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ABSTRACT
This paper discusses a revised solution verification proce-

dure for computational fluid dynamics simulations to estimate
the uncertainties in the quantities of interest based on discretiza-
tion error models. This proposed procedure builds upon cur-
rent procedures described in ASME V&V 20 but provides more
guidance in determining the necessary number of mesh levels to
build reliable discretization error models. Such guidance is par-
ticularly useful for practicing engineers without prior experience
in solution verification. The key features of this proposed solu-
tion verification procedure are the ability to determine the need
for additional mesh levels iteratively and the seamless treatment
for underdetermined, exact, and overdetermined solutions of the
power series approximation to the discretization error models.
This study applies the proposed procedure to a set of synthetic
examples to demonstrate the revised procedure’s clarity in deter-
mining the number of mesh solutions required for a reliable esti-
mate of the discretization error in computational fluid dynamics
settings. Additionally, this proposed procedure prevents a poten-
tial pathway in the current procedure in ASME V&V 20 that may
lead to unreasonably small discretization errors.1
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NOMENCLATURE
D Dimension of computational fluid dynamics problem
Fs Grid convergence index factor of safety
f Solution quantity of interest
f∞ Extrapolated solution quantity of interest
h Mesh size parameter
N Number of cells or elements in a solution mesh
Ng Number of meshes solved for computational fluid dynamics

problem
p Order of convergence
p̂ Observed order of convergence
r Mesh refinement ratio
Vi Volume of cell or element i
α Power series coefficients

1 INTRODUCTION
This work proposes a revised procedure for conducting solu-

tion verification of computational fluid dynamics (CFD) simula-
tions to estimate the uncertainties in quantities of interest (QOIs)
based on discretization error models. Current procedures—
notably, the Standard for Verification and Validation in Com-
putational Fluid Dynamics and Heat Transfer published by the
American Society of Mechanical Engineers (i.e., ASME V&V
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20)—describe methods for known sets of meshes (i.e., grids) [1].
These procedures differ from standard analysis procedures used
by practicing engineers, creating the potential for inappropriate
application of the recommended methods.

It is common for many practicing engineers to first run a
CFD simulation on a single initial mesh to check if the initial
mesh is sufficient before conducting a mesh study with either
successive refinement or coarsening. This approach is reason-
able because meshing and computation take significant time and
computational resources. Indeed, an engineer is unlikely to have
a prescribed number of initial meshes prior to conducting a mesh
study. With limited time and computational resources, engi-
neers almost always aim to solve the minimum number of ad-
ditional CFD solutions needed to estimate uncertainties in the
QOIs. Therefore, there is a need for computational tools to eval-
uate whether the number of meshes they have currently solved is
sufficient for the problem at hand.

ASME V&V 20 describes the procedure for solution verifi-
cation in Section 2-4.1. This five-step procedure for uncertainty
estimation defaults to using three mesh solutions for establish-
ing an approximate error bound using the grid convergence index
(GCI) method as a solution to a power series model of discretiza-
tion error. In cases in which solution verification error and uncer-
tainty terms are unacceptably large, more than three mesh solu-
tions are required. The standard provides engineers two methods
for improving estimates: using multiple sets of three mesh solu-
tions or a least-squares solution to the power series. However, no
further details on how to extend the study for an overdetermined
solution are provided within the procedure itself.

For practicing engineers without prior experience in solution
verification, how to deviate from the presented five-step proce-
dure with more than three meshes may not be obvious. Further-
more, Section 2-5 of ASME V&V 20 (i.e., “Special Consider-
ations”) suggests a more encompassing approach in which the
solution verification procedure of Section 2-4.1 involves only a
single step. This section conceals the most important information
because first-time readers will not likely understand this relation-
ship. Because of this layout, this study posits that the ASME
V&V 20 procedure for solution verification can be revised to bet-
ter align with the expectations of practicing engineers looking for
a method to reliably quantify the error in their CFD simulations.

The present work first describes the power–law model of dis-
cretization error along with how the model is solved for under-
determined, exact, and overdetermined solutions in Section 2.
Then, this work briefly reviews the ASME procedure for solu-
tion verification in Section 3. Next, the present work describes
the proposed procedure with subsections further elaborating each
major step in Section 4. After presenting the procedure, its use
is elucidated on a few synthetic example cases before discussing
the difference in the present procedure from existing methods
based on these examples; this comparison concludes the work
(see Sections 5- 7).

