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POSTERIOR COVARIANCE MATRIX APPROXIMATIONS

Abigail C. Schmid'-2, Stephen A. Andrews'*
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ABSTRACT

The Davis Equation of State (EOS) is commonly used to model
thermodynamic relationships for High Explosive reactants. Typi-
cally, the parameters in the EOS are calibrated, with uncertainty,
using a Bayesian framework and Markov Chain Monte Carlo
(MCMC) methods. However, MCMC methods are computation-
ally expensive, especially for complex models with many param-
eters. This paper provides a comparison between MCMC and
less computationally expensive Variational methods (Variational
Bayesian and Hessian Variational Bayesian) for computing the
posterior distribution and approximating the posterior covari-
ance matrix based on heterogeneous experimental data. All
three methods recover similar posterior distributions and pos-
terior covariance matrices. This study demonstrates that for this
EOS parameter calibration application, the assumptions made
in the two Variational methods significantly reduce the computa-
tional cost but do not substantially change the results compared
to MCMC.

Keywords: Bayesian, Uncertainty Quantification, MCMC,
Variational Inference, Equation of State

1. INTRODUCTION

Equations of State (EOS) are physics models which describe the
relationship between thermodynamic quantities for a material.
The parameters in an EOS are usually calibrated based on exper-
imental data for the material of interest. Often, the Davis EOS
[1-3] is used to model High Explosive (HE) reactants and the
parameters are calibrated using experimental data from the HE
and its components. Having an accurate description of the EOS
is essential for running large scale simulations.

Typically, calibrations of EOS parameters, with uncertainty quan-
tification, are performed in a Bayesian framework, using Markov
Chain Monte Carlo (MCMC) methods to compute the posterior
(e.g. [4],[5]). However MCMC approaches are computationally
expensive and it can be difficult to assess whether the solution
has converged to the posterior distribution, especially for high di-
mensional problems. This can pose significant challenges in set-
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tings with expensive simulations and complex models with many
parameters to calibrate. An alternative method to characterize
the posterior is using Variational Bayesian methods. These ap-
proaches are usually more computationally efficient than MCMC
methods [6]. However Variational Bayesian methods provide
an approximation of the posterior distribution, whereas MCMC
methods can, in the limit, fully characterize the posterior.

Depending on the setting, the approximations made in the Vari-
ational methods may or may not be appropriate. Direct com-
parisons between Variational Bayesian and MCMC methods for
model calibration have been performed with experimental data in
the fields of astrophysics [7], cosmology [8], and psychology [9],
but this comparison has not been carried out for the calibration
of EOSs.

This paper calibrates the Davis Reactants Equation of State pa-
rameters, with uncertainty, for the high explosive PBX 9501. The
calibration is posed as a Bayesian inverse problem which uses a
heterogeneous set of experimental data. This paper also provides
a direct comparison of MCMC and Variational Bayesian methods
for computing the posterior and estimating the posterior covari-
ance matrix, for the Davis Reactants equation of state, an example
of a parametric physics model.

Section 2 describes the Equation of State and parameters to cali-
brate, the data that comprises the heterogeneous dataset, and the
Bayesian inverse problem. Section 3 explains the three methods
used to compute the posterior distributions and approximate the
posterior covariance matrix. Section 4 shows the results of the
parameter calibrations, estimates of the posterior covariance ma-
trix, and uncertainties. Section 5 provides conclusions from this
work.

2. PROBLEM DESCRIPTION

This study aims to compare three methods of computing the
posterior covariance matrix, as a method of uncertainty quantifi-
cation, in the context of calibrating the parameters in the Davis
Reactants Equation of State (EOS) for the high explosive (HE)
PBX 9501 using a heterogeneous dataset.



2.1 Equation of State

The Davis Reactants Equation of State (EOS) describes the rela-
tionship between thermodynamic quantities like specific internal
energy, pressure, and density. The model was originally devel-
oped by Davis [1] and subsequently improved by Wescott et al.
[2] and Aslam [3]. The model is a Mie-Griineisen form and
is based on the reference isentrope (denoted with a subscript r)
through pressure P = 0 and density p = pg, where p is the refer-
ence ambient density. The equations here represent the functional
form used by Aslam [3].

