method
for architecture design. To our knowledge, these pre-trained
models represent the largest available for materials science. Our
findings provide practical guidance for building LLMs on HPC
platforms.

Index Terms—AI foundation model, GPT architecture, HPC

I. INTRODUCTION

Since the inception of the Transformer architecture [1],
Transformer-based large language models (LLMs) have
emerged as the bedrock upon which numerous AI break-
throughs have been constructed. Between two widely adopted
architectures, namely bidirectional encoder representations
from Transformers (BERT) [2] and generative pre-trained
Transformer (GPT) [3], it has been shown that the performance
of GPT models scales [4] with both model and data sizes,
while marginal benefit was observed [5] comparing BERT
models of different sizes. Many efforts have then been devoted
to improving GPT architectures, including GPT-1 to GPT-
4 [3], GPT-NeoX [6], LLaMA [7, 8], etc. Although the
record performance was refreshed repeatedly, the focus was
on downstream tasks only and little was discussed on the
reason behind the architecture choices. A careful examination
of current practices on the end-to-end pipeline for building
LLMs is needed, especially for scientific applications.

With the rise of LLMs, a new research paradigm emerges
in the field of AI for sciences, which is to build a foundation
model via unsupervised learning on scientific data, and then
fine-tune it to apply for many downstream scientific tasks.
There have been several early attempts, e.g., the ClimaX [9]
— a vision Transformer foundation model for climate, bioGPT
[10], and pubmedGPT [11] which are generative pre-trained
Transformers based on biology and medical text data. To the
best of our knowledge, there is not yet a foundation model
pre-trained specifically for materials science.

Materials science is fundamental to everyday life. From
lightweight materials in transportation to innovative energy
storage, materials science plays a crucial role in shaping
modern society. The design of new materials relies on the
understanding of existing research. To extract knowledge from
the materials publications, several natural language models
have been built, including word2vec models [12], BERT-style
models [13], etc. However, these models are limited to specific
tasks and cannot be generalized. We intend to pre-train a
foundation model based on the GPT architecture and demon-
strate its capability on both generic language benchmarks and
scientific downstream tasks.

While the current open-sourced state-of-the-art GPT variant
is LLaMA [7] (more recent LLaMA2 [8] includes tweaks to
improve inference performance) and the top performer Falcon
model [14] employs the same LLaMA architecture but with
improved data quality, little work has been done comparing
different architectures and pre-training recipes. In this work,
we will investigate two prominent open-sourced GPT variants,
namely GPT-NeoX [6] and LLaMA, and show performance
comparisons on both model training and downstream tasks.
In addition to evaluating zero- and few-shot performance
on question answering tasks, we also propose a scientific
regression task to showcase the scientific usage of the model.

Another important aspect in building LLMs is the computa-
tional performance and energy efficiency because the process
typically incurs a large computational cost and significant en-
ergy consumption. Most of the established practices, however,



Fig. 1: Evolution of LLM architecture since 2018. Starting
from 2021, the GPT architecture dominates the major model
releases.

are on NVIDIA GPU-based platforms. Here we will study the
performance and optimization of the popular training frame-
works on Frontier — the first Exascale supercomputer which
is equipped with AMD GPUs. Specifically, our contributions
include:

• We comparatively studied two mainstream GPT architec-
ture variants, i.e., GPT-NeoX and LLaMA, and evaluated
their end-to-end pre-training recipes.

• We pre-trained and openly released a set of foundation
models for materials science, called MatGPT.

• We proposed a new downstream task for scientific usage
and achieved state-of-the-art performance on a challeng-
ing materials science benchmark.

• We established baselines and practical guidance for build-
ing LLMs on AMD GPU-based platforms.

Our focus lies in constructing LLMs for scientific purposes
on HPC. While we exemplify this within the field of materials
science, our methods are not constrained to a singular domain.
The rest of the paper is organized as follows: Sec. II reviews
the architecture trends of LLMs and current state-of-the-
art applications for materials science. Sec. III details our
data corpus and end-to-end computational approach. Sec. IV
presents our comprehensive comparisons from architecture
selection and training performance, to downstream tasks and
model explainability, and we conclude in Sec. V.

II. RELATED WORK

Following the evolutionary tree of LLM architecture [15],
three main branches, i.e., encoder-only, encoder-decoder, and
decoder-only, stem from the introduction of Transformer ar-
chitecture [1] in 2017. The number of major model releases
within each branch are plotted in Fig. 1 for each year ever
since. From 2018 to 2019, encoder-only models such as BERT
[2] enjoyed more popularity. Since GPT-3 [16], which demon-
strated emerging capability with the unprecedented parameter
size (175B), the decoder-only architecture has dominated the
field. GPT-NeoX [6] and LLaMA [7] are among the most

popular open-source variants of GPT-3. On the other hand, the
number of encoder-decoder models, e.g, T5 [17] for translation
tasks, has stayed about the same.

In recent years, the materials science community has
embraced the advancements in natural language processing
(NLP). A study [18] in Nature built a word2vec model on
3M abstracts and demonstrated its usage in material recom-
mendation for functional applications. Since then, BERT-style
models [13, 19] pre-trained specifically on material texts have
been the best performing models; and MatSciBERT [13] is
considered as the current state-of-the-art for domain-specific
LLM for materials science. However, the model and data sizes
are limited to hundreds of millions of parameters and several
millions of papers, respectively. No generalization ability has
been demonstrated.