2 POWER-LAW MODEL OF DISCRETIZATION ERROR
Power series expansion, such as the one shown in Eq. 1,

is commonly used to describe discretization error of a numer-
ical scheme (e.g., the finite-volume method or finite-element
method).

f = f∞ +α1h+α2h2 +α3h3 + ..., (1)

where f is the discrete solution QOI, f∞ is the QOI with zero dis-
cretization error, h is a characteristic mesh size, and αn are the
series coefficients. The origin of the power series is the Taylor
series expansion of the discrete solution about the exact solu-
tion [2]. The power series coefficients, αn, contain the informa-
tion from the unknown derivatives of the solution.

For a given solution, the power series can be simplified by
considering the formal order of accuracy of the code. For exam-
ple, a second-order code can be represented by the power series
given in Eq. 2. The first-order error term is eliminated by the
use of a second-order method; additionally, all higher-order er-
ror terms are combined.

f = f∞ +α2h2 +O(h3). (2)

The power series can be further reduced to a single-term ex-
pansion by assuming the CFD solution is solved in the asymp-
totic regime where the error is dominated by the lowest-order
error term, eliminating all higher-order errors. This reduction is
shown in Eq. 3:

f ≈ f∞ +α2h2. (3)

Richardson first used the power series to express discretiza-
tion error in 1910 [3]; these methods are now called Richard-
son extrapolation methods because the power series model al-
lows an engineer to extrapolate the known solution values to the
zero-error limit by estimating f∞. However, extrapolated val-
ues are not commonly reported even when the model is used
for estimating discretization errors because of the limitations of
the extrapolation model [2, 4]. For more in-depth discussions on
Richardson extrapolation, the authors recommend either the texts
of Roache [5] or Oberkampf and Roy [2].

Generally, the realized order of convergence does not match
the solver’s formal order of accuracy. For example, problems
with shocks will be at most first-order accurate at the shock with
the first-order error term transported throughout the domain [2].
In general, a solution QOI will not converge at the formal order of
accuracy because of artificial dissipation, solution singularities,
switching functions, or other nonsmooth features of the prob-
lem that violate the simple power series model for discretization
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error. As such, the single-term power series for the solution is
written with an unknown power, p, as in Eq. 4 [2]:

f = f∞ +αhp. (4)

Eq. 4 is a valid model for the discretization error when the
model is solved in the asymptotic regime of the problem; it has
three unknowns— f∞, α , and p—and forms the basis for the most
common forms of solution verification in CFD and this work.
Next, this work discusses the various ways to solve Eq. 4 based
on the number of CFD solutions an engineer has.

2.1 Solution with Known Convergence Order
For a small subset of problems, the realized convergence or-

der of the solutions is known, permitting an underdetermined so-
lution of the power series with only two mesh solutions by fix-
ing the order of convergence. Although this method is not com-
mon because of the aforementioned issues, simply using three
meshes is not computationally efficient when the order is known.
Because the convergence order p is known, the following two-
equation system can be used to solve for f∞ and α:

f1 = f∞ +αhp
1 ,and

f2 = f∞ +αhp
2 .

In this equation, f1 is the solution QOI to the fine mesh solution,
and f2 is the solution QOI to the coarse mesh solution. The two-
equation system reduces to Eq. 5 [5]:

f∞ = f1 +
f1 − f2

rp −1
, (5)

where r = h2/h1 is the mesh refinement ratio. The series coeffi-
cient is then solved using Eq. 6 [2]:

α =
f1 − f∞

hp
1

. (6)

2.2 Exact Solution to Power–Law Model
For the more common case in which the realized order of

convergence is unknown, the exact solution to Eq. 4 can be found
by solving the following three-equation system for f∞, α , and p:

f1 = f∞ +αhp
1 ,

f2 = f∞ +αhp
2 ,and

f3 = f∞ +αhp
3 .

For constant mesh refinement ratios, the observed order of
convergence can be found using Eq. 7:

p̂ =
ln
(

f3− f2
f2− f1

)
ln(r)

, (7)

where p̂ is the observed convergence order [2]. The extrapolated
QOI and the series coefficient can then be computed using Eqs. 5
and 6, respectively.