The EOS provides functions for the pressure P and temperature 7
as a function of density p and specific internal energy e,

P(p,e) = Pr(p) +pl'(p)(e —er(p)) (1)
T(p,e) =T, (p) {C“T—‘Ep) e - er<p)1} B

The EOS defines the reference isentrope pressure by
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where y = 1 — pg/p is the compression factor, A is the sound
speed in the material at ambient conditions, B is the slope of the
Hugoniot curve, and C is a high particle speed correction for the
Hugoniot curve. The energy on the reference curve is,
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where Ej is the stored chemical potential energy in the material.
The temperature along the reference isentrope is,
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where T is the reference temperature and Z describes how the
Griineisen gamma changes with density. Additionally, the spe-
cific heat capacity is given by,

T At
Cvr(pO, T) = CV(FO) s (6)

where «; relates how the specific heat changes with temperature.
The Griineisen parameter is defined as,
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The Griineisen gamma is strongly related to the volumetric ther-
mal expansion coefficient 3,
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Thus, to fully define the reactants EOS, the parameters A, B,
C, po, FQ, C,, as, To, Eo, and Z need to be specified. Here the
values po = 1.836 gcm™3, Ty = 297K, Eo = 5.602 08 kJ g~ !, and
Z = 0 were chosen to match the values used in [10], based on the
experimental conditions for the data included in these analyses.
The remaining parameters were calibrated with the experimental
data using the methods described below.

2.2 Data

The calibration used a heterogeneous experimental dataset with
three different types of experiments. The experimental data in-
clude tests for the thermal expansion, specific heat capacity, and
Hugoniot response of the HE and its components. Four Hugoniot
[11-14], one thermal expansion [15], and one specific heat capac-
ity [16] test were used. These data were collected over the span of
several decades by different researchers across different facilities,
so they represent a broad set of knowledge and testing capabili-
ties. Additionally, the experimental data were provided without
errors. In the present study, we assumed a fixed level of uncer-
tainty for each data type to account for this lack of information.
This assumption was made to focus on the goal of estimating
the posterior covariance matrix using the three methodologies
described in Section 3. An interesting direction of future work
could be to estimate the unknown experimental errors from the
data in the calibration procedure.

2.2.1 Hugoniot. The Hugoniot data were experimental measure-
ments of shocked states of the high explosive material. These
experiments measured the response of the reactants to shocks
which did not immediately initiate a chemical reaction, and are
meant to be representative of the solid reactants rather than the
gaseous detonation products. The data were reported as sets of
shock strengths and the associated particle speed imparted on
the material by the shock. These experiments were simulated
by the thermo-chemical code magpie [17]. The simulations re-
sulted in shock strength-particle speed curves corresponding to
each experimental dataset. These data and simulations were most
informative for calibrating the parameters A, B, and C. The data
were gathered by four different researchers who each used differ-
ent approaches to compute the shock speed and particle speed and
whose experiments were performed at different facilities over the
course of several decades. There were no errors reported on any
of these measurements, so a constant uncertainty of 10 % of the
experimental observation was assumed. This level of uncertainty
was chosen to reflect the natural spread in the data, as seen in
Figure 2 and to have good overlap between the model evaluated
with the parameters corresponding to the mode of the prior and
most of the experimental data points.

2.2.2 Thermal Expansion. The thermal expansion data were
obtained from experiments and were reported as functions of the
isotropic coeflicient of linear thermal expansion as a function of
temperature. The coefficient of volumetric thermal expansion
was three times this value and was used to create the change in
density along a 1 atmosphere isobar. Again, magpie was used to
simulate these experiments as density-temperature curves. These
data and simulations were most informative for calibrating the A,
B, C, and I'? parameters. These data had no reported errors and



a 1 % uncertainty in the experimental observation was assumed.
This level of uncertainty was chosen to have good agreement
between the model evaluated with the parameters corresponding
to the mode of the prior and the experimental data points as shown
in Figure 3.