An early attempt [20] was made to apply GPT-3.5 model
to study energy materials, but it is fine-tuned only on a small
dataset and a generic foundation model for materials science
is still lacking.

III. METHOD

TABLE I: Data Sources for MatGPT.

Source #abstract #full-text #tokens

CORE 2.5M 0.3M 8.8B
MAG 15M 3.5B

Aminer 3M 1.2B
SCOPUS 6M 1.5B

All 26.5M 0.3M 15B

Data Sources We collect the abstracts and full-text data from
the four data sources, including CORE, Microsoft Academic
Graph (MAG), Aminer, and SCOPUS, as listed in Table I.
For SCOPUS, we use the publisher’s API to retrieve the
abstracts of about 6M materials science publications [12].
For the other sources, aggregated data covering all scientific
domains are downloaded and then preprocessed to filter out
materials science-related ones. The screening is performed
via a fine-tuned SciBERT model on a small domain-labeled
dataset, and the resulting classifier can then be used to partition
the aggregated data sources. In total, there are 26.5M abstracts
and 0.3M full-texts, counting to about 15B tokens.
Model Architecture We build MatGPT upon two mainstream
model architectures, GPT-NeoX [6] and LLaMA [7], both
of which are based on GPT-3 but with different variations.
As illustrated in Fig. 2, the original LLaMA employs the
SentencePiece (SPM) tokenizer with a vocabulary size (vocab-
size) of 32K; While GPT-NeoX utilizes the HuggingFace
(HF) tokenizer with a vocab-size of 52K. SPM has fine-
grained control over subword tokenization while HF is more
popular for pre-trained Transformers. Both architectures use
rotary positional embeddings [21] instead of absolute po-
sitional embeddings [22] as in GPT-3, and LLaMA made
further modifications to the pre-normalization and activation
by using RMSNorm and SwiGLU [7] activation functions.
The specific choice of number of layers and hidden size, as



TABLE II: Model architectures and various data tokenization ( HuggingFace and Sentencepiece tokenizer — HF and SPM,
and vocabulary size of 32K and 52K).

MatGPT Arch #parameters hidden-size #layers #heads head-dim tokenizer vocab-size

LLaMA 1.7B 2304 24 24 96 SPM/HF 32K/52K
6.7B 4096 32 32 128 HF 52K

GPT-NeoX 1.7B 2304 24 24 96 HF 52K
6.7B 4096 32 32 128 HF 52K

Fig. 2: Transformer layer of GPT-NeoX and LLaMA architec-
ture, respectively. The specific parameter and FLOP numbers
are for 1.7B parameter model with a sequence length of 2048
and batch size of 16.

listed in Table II, also takes the computational performance
into consideration, which will be discussed in Sec. IV-B.
For the models of the same specification (i.e, number of
layers and attention heads, and hidden size), each Transformer
layer of GPT-NeoX and LLaMA has approximately the same
number of parameters and floating-point operations (FLOPs).
The multi-head attention layers are exactly identical, and the
main difference is the normalization layers and multi-layer
perceptrons (MLPs).

The Chinchilla study [23] suggested that the optimal token-
to-parameter ratio is 20, while more recent studies [7, 8]
indicates a higher ratio, i.e., a smaller model and larger
data, can be beneficial. Given our data size (15B tokens), we
build MatGPT with a few billion parameters. To identify the
most computationally efficient architecture, we perform a grid
search for various numbers of layers and hidden sizes. The
specific choice has to satisfy following constraints,

Nh % Na = 0 (1)
Nh % (TP ) = 0 (2)
Nl % (PP ) = 0 (3)
Na % (TP ) = 0 (4)

(TP × PP ×DP ) % 8 = 0 (5)

where Nh, Nl, and Na denote hidden size, number of layers
and attention heads, and TP, PP, and DP are the tensor,
pipeline, and data parallelisms, the product of which should
be equal to the total number of devices (multiple of 8 for our
platform). The dimension of the attention head is implemented

as the ratio of Nh over Na, hence the constraint; and the rest
is to ensure the workload can be evenly distributed among
parallelism dimensions.

We will compare the model performance of the two archi-
tectures, as well as different choices of tokenizers and vocab-
sizes. As far as we know, this is the first controlled study of
LLM architectures at a large scale.
Flash Attention One of the most important recent advances
in the optimization of training Transformers is flash atten-
tion [24], which significantly reduce high-bandwidth memory
(HBM) accesses which in turn speeds up the computation
of the attention calculations. Because it leverage classical
HPC techniques at a lower level (e.g., tiling, recomputation),
the implementation is hardware-specific. In our evaluation,
we make use of the open-sourced development [25] of flash
attention on AMD GPUs. It is based on the composable kernel
library [26], which performs many of the same functionalities
of the CUTLASS library for NVIDIA GPUs, and currently
both forward and backward calculations are supported. The
latest flash attention v2[27] is also in the process of being in-
corporated into AMD GPUs. We will study the computational
and memory impact of both versions. To our best knowledge,
this is the first such study on recent AMD hardware (MI250X).
Training and Evaluation Framework Our evaluation is
based on the GPT-NeoX [6] framework, a DeepSpeed-
Megatron [28, 29] implementation. We port it to the AMD
GPU-based platform, Frontier [30] with following modifica-
tions: 1) Add support for the LAMB optimizer [31], which
is an enhanced Adam optimizer [32] that can mitigate the
generalization gap caused by the large-batch training. 2) Hipify
the fused kernel in CUDA to support the AMD ROCm stack.
3) Adapt the flash attention interface from the corresponding
AMD implementation.