For nonconstant refinement ratios, the transcendental equa-
tion in Eq. 8 must be solved:

f3 − f2

r p̂
23 −1

= r p̂
12

(
f2 − f1

r p̂
12 −1

)
. (8)

This equation is most easily solved with an iterative direct sub-
stitution method. For specific schemes, see Refs. [1, 2, 5].

2.3 Overdetermined Solution to Power–Law Model
Finally, when more than three mesh solutions are consid-

ered, an overdetermined solution to Eq. 4 must be found. Con-
sidering more than three mesh solutions is helpful for many prac-
tical engineering problems because noise in the solutions can ob-
scure the true solution to the power series. This work follows the
ASME V&V 20 standard in recommending the use of the least-
squares solution by Eça and Hoekstra [6]. The least-squares so-
lution is found by minimizing Eq. 9. For recommended solution
methods, see Refs. [1, 2, 5].

S( f∞,α, p̂) =

√√√√ Ng

∑
i=1

[
fi −

(
f∞ +αhp̂

i

)]2
. (9)

3 EXISTING PROCEDURES
Arguably, the most important procedure for solution verifi-

cation is the one detailed in Section 2-4 of ASME V&V 20 [1].
This procedure is functionally the same as the procedure pre-
sented in the 2008 announcement made by the ASME Journal of
Fluids Engineering [7]. In essence, both sources detail a pro-
cedure to implement the GCI method [4], though some differ-
ences exist in the descriptive texts. Although individual articles
or books may describe different solution procedures, the standard
procedure described in ASME V&V 20 is important because it
is generally the first reference used by practicing engineers be-
fore diving deeper into the literature. The standard procedure
described in ASME V&V 20 consists of five steps. For ease of
reading, this work lists the procedure here (with brief paraphras-
ing); for the full text, see ASME V&V 20 [1].
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1. Define a representative mesh size h using the appropriate
equation for the problem mesh (i.e., structured or unstruc-
tured).

2. Solve the problem on three significantly different meshes
with recommendations that the grid refinement factor is
greater than 1.3, refinement is systematic, and refinement
is equal in all directions.

3. Solve for the observed order of convergence using the meth-
ods from Ref. [8]. Note that four meshes are required to
demonstrate that the observed order of convergence is con-
stant and that it may require more mesh solutions to demon-
strate this property or provide a numerical uncertainty esti-
mated less than other problem uncertainties.

4. Calculate the extrapolated QOI.
5. Calculate and report the QOI’s relative error, estimated ex-

trapolated relative error, and GCI. Approximately one page
of additional text follows this step with a detailed explana-
tion about the appropriate use of GCI as an error measure
that accounts for the uncertainties.

This five-step procedure provides a simple approach for engi-
neers to conduct solution verification for their CFD problems.
To date, this five-step procedure has been effective in promoting
solution verification and establishing it as an integral component
of CFD analysis. However, it is the authors’ opinion that this
procedure can be improved.

First, this study proposes to recast the current procedure
to iteratively determine the required number of mesh levels for
building a reliable discretization error model. The current proce-
dure can be read as a fixed procedure that heavily favors three-
mesh solutions to the power–law model regardless if more mesh
solutions are available. For some CFD problems, three-mesh so-
lutions are simply not enough to build a reliable discretization
error model due to noisy convergence of the solution QOIs. Sec-
tion 2-5 of ASME V&V 20 recognizes this issue and suggests
that engineers conduct an initial nominal solution on three to six
meshes with different refinement levels. This suggestion aligns
more closely with common practice but is not part of the explicit
procedure. Furthermore, meshing and computations take signifi-
cant time and computational resources, and without clear metrics
on when more than three-mesh solutions are needed, engineers
will most likely default to using three-mesh solutions and call it
“good enough.” Determining the number of required mesh levels
a priori is also challenging because it largely depends on the CFD
problem at hand. Thus, an iterative procedure will be more robust
and efficient. The improved robustness comes from clear metrics
for determining the minimum number of mesh levels required to
build a reliable discretization error model for the CFD problem
at hand. This work notes that without a reliable discretization
error model, accurate estimates of uncertainties in the QOIs can-
not be obtained. The improved efficiency comes from the fact
that engineers do not need to waste their time and computational

resources to generate a large (fixed) number of meshes a priori
but rather need to spend their time and resources efficiently by
generating one additional mesh at a time as needed throughout
the iterative procedure.

