

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-853504

Tarda and Tagish Lake: Samples from the same outer Solar System asteroid and implications for D- and P-type asteroids

D. L. Schrader, E. A. Cloutis, D. M. Applin, J. Davidson, Z. A. Torrano, D. Foustoukos, C. M. O'D. Alexander, K. J. Domanik, T. Nakamura, M. Matsuoka, T. J. Zega, G. A. Brennecka, J. Render

August 22, 2023

Geochimica et Cosmochimica Acta

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 **Tarda and Tagish Lake: Samples from the same outer Solar System asteroid and**
2 **implications for D- and P-type asteroids**
3

4 Devin L. Schrader¹, Edward A. Cloutis², Daniel M. Applin², Jemma Davidson³, Zachary A.
5 Torrano⁴, Dionysis Foustoukos⁴, Conel M. O'D. Alexander⁴, Kenneth J. Domanik⁵, Moe
6 Matsuoka⁶, Tomoki Nakamura⁷, Thomas J. Zega⁵, Gregory A. Brenneka⁸, and Jan Render⁸
7

8 ¹Buseck Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State
9 University, Tempe, AZ 85287, USA.

10 ²Department of Geography, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada.

11 ³Astromaterials Research and Exploration Science (ARES) Division, XI2, NASA Johnson Space
12 Center, Houston, TX, USA.

13 ⁴Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA.

14 ⁵Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA.

15 ⁶Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology
16 (AIST), Tsukuba, Ibaraki 980-8578, Japan.

17 ⁷Department of Earth Science, Faculty of Science, Tohoku University, Aoba, Sendai, Miyagi
18 980-8578, Japan.

19 ⁸Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore
20 CA 94550, USA.

21 submitted to *Geochimica et Cosmochimica Acta*
22 September 29th, 2023

23 *GCA-D-23-00860 Revision 1 submitted April 5th, 2024, Revision 2 submitted July 9th, 2024*

24 ORCID iD:

25 Devin L. Schrader: 0000-0001-5282-232X

26 Edward A. Cloutis: 0000-0001-7301-0929

27 Daniel M. Applin: 0000-0002-5170-2382

28 Jemma Davidson: 0000-0002-3725-2960

29 Zachary A. Torrano: 0000-0002-5246-4400

30 Dionysis Foustoukos: 0000-0001-8402-3717

31 Conel M. O'D. Alexander: 0000-0002-8558-1427

32 Kenneth J. Domanik: 0009-0002-0184-1816

33 Moe Matsuoka: 0000-0003-1091-3041

34 Tomoki Nakamura: 0000-0001-9525-4086

35 Thomas J. Zega: 0000-0002-9549-022X

36 Gregory A. Brenneka: 0000-0002-0852-5595

37 Jan Render: 0000-0002-6534-9129

38 *Corresponding author: Devin L. Schrader

39 Phone: 480-965-0720

40 Email: devin.schrader@asu.edu

41 Buseck Center for Meteorite Studies

42 School of Earth and Space Exploration

43 Arizona State University

44 PO Box 871404

45 Tempe AZ 85287, USA

46 Words: 10168 in main text

47 Figures: 17

48 Tables: 9 (with 4 Supplementary Material files)

49 Key Words: chondrite, Tarda, Tagish Lake, D-type, P-type, asteroids

53
54

Abstract

55 We report a comprehensive study of the ungrouped type 2 carbonaceous chondrite, Tarda,
56 which fell in Morocco in 2020. This meteorite exhibits substantial similarities to Tagish Lake,
57 Wisconsin Range 91600, and Meteorite Hills 00432, which are generally considered to have
58 originated from a D-type asteroid(s). We constrain the compositions and petrologies of the
59 materials present in a potential sample of a D-type asteroid by reporting the petrography, bulk
60 chemical compositions, bulk H, C, N, Cr, and Ti isotopic compositions, reflectance spectra, and *in*
61 *situ* chemical compositions of metals, sulfides, carbonates, and FeO-poor and FeO-rich chondrule
62 silicates of Tarda. We also present new data for Tagish Lake. We then compare Tarda with the
63 other Tagish Lake-like meteorites.

64 Tarda and Tagish Lake appear to be from the same parent body, as demonstrated by their
65 similar petrologies (modal abundances, chondrule sizes), mineral compositions, bulk chemical and
66 isotopic compositions, and reflectance spectra. While the two other Tagish Lake-like meteorites,
67 Wisconsin Range 91600 and Meteorite Hills 00432, show some affinities to Tagish Lake and
68 Tarda, they also share similar characteristics to the Mighei-like carbonaceous (CM) chondrites,
69 warranting further study. Similarities in reflectance spectra suggest that P-type asteroids 65 Cybele
70 and 76 Freia are potential parent bodies of Tarda and the Tagish Lake-like meteorites, or at least
71 have similar surface materials. Since upcoming spacecraft missions will spectrally survey D-type,
72 P-type, and C-type Trojan asteroids (NASA's Lucy) and spectrally study and return samples from
73 Mars' moon Phobos (JAXA's Martian Moons eXploration mission), which is spectrally similar to
74 D-type asteroids, these meteorites are of substantial scientific interest. Furthermore, since Tarda
75 closely spectrally matches P-type asteroids (but compositionally matches the D-type asteroid like
76 Tagish Lake meteorite), P-type and D-type asteroids may represent fragments of the same or
77 similar parent bodies.

78
79

1. Introduction

Tarda is an ungrouped type 2 carbonaceous (C2-ung) chondrite that fell in Morocco on August 1^h, 2020, near the village of Tarda (Gattacceca et al., 2021). Ungrouped chondrites are those that not unequivocal matches to established meteorite groups, and may represent unique fragments distinct parent asteroids. Sometimes, ungrouped chondrites exhibit affinities to other ungrouped chondrites, and a new meteorite grouplet (3 or 4 members) or group (5+ members) is formed (e.g., Eisberg et al., 2006; Metzler et al., 2021). The study of multiple members from the same meteorite group, potentially from a common parent asteroid, enables understanding of the differences between members of the group (e.g., distinct degrees of thermal, aqueous, and/or shock alteration) and the diversity of processes active in their parent body (e.g., Alexander et al., 2007, 2013; Cloutis et al., 2011a,b; Schrader et al., 2011, 2015; Davidson et al., 2019a,b).

Based on bulk isotopic compositional similarities and noble gas compositions, Tarda was shown to be similar to the C2-ung Tagish Lake and the Tagish Lake-like meteorites Wisconsin Range (WIS) 91600 and Meteorite Hills (MET) 00432 (e.g., Hiroi et al., 2005; Moriarty et al., 2009; Nakamura et al., 2013; Yamanobe et al., 2018; Ushikubo and Kimura, 2021; Marrocchi et al., 2021; Avice et al., 2022; Hopp et al., 2022; Yesiltas et al., 2022; Yokoyama et al., 2023). Due to their 350–2500 nm spectral reflectance properties, such as albedo, spectral slope, and visible region spectral shape, these Tagish Lake-like meteorites have been proposed to be samples from a D-type asteroid(s), which potentially formed in the outer Solar System between 8 and 13 AU (Hiroi et al., 2005; Marrocchi et al., 2021; Yamanobe et al., 2018; Bryson et al., 2020). As these are the only meteorites thought to originate from D-type asteroids, they are of great scientific interest and highly relevant to upcoming spacecraft missions.