Because the LLM training is shown to be communication-
bound on Frontier [33] and model parallelism is more demand-
ing than data parallelism in terms of the communication re-
quirement [34], it is desired to assign most compute resources
(i.e., GPUs) to data parallelism (i.e., large batch size), in
order to achieve good scaling efficiency and energy utilization.
Therefore, exploring the LAMB optimizer is necessary for
efficient distributed training of LLMs on HPC systems.

Regarding the downstream evaluation, we employ the
generic language model evaluation framework [35] for the
common question answering tasks. This will demonstrate
MatGPT’s generalizability as a foundation model, even though
it is not pre-trained on generic web texts. More importantly,



Fig. 3: A new scientific usage of LLM: combining LLM
embeddings with GNN for material properties prediction.

we propose a new scientific downstream task to demonstrate
the performance and science usage of MatGPT, namely the
material properties prediction.
Scientific Downstream Task A direct and versatile approach
for integrating LLMs into scientific applications involves en-
hancing the feature space of existing models by incorporating
LLM embeddings [36]. These embeddings effectively capture
correlations among specific terms, such as named entities,
within the LLM context. Consequently, the numerical vector
representation of text terms within the latent space of LLMs
can serve as features to predict characteristics associated
with corresponding terms. For LLMs pre-trained on scientific
publications, such as MatGPT, the embeddings are expected
to outperform those of LLMs pre-trained on web texts, and
the larger the capacity (i.e., model parameters) of a LLM, the
better quality of its embeddings. To demonstrate the capability
of MatGPT, we will show the comparisons of its embeddings
with other LLMs including MatSciBERT.

As an example for materials science, we explore leveraging
the trained LLMs for improving learning in material properties
prediction. Graph neural networks (GNNs) are the de facto
paradigm for predicting the physical and functional properties
of materials. Recent studies incorporate features of increasing
complexity such as Gaussian radial functions, plane wave
functions, and angular terms to augment the neural network
models, with the expectation that these features are critical for
achieving high performance [37, 38, 39, 40, 41, 42]. However,
none of these efforts tap into the vast amount of publications
that reflect human understandings of material research. With
LLM trained on material texts, we experiment with using
both material structure data, fed to GNNs, and scientific
publications, reflected in the embeddings of corresponding
material formulas, for learning.

For demonstration, we choose to predict band gap, a
quantum chemical property of materials. The ground truth
for the band gap is computed from density function theory
(DFT) calculations. DFT is a quantum mechanical method for
solving the electronic structure of a material widely used in
computational materials chemistry. The band gap of a material
is the energy difference between its highest occupied electronic
energy level and the lowest unoccupied energy level. It is more
challenging to predict band gap than other properties such as

formation energy.
We adopt a simple methodology that concatenates the output

from a GNN for a material with the LLM embedding of
the corresponding material’s chemistry formula. The learning
paradigm is shown in Figure 3.

In Figure 3, a graph g is constructed from the structure
information (e.g., atoms, their 3-dimensional positions, and
their interactions) of the input material, and graph convolution
is then applied to derive a feature hg . At the same time, an
embedding E is generated using the trained LLM for the
formula of the material. E and hg are then concatenated as a
feature for the prediction of the property.

Our study demonstrates the boost of learning performance
of GNNs from incorporating additional semantic and contex-
tual information. Moreover, the results and insight from the
experiments by employing MatSciBERT and MatGPT variants
robustly support our claim of having more expressive model
architectures, MatGPT trained on larger datasets with a large
number of parameters compared to MatSciBERT. The dataset
we use is the material project dataset [43].

IV. EVALUATION

A. Experiment setup

We perform the experiments on the first Exascale super-
computer, Frontier. Each Frontier node is equipped with four
AMD Instinct MI250X GPUs with dual Graphics Compute
Dies (GCDs) and one third-generation EPYC CPU. A GCD
is viewed as an effective GPU, and we use GCD and GPU
interchangeably in the following discussion. All four MI250Xs
(eight effective GPUs) are connected using 100 GB/s Infinity
Fabric (200 GB/s between 2 GCDs of MI250X), and the
nodes are connected via a Slingshot-11 interconnect with 100
GB/s of bandwidth. Frontier consists of 9408 nodes in total,
i.e., 75,264 effective GPUs (each equipped with 64GB high-
bandwidth memory).

Our evaluation is based on GPT-NeoX [6] implementation
with PyTorch v1.14.0 [44] and DeepSpeed v0.7.3 [28], which
are built against AMD ROCm v5.4. In the following, we
will investigate the MatGPT performance, including training
throughput, architecture comparisons, and model performance
on our newly proposed scientific downstream task and com-
monly used language benchmarks. The tokenized data and pre-
training code are publicly available1.

TABLE III: Training hyper-parameters for MatGPT.

Model Optimizer β1 β2 LR BS

1.7B Adam 0.9 0.95 0.0002 1M
LAMB 0.9 0.999 0.01 4M

6.7B LAMB 0.9 0.999 0.006 4M

Considering the large GPU capacity (both memory and
count) and network bandwidth (relatively limited compared
to AI-oriented machines such as Selene[29]) on Frontier, it is
desirable to leverage large-batch training in order to achieve
good scaling efficiency and reduce time-to-solution. We train

1https://github.com/at-aaims/forge/tree/matgpt



Fig. 4: (Left) The heatmap of training throughput (TFLOPS per GPU) for MatGPT with various numbers of layers and hidden
sizes for model size around 1B. (Right) The performance boost for architectures eligible for flash attention, including v1 and
v2, respectively.