Second, this work provides clear metrics to determine if
the discretization error model is reliable. The current procedure
heavily favors three-mesh solutions without clear metrics for as-
sessing the reliability of the resulting discretization error model.
Even more vexing is that the current procedure accepts the result-
ing discretization error of a three mesh study if the solution veri-
fication error and uncertainty terms are small compared to other
error and uncertainty terms. This metric is vulnerable to accept-
ing unreasonably optimistic discretization error estimates if the
three-mesh solution returns a convergence order greater than the
code’s theoretical order of convergence. The metrics proposed in
this work will evaluate the uncertainty of the discretization error
model independently of other error terms and will guide the it-
erative procedure in determining the minimum number of mesh
levels required to build a reliable discretization error model for
the CFD problem at hand.

3.1 A Least-Squares Solution Procedure
Of all other procedures, this work highlights the one de-

scribed by Eça and Hoekstra in 2014 [9]. Their least-squares
solution for the GCI is in the nonmandatory appendices of the
ASME V&V 20 standard [1]; however, V&V 20 only includes
the least-squares solution and not the full procedure described
later in 2014. This procedure requires a minimum of four mesh
solutions because the least-squares solution requires an overde-
termined system. Also, this procedure is not iterative; engineers
must deduce on their own if their analysis should be rerun with
additional mesh solutions. Notably, though, the method evalu-
ates the quality of the discretization error model. The following
is an abbreviated summary of Eça and Hoekstra’s procedure [9]
which assumes the code’s formal order of accuracy is two.

1. First, the power series approximation of the discretization
error model is fitted in both a weighted and nonweighted
approach.

(a) If the computed order of convergence is between 0.5
and 2, the fit is deemed valid.

(b) If the computed order of convergence is above 2, the
lowest standard deviation fit between a first-order and
second-order power series is taken.

(c) If the computed order of convergence is below 0.5,
the lowest standard deviation fit between a first-order,
second-order, and mixed first- and second-order power
series is taken.

2. Determine the range of data parameters.
3. Assign a factor of safety of 1.25 if the computed order of

convergence is between 0.5 and 2.1 and the standard devia-
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tion of the fit is less than the data range. Otherwise, assign a
value of 3.

4. Compute the uncertainty of the QOI.

Eça and Hoekstra’s procedure evaluates the quality of the
power series fit of the discretization error model, and it has
served the community well. However, Eça and Hoekstra’s pro-
cedure still lacks guidance in determining the required number
of mesh levels to build a reliable discretization error model for
the problem at hand; it simply trusts the engineers to know how
many more mesh solutions are needed beyond the required four
mesh solutions. As such, their procedure is not iterative. Per pre-
vious discussions, this work deems these noniterative procedures
as inaccessible to engineers unfamiliar with solution verification.
For this reason, the authors believe the conjecture from the intro-
duction stands in that the ASME V&V 20 solution verification
procedure can be improved to better support engineers.

4 PROPOSED PROCEDURE
This work combines existing solution verification proce-

dures [1, 9] and creates a complete procedure that can han-
dle underdetermined, exact, and overdetermined solutions to the
power–law model of discretization error. To address the ques-
tion of how many mesh levels are needed to build a reliable error
model, this work formulates an iterative procedure that adds one
mesh level at a time as needed. Notably, the necessary number
of mesh levels is unlikely to be known beforehand. The revised
procedure is described in the following list; all clarifying texts
are in the subsections for these steps.

1. Obtain an initial solution to the CFD problem on a mesh
constructed based on the expert judgment of the engineer.

2. Identify the characteristic mesh size of the problem.
3. Create a refined or coarsened mesh as part of a valid mesh

sequence.
4. For problems with a known convergence order, solve the

power–law model for f∞ and h with the two QOI values.
Proceed to Step 8. Note that it is uncommon to know the
convergence order.

5. For problems with an unknown convergence order, solve the
power–law model for f∞, h, and p with the three QOI values.
Proceed to Step 7.

6. Solve the overdetermined solution to the power–law model
for f∞, h, and p with the QOI values from the Ng mesh solu-
tions.

7. Evaluate the accuracy of the power–law model based on rec-
ommended criterion in explanatory text and problem needs.
If sufficient, proceed to Step 8. Otherwise, repeat Step 3,
then proceed to Step 6.

8. Report the uncertainty measure of your choice for the QOI
value (on the nominal solution mesh), the observed order of

convergence, and sufficient details on the solution verifica-
tion process to repeat the procedure.