NASA's Lucy spacecraft is due to spectrally survey D-type Trojan asteroids (e.g., Levison et al., 2021), and JAXA's Martian Moons eXploration (MMX) mission is scheduled to collect both spectra and samples from Mars' moon Phobos, which is spectrally similar to D-type asteroids (Nakamura et al., 2021; Kuramoto et al., 2022). Having potential D-type asteroid or related material for study in the laboratory will be invaluable for interpretation of data from these spacecraft missions.

Recent studies have shown Tarda to be a chemically and petrographically unequilibrated, rare and scientifically interesting meteorite, warranting further detailed study. The chemical and *in situ*

111 O-isotope compositions of three FeO-poor chondrules and three isolated olivine grains in the
112 matrix, identification of the dominant minerals via X-ray diffraction, as well as the bulk chemical,
113 H, C, and N isotopic compositions of Tarda were reported by Marrocchi et al. (2021). Chromium
114 and Ti isotope analyses of Tarda concluded it is consistent with a carbonaceous chondrite
115 (Hellmann et al., 2023; Yokoyama et al., 2023). Despite these initial studies, many fundamental
116 parameters about Tarda (e.g., reflectance spectra, average chondrule size and petrographic types,
117 modal mineralogy, chemical compositions of FeO-rich silicates, sulfides, metal, and carbonates)
118 are not known in the literature. Therefore, Tarda and other meteorites considered similar to Tagish
119 Lake cannot be fully compared to one another with the available literature data.

120 To constrain the composition and petrology of this rare material and its components, and to
121 provide insights into the material present on D-type asteroids, we discuss the petrography, bulk H,
122 C, N, Cr, and Ti isotopic compositions, bulk chemical compositions, reflectance spectra, and *in*
123 *situ* chemical compositions of metals, sulfides, carbonates, and FeO-poor and FeO-rich chondrule
124 silicates of Tarda and compare them to the other Tagish Lake-like meteorites, primarily Tagish
125 Lake.

126

127 2. Samples and Analytical Procedures

128

129 2.1. Mineralogy and petrology

130 The stones belonging to the Tarda meteorite shower are often sub-cm in size, fully to partially
131 fusion crusted, with charcoal black interiors containing small (<0.5 mm) off-white rounded to
132 irregular shaped objects (Fig. 1). All samples of Tarda studied here were kept in dry N₂ purged
133 desiccator cabinets in the Buseck Center for Meteorite Studies at Arizona State University (ASU)
134 after arriving on September 8th, 2020. The samples were, therefore, isolated from the terrestrial
135 atmosphere from that point on until preparation of the various samples for analysis.

136 We analyzed two polished mounts of Tarda prepared from two separate stones (ASU2149_C1
137 and ASU2149_C2) that were collected within days of the fall. We also analyzed a polished mount
138 of Tagish Lake (ASU1684_C1) for comparison (Fig. 2; see Table 1 for sample sizes). High-
139 resolution backscattered electron (BSE) imaging (e.g., Figs. 2–4), X-ray element mapping, and
140 initial mineral identification via energy dispersive X-ray spectroscopy (EDS) were conducted on
141 C-coated polished mounts using the JEOL-8530F Hyperprobe electron probe microanalyzer

142 (EPMA) at ASU and the Cameca SX-100 EPMA at the University of Arizona (UA)
143 (Supplementary Material [SM] 1). Apparent (2D) chondrule sizes were measured from BSE
144 images and X-ray maps using Adobe Photoshop® (Table 1 and SM 2). The chondrule sizes
145 reported here are the apparent (2D) mean diameters, which have been found to be the same as 3D
146 sizes within uncertainty (e.g., Metzler, 2018; Metzler et al., 2019), and are directly comparable to
147 other studies that also report apparent (2D) chondrule sizes (e.g., Zolensky et al., 2002; Blinova et
148 al., 2014).

149 The modal mineralogies of Tarda (ASU2149_C1 and ASU2149_C2) and Tagish Lake
150 (ASU1684_C1) were determined using digital point counting (e.g., Schrader et al., 2014;
151 Donaldson Hanna et al., 2019). Backscattered electron images and X-ray element maps (Ca, Fe,
152 Mg, Na, S, Al, K, Ni, Si, Ti, Co, Cr, Mn, and P) were obtained with the EPMA instruments at ASU
153 and UA (operating conditions: 15.0 keV and 40.0 nA). We measured the modal abundances of
154 chondrules and fine-grained matrix (Table 2), as well as those of individual mineral phases by
155 pixel counting (i.e., digital point counting) with Adobe Photoshop® (n.b., area % determined by
156 point counting can be assumed to be equivalent to vol.%; e.g., Eisenhour, 1996). In doing so, we
157 obtained modal abundances of olivine, pyroxene, plagioclase, Al-spinel, Ca-carbonate, phosphate,
158 chromite, Fe,Ni metal, magnetite, and sulfide (Table 2). We measured the pixels corresponding to
159 each mineral ten times, with the uncertainty in the mean value being the standard deviation of the
160 mean. We propagated uncertainties when the total abundances of measured minerals were
161 determined (Table 2). The cumulative totals of identified minerals measured in Tarda and Tagish
162 Lake do not sum to 100 vol.% (Table 2) for two reasons. One, all modal abundance estimates of
163 minerals are lower limits since they do not include fine-grained material below the resolution of
164 the X-ray element maps (especially in the fine-grained interchondrule matrix). Secondly,
165 identifying minerals via image analysis is unable to locate phyllosilicates and amorphous silicates
166 confidently (e.g., Donaldson Hanna et al., 2019). Since the difference from 100 vol.% is nearly
167 equivalent to the matrix abundances in each meteorite (Table 2), this confirms the unidentified
168 vol.% is due to fine-grained phyllosilicate-rich matrix in Tarda and Tagish Lake.

169 The quantitative chemical compositions of chondrule olivine, metals, sulfides, and carbonates
170 were obtained via wavelength-dispersive X-ray spectroscopy (WDS) with the Cameca SX-100
171 EPMA at UA (Tables 3–5 and SM 3), using a focused beam for individual points and line scans,
172 with operating conditions of 15 keV and 20 nA for olivine, metals, and sulfides, and 15 keV and

173 8 nA for carbonates, and a PAP correction method (a Phi-Rho-Z correction technique). Peak and
174 background counting times varied per element to optimize detection limits; standards and detection
175 limits are listed in Tables 3–5 and SM 3. In addition to Tarda and Tagish Lake, to help determine
176 if compositional comparison can be used to distinguish between meteorite types, we also analyzed
177 carbonates via WDS in a thin section of the Ivuna-like carbonaceous (CI) chondrite Orgueil
178 USNM6765-2 and two polished mounts of the Mighei-like carbonaceous (CM) chondrite Kolang
179 (ASU2147_C1 [the CM1/2 host] and ASU2147_C3c [a clast of CM1 material]).

180

181 **2.2. Bulk sample analyses: Compositions, isotopes, and reflectance spectra**

182 Interior chips of Tarda (total of 1.03 g), that contained no fusion crust, were powdered at ASU
183 to create a uniform sample and used to obtain: (1) bulk H, C, and N abundances and isotopic
184 compositions, (2) bulk Cr and Ti isotopic compositions (mass-independent variations of
185 nucleosynthetic origin), (3) bulk elemental compositions, and (4) reflectance spectra. For
186 comparison to the powder of Tarda, the reflectance spectra of a 0.2384 g fusion crust-free chip of
187 Tarda (ASU2149) ($\sim 0.5 \times 1$ cm) was also analyzed.