Fig. 5: The peak memory usage (percentage) during the
training of MatGPT 1.7B with and without flash attention for
context sequence length from 2,048 to 32,768.

MatGPT with the LAMB optimizer [31], a variant of the
Adam optimizer with the layer-wise learning rate adjustment
to mitigate the generalization gap of large-batch training. We
use β1 = 0.9, β2 = 0.999, a weight decay of 0.1, and a
batch size of 4M tokens. The cosine learning rate scheduler is
employed with an initial learning rate 0.01 and a final learning
rate set to 10% of the initial learning rate. We use 1% of the
total batch steps for warmup. The training is performed in
bfloat16, which provides better numerical stability.

B. Results

Following the above experiment setup, we conduct a thor-
ough investigation in the end-to-end pipeline of building
MatGPT, including the evaluation of the computational per-
formance for training, comparisons of both the loss and zero-
shot tasks performance for different architecture choices, and
fine-tuning performance for the scientific downstream task we
proposed.
Training Performance The scaling law [4] indicates the
model performance scales with the number of parameters,
however, for similar-size models, the choice of the number
of layers, hidden size, and attention heads, seems arbitrary.
We refine our model design by taking the computational
performance into consideration. Because the workhorse of

Fig. 6: The comparisons of training throughput (TFLOPS per
GCD) for MatGPT -NeoX and -LLaMA achitectures.

the training is matrix multiplication and the underlying math
library, such as cuDNN for NVIDIA GPUs and MIOpen for
AMD GPUs, is optimized for certain shapes of matrices [45].

In Fig. 4, we plot the heatmap of MatGPT-NeoX training
throughput in terms of TFLOPS per GPU for various numbers
of layers and hidden sizes for model sizes around 1B param-
eters. The performance varies from 58 to 76 TFLOPS, and
the best case (achieved about 40% of the MI250X theoretical
peak — 383 TFLOPS for 2 GCDs) corresponds to 24 layers
with a hidden size of 2304. This is mostly due to the fact
that the computation of multi-head attentions (see Fig. 2)
is expensive and a head dimension of multiples of 8 is
computationally favorable (it can take full advantage of matrix
cores on AMD GPUs, which are equivalent to tensor cores
on NVIDIA GPUs). We marked all the architectures (from A
to H in Fig. 4) with head dimensions satisfying this criteria,
and indeed they are among top performers for each layer
size. Coincidentally, flash attention also requires the head
dimension to be multiples of 8 (and up to 256 for v2), and the
performance boost for each case are also shown in Fig. 4 for
v1 and v2, respectively. On average, the current flash attention
implementation improves the computational performance by
about 14% (v1) and 19%(v2), with the best overall training
throughput of about 82 TFLOPS per GCD (164 TFLOPS per
MI250X) for v1 and 84/168 TFLOPS for v2, respectively,



Fig. 7: The training throughput (TFLOPS per GCD) for
MatGPT 1.7B and 6.7B with different parallelisms: ZeRO
stage 1 (ZeRO=1), tenor parallelism of 2 partitions (TP=2),
and pipeline parallelism of 2 stages (PP=2).

on Frontier. Note that these numbers are averaged per-node
performance for a sequence length of 2048 and the port
[25] of flash attention to the ROCm stack is still in active
development, and further improvement is expected.

Furthermore, the flash attention reduces the memory com-
plexity from quadratic to linear in terms of the sequence
length, and hence enables longer context window. In Fig. 5,
we plot the peak memory usage during the training of MatGPT
1.7B for context sequence lengths ranging from 2048 to
32768. Without flash attention, the training process runs out of
memory (OOM) for sequences longer than 8192; With flash
attention enabled, the memory growth becomes linear (after
the sequence length dominates the memory usage) and the
maximum supported sequence length increases by about 4X
to 32768 on Frontier.

To compare the computational performance for NeoX and
LLaMA, we plot the training throughput for all 8 cases with
flash attention, as shown in Fig. 6. Because of the architecture
similarity, especially the identical attention layer (see Fig. 2),
both perform more or less the same, with NeoX showing a
slight edge in 7 out of 8 cases. The difference likely comes
from the parameterization of MLP layers (2 linear layers with
GELU activation versus 3 linear layers with SILU activation).
Observation 1 It is computationally desirable to design
the LLM architecture with the dimension of attention head
to be multiples of 8. With flash attention, the achievable
computational performance for training Transformers is over
43% of the theoretical peak on MI250X for a sequence length
of 2048. Given a targeted model size, computational efficiency
can be a criterion for architecture selection.

After identifying the most computationally efficient archi-
tecture (i.e., 24 layers and a hidden size of 2304) on MI250X
for models of around 1B parameters, we extrapolate the
observation to identify a 6.7B model (see Table II) with a head
dimension of 128. As a rule of thumb, the memory footprint
for training a GPT-style model is roughly 12 times of the
parameters [33]. For the training of a 1.7B model, a single
GCD on a MI250X (equipped with 64GB high-bandwidth
memory) is able to accommodate the entire model. However,

Fig. 8: (Top) The Scaling of training throughput (PFLOPS)
for MatGPT 1.7B and 6.7B with different parallelisms: ZeRO
stage 1 (ZeRO=1), tenor parallelism of 2 partitions (TP=2).
(Bottom) The profiling breakdown of compute, communica-
tion, and IO for the three corresponding parallel distributions
with 256 GPUs.