2.2.3 Specific heat. The specific heat data was obtained from
chemical kinetic simulations of HMX molecules [18] whose re-
sults were converted to specific heat values in [16]. Magpie was
used to simulate the specific heat capacity-temperature curves for
these experiments. These data and simulations were most infor-
mative for calibrating the parameters C,, and a,. These data did
not have associated errors and a constant value of +400 J kg ™! K~!
was assumed. A constant uncertainty, rather than fraction value
was used as the data contained values near zero, leading to spu-
riously low uncertainties in this region. This level of uncertainty
was chosen to provide a match to the model evaluated with the
parameters corresponding to the mode of the prior and the exper-
imental data points as shown in Figure 3.

2.3 Bayesian Inverse Problem
The calibration is posed as a Bayesian inverse problem, seek-
ing the most likely set of parameters 6 given the experimental

data Y. These values maximized the probability of the posterior
distribution P (6|Y), defined by Bayes” Theorem,

P(O]Y) o« P(Y]0)P(6). 9)

P(0) is the prior distribution over the model parameters and
encodes knowledge about their values before considering data.
P(Y|0) is the likelihood of the data given a set of parame-
ters.

To calibrate the EOS, the prior and likelihood were chosen to
be multivariate normal distributions based on the assumptions
of the Variational Bayesian methods described in Sections 3.1
and 3.2. The prior mode values (see Table 1) were set based
on a previous calibration of the EOS using similar datasets for
the same HE [10]. To evaluate the likelihood, the experimental
data and magpie simulation results were used. Additionally, it
was assumed that the experimental uncertainty was uncorrelated.
Including a model for the correlation between the uncertainties
in different experiments could be a valuable direction of future
work. Altogether, the posterior probability computed for all three
methods is given as,

log (P (01)) = > log (N (1 (0) Iy, Zx)) +1og (N (610, Ze)) ,
k=1
(10)

where the first term comes from the likelihood, X, is the covari-
ance matrix for the k*" experiment yy, and p (6) is the mapping
function between the model terms and the experimental data. The
second term is from the prior where @ is the mode of the prior
and Xy is the prior covariance matrix.

The model parameters were bounded to be within +75% of the
prior values. This was chosen to ensure the parameter values were

feasible and positive. Additionally, since the prior parameter val-
ues were selected from a previous calibration [10], the posterior
values were not expected to change significantly.

The posterior distribution mode and covariance matrix were es-
timated using three methods, a Variational Bayesian approach
[19], computing the Hessian directly, and sampling via Markov
Chain Monte Carlo. Sections 3.1, 3.2, and 3.3 provide additional
details.

3. METHODS

3.1 Variational Bayesian

The first method used to compute the posterior and estimate
the posterior covariance was the Variational Bayesian (VBayes)
approach detailed in [19]. Briefly, the method assumes that the
prior and likelihood are normal distributions and formulates the
calibration as an optimization problem. This method makes a
major assumption that there is an affine mapping between the
model parameters 6 and the experimental data y for each of the
k experiments,

055 yr, (11)

and that this mapping pi can be represented as a first order
Taylor series approximation of some general non-linear function
f
_ af 2
(0 +m) = f(0) +n —5 +O(r°), (12)
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where 77 is a small perturbation in the model parameters 6 and D,
is the sensitivity of the k** mapping function to 6. This assumes
that the underlying function is linear, while the true function
which used the code magpie to evaluate the thermodynamic loci
described in Section 2.2 was non-linear. Subsequent tests will
examine the suitability of this assumption for these data.

With these assumptions, the posterior probability of (9, 10) is
reduced to a quadratic problem which can be solved with very
few evaluations of the mapping function p.

The posterior covariance is then reduced to,

Nk
' =35+ > DUE Dy, (13)
k=1

where Xg, 2, and X, are the covariance matrices for the prior,
k'™ experiment, and posterior, respectively. This form assumes
the expected value of the error u (6) — yi is zero.

This approach is advantageous when the function is computa-
tionally expensive as the posterior mode and covariance can be
computed without having to compute a Hessian directly. How-
ever, the assumption in (12) ignores any non-linearities in the
mapping function and this may affect estimates of the posterior
covariance. Previous work [19] has compared this implementa-
tion of the VBayes method to MCMC for an EOS model with
synthetic data, but a direct comparison has not been made for
EOS models using experimental data.