188

189 *2.2.1. Bulk H, C, and N abundances and isotopic compositions*

190 Because the H, C, and N elemental abundances and isotopic compositions are known to vary
191 between meteorite groups (e.g., Alexander et al., 2012, 2013; Vacher et al., 2020; Marrocchi et al.,
192 2021, 2023), an aliquot of the Tarda homogenized powder was analyzed for these elements at the
193 Earth and Planets Laboratory (EPL) of the Carnegie Institution for Science.

194 The C and N elemental abundances and isotopic compositions of the homogenized powders
195 were measured with a Thermo Scientific Delta V^{Plus} mass spectrometer interfaced with a Carlo
196 Erba (NA 2500) elemental analyzer via a Conflo III interface. For H analyses, we used a Thermo
197 Finnigan Delta^{Plus} XL mass spectrometer connected to a Thermo Finnigan Thermal Conversion
198 elemental analyzer (TC/EA) operating at 1400°C. N₂ and CO₂ references gases were introduced
199 via the Conflo III, while a dual inlet system facilitated the use of a H₂ reference gas of known δD
200 value (−123.39 ‰ SMOW) (Alexander et al., 2007; Foustoukos et al., 2021). Internal working gas
201 standards were analyzed at regular intervals during a run to monitor the internal precision of the
202 measured isotopic ratios and elemental abundances. In-house standards, which included both
203 liquid and solid materials, were also analyzed at regular intervals between samples to calibrate and

204 correct the data. The in-house standards are calibrated against international (Standard Mean Ocean
205 Water, SMOW, National Bureau of Standards-22, Pee Dee Belemnite, and air) and other certified
206 standards from the Isoanalytical Laboratory, the US Geological Survey, the National Bureau of
207 Standards, and the Oztech Trading Company. A H_3^+ correction was determined and applied to the
208 H measurements (Sessions et al., 2001). The reported uncertainties for the elemental and isotopic
209 analyses correspond to 1σ deviations based either on replicate analyses of standards or analyses of
210 at least two aliquots of individual samples, whichever is the larger. A total of one and two aliquots
211 were analyzed for C-N and H, respectively.

212 The samples Tarda were kept in dry N_2 purged desiccator cabinets from September 8th, 2020,
213 at ASU, prior powdering and shipping to EPL for analysis in April 2021. After weighing ~ 2 mg
214 aliquots into Ag boats for H analysis and a ~ 8 mg sample into a Sn boat for C and N analysis, the
215 samples were stored in a desiccator until their analyses. They were also reweighed after several
216 days in the desiccator. Before H analysis, the samples were transferred to a zero-blank autosampler
217 and flushed with dry He for at least one hour to minimize the amount of water absorbed from the
218 atmosphere (Alexander et al., 2010). The two replicates of each sample were analyzed sequentially
219 to check for sample heterogeneity and small memory effects on the δD measurements known to
220 occur with D-enriched samples (e.g., Alexander et al., 2007, 2012). The H abundances of the
221 duplicate samples generally differed by ≤ 1 % of their absolute values, and the δD values differed
222 by a median of 18 ‰ (the δ notation stands for the deviation of a sample ratio from a standard ratio
223 in parts per thousand, $\delta = (\text{R}_{\text{smp}}/\text{R}_{\text{std}} - 1) \times 1000$ and in this case $\text{R} = \text{D}/\text{H}$). Blanks were run between
224 different samples to reduce the memory effects. Memory effects were also monitored by analyzing
225 in-house standards of H-bearing solids during the course of an analytical run. There is no memory
226 effect for the C and N analyses (Alexander et al., 2012).

227

228 2.2.2. *Sample processing for bulk elemental and Cr and Ti isotopic analysis*

229 The homogenized Tarda sample powder, and the Allende, BCR-2 and DTS-1 reference
230 powders were dissolved in 4 mL of a 1:1 mixture of concentrated HNO_3 and HF in a 15 mL
231 Savillex Teflon beaker and heated on a hot plate at approximately 120 °C for 48 hours at EPL. The
232 solutions were then dried and redissolved in 2 mL of a 2:1 mixture of concentrated HF and HNO_3
233 and transferred to 3mL Savillex Teflon beakers that were then each placed in a Teflon jacket within
234 a metal Parr® digestion bomb and heated in an oven at 190 °C for 96 hours. Next, each sample

235 was transferred back into 15 mL Savillex Teflon beakers and dried before being treated with 250
236 μ L of concentrated HNO_3 , dried, and treated with 250 μ L of concentrated HCl . The samples were
237 then dried and treated with 2 mL of 6 M HCl and placed capped on a hot plate for 96 hours to
238 eliminate fluorides. The Parr® bomb digestion and sample treatment procedures were repeated
239 three times with complete evaporation of the acid mixture between each step to ensure complete
240 dissolution of the sample.

241

242 *2.2.3. Bulk elemental analysis*

243 The bulk major and trace element concentrations of Tarda were measured using the Thermo
244 Scientific iCAP-Q quadrupole inductively coupled plasma mass spectrometer (Q-ICPMS) at EPL.
245 A synthetic solution with similar concentration to the samples, an Allende (CV3) Smithsonian
246 Reference Material solution, and a BCR-2 geological reference material solution were measured
247 regularly alongside samples to assess measurement accuracy and precision, and based on these
248 measurements we estimate an analytical uncertainty of $\pm 10\%$ for all elements.

249

250 *2.2.4. Bulk Cr and Ti isotopic analysis*

251 Mass-independent Cr and Ti isotopic compositions were analyzed for the bulk sample of Tarda
252 (from the 1.03 g homogenized powder sample) to determine the nucleosynthetic character of the
253 material.

254

255 *2.2.4.1. Cr and Ti elemental separation chemistry*

256 Chromium was separated from the sample matrix using a three-column separation procedure
257 (Torrano et al., 2021). The column chemistry methods described by Torrano et al. (2021) were
258 optimized for multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS)
259 measurements, so some modifications were made in preparation for the thermal ionization mass
260 spectrometry (TIMS) methods used in this study. Specifically, our testing found that TIMS
261 methods are especially sensitive to the presence of even very minor amounts of Mg and Ca in the
262 purified Cr solution leading to the potential for impaired ionization. To remedy this, the second
263 column in the Torrano et al. (2021) procedure was repeated 2–4 times until the Cr elution solution
264 dried to a small, green dot rather than a white or pink dot, indicating complete removal of matrix
265 elements. The Cr yields of all samples exceeded 90% and the average total procedural blank was

266 less than 2 ng of Cr, which is insignificant compared to the approximately 20 μg of Cr purified
267 from each sample. Titanium was separated from the sample matrix using a two-column separation
268 procedure (Torrano et al., 2019). The Ti yields of all samples exceeded 98% and the total
269 procedural blank was less than 1 ng of Ti, which is insignificant compared to the approximately
270 10 μg of Ti purified from each sample. Cr and Ti isotope analyses were obtained from the same
271 dissolved sample aliquot.