for a 6.7B model, some level of model parallelism is required.
The choices can be DeepSpeed ZeRO optimization (e.g., stage
1 for partitioning the optimizer states), tensor parallelism
(e.g., TP = 2 for partitioning each layer onto 2 devices), or
pipeline parallelism (e.g., PP = 2 for executing layers through
2 stages, each stage on a separate device). Depending on
the parallelism, the communication frequency and message
size are different, i.e., imposing different requirements on the
platform. In addition to the communication cost of the data
parallelisms, the ZeRO parallelism fully shards the optimizer
states (twice the memory footprint of model parameters for the
Adam and LAMB optimizers) and hence requires all-devices
collective communication during the backward propagation.
On the other hand, the tensor and pipeline parallelisms have
fine-grained control and can limit the extra communication
for model parallelism within a subgroup of devices. Al-
though tensor parallelism incurs more frequent messaging than
pipeline parallelism (per-layer versus group of layers), there
are sequential stages (leading to the so-called “bubble”) in
pipelining, and tensor parallelism can perform better with
adequate network bandwidth.

In Fig. 7, we show the performance of training the 6.7B
model on a single Frontier node, and compared with that of
the 1.7B model. Compared to tensor and pipeline parallelism,
ZeRO stage 1 provides the best training throughput (81
TFLOPS per GPU), with a similar boost from flash attention as
for the 1.7B model due to the lesser communication frequency.



Fig. 9: The runtime and GPU power traces (single node) of distributed training of MatGPT 6.7B with ZerO stage 1 using 256
GPUs. The boxed snapshot is the zoom-in of the forward operations for one of 32 layers.

Fig. 10: (Left) The proportion of latency from each transformer component for one transformer layer of hidden dimension h
and number of attention heads a. DR and LN stands for dropout and layer normalization operation, respectively. (Right) The
individual GEMM proportions of latency for one transformer layer, including query-key-value (QKV), flash attention (flash),
attention score (score), attention over value (AOV), linear projection (Linproj), multi-layer perceptron (MLP).

With the single-node performance optimized, we scale up
the distributed training to 256 GPUs and explore 3D paral-
lelism on Frontier. As shown in Fig. 8, for training MatGPT
1.7B model with data parallelism only, the aggregated perfor-
mance of 256 GPUs on Frontier can achieve over 18 PFLOPS
with a scaling efficiency of 88%. In comparison, for MatGPT
6.7B model, the per-device throughput is about the same for
64 or less GPUs with ZeRO stage 1 parallelism, and starts
to drop at larger scale because of the extra communication
overhead of all-device collectives. Tensor parallelism with a
partition level of 2, on the other hand, can sustain a 71%
scaling efficiency, owing to the fact that the 2 GPUs/GCDs are
within the same MI250X with twice the network bandwidth
(200 GB/s). Pipeline parallelism with 2 stages performs much
worse compared to the other two parallelism dimensions even
for a single node (see Fig. 7), and hence is not studied at scale.
To better understand the scaling behavior, in Fig. 8, we show
the profiling for the 3 corresponding parallel distributions (i.e.,
data parallel for 1.7B, and ZeRO stage 1 and tensor parallel
TP=2 for 6.7B) with 256 GPUs. The run time statistics are col-
lected using rocprof during the training, and aggregated into
3 type of kernels, i.e., computation, communication (RCCL

calls), and IO (data movements including device to host, host
to device, and device to device). As expected, IO doesn’t play
a big role in LLM training on Frontier. ZeRO has the most
data movements but the IO kernels take about 5% of total
run time. Communication becomes a bottleneck for training
at scale, especially for larger models. For 6.7B with ZeRO
stage 1, it accounts for about 40%. Note that in the above
experiments, the per-device batch size is fixed. In the case
of ZeRO stage 1, since the optimizer states are partitioned
across all devices, the more GPUs, the less per-GPU memory
footprint. Therefore, in practice, the per-device batch size can
be increased to improve the scaling performance.

To better understand the profiling results, we plot the
runtime and GPU power traces in Fig. 9. These traces are
collected using OmniTrace, and to avoid the excessive
overhead, only one node runs the tracing. Since the workloads
are evenly distributed, the resulted traces are representative
for understanding the distributed training. One training step is
shown in Fig. 9, where the run time includes one forward and
one backward step. The forward step consists of 32 layers
(see MatGPT 6.7B architecture in Table II) operations, and
each (zoom-in snapshot) is dominated by the flash attention



Fig. 11: The histogram and aggregated message size per-
batch-step per-GPU during the training of 1.7B with data
parallelism, 6.7B with ZeRO stage 1, and tensor parallelism
(TP=2), respectively.

operation (v2). In the backward step, the allreduce operation
takes a significant amount of time, consistent with rocprof
profiling (see Fig. 8). The power traces (recorded per MI250X)
shows high usage during the computation and drops down
during the communication. All GPU traces behave similarly,
confirming that the workloads are evenly distributed.

In order to understand the performance of GPU computa-
tion, we investigated the breakdown of kernels that are exe-
cuted within each transformer layer. The results are depicted in
Fig. 10, and demonstrate a few key takeaways. First, Fig. 10
(Left) shows that GEMMs account for the vast majority of
a transformer layer’s runtime, and their proportion increases
with model scale (65.9% and 91.2% for medium- and large-
sized models, respectively). Second, Fig. 10 (Right) shows
that within these GEMM kernels, the query-key-value (QKV)
transformation in the attention layer along with the MLP layer
account for the most runtime. Therefore, future optimizations
targeting these blocks would benefit training time the most.