The solution verification procedure presented here primar-
ily differs from the existing procedure described in the ASME
V&V 20 standard by iteratively determining if additional mesh
solutions are needed to construct a reliable discretization error
model. The iterative nature of this proposed procedure helps en-
gineers use their limited time and computational resources ef-
ficiently because they now only need to generate the minimum
number of meshes required for a given problem. Additionally,
the proposed procedure includes an explicit step to evaluate the
accuracy of the power–law model. In summary, this proposed
procedure more clearly elucidates the end goal and requirements
of solution verification for engineers who use the ASME V&V
20 standard to guide their analyses.

4.1 Explanation of Step 1
The solution verification procedure demands a well-defined

CFD problem and a well-resolved base solution. The result of a
solution verification procedure is also only valid for a given set of
CFD parameters and a given sequence of meshes; any changes in
parameters or meshes will require rerunning of the solution ver-
ification procedure. It is also crucial that the CFD problem is
solved on a sequence of meshes. As such, it would be unwise
for engineers to create a sequence of meshes before determin-
ing the validity of the initial mesh for the CFD problem (i.e.,
before obtaining a well-resolved base solution); the initial mesh
dictates the additional meshes required to form a sequence. To
form a sequence of meshes, engineers may choose to create a
finer or coarser mesh compared with the initial mesh. For exam-
ple, engineers may choose to create a coarser mesh for a detailed
nominal study or a finer mesh for a CFD problem setup for a
parameter study. This step aligns with the suggestion in Section
2-5 of ASME V&V 20.

4.2 Explanation of Step 2
For general CFD problems on unstructured meshes, the

characteristic mesh size can be computed using Eq. 10:

h =

[
∑

N
i=1 Vi

N

]1/D

, (10)

where N is the number of cells or elements in the domain, Vi is the
volume of the ith cell or element, and D is the dimension of the
mesh [8]. Notably, Eq. 10 is not valid for all meshes—most no-
tably not for meshes with nonuniform refinement or inconsistent
refinement [2]. The engineer must determine that the analyzed
meshes are well-described by the characteristic size and com-
prise a mesh refinement sequence [10]. This step is qualitatively
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similar to Step 1 in the ASME V&V 20 standard [1]. However,
this work emphasizes that a well-resolved base solution must be
found before a characteristic size for the problem is specified.

4.3 Explanation of Step 3
Solution verification is agnostic as to whether a sequence of

meshes is generated by refining or coarsening the initial mesh
as long as the meshes remain valid for the CFD problem. When
the CFD problem is computationally tractable on refined meshes,
this work prefers that the sequence is constructed based on these
refined meshes because they will produce smaller discretization
errors; however, coarsened meshes can be used effectively if the
CFD solution still lies in the asymptotic regime. A refinement
ratio, r = hcoarse/hfine, greater than 1.3 is recommended as a best
practice to generate a sufficient difference between the solution
QOIs to mask solution noise [1, 7]. Meshes with differences as
small as a single cell or element are valid, though an unreason-
able number of mesh solutions will typically be required to ob-
tain an accurate fit to the power–law model of discretization er-
ror [5]. Additionally, refinement should be global and as uniform
as possible. Nonuniform refinement can return erroneous orders
of convergence [11] and is best handled by independent grid re-
finement studies [4].

4.4 Explanation of Step 4
Step 4 is used for problems in which the convergence order

of the problem is known. To claim that the convergence order
is known, engineers must first justify that their problem meets
this condition. One way is by demonstrating that a previous cal-
culation on a sufficiently similar problem established the con-
vergence order of the problem and does not contain a condition
that may change this convergence order for the differences in the
problems. More importantly, code verification demonstrating the
formal order of a solver for separate verification problems does
not meet this standard. This work does not try to establish the
necessary limits for this condition.

4.5 Explanation of Step 5
The next step is to obtain three-mesh solutions and construct

the power–law model of discretization error. For most analyses,
this step will be the first discretization error computation. Engi-
neers may use their preferred solution strategy to solve the three-
equation system. In ASME V&V 20, the three listed equations
to solve the system (2-4-5, 2-4-6, and 2-4-7) are easy to imple-
ment [1], though they do not include an explicit iterative index to
clearly denote that a fixed point iteration is required, as shown in
Eq. 8.74 from Oberkampf and Roy [2].