272

273 2.2.4.2. *Cr isotope analyses*

274 The Cr isotopic composition of Tarda, as well as the standards DTS-1 and Allende, were
275 measured using the Thermo Triton XT TIMS at EPL. Purified Cr sample solution was loaded onto
276 the middle third of pre-degassed zone-refined Re filaments in a few microliters of 3M HCl between
277 melted Parafilm dams in a single filament assembly. Equal volumes of Al_2O_3 -doped silica gel and
278 saturated boric acid were added to the filament following the Cr sample drops and the mixtures
279 were dried on the filament at a current of 0.6 A. Once dry, the current was increased slowly to \sim 2
280 A until the filaments glowed red for a second before being turned down. Approximately 3 μg of
281 Cr was loaded onto each filament, and 4 filaments were loaded per sample for a total of 12 μg of
282 Cr measured for per sample. A filament loaded with 3 μg of the NIST SRM 979 Cr isotopic
283 standard loaded in the same manner as the sample filaments was run before and after each sample
284 filament. Each filament analysis consisted of 40 blocks of 30 ratios for a total of 1200 ratios per
285 analysis, with an 8 s integration time for each ratio. The intensities of ^{50}Cr , ^{52}Cr , ^{53}Cr and ^{54}Cr
286 were measured along with ^{48}Ti , ^{51}V , and ^{56}Fe to correct for isobaric interferences. The beam
287 intensity was typically 10 V for ^{52}Cr . Data were corrected for instrumental mass fractionation using
288 an exponential mass fractionation law and a $^{50}\text{Cr}/^{52}\text{Cr}$ ratio of 0.051859 (Shields et al., 1966). The
289 $^{53}\text{Cr}/^{52}\text{Cr}$ and $^{54}\text{Cr}/^{52}\text{Cr}$ ratios are expressed in ε -notation, which is a parts per 10,000 deviation
290 from the NIST SRM 979 Cr isotopic standard. Based on repeated measurements of standards run
291 during these analyses, we estimate an external reproducibility (2SD) of ± 0.12 for $\varepsilon^{53}\text{Cr}$ and ± 0.18
292 for $\varepsilon^{54}\text{Cr}$.

293

294 2.2.4.3. *Ti isotope analyses*

295 The Ti isotopic compositions of samples were determined as outlined in Render et al. (2019)
296 with minor adjustments. After chemical purification (§2.2.4.1), interfering elements were far

297 below the maximum thresholds determined by Zhang et al. (2011) [max V/Ti = 0.00018, Cr/Ti =
298 0.0012, and Ca/Ti = 0.006]. Titanium isotopic measurements were performed employing the
299 Neptune *Plus* MC-ICPMS and a Cetac Aridus II® desolvating introduction system at the Lawrence
300 Livermore National Laboratory. Using a Jet sampler and X skimmer cones, this setup resulted in
301 intensities for ^{48}Ti between 35 and 40 V in medium resolution for 700 ppb Ti solutions
302 (corresponding to a total ion beam intensity of 4.7 to 5.2×10^{-10} A). Due to the large relative axial
303 spread of the atomic masses from ^{44}Ca to ^{53}Cr , it was necessary to determine the Ti isotope ratios
304 in two lines, where the first line encompasses masses 44 to 50 and the second line measures atomic
305 masses 49, 51, and 53 to correct for minor isobaric interferences from Cr and V. Each measurement
306 consisted of a 30 s baseline as well as 30 cycles of 8.3 s and 2.1 s integration times for the first and
307 second line, respectively, transitioned by 3 s idle time. All masses (44, 46, 47, 48, 49, 50, 51 and
308 53) were monitored using 10^{11} Ω amplifiers. Because Ti isotope measurements can suffer from a
309 polyatomic interference on atomic mass 50 (presumably $^{36}\text{Ar}^{14}\text{N}^+$), the measurements were
310 performed on the left shoulder of the peak plateau to avoid the polyatomic interference. Based on
311 repeated measurements of standards run during these analyses, we estimate an external
312 reproducibility (2SD) of ± 0.27 for $\varepsilon^{46}\text{Ti}$, ± 0.09 for $\varepsilon^{48}\text{Ti}$, and ± 0.31 for $\varepsilon^{50}\text{Ti}$. Isotope data were
313 corrected for mass-bias by internal normalization to $^{49}\text{Ti}/^{47}\text{Ti} = 0.749766$ using the exponential law
314 and are reported in ε -notation relative to the Origins Lab OL-Ti standard:

$$\varepsilon^i\text{Ti} = \left[\frac{\left(\frac{i\text{Ti}}{^{47}\text{Ti}} \right)_{\text{sample}}}{\left(\frac{i\text{Ti}}{^{47}\text{Ti}} \right)_{\text{standard}}} - 1 \right] \times 10^4$$

316

317 2.2.5. Reflectance spectra

318 We analyzed an aliquot of fine-grained but unsorted Tarda powder (0.51 g) made from the 1.03
319 g of homogenized, fusion crust-free fragments that was used in this study for all other bulk
320 compositions (H-C-N isotopes and abundances, Cr and Ti isotopes, and bulk elemental
321 composition). We also spectrally characterized a 0.2384 g fusion crust-free chip of Tarda.

322 Reflectance spectra from 350 nm to 2500 nm were measured relative to a calibrated Fluorilon
323 standard with an Analytical Spectral Devices LabSpec4 Hi-Res spectrometer at $i=30^\circ$, $e=0^\circ$, at
324 ambient pressure and temperature (SM 4). Reflectance spectra from both the fine unsorted powder
325 and small, flat chip of the stone were collected at the University of Winnipeg. The powder was
326 packed into an Al sample cup by first gently pouring, then tapping the cup several times, and

327 finally scraping the excess off with a glass slide held away from the sample at 45°. The powder
328 was repacked in its sample cup three times, and no significant variation in the reflectance spectra
329 was observed. The field of view for all measurements was roughly 4 mm in diameter, and the light
330 source used was an in-house 150 W quartz-tungsten halogen operated at 110 W and collimated to
331 a divergence of <1.5°. The spectra have between 2 and 7 nm resolution with 1.4 nm spectral steps
332 and the data is internally resampled by the instrument to output data at 1 nm intervals. A total of
333 1000 spectra of the white standard, dark current, and sample were collected to improve the signal
334 to noise ratio of the data.

335 Continuum removal from the Tarda spectra, discussed in §4.1.6, was performed by
336 constructing a straight line continuum tangent to the reflectance spectra in the 500 nm and 1800
337 nm regions and dividing the spectrum by this continuum, similar to how this procedure has been
338 applied to other carbonaceous chondrite spectra (e.g., Cloutis et al., 2011a,b). While the choice of
339 a continuum's tangent points can affect the depths and, to a lesser extent, positions of any
340 absorption features, it has proven effective in previous analyses for enhancing the visibility of
341 absorption features that have mineralogical significance (Cloutis et al., 2011a,b). This technique
342 allows otherwise hard-to-see absorption bands to be accentuated and band centers to be
343 determined, which can then be linked to specific phases (e.g., magnetite, phyllosilicates, and mafic
344 silicates) that contribute to absorption in specific wavelength regions (Cloutis et al., 2011a,b). This
345 technique has been successfully applied to determining what phases contribute to the reflectance
346 spectra of other dark carbonaceous chondrites (Cloutis et al., 2011a,b).

347 Mid infrared spectra of the powder and the fusion crust-free chip were also measured, with a
348 Bruker Vertex 70, using a SpecAc bidirectional accessory. These measurements were collected
349 relative to Labsphere InfraGold in a purged dry-N₂ atmosphere, using a MCT detector and Globar
350 light source. The sample preparation for these measurements was the same as those for the visible
351 and near-infrared (VNIR) analyses, as was the viewing geometry of i=30° and e=0°.

352 Spectra collected on aliquots of Tagish Lake are included here, and the reader is referred
353 elsewhere for experimental procedures (Hiroi et al., 2001; Izawa et al., 2015; Gilmour et al., 2019).

354 A reflectance spectrum ranging from 250 nm to 2500 nm of a rough surface of a MET 00432
355 chip sample was measured every 5 nm at Mizusawa Very Long Baseline Interferometer (VLBI)
356 Observatory using the same instrument conditions as described in Yamada et al. (1999). The
357 footprint size was ~2 mm × 3 mm. The spectrum was collected with a viewing geometry of i=30°

358 and $e=0^\circ$ relative to Labsphere Spectralon at ambient pressure and temperature, using a deuterium
359 lamp (250 to 390 nm) and a halogen lamp (390 to 2500 nm) as light sources.