To further investigate the impact of communication, as
shown in Fig. 11, the histogram and aggregated message
size per batch step per GPU are collected from RCCL logs
(by setting NCCL_DEBUG_SUBSYS=COLL) for the three par-
allelism settings for the distributed training in Fig. 8. The
ZeRO stage 1 and tensor parallelism TP=2 for 6.7B incurs
over an order of magnitude more RCCL calls (e.g., Allreduce
and Allgather) compared to vanilla data parallelism for 1.7B.
In terms of the total message size, both data parallelism
and ZeRO parallelism (considered as a memory-efficient data
parallelism) require a communication size about 2X the model
size, while tensor parallelism requires 3X due to the additional
communication of model parameters. Although TP=2 incurs a
larger communication volume than ZeRO stage 1, the scaling
efficiency is actually better because the 2 GCD within an
MI250X has a 2X communication bandwidth compared to
the inter-node communication needed for ZeRO stage 1 (see
Fig. 8).

Fig. 12: The trace of power, memory, and GPU utilization
for training MatGPT of 1.7B and 6.7B, respectively, with 256
GPUs on Frontier.

Observation 2 For HPC platforms optimized for workloads
with less demanding communication requirements, adding
extra parallelism dimensions such as tensor and pipeline
usually adversely impacts the LLM training throughput. The
recommended strategy is to keep model parallelism at the
minimum and assign the rest of the computation resources to
data parallelism. It is beneficial to map the partition of model
parallelism to the platform network topology to maximize the
the network bandwidth utilization.

With the optimized computational performance, we pre-train
MatGPT- NeoX and LLaMA on the full set of data tokens and
compare the loss and the performance of downstream tasks in
the following sections.
Power Usage and Cost Analysis Pre-training LLMs is com-
putationally expensive, and it’s essential to be mindful of
energy efficiency. We measure the power, memory, and GPU
utilization during the training of MatGPT on Frontier with the
rocm-smi tool. The update interval is per millisecond by
default. Considering the duration of a training step is typically
in seconds, rocm-smi can well capture the system metrics
for most kernels during training. Due to the evenly distributed
nature of the AI workload across all devices, the representative
trace of one GPU is plotted. As shown in Fig. 12, the power
trace for training 6.7B shows larger oscillation than that of
1.7B, with a mean value of 434 and 476 W for 6.7B and
1.7B, respectively. Note that there is only one power sensor
on an MI250X and the reported number is for the sum of
2 GCDs. Because the communication kernels also occupy
GPU, the near 100% GPU utilization for both cases is not
a good indicator for the computation usage. Power actually
correlates more closely with computational performance. In
fact, the oscillation in power curves indicates the periodical
computation and communication cycles, as shown in Fig. 9,
the power trace for a single training step. Given the 75.9 and
80.5 TFLOPS per GPU for training 6.7B and 1.7B model
with 256 GPUs, the energy efficiency for training can then
be calculated as 0.27 and 0.33 TFLOPS/Watt, respectively.
The training time and total energy consumption are also listed
in Table IV. Note that the numbers are for training a single



Fig. 13: The training and validation losses of MatGPT models.
Model size: 1.7B and 6.7B; tokenizer: HuggingFace (HF)
and sentencepiece (SPM); optimizer: Adam and LAMB; batch
size: 1M and 4M.

model, and in this study we have trained 6 models in total.

TABLE IV: The time and energy usage for pre-training one
1.7B and 6.7B MatGPT model, respectively, on Frontier.

Model GPUs Time
(hours)

Energy
(MWh)

Efficiency
(TFLOPS/Watt)

1.7B 256 4.1 0.23 0.33
6.7B 256 16.5 0.91 0.27

Loss Comparison It is shown [4] that the loss of LLM
scales with the model and data sizes. The lower the loss, the
better the model. Under the same experiment conditions, i.e.,
the same data processing and training pipeline, the loss can
be used as an indicator to compare model performance. To
identify the best model architecture on our 15B text corpus
for materials science, we pre-train a suite of models on the
Frontier supercomputer following a controlled recipe.

In Fig. 13, we plot the training and validation loss curves
for all MatGPT-LLaMA architectures listed in Table II. As dis-
cussed in previous sections, to maximize the training through-
put, most of the devices are assigned to data parallelism. This
means that the training is performed with relatively large batch
sizes. E.g., the GPT-3 model of a similar size[16] was trained
with a batch size of 1M tokens using the Adam optimizer. Here
we employ the LAMB optimizer to mitigate the generalization
gap issue associated with large-batch training. By comparing
the training and validation losses of the 1.7B model pre-trained
on the same data (i.e., tokenized with the same HF tokenizer
and 52K vocabulary size), the loss for the LAMB optimizer
with 4M batch size is actually about 2% smaller, indicating it’s
a better training procedure. Since the original LLaMA model
used the SPM tokenizer with a vocabulary size of 32K, we
train two additional 1.7B models using corresponding condi-
tions while fixing the rest of the experimental configuration.
In comparison, the loss is significantly bigger for SPM and
much smaller for 32K. However, because the training data

Fig. 14: Zero-shot performance. (Top) MatGPT-LLaMA 1.7B
models trained with HF and SPM tokenizers on a vocabulary
of size 52K, and HF tokenizer with 32K and 52K, respectively.
(Bottom) MatGPT- LLaMA versus Neox models of sizes 1.7B
and 6.7B.

tokens are effectively different in these cases, the absolute
value of loss cannot be compared. On the other hand, for the
6.7B model trained with the same data (i.e., HFT tokenizer,
52K vocabulary size), the loss is indeed smaller than that of
the 1.7B model. We also explored the effect of the training
precision, and found that the loss curves for MatGPT 1.7B,
trained with float16 and bfloat16, are almost identical.