4.6 Explanation of Step 6
To solve the overdetermined power–law model, this work

recommends the least-squares solution of Eça and Hoekstra [6],
as discussed previously. In 2014, Eça and Hoekstra created a
full solution procedure, which solves both the unweighted and
weighted models [9]. Although these models are valuable, the
solution verification community has not yet determined their
preferred approach. This study has no preference at this time,
though it uses the unweighted method in the example problem.
Also, notably, engineers may use other methods to solve the
overdetermined power–law model.

The proposed procedure does not yet handle fitting a mixed-
order, power–law model, as in the 2014 procedure [9]. Such
methods will be useful for CFD problems with non-monotonic
convergence [12], which is commonly observed in many prac-
tical CFD problems. The additional methods needed to han-
dle non-monotonic convergence are left for future work. Some
questions to be answered include whether these methods should
(1) use arbitrary orders or include a first-order term explicitly and
(2) capture the oscillatory convergence.

4.7 Explanation of Step 7
The accuracy of the power–law model can be evaluated in

multiple ways. Regardless of the chosen methodology, it is im-
portant to first determine if the computed order of convergence
is valid. The generally accepted bounds are 0.5 and 2 [2, 5, 9],
though new high-order codes will extend this upper order to the
formal order of the solver. As a starting point, this procedure
recommends that the valid range for an observed order of con-
vergence is between 0.5 and the formal order of the solver; a
5% buffer is allowed over the formal order of convergence to ac-
count for small numerical errors, though the solution should use
the formal order when the observed order is in this margin. These
bounds align with the work of Eça and Hoekstra [9].

The criterion discussed in the previous paragraph is insuf-
ficient to convincingly establish the reliability of the power–law
model alone, though it is a good start. The authors do not have
sufficient experience with other methods to advocate for them
here. However, it will be important to establish these methods
for the standard so there is more than a single criterion on the
observed order for the modeling effort.

One common approach is to model subsets of the data and
confirm that each submodel’s observed order agrees. For exam-
ple, three overlapping three-mesh solutions would be solved over
a total of five meshes. If the observed order for all three solu-
tions was within 5%, engineers would trust the model. How-
ever, such a solution strategy contradicts the goal of an iterative
method designed to evaluate on the fewest number of meshes
possible. Modeling subsets of data is appealing but will quickly
become expensive for general applications, though it may be rec-
ommended for critical applications.
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4.8 Explanation of Step 8
The reported error and uncertainty measurements are a func-

tion of both the method used and the desired measurement type.
For example, error estimates may be normalized or not, include
a factory of safety, encompass a different confidence interval,
or assume an underlying error distribution [1]. This work rec-
ommends the GCI method for reporting error estimates because
it is a well-established and well-accepted method [1]. Specif-
ically, the non-normalized GCI computation given in Eq. 11 is
recommended for fine mesh solutions [2] and Eq. 12 for coarser
meshes [2]. In both equations, Fs is a factor of safety used to
approximate a 95% confidence interval based on the expert judg-
ment of Patrick Roache [4, 5].

GCIfine =
Fs

r p̂ −1
| f2 − f1|. (11)

GCIcoarse = r p̂GCIfine. (12)

For a community standard, it would be beneficial to detail
alternative reporting options like ASME V&V 20 currently does.
For example, ASME V&V 20 provides a conversion of the GCI
metric, which is based on an ad-hoc 95% confidence interval, to
an uncertainty interval based on one standard deviation to align
with new international standards [1]. Long-term developments
to remove the ad hoc nature of the GCI method will also be de-
sirable, such as the discontinuous nature of only using factors of
safety of 1.25 and 3. Smoother behavior, like that shown in the
factor of safety method of Xing and Stern [13], is a more natural
fit to an iterative procedure such as the one detailed in this work.

5 EXAMPLES
This section demonstrates the application of the proposed

iterative procedure to a synthetic CFD analysis that is repre-
sentative of the analysis a practicing engineer may need to do.
This synthetic example will assume that the engineer is using a
second-order, finite-volume CFD solver and is tasked with eval-
uating the pressure drop across the valve of a new system based
on varying multiple input parameters to find the best design. As
such, the engineer conducts the solution verification process to
establish the uncertainty of the pressure drop in the coarse mesh
solution for parametric studies.