360 The reflectance spectra of WIS 91600 (<125 μm and <75 μm powders) were acquired from
361 the RELAB public database (<https://pds-geosciences.wustl.edu/spectrallibrary/default.htm>) that
362 were analyzed in Cloutis et al. (2012a). The WIS 91600 spectra were measured relative to a pressed
363 halon powder white standard with a viewing geometry of $i=30^\circ$ and $e=0^\circ$ and 5 nm spectral
364 resolution.

365

366 3. Results

367

368 3.1. Mineralogy and petrology

369 3.1.1. Tarda

370 The petrographies, modal abundances, and modal mineralogies of the two polished Tarda
371 mounts (Figs. 2a,b) are very similar to one another (Tables 1 and 2), and their *in situ* mineral
372 compositions are indistinguishable (Tables 3–5 and SM 3). Therefore, mineral compositions and
373 petrographic observations are presented together. Tarda contains ~0.2 vol.% calcium-aluminum-
374 rich inclusions (CAIs), ~6.5 vol.% chondrules and 93.3 vol.% matrix (total sample area 51.3 mm^2).
375 The minerals identified in Tarda from X-ray element map analysis (confirmed with EDS) include
376 olivine (~3.3 vol.%), dolomite (~3.2 vol.%), magnetite (~4.1 vol.%), Fe-sulfide (~2.4 vol.%;
377 pyrrhotite and pentlandite), phosphate (~0.15 vol.%), and trace amounts (<0.01 vol.%) of
378 chromite, Fe,Ni metal, and Al-spinel, with the remaining material being phyllosilicates (~86.9
379 vol.%) (Table 2). We identified 21 whole chondrules, 18 FeO-poor (one dusty olivine and 17 type
380 I; mean $\text{Fe}/[\text{Fe}+\text{Mg}]$ atomic ratio <10%) and three FeO-rich (type II; mean $\text{Fe}/[\text{Fe}+\text{Mg}]$ atomic
381 ratio >10%) chondrules, all of which are porphyritic (Table 1) and highly aqueously altered
382 (olivine phenocrysts partially replaced by phyllosilicates and no remaining unaltered glass). For
383 example, one FeO-rich chondrule is partially replaced by phyllosilicates (Fig. 3e,f), while another
384 is almost completely replaced by phyllosilicates (Fig. 3h). FeO-rich chondrules are significantly
385 less abundant than FeO-poor chondrules (e.g., Figs. 2a,b). The range of apparent (2D) diameters
386 of the 21 chondrules is 0.07–1.30 mm (mean 0.26 ± 0.12 mm; $\pm 2\text{SE}$). Numerous FeO-poor olivine
387 fragments were observed in the matrix; while they are most likely chondrule fragments, their sizes
388 are not included in the chondrule size determination as they are not whole chondrules. The range

389 of chondrule olivine compositions is $\text{Fa}_{0.5-55.6}$ with at.% Fe/Mn ratios of 4 to 134 (# analyses = n
390 = 87; 10 chondrules [7 FeO-poor, including 1 dusty olivine chondrule, and 3 FeO-rich chondrules;
391 SM 3]). The Fe-sulfides observed include both Ni-poor (<1 wt.% Ni) Fe-depleted pyrrhotite (mean
392 Fe/S at.% ratio = 0.87, n= 14) and pentlandite (n = 22) (Fig. 3g). Nickel-rich pyrrhotite was also
393 observed (n = 15) but may result from EPMA beam overlap with pentlandite. Rare Fe,Ni metal in
394 an FeO-poor chondrule has Ni = 5.6–6.2 wt.% and Co = 0.20–0.24 wt.% (n = 2; Table 4).

395

396 *3.1.2. Tagish Lake*

397 The Tagish Lake sample studied here (Fig. 2c) most closely resembles the carbonate-rich
398 lithology described by Zolensky et al. (2002) and Nakamura et al. (2003). Tagish Lake contains
399 ~0.3 vol.% CAIs, ~5.9 vol.% chondrules and 93.8 vol.% matrix (total sample area 125.4 mm²).
400 This chondrule abundance is lower than some samples studied by Blinova et al. (2014), but is
401 similar to the ~5 vol.% chondrules observed in the ‘Tagish Lake 11i’ sample. The minerals
402 identified in Tagish Lake from X-ray element map analysis (confirmed with EDS) include olivine
403 (~4.1 vol.%), Ca-carbonate (~3.2 vol.%; dolomite and calcite), magnetite (~4.6 vol.%), Fe-sulfide
404 (~1.9 vol.%; pyrrhotite and pentlandite), Al-spinel (~0.02 vol.%) and trace amounts (<0.01 vol.%)
405 of phosphate, chromite, and Fe,Ni metal, with the remaining material being phyllosilicates (~86.2
406 vol.%) (Table 2). We identified 57 whole chondrules, 52 FeO-poor chondrules and five FeO-rich
407 chondrules (e.g., Figs. 2c and 4). The apparent (2D) diameters of these 57 chondrules range from
408 0.05 to 1.37 mm (mean 0.29 ± 0.05 mm; $\pm 2\text{SE}$). The chondrules are heavily aqueously altered and
409 the majority are porphyritic; only two barred olivine chondrules and one cryptocrystalline
410 chondrule were observed (Table 1 and Fig. 4a). Some chondrules have fine-grained rims, and
411 cracks normal to the chondrule surfaces are sometimes present in the fine-grained rim (e.g., Fig.
412 4e), like that observed by Mouti Al-Hashimi et al. (2023) in CM chondrites. The range of
413 chondrule olivine compositions is $\text{Fa}_{0.6-54.3}$ with at.% Fe/Mn ratios of 5 to 142 (n = 97). The Fe-
414 sulfides observed include Ni-rich (1<Ni<16 wt.%) Fe-depleted pyrrhotite (Ni is potentially from
415 beam overlaps with pentlandite, n = 28) and pentlandite (n = 14). Since all pyrrhotite analyzed had
416 greater than 1 wt.% Ni, no Ni-poor (<1 wt.% Ni) pyrrhotite was observed that could be used to
417 determine the at.% Fe/S ratio using the technique of Schrader et al. (2021).

418

419 **3.2. Bulk isotopic and elemental compositions**

420 Tarda has a bulk isotopic and elemental composition of $\delta^{13}\text{C} = 8.0 \pm 0.4\text{\textperthousand}$ (4.17 ± 0.03 wt.\% C),
421 $\delta^{15}\text{N} = 62.0 \pm 0.2\text{\textperthousand}$ (0.297 ± 0.003 wt.\% N), and $\delta\text{D} = 608 \pm 18\text{\textperthousand}$ (0.92 ± 0.01 wt.\% H) (all
422 uncertainties are 1σ), yielding a bulk C/H (wt.\%) ratio of 4.55 (Table 6). The Cr and Ti isotopic
423 compositions are $\varepsilon^{53}\text{Cr} = 0.02 \pm 0.14$, $\varepsilon^{54}\text{Cr} = 1.14 \pm 0.17$, $\varepsilon^{46}\text{Ti} = 0.55 \pm 0.10$, $\varepsilon^{48}\text{Ti} = -0.06 \pm 0.03$, and
424 $\varepsilon^{50}\text{Ti} = 2.94 \pm 0.13$ (all uncertainties are 2SE; $n = 5$) (Tables 7 and 8). The USGS standard DTS-1
425 and our aliquot of Allende yielded $\varepsilon^{\text{d}}\text{Cr}$ values that are indistinguishable from those previously
426 reported for these samples (e.g., Trinquier et al., 2007; Williams et al., 2020; Torrano et al., 2021;
427 Zhu et al., 2021; Table 7). The USGS standard BCR-2 and our aliquot of Allende yield $\varepsilon^{\text{d}}\text{Ti}$ values
428 that are also indistinguishable from those previously reported for these samples (e.g., Zhang et al.,
429 2011; Gerber et al., 2017), demonstrating the accuracy of our method (Table 7). The bulk elemental
430 abundances in Tarda are given in Table 9, and are discussed in §4.1.2.