To compare the MatGPT- NeoX and LLaMA, in Fig. 13,
we plot the training and validation losses for corresponding
1.7B and 6.7B models. With the Adam optimizer and a batch
size of 1M, the losses of both architectures are more or less
the same. However, for the LAMB optimizer and a batch size
of 4M, the MatGPT-LLaMA performs better for both model
sizes.
Observation 3 The losses for LLMs pre-trained with differ-
ent tokenizers and/or vocabularies are not comparable. With
the same pre-training recipe, the LLaMA architecture seems
to provide a smaller loss than that of NeoX.
Zero-shot Performance Although the LLM loss provides
some indication of a model’s performance, given LLM training
is unsupervised, the downstream tasks are the ultimate metrics.
Here we employ the popular question answering benchmarks
[35] including SCiQ [46], PIQA [47], OpenBookQA (OBQA)
[48], ARC-Easy (ARC-E) and challenge (ARC-C) [49], and
Hendrycks colleague tests [50] on chemistry (HT-CC), physics
(HT-CP), medicine (HT-CM), and compute science (HT-CCS).

We start with the zero-shot test, where LLMs are directly
applied to tackle new, unseen tasks. It can demonstrate a
model’s generalizability. In Fig. 14, we show the effect of
the tokenizer and vocabulary on the downstream language
benchmarks. The zero-shot accuracies are plotted for the HF
and SPM tokenizers with the same 52K vocabulary size, and
the for 32K and 52K vocabulary sizes with the same HF
tokenizer, respectively. The standard deviation in evaluating
each benchmark is also plotted to show the variance in
performance. The HF tokenizer seems to perform marginally
better in 2 out of 9 tasks while the rest are about the same.



Fig. 15: Few shot (3 and 5) performance of MatGPT- NeoX
and LLaMA 6.7B.

For vocabulary size, 52K performs slightly better in 4 out of
9 tasks, while 32K shows an edge in 2 tasks. Considering our
text corpus comes from scientific articles, larger vocabulary
seems to be able to distinguish domain terminologies such as
chemical elements in materials formulae.

Using the same HF tokenizer and a vocabulary size of 52K,
in Fig. 14, we compare the zero-shot performance of MatGPT-
NeoX and LLaMA models. For 1.7B models, NeoX performs
marginally better in 4 out of 9 tasks while LLaMA is slightly
better in 2 out of 9 tasks. For 6.7B models, LLaMA shows an
edge for 2 tasks while the rest are on par. The results indicate
that the loss (see Fig. 13) does not fully correlate with the
model’s performance on downstream tasks.
Few-shot Performance In addition to zero-shot tests, it is
also important to evaluate LLMs’ capability in adapting re-
sponses based on a few examples, i.e., few-shot performance.
In Fig. 15, we plot the 3-shot and 5-shot performance for
MatGPT- NeoX and LLaMA of 6.7B parameters, respectively.
For some tasks, e.g., SCiQ, prompting with more examples
help to improve the model performance, and NeoX with 5-
shot performs the best. Compared to zero-shot, the accuracy
improvement for SCiQ is up to about 5%. Overall, LLaMA
performs slightly better in 3 out of 9 tasks while NeoX shows
an edge in the other 3.
Observation 4 The LLM loss can serve as an indicator of
model performance but does not fully correlate with down-
stream task performance. GPT-NeoX and LLaMA architec-
tures perform similarly on generic downstream tasks. Data
quality seems to be the distinguishing factor, and a larger
vocabulary size for scientific texts likely helps.
Fine-tuning for Scientific Task Beyond generic question
answering tasks, more importantly, it is crucial to demonstrate
the scientific benefit of a domain-specific LLM. Most of the
efforts [13, 19] so far have shown only the classification
tasks, e.g., name entity recognition, but physical science is
inherently numerical, with regression analysis serving as its
core foundation. Here we show that MatGPT can be used to
improve the prediction quality of an important property of a
material, i.e., band gap, which plays a key role in determining
the material’s electrical and optical properties.

The experimental results support two complementary prin-
ciples (i) LLMs of different architectures trained on larger

datasets and a large number of parameters and (ii) models
with higher hidden dimension sizes perform better than their
simpler variants if these mentioned cases are true either
individually or together. We first (i) present our band gap
prediction results for different model settings where a set of
domain-specific LLM variants (e.g. MatSciBERT, MatGPT-
NeoX, etc.) is used in conjunction with a state-of-the-art GNN
architecture, then (ii) show what intrinsic characteristics enable
MatGPT embedding variants to perform better than each other
and in general from MatSciBERT. Lastly, (iii) we will try to
present evidence of the two characteristics mentioned above
for various model architectures.

Table V shows the performance of band gap prediction re-
sulting from a GNN model used in conjunction with MatSciB-
ERT and MatGPT material embeddings, respectively. In the
table, CGCNN [37], MEGNet [51], ALIGNN [40], and MF-
CGNN [52] are GNN implementations. ALIGNN and MF-
CGNN represent state-of-the-art performance without pre-
training, and +Scibert and +GPT represent MF-CGNN aug-
mented with MatSciBERT and MatGPT embeddings, respec-
tively. We observe 5% and 8% improvement with +SciBERT
and +GPT, respectively, over MF-CGNN alone. As band gap
prediction is extremely challenging, our result demonstrates
the promise of leveraging LLMs in scientific applications.