First, the case when the analysis has a valid three-mesh so-
lution is considered. Next, the problem is evaluated when it re-
quires an overdetermined solution to the power–law model (i.e.,
four or more mesh solutions are considered). The synthetic ex-
ample used in this work is based on the authors’ experience run-
ning real analyses and is utilized to highlight the revised proce-
dure without requiring the complicated details of multiple CFD
analyses. To highlight the discretization error in this example,

the engineer is assumed to solve each mesh to machine preci-
sion, so the iterative error is zero and all numerical uncertainty is
captured by the discretization error estimated by the power–law
model.

5.1 Three-Solution Problem

The simplest solution verification process involves three-
mesh solutions. The engineer starts the solution verification pro-
cedure (i.e., Step 1) by obtaining a nominal solution to their CFD
problem. The next step (i.e., Step 2) requires them to compute
the characteristic mesh size. For this example, consider a 1 m3

domain with 1,000,000 cells. Using Eq. 10, the characteristic
length for this first mesh is h1 = 10 mm. Proceeding to Step 3,
the engineer creates another mesh. In this example, assume that
the engineer uses the nominal simulation for parametric studies.
Thus, they create refined meshes for the solution verification pro-
cess; this practice aligns with the recommendation that refined
meshes are preferred when computationally affordable to ensure
asymptotic behavior. The engineer applies a refinement factor of
1.3, resulting in a mesh with 2,197,000 cells and a characteris-
tic length of h2 = 7.69 mm. Because the convergence order for
the problem is unknown, the engineer repeats Step 3 to create
a third mesh with 4,826,809 cells and a characteristic length of
h3 = 5.92 mm.

Next, the engineer evaluates the solution discretization error
in Step 5. Because the refinement ratio is constant, they solve
for p using Eq. 7. For this synthetic example, the engineer aims
to estimate the pressure loss through a to-be-installed valve for
their system. The estimated pressure losses for the three-mesh
solutions are f1 = 10, f2 = 12, and f3 = 13.2 kPa. The resulting
observed order of convergence is 1.95 with f∞ = 15. Based on
the order limits from Step 7, the engineer assesses the power–
law model and finds it to be sufficiently accurate. Therefore,
they proceed to Step 8.

In Step 8, the engineer chooses to use the GCI method to
report their estimated numerical uncertainty. First, they com-
pute the fine mesh GCI using Eq. 11 and obtain GCIfine = 2.25.
Second, they compute the coarse mesh GCI using Eq. 12 with
GCIcoarse = 6.25. The overall refinement factor is r = 1.69. Fi-
nally, they report the observed order of convergence, the nominal
mesh GCI value, and the minimum information needed to recre-
ate the study for Step 8; these values are shown in Table 1. Addi-
tionally, Figure 1 plots the data, f∞, and the fit to the power–law
model. For this problem, GCIcoarse is large enough that a reason-
able engineer would likely not proceed with the parametric study
using the coarse mesh as the numerical uncertainty interval ex-
ceeds 50% of the coarse mesh’s estimated pressure drop. Instead,
they would use the finer mesh and adjust their parametric study
based on the computational resources available.
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TABLE 1. REPORTED VALUES FOR THREE-SOLUTION PROB-
LEM

Parameter Value Unit

h1 10 mm

h2 7.69 mm

h3 5.92 mm

f1 10 kPa

f2 12 kPa

f3 13.2 kPa

p̂ 1.95

f∞ 15 kPa

GCI1 6.25 kPa

FIGURE 1. PLOT OF THE POWER–LAW MODEL FOR THREE-
SOLUTION PROBLEM

5.2 Overdetermined Solution Problem
Next, this study considers an example where more than three

mesh solutions are needed to establish a reliable error model. If
the three mesh values in the prior analysis were instead f1 =
10, f2 = 12.2, and f3 = 13.2, the observed convergence order
computed in Step 5 will be p̂ = 3. Note this occurs simply by
changing the value of f2 from 12 to 12.2. Therefore, Step 7 of
the procedure reveals that a fourth mesh is needed because the
power–law model of discretization error is insufficiently reliable
based on the fact that the observed order of accuracy is higher

FIGURE 2. PLOT OF POWER–LAW MODEL FOR OVERDETER-
MINED SOLUTION PROBLEM

than the formal order of the CFD solver (which is assumed to
be a second-order, finite-volume code). Repeating Step 3, the
engineer creates an additional mesh with a 1.3 refinement factor,
resulting in a mesh with a total mesh count of 10,604,500 cells
and a characteristic size of h4 = 4.55 mm. For this mesh, f4 = 14
kPa.