431

432 **3.3. Reflectance spectra**

433 The 350–5000 nm reflectance spectra of the Tarda meteorite powder and chip show overall
434 low reflectance (<0.03 in the visible region for the powder), a relatively strong spectral red slope,
435 a concave-down shape below ~ 500 nm, and a flat to slightly-concave-up shape between ~ 500 nm
436 and 2500 nm (Fig. 5). Both spectra exhibit a weak and narrow absorption feature near 430 nm, a
437 strong absorption feature in the ~ 2.7 – 3.1 μm region, and weaker absorption features in the 3.4 μm
438 and 4 μm regions.

439 The chip and powder spectra of Tarda are similar, differing mostly in terms of overall
440 reflectance (Fig. 5). The scattering properties of chips and powders differ due to their solid versus
441 porous nature, and differences in reflectance between chips and powders are normal (Cloutis et al.,
442 2018). The narrow absorption band near 430 nm is associated with a spin-forbidden absorption
443 due to ferric Fe, likely in a tetrahedrally-coordinated site in phyllosilicates (Greenberger et al.,
444 2015). There are suggestions of an absorption feature near 2300 nm that could be attributed to
445 various components of Tarda, such as carbonate (Gaffey, 1986), aliphatic organics (Cloutis et al.,
446 1994), or Mg-OH in phyllosilicates (Clark et al., 1990).

447 The absorption feature near 2.71 μm is attributed to stretching vibrations in OH that is present
448 in Tarda's phyllosilicates, while the longer-wavelength shoulder, centered near 3 μm , is
449 attributable to stretching vibrations of H_2O and the first overtone of H_2O bending vibrations, likely
450 due to H_2O present in saponitic phyllosilicates (Clark et al., 1990). The 3.3 μm region absorption

451 feature is likely due to carbonates and/or aliphatic-bearing organics (e.g., Bellamy et al., 1958;
452 Adler and Kerr, 1963a,b). The 4 μm region band is due to carbonates, as aliphatic organics do not
453 have an absorption feature in this region.

454

455

4. Discussion

456

457 **4.1. Tarda and Tagish Lake: Meteorites from the same parent asteroid?**

458

459 *4.1.1. Modal mineralogies*

460 The abundances of major minerals, chondrules, CAIs, matrix and phyllosilicates in Tarda are
461 very similar to those of Tagish Lake (Table 2). The mineral abundances in both Tarda and Tagish
462 Lake are unlike those observed by Donaldson Hanna et al. (2019) for CI, CM1/2, CM2, type 3
463 Vigarano-like carbonaceous (CV), and the type 2 Renazzo-like carbonaceous (CR) chondrites. We
464 use the abundances in Donaldson Hanna et al. (2019) as they were determined by the same
465 technique used here and are thus directly comparable. Tarda and Tagish Lake most closely
466 resemble the CM1/2 and CI chondrites, although Tarda and Tagish Lake (~3.3 and ~4.1 vol.%,
467 respectively) contain more olivine than the CI Orgueil (~0.03 vol.% olivine) and the CM1/2 ALH
468 83100 (~0.20 vol.% olivine), but less than the CM2 Murchison (11.3 vol.% olivine) (Table 2;
469 Donaldson Hanna et al., 2019). Tarda and Tagish Lake also contain lower estimated phyllosilicate
470 abundances (~86.9 and ~86.2 vol.%, respectively) than the CI Orgueil (~96.7 vol.%) and the
471 CM1/2 ALH 83100 (95.7 vol.%), but more than the CM2 Murchison (~74.5 vol.% phyllosilicates;
472 Donaldson Hanna et al., 2019). The abundances of chondrules and matrix in the Tarda and Tagish
473 Lake samples studied here are also similar to one another, but unlike those of recognized chondrite
474 groups (e.g., see meteorite group abundances in Table 2 of Weisberg et al., 2006). Tagish Lake is
475 known to contain multiple lithologies, and these distinct lithologies are known to contain
476 chondrule abundances between 5 vol.% and 40 vol.% (Blinova et al., 2014). Therefore, based on
477 the modal abundances of components and minerals within Tarda and Tagish Lake studied here,
478 we find they are similar to one another and unlike known meteorite groups.

479

480 *4.1.2. Bulk isotopic and elemental compositions*

481 Bulk isotopic and elemental compositions indicate that Tarda is very similar to Tagish Lake
482 (Figs. 6–8; e.g., Brown et al., 2000; Trinquier et al., 2009; Petitat et al., 2011; Alexander et al.,
483 2012; Marrocchi et al., 2021). The H, C, and N compositions of Tarda determined here are
484 consistent with those reported by Marrocchi et al. (2021) (Table 6; Fig. 6), and of the bulk
485 meteorite compositions analyzed using the same protocols are most similar to those of Tagish Lake
486 (e.g., Alexander et al., 2012). It is important to note that our H, C, and N compositions for Tarda
487 are similar to those of Marrocchi et al. (2021), despite using different samples of Tarda, analytical
488 equipment, and methods. The method in Marrocchi et al. (2021) used a pre-degassing technique
489 (48 hours at 120° C; developed by Vacher et al., 2020) ideally to remove terrestrially adsorbed
490 water from the sample. Vacher et al. (2020) found that for CI chondrites analyzed with this pre-
491 degassing technique, the abundance of H was up to a factor of two lower than values reported by
492 Alexander et al. (2012), potentially supporting their argument for removal of terrestrial water.
493 Using stepwise pyrolysis technique, Lee et al. (2023) found that terrestrially adsorbed water from
494 the atmosphere contaminated CM chondrite falls. Since Tarda is an extensively aqueously altered
495 carbonaceous chondrite meteorite fall, terrestrially adsorbed water may at first seem to be of
496 concern for the Tarda sample analyzed here. However, Garvie et al. (2024) found that
497 carbonaceous chondrite samples (including Tarda) stored in dry N₂ purged desiccator cabinets had
498 significantly less adsorbed water than samples stored in atmosphere, and our sample of Tarda was
499 stored in the same N₂ purged desiccator cabinets. In addition, despite using the method of
500 Alexander (2012), our data for Tarda has a lower H abundance than Tarda samples analyzed by
501 Marrocchi et al. (2021) (Table 6; Fig. 6). Therefore, our sample of Tarda is not noticeably
502 contaminated by terrestrial water, which is supported by its similar H, C, and N abundances and
503 isotopic compositions (Table 6; Fig. 6).