3.2 Hessian Variational Bayesian (SQP)

If the assumption in (12) is not made, then a traditional optimiza-
tion method can be used to find the point which maximizes the
log-posterior probability (10). Though any constrained optimiza-
tion method could be used, for this work the SLSQP [20] method
as implemented by Scipy [21] was used.

The Laplace approximation can again be used to estimate the
posterior covariance, but here the Hessian must be evaluated
directly according to

_ PP (0)Y)

-1
5= (14)

Without the approximations discussed in Section 3.1, the Hessian
Variational Bayesian method requires more function evaluations
than the VBayes approach. Additionally, after the optimization
is complete the Hessian has to be evaluated in (14) to calculate
the posterior covariance, which is a O (m?) operation.

Note, this approach does not assume an affine mapping between
the model parameters 6 and the data y; and the non-linearities
of this mapping function are represented in the optimal solution
and its posterior distribution.

3.3 Markov Chain Monte Carlo

An alternative approach to calculate the posterior distribution
is using Markov Chain Monte Carlo (MCMC) methods. Here a
Metropolis MCMC algorithm [22] which only uses feasible draws
from the proposal distribution was used to construct the posterior.
The proposal distribution was a multivariate, zero mean normal
with a scaled version of the prior covariance matrix. The prior co-
variance matrix was scaled by a factor of 0.4 to have a sampling
acceptance rate of 25.66 %, which is close to the best practice
acceptance rate given in [23]. Five chains were run for 30,000
samples each, resulting in 150,000 samples overall. The chains
were started at a small random perturbation of the prior values in
Table 1. A conservative burn-in period of 15,000 samples was se-
lected. Based on the procedure from [23] and the implementation
in the numpyro python package [24, 25], the effective number of
independent samples per chain was 1,500, or a step size of 10
between samples to ensure they are uncorrelated. All subsequent
analyses used the post burn-in, independent samples.

Figure 7 shows the MCMC chains with the post-processed sam-
ples for each parameter, and demonstrates that for each parame-
ter, there is good mixing within and between the chains. Figure 1
shows the marginal PDFs of the MCMC samples as histograms
on the diagonal and the correlation between samples in the off-
diagonal. Each of the marginal histograms indicates the samples
are roughly normally distributed.

4. RESULTS

4.1 Optimal Models

The mode of the prior and posterior distribution for each model
parameter is reported in Table 1. There was very little differ-
ence between the optimal values obtained from the three different
calibration methods, and all three calibrations were in close agree-
ment with the previous calibration [10], which was used as the

prior. Figures 2 and 3 show that the models evaluated using the
model parameter sets corresponding to the mode of the posterior
distributions are similar to the models evaluated with the prior
mode parameters. This was expected since the prior mode val-
ues are from a previous calibration. For the Hugoniot data, all
four models are consistent at low particle speeds. At the higher
particle speeds, the prior model captures the higher values of as-
sociated shock speeds, the MCMC posterior model captures the
lower shock speeds, and the variational posterior models are in
between. For the specific heat data, all four models evaluated with
the distribution modes are consistent at the lower temperatures
and the MCMC posterior model predicts slightly lower specific
heat capacity values than the other three models at the higher
temperatures. With the thermal expansion data, the prior and
two variational posterior models are consistent across the whole
range of temperatures considered, whereas the MCMC posterior
model captures slightly lower densities at the lower temperatures
and slightly higher densities at the higher temperatures.

TABLE 1: MODEL PARAMETER PRIOR AND POSTERIOR MODES.

Prior VBayes SQP MCMC
A/kms™! 2.300 2.329 2.314 2.284
B 3.300 2.931 2.944 2.756
c 0.200 0.199 0.196 0.181
r 0.838 0.828 0.824 0.649
C,/kIg7'K=! 0.00107 0.00106 0.00104 0.00104
gt 0.366 0.388 0.393 0.358

4.2 Posterior Covariance

For the Variational Bayesian method, the Laplace Approxima-
tion was used to estimate the posterior covariance matrix. For
the Hessian Variational Bayesian method, the Laplace approxi-
mation with the Hessian computed directly was used to estimate
the posterior covariance. Finally, for the MCMC approach, the
posterior covariance matrix was estimated from the samples of
the posterior. The covariance matrices X can be decomposed into
a correlation matrix R and diagonal matrix with the posterior
variance A [26].