Proceeding to Step 6, the engineer solves the overdeter-
mined power–law model using the least-squares solution shown
in Eq. 9. The solution returns p̂ = 2.25, which again fails the suf-
ficiency criteria of Step 7. Therefore, the engineer repeats Step 3.
This time, the increasing mesh requirements will make a refined
mesh too expensive for the analysis, so the engineer coarsens the
nominal mesh by a factor of 1.3 to create a mesh with 455,166
cells and a characteristic length of h5 = 13 mm. For this mesh,
f5 = 7 kPa.

Finally, the overdetermined solution to the power–law model
returns an observed convergence order of p̂ = 1.82, which passes
the checks in Step 7 of the procedure. As in the previous exam-
ple, the engineers choose to report the numerical uncertainty us-
ing the GCI metric. Table 2 and Figure 2 show the result of this
solution verification. The GCI for the overdetermined solution is
slightly higher than for the three-mesh solution in the previous
example mainly because of the slightly lower (observed) order
of convergence. Notably, the nonexact interpolation of the least-
squares solution to the power–law model is not reflected in the
final uncertainty estimate. Again, the engineer would use these
numerical uncertainty estimates to determine the correct mesh to
use for their parametric study.

8



TABLE 2. REPORTED VALUES FOR OVERDETERMINED SO-
LUTION PROBLEM

Parameter Value Unit

h1 10 mm

h2 7.69 mm

h3 5.92 mm

h4 4.55 mm

h5 13 mm

f1 10 kPa

f2 12 kPa

f3 13.2 kPa

f4 14 kPa

f5 7 kPa

p̂ 1.82

f∞ 15.22 kPa

GCI1 6.85 kPa

6 DISCUSSION
The example problems presented in this study show the util-

ity of this iterative solution verification procedure on CFD prob-
lems. Engineers can follow the same procedure while transition-
ing from an exact to an overdetermined solution to the power–
law model, eliminating potential error points in the process and
potentially reducing the number of meshes that need to be gener-
ated. Additionally, Step 7 ensures the engineers evaluate the ac-
curacy of the power–law model in addition to the problem’s nu-
merical uncertainty. Also, the difference between the presented
procedure and the ASME V&V 20 procedure was noted for the
example presented in Section 5.2 (i.e., the example with f1 = 10,
f2 = 12.2, and f3 = 13.2). At this point, the exact solution to the
power–law model has an observed convergence order of 3. Engi-
neers following ASME V&V 20 will compute the error and un-
certainty terms for this solution. For p̂ = 3, GCI1 is 5.04. Based
on the guidance in Step 3 of ASME V&V 20’s procedure, engi-
neers may proceed if the error term is smaller than others in their
analyses [1]. However, in this case, engineers would be inad-
vertently accepting an invalid solution to the power–law model,
which shows the solution converging more rapidly than possible
for a second-order accurate CFD solver. The presented proce-
dure prevents this possibility by requiring engineers to evaluate
the accuracy of the power–law model in Step 7.

7 CONCLUSION
This work presents a revised solution verification procedure

for CFD problems to provide accurate estimates of the uncertain-
ties in the QOIs. This procedure is more accessible to practicing
engineers, especially those without prior experience in solution
verification. The approach was to recast the procedure presented
in ASME V&V 20 as an iterative procedure and add a step to
evaluate the reliability of the discretization error model. The it-
erative procedure guides engineers in determining the minimum
number of mesh levels required to construct a reliable discretiza-
tion error model. A set of synthetic examples demonstrates the
ease of following the revised procedure and highlights a case
where this procedure prevents engineers from inadvertently ac-
cepting an incorrectly small uncertainty estimate for their QOI if
they were to follow the ASME V&V 20 procedure.

For future work, this iterative procedure will benefit from
more detailed descriptions of how engineers can construct and
evaluate meshes to ensure a valid mesh sequence is used in their
analysis. The procedure will also benefit from more rigorous
testing to ensure that it will not permit invalid solutions to the
power–law model. Additional future work includes further cri-
teria to evaluate the acceptableness of the power–law model, the
ability to fit non-monotonic data with a multiterm power series,
tools to handle non-convergence, and criteria for excluding solu-
tions not in the asymptotic regime.
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