504 The bulk H concentration (wt.%) and δ D value (‰) of Tarda are also near those of CR
505 chondrites (Fig. 6a), but the higher C/H ratio (Fig. 6b) and lower $\delta^{15}\text{N}$ (‰) value compared to CR
506 chondrites (Fig. 6c) indicates that Tarda and the CRs are not related. In addition, the *in situ* O-
507 isotope compositions of FeO-poor chondrule olivines in Tarda are distinct from those of FeO-poor
508 chondrule olivines in CR chondrite chondrules (Schrader et al., 2013, 2017, 2018a, 2020; Tenner
509 et al., 2015, 2018; Marrocchi et al., 2021; Pinto et al., 2024). The bulk O isotope composition and
510 mass-independent Cr and Ti isotopic compositions of Tarda are also most similar to Tagish Lake
511 (Table 8 and Fig. 7). The Cr and Ti isotope variations amongst Solar System materials have been

512 proposed to result from the heterogeneous distribution of isotopically anomalous presolar dust in
513 the protoplanetary disk, making them excellent tracers of genetic relationships among Solar
514 System reservoirs or meteorite parent bodies (e.g., Trinquier et al., 2009; Warren, 2011; Torrano
515 et al., 2021; Render et al., 2022; Zhu et al., 2023; Rüfenacht et al., 2023). While the $\varepsilon^{54}\text{Cr}$ and $\varepsilon^{50}\text{Ti}$
516 compositions of Tarda overlap with the field for CM chondrites (Fig. 7a), the $\Delta^{17}\text{O}$ (‰) vs. $\varepsilon^{54}\text{Cr}$
517 and $\Delta^{17}\text{O}$ (‰) vs. $\varepsilon^{50}\text{Ti}$ compositions (Figs. 7b,c; this study, Grossman, 2000; Trinquier et al.,
518 2009; Petitat et al., 2011; Gattacceca et al., 2021) are unlike those of CM chondrites. These isotopic
519 compositions are distinct from other meteorite groups and ungrouped carbonaceous chondrites,
520 suggesting that Tarda and Tagish Lake are genetically related (e.g., Marrocchi et al., 2021), or at
521 least formed from materials with similar compositions that potentially formed spatially and
522 temporally close to one another in the protoplanetary disk. The Xe and Fe isotopic compositions
523 of Tagish Lake and Tarda have also been shown to be very similar to one another, but distinct from
524 that of CI chondrites and asteroid Ryugu, suggesting that Tarda and Tagish Lake are not related to
525 CI chondrites (Avice et al., 2022; Hopp et al., 2022).

526 The bulk and trace element compositions of Tarda determined here (Table 9), are similar to
527 the bulk compositions of two Tarda aliquots determined by Marrocchi et al. (2021). Tarda shows
528 a similar bulk composition to that of Tagish Lake (Brown et al., 2000), comparable to the findings
529 of Marrocchi et al. (2021). The lithophile element abundances of Tarda are very similar to those
530 of CI chondrites, for Al, Sc, Ca, La, Sm, Eu, Yb, and V (Figs. 8a,b). However, there are depletions,
531 relative to CI, for the moderately volatile lithophiles Cr, Mn, and K (Figs. 8c,d) and for siderophile
532 and chalcophile elements. Tarda's lithophile, siderophile, and chalcophile elements (Fig. 8) are
533 most like those of CM chondrites (Lodders et al., 2021), Tagish Lake (Brown et al., 2000), and
534 WIS 91600 (Choe et al., 2010).

535

536 *4.1.3. Sulfide and Fe,Ni metal chemical compositions*

537 The chemical compositions of pyrrhotite and pentlandite in a meteorite can provide
538 information about the formation conditions of the host rock, such as the equilibration temperature
539 at which those compositions formed (e.g., Jamsja and Ruzicka, 2010; Berger et al., 2011; Schrader
540 et al., 2015; 2016; 2018b; Davidson et al., 2019a,b), the oxygen fugacity of formation/alteration,
541 and degree of aqueous alteration experienced (e.g., Schrader et al., 2021). The mean at.% Fe/S
542 ratio of Ni-poor pyrrhotite in Tarda is 0.87, which indicates a high degree of oxidizing aqueous

543 alteration consistent with that seen in CI ($\text{Fe/S} = 0.85\text{--}0.87$) and CM1/2 ($\text{Fe/S} = 0.89\text{--}0.91$)
544 chondrites by Schrader et al. (2021). Pyrrhotite-pentlandite geothermometry via phase diagram
545 analysis (e.g., Schrader et al., 2016) shows Tarda sulfide equilibration temperatures of
546 approximately $100\text{--}135^\circ\text{C}$ (Fig. 9a), which is consistent with formation of the sulfides during low-
547 temperature aqueous alteration, and provides an estimate for the minimum parent asteroid
548 alteration temperature of Tarda. The sulfide equilibration temperature is not the peak metamorphic
549 temperature a sample was exposed to, but are rather the temperature at which the sulfide minerals
550 equilibrated. Therefore, the sulfide equilibration temperature provides a minimum temperature of
551 alteration (Schrader et al., 2016). Following the work of Kimura et al. (2008), the low Co content
552 of Ni-poor Fe,Ni metal (Table 4) is also consistent with Tarda being relatively unheated (i.e.,
553 similar to that of petrographic types 3.00 to <3.10). Therefore, assuming similar temperatures for
554 3.00 to <3.10 petrographic type chondrites (Busemann et al., 2007), the peak temperature our
555 samples of Tarda were exposed to can be inferred to be $\lesssim 300^\circ\text{C}$. Our pyrrhotite-pentlandite
556 geothermometry of Tagish Lake also shows sulfide equilibration temperatures of approximately
557 $100\text{--}135^\circ\text{C}$ (Fig. 9b), the same equilibration temperature as determined for sulfides in Tarda,
558 indicating similar parent body alteration histories. These temperatures are similar to the aqueous
559 alteration temperatures estimated for the CI chondrites (Bullock et al., 2005; Berger et al., 2011)
560 and for the most altered CM chondrites (Schrader et al., 2016) from sulfide geothermometry.

561

562 *4.1.4. Carbonate chemical compositions*

563 The types and/or compositions of carbonates vary between distinct meteorite groups. For
564 example, CI chondrites contain calcite/aragonite (CaCO_3), breunnerite ($[\text{Mg},\text{Fe}]\text{CO}_3$), siderite
565 (FeCO_3), and abundant dolomite ($\text{CaMg}[\text{CO}_3]_2$), while CM chondrites contain calcite/aragonite
566 and dolomite (e.g., Fredricksson and Kerridge, 1988; Johnson and Prinz, 1993; Nakamura et al.,
567 2003; de Leuw et al., 2010). In comparison, carbonates in CR chondrites are dominantly calcite,
568 and while rare dolomite has been observed, no siderite has been reported (e.g., Weisberg et al.,
569 1993; Weisberg and Huber, 2007; Schrader et al., 2014; Jilly-Rehak et al., 2018).

570 The carbonates in Tagish Lake are typically ferromagnesian (siderite and dolomite), although
571 calcite is also present (Nakamura et al., 2003; Blinova et al., 2014). We analyzed carbonates in
572 Tarda and Tagish Lake, as well as the CI chondrite Orgueil and the CM1/2 chondrite Kolang to
573 investigate if the chemical compositions of carbonates are noticeably different between different

574 meteorite groups (Fig. 10; Table 5). We identified ferromagnesian carbonates in all samples, but
575 calcite was only observed in Tagish Lake (C2-ung) and Kolang (CM1/2). We did not find calcite
576 in Tarda, nor did Marrocchi et al. (2021). We find that Tarda dolomites are compositionally similar
577 to those in CI and CM chondrites, but contain less FeO and MnO than those in Tagish Lake (Fig.
578 10). The CI Orgueil contains some dolomite grains with the lowest FeO and MnO contents and
579 Tagish Lake dolomite grains contain higher FeO and MnO contents than the other samples studied
580 here (Table 5; Fig. 10). In general, we did not identify clear compositional differences in dolomite
581 between CI, CM1/2, and Tarda that could be used as a diagnostic indicator between them. Instead,
582 the types of carbonate minerals present in a meteorite likely provide valuable information about
583 the local alteration histories present in their parent asteroids.