Y=AR & R=A"IZA"? (15)

The correlation matrices found with each approach for approx-

imating the posterior covariance matrix are shown in Figure 4.
All three have a similar structure, with some differences in the
magnitudes of the weaker correlations between parameters. The
parameters A and B are strongly negatively correlated, as are
C, and ay;. The other parameters are weakly or not correlated.
These results agree with the scatter plots in Figure 1.

To assess the marginal uncertainty in each of the model parame-
ters, the standard deviation of the posterior was computed from
the diagonal matrices with the variance. These are shown in
Figure 5. The parameters C, FQ, sy, and B have the largest
uncertainties, while A and C,, have the lowest. Even the largest
uncertainty is only about 10%.
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FIGURE 1: DIAGONAL: MARGINAL HISTOGRAMS OF MCMC SAMPLES AFTER POST PROCESSING. OFF DIAGONAL: CORRELATION BE-
TWEEN SAMPLES. THE MARGINAL HISTOGRAMS SHOW ALL THE PARAMETERS ARE ROUGHLY NORMALLY DISTRIBUTED. THE SCATTER
PLOTS SHOW THAT MOST OF THE PARAMETERS ARE UNCORRELATED, EXCEPT FOR NEGATIVE CORRELATIONS BETWEEN A AND B,

AND C, AND a;.

A spectral decomposition analysis was also performed on the pos-
terior covariance matrices to understand their structure according
to the eigenvalues and eigenvectors. Figure 6 indicates that the
eigenvalues of the three covariance matrices are almost identical
since the five eigenvalue ranks are approximately the same value
for each of the three methods.

Figure 8 shows the first four eigenvectors of the posterior co-
variance matrices broken down by vector component and matrix
approximation method. Each component in the eigenvectors cor-
responds to one of the calibrated EOS parameters. The eigen-
vectors are similar across the three methods in that the dominant

component of each eigenvector is the same regardless of the ma-
trix approximation method. Moreover, the dominant components
of each eigenvector are aligned with the parameters which have
the largest uncertainties shown in Figure 5. That is, the largest
component of the first eigenvector is related to the parameter C,
in the second and third eigenvectors the largest components are
I'% and ay;, and the fourth eigenvector has its largest component
associated with the B parameter. This structure is reflected in all
three methods of estimating the posterior covariance matrix, with
only small differences in the magnitudes.

All three methods estimated similar values for the mode of the
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posterior distributions, which when used to evaluate the EOS
model captured the behavior of the experimental data well. Ad-
ditionally, the spectral decomposition revealed that the poste-
rior covariance matrices had similar structures, regardless of the
method used to estimate the matrix.

In terms of computational cost, the VBayes method used 34 func-
tion evaluations, the SQP optimization used 80 function evalua-
tions, and the MCMC algorithm used 1,500 independent function

evaluations per chain for a total of 7,500 independent function
evaluations. This analysis used a simple Metropolis implemen-
tation of the MCMC algorithm, which is not the state of the art
for these methods in terms of efficiency. In order for a state
of the art MCMC algorithm to be more efficient than the Vari-
ational approaches, the independent function evaluations would
need to be reduced by two orders of magnitude compared with
the Metropolis approach used here.
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Both the vector of mode values and the structure of the covari-
ance matrices were very similar for the three methods considered.
These results are encouraging as they show that the assumptions
made by the methods described in 3.1 do not significantly impact
the assessment of the magnitude or shape of the uncertainty in
the model parameters. However, there were some features of
the EOS calibration problem examined in this paper which may
have improved the agreement between the methods and which
may not be generally applicable to all problems. The choice of
using a normal distribution for the prior and likelihood in the
MCMC approach was made in order to match the assumptions
of the Variational methods and keep the problem the same across
methods for the sake of comparison. MCMC, generally, can rep-
resent much more complicated posterior distributions if different
choices are made for the probability distribution of the prior and
likelihood. However, in this case, there was no feature of the data