TABLE V: Predicting band gap with various GNN implemen-
tations. Mean absolute error (MAE) is reported with the best
value marked in bold.

CGCNN MEGNet ALIGNN MF-CGNN +SciBERT +GPT

0.388 0.33 0.218 0.215 0.204 0.197

Fig. 16: Euclidean distances (Left) and cosine similarities
(Right) between embedding vectors.

To understand the results in table V, we conducted fine-
grained analysis on the MatsciBERT and MatGPT embedding
vectors extracted via formula name of metal-organic materials
(total 69240 materials) from respective models. The analyses
uncover a couple of interesting facts from different viewpoints
as follows that directly impact the regression results:
• MatGPT embedding vectors are closer to each other than

MatSciBERT vectors. This characteristic enables MatGPT
variants to perform better in regression tasks than MatSciB-
ERT. Fig. 16 exhibits the density distribution of computed
distances between embedding vectors for each LLM con-



(a) MatSciBERT
Hidden size 768

(b) MatGPT-NeoX
Hidden size 768

(c) MatGPT-LLaMA
1.7B HF tokenizer
Hidden size 2304

(d) MatGPT-LLaMA
1.7B SPM tokenizer
Hidden size 2304

(e) MatGPT-NeoX
6.7B, Hidden size 4096

(f) MatGPT-LLaMA
6.7B, Hidden size 4096

Fig. 17: Embedding clustering of material formulas for
MatSciBERT and MatGPT variants after reducing dimensions
by TSNE in tandem with PCA.

sidered in this study where the histograms of all the GPT
variants are located near the y-axis.

• All the MatGPT vectors point in the same direction meaning
that the cosines between the respective embedding vectors
of all GPT variants tend to be 1. This phenomenon is
demonstrated in Fig. 16 where density probabilities of
cosine similarity between embedding vectors for all Mat-
GPT variants seem to overlap on a vertical line. However,
a different analysis demonstrates a model having smaller
angles between MatSciBERT embedding vectors tends to
lead to better performance than a model having larger angles
between them. Although the embedding vectors of MatSciB-
ERT and other GPT variants are derived from different
architecture families, they both imply that smaller angles
between embedding vectors perform better in bandgap pre-
diction tasks.

To support our claim and establish the hypotheses men-
tioned above, we further investigate LLM embedding spaces
by demonstrating clustering plots generated from respective
embedding vectors in Fig. 17. Compared to MatGPT-NeoX
(Fig. 17b) of similar size (hidden size 768), MatSciBERT
embeddings form a very large cluster (Fig. 17a), which is
an indicator of insufficient knowledge representation. Besides
that, the embedding distances between MatSciBERT vectors
are greater than the GPT variants’ counterparts. This estab-
lishes a notion that data points are randomly disseminated
in the low dimensional space, and hence perform a poor
clustering. The optimal embedding clustering should reflect the
characteristics of the prediction target — band gap: materials
in nature can be classified by band gap into a few categories,
i.e., conductor, semiconductor, or insulator, and the band gap
for each category of materials has its characteristics. It seems
the knowledge embedded in MatGPT can serve as additional
distinctive features to improve the GNN regression. Referring
to the clustering principle that the same cluster data points

are closer to each other than the data points in different
clusters, embeddings of GPT variants maintain a pertinent bal-
ance between the overall embedding distances and comprised
distinctive features. For MatGPT-LLaMA with different data
tokenization (HF and SPM), the SPM (Fig. 17d) embeddings
seem to overly classify formulas, and this is consistent with
the performance comparisons for language benchmarks (See
Fig. 14).

Our best-performing model (See Table V) is MatGPT-NeoX
with a dimension size of 4096 plotted in Fig. 17e shows
cluster results consistent with the prediction result. On the
other hand, clusters of MatGPT-LLaMA embedding variants
of different dimension sizes are plotted in Fig. 17f, 17c,
and 17d. They display either a higher number or a lower
number of clusters, which seems to be the reason that LLaMA
embeddings reduced performance as compared to NeoX.
Observation 5 For LLMs pretrained on scientific texts,
model embeddings encode the knowledge of the literature.
One hallucination-free usage of LLMs for science is the ma-
nipulation of embeddings for both classification and regression
tasks.

V. CONCLUSION

LLMs are poised to potentially revolutionize the way we
conduct science and it is critical to establish best practices for
deploying them on public HPC platforms, especially leader-
ship supercomputers, to ensure the democratized usage of sub-
sequent breakthroughs. In this study, we have systematically
investigated two popular open-source LLM architectures —
GPT-NeoX and LLaMA. By designing controlled experiments,
we carefully studied the effect of data tokenization, model
architecure, and parameter count on both the behavior of
training and validation losses, and the downstream language
benchmarks. We outlined our observations and provided prac-
tical guidance for training LLMs on HPC systems.

Furthermore, based on the scientific corpus we collected,
we have pre-trained a suite of LLMs for materials science.
We then demonstrated our suite on a scientific downstream
application by injecting the models’ embeddings into the graph
neural network for fine-tuning, and achieved state-of-the-art
performance for the band-gap prediction.

Moreover, we reported the best-so-far LLM training per-
formance on AMD GPUs, and demonstrated good scaling and
energy efficiency on the Frontier supercomputer. The practical,
end-to-end solution we establish can be applied to building
LLMs on HPC systems in general.
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