or the model which suggested the use of anything other than a nor-
mal distribution, with one exception, the parameters FQ and ay;.
These parameters are dimensionless, of order one, and positive,
which may have been better represented by an inverse gamma
distribution, for example. However, considering the marginal
distributions in Figure 1, none of the samples for these variables
approach zero, so there is almost zero probability contained in the
infeasible region. In this case, the normal distribution remains a
good choice for these variables and there is no need to consider
a distribution which excludes negative values. The other feature
of the data which was advantageous was that these data were all
obtained from high quality calibration experiments. It was rea-
sonable to expect that a single model could fit all the experiments
from the heterogeneous data set and the results shown in Figures 2
and 3 show that all three methods found models which were a
good fit to all the available data with no significant outliers. This
outcome was expected from this dataset but is not generally true
for all datasets and the presence of a significant bias between sets
of experimental data would violate the assumption made in Sec-
tion 3.1 that the expected value of the error between the mapping
function and the data was zero.

5. CONCLUSIONS

This paper provides a comparison between three methods of cal-
ibrating EOS model parameters and approximating the posterior
covariance matrix. The calibration was posed as an Bayesian in-
verse problem leveraging a heterogeneous dataset to estimate the
EOS parameters with uncertainty and the posterior covariance
matrix.

This analysis found that the Variational Bayesian, Hessian Varia-
tional Bayesian, and MCMC methods had good agreement in the
mode posterior values for each parameter. Evaluating the EOS at
the mode posterior values for the parameters resulted in as good
of a fit to the experimental data as the model evaluated with the
high quality prior mode values. Additionally, all three methods
estimated posterior covariance matrices with similar structures.
The uncertainties in the parameters and spectral analysis results
were also consistent across the three methods. Estimating the
posterior distribution and posterior covariance matrix with the
two Variational methods did not lead to a loss or change in in-
formation about the structure of the posterior covariance matrix
compared to using MCMC.

In this setting where the parameters, likelihood, and data can be
modeled as multivariate normal distributions, and the experimen-
tal data are consistent, the calibration and uncertainty quantifica-
tion of parameters in parametric physics models via Variational
methods and the Laplace approximation is reasonable. These
more computationally efficient methods may be advantageous
when the posterior probability function is too computationally
expensive to evaluate using MCMC methods.



NOMENCLATURE

N Normal distribution
st Describes how the specific heat changes with temperature
B Volumetric thermal expansion coefficient K~!
)P Covariance matrix for prior
n Perturbation to the 6 vector
2k Covariance matrix for k’" experiment
Zp Covariance matrix for posterior
ro Griineisen gamma
0 Set of model parameters
£0 Reference ambient density kgm™3
0 Mode of the prior distribution
Uk Mapping function for k*”* experiment
A Sound speed in the material, ms™!
B Slope of the Hugoniot curve
C High particle speed slope correction
C, Material specific heat capacity at the reference tempera-
ture for constant volume Jkg 'K!
Dy Sensitivity of the k’ mapping function to 6
Ey Stored chemical potential energy kJg™!
S Non-linear function for simulating the k" experiment
P Pressure Pa
Probability
Correlation matrix
Temperature K
To Reference temperature K
Y Set of all experimental data
y Compression factor
Vi Data for k’" experiment
Z Describes how the Griineisen gamma changes with den-
sity
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APPENDIX A. MCMC POST PROCESSING
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FIGURE 7: INDEPENDENT SAMPLES FROM THE MCMC CHAINS AFTER THE BURN-IN PERIOD SHOWING GOOD MIXING WITHIN AND BE-
TWEEN CHAINS. EACH COLOR REPRESENTS A DIFFERENT CHAIN.
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APPENDIX B. SPECTRAL DECOMPOSITION
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FIGURE 8: ABSOLUTE VALUE OF THE FIRST FOUR EIGENVECTORS FROM SPECTRAL DECOMPOSITION. THE MCMC EIGENVECTORS ARE
SHOWN IN PURPLE, THE VARIATIONAL BAYESIAN EIGENVECTORS ARE SHOWN IN GREEN, AND THE SQP EIGENVECTORS IN ORANGE.
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