584 Since Tarda and Tagish Lake likely originate from the same parent body, the difference in
585 carbonate minerals present in Tarda (only dolomite) and Tagish Lake (dolomite, siderite, and rare
586 calcite) may indicate differences in alteration histories/degrees of alteration within a single
587 asteroid. The higher Fe and Mn content of dolomite in Tagish Lake than that of Tarda may also be
588 an indicator of different alteration histories/fluid compositions. In terrestrial settings, dolomite can
589 form (1) by replacement of Ca in calcite by Mg, or (2) from direct precipitation in clay minerals
590 (e.g., Casado et al., 2014; Wanas and Sallam, 2016). The source of Mg in terrestrial dolomite is
591 typically considered to be neighboring Mg-bearing clay minerals (e.g., Cai et al., 2021), perhaps
592 suggesting that dolomite is an indicator of more extensive aqueous alteration in carbonaceous
593 chondrites, although specific alteration conditions, fluid chemistry, and phyllosilicate
594 compositions likely are important factors in the specific compositions of carbonate formation.
595 Factors controlling the Fe and Mn contents of dolomite are related to the environment of dolomite
596 formation (Cai et al., 2021). In studies of terrestrial dolomite, Fe^{2+} and Mn^{2+} replace Mg^{2+} in pre-
597 existing dolomite (Cai et al., 2021). Therefore, the Fe- and Mn-enriched dolomite in Tagish Lake
598 (compared to that in Tarda) may indicate a distinct degree or condition(s) of alteration. Since Tarda
599 only contains dolomite, which is compositionally similar to dolomite in the CI and the CM1/2
600 chondrites, it may indicate that Tarda is more aqueously altered than Tagish Lake or that their
601 specific conditions of aqueous alteration were different. Since Tarda and Tagish Lake contain
602 similar phyllosilicate abundances (~86.9 and ~86.2 vol.%, respectively; Table 2) and H contents
603 (Fig. 6a), it seems more likely that the two meteorites have experienced similar degrees of aqueous
604 alteration but that their fluid compositions during aqueous alteration differed. This may indicate

605 evolving fluid compositions in an asteroid, similar to that proposed by Jilly-Rehak et al. (2018) for
606 CR chondrites.

607

608 *4.1.5. Chondrule sizes and olivine compositions*

609 Average chondrule diameters vary between different chondrite groups and have been used as
610 a parameter for meteorite classification (Weisberg et al., 2006; Jones, 2012). The apparent (2D)
611 mean chondrule diameter for Tarda (0.26 ± 0.12 mm [2SE], $n = 21$) is most similar to that of Tagish
612 Lake (0.29 ± 0.05 mm [2SE], $n = 57$; this study). Compared to known meteorite groups, Tarda's
613 apparent (2D) mean chondrule diameter is larger than that of the CM chondrites (mean 0.17 mm; Mouti
614 Al-Hashimi et al., 2023) and the CO chondrites (mean 0.15 mm; Rubin, 1989). Our apparent (2D)
615 chondrule diameter range for Tagish Lake (0.05–1.37 mm) is similar to that reported by Zolensky
616 et al. (2002) and Blinova et al. (2014) (0.1–2 mm; mean diameters were not reported). Based on
617 the apparent (2D) mean chondrule diameters, the samples of Tarda and Tagish Lake studied here
618 are very similar.

619 The Fe-Mn systematics of chondrule olivines can help identify genetic relationships between
620 groups (e.g., Berlin et al., 2011; Schrader and Davidson, 2017, 2022; Schrader et al., 2020). The
621 Fe-Mn compositions of FeO-poor and FeO-rich chondrule olivines in Tarda are most similar to
622 those of chondrules in Tagish Lake (Figs. 11a,b), and CO and CM chondrites (Berlin et al., 2011;
623 Schrader and Davidson, 2017, 2022; Schrader et al., 2020). The *in situ* O isotope compositions of
624 FeO-poor chondrule olivines from Tarda are also similar to those of Tagish Lake (Ushikubo and
625 Kimura, 2021; Marrocchi et al., 2021), as well as CM and CO chondrites (e.g., Ushikubo and
626 Kimura, 2021). While the distinct bulk O isotope compositions (Gattacceca et al., 2021), H-C-N
627 compositions (Fig. 6 and Table 6), and Cr and Ti compositions (Fig. 7) exclude the possibility that
628 Tarda is a CM or CO chondrite, Tarda's chondrules may have formed under similar conditions
629 from similar precursor materials.

630

631 *4.1.6. Spectral comparison*

632 Tarda shows both spectral similarities and differences when compared to Tagish Lake (Figs.
633 12 and 13). Continuum-removed 350–2500 nm reflectance spectra of Tagish Lake show no strong
634 (>1% deep) absorption bands (Izawa et al., 2015). Continuum-removed 350–2500 nm spectra of
635 Tarda (Figs. 14a,b) in the ~1000 nm region reveal a possible weak absorption feature (<4% deep)

(Figs. 14c,d). In the Tarda powder spectra, well-resolved absorption features are present near 900 nm and 1100 nm, as well as a shoulder near 1400 nm. The 900 nm and 1100 nm bands are consistent with Fe²⁺-bearing phyllosilicates (Clark et al., 1990), and share similarities with other aqueously-altered carbonaceous chondrites, such as CI and CM chondrites (e.g., Cloutis et al., 2011a,b). The 1400 nm shoulder is consistent with the presence of OH/H₂O (Clark et al., 1990). The chip spectrum shows weaker absorption features than the powder spectrum. However, the 900 nm, 1100 nm, and 1400 nm absorption features all appear to be present. There is also a relatively strong ~700 nm absorption feature that is attributable to an Fe³⁺–Fe²⁺ charge transfer in the phyllosilicates (Clark et al., 1990; Cloutis et al., 2011b); this feature is also suggested in the powder spectrum as a shoulder or inflection point near this wavelength.

Mid-infrared reflectance spectra of numerous carbonaceous chondrites, including Tagish Lake, have been collected (Izawa et al., 2010; Vernazza et al., 2013; McAdam et al., 2015; Lantz et al., 2017; Beck et al., 2018; Morlok et al., 2020; Thompson et al., 2020; Hiroi et al., 2021; Poggiali et al., 2021). These spectra are largely dominated by the Si-O stretching reststrahlen bands (RBs) of phyllosilicates (at ~9.8 μm), olivine (multiple overlapping RBs near 9–11 μm), and pyroxene (multiple overlapping RBs near 9–11 μm) (Poggiali et al., 2021). Here, we show that the Si-O stretching region of Tarda most closely resembles that of Tagish Lake (Fig. 13), in comparison to other carbonaceous chondrites, consistent with the spectroscopic analysis by Yesiltas et al. (2022). The most prominent feature observed for Tarda is the phyllosilicate RB, observed strongly at ~9.80 μm for the chip spectrum and, as expected, more weakly for the fine-grained powder. Due to the low concentration of other silicates in Tagish Lake and Tarda (Izawa et al., 2010; this study, Table 2), the feature near 11.5 μm is not an RB, but rather a transparency feature (TF). This TF spectrally behaves differently, as expected, and is most prominent in the fine-grained sample spectra. Similar results and spectral appearances are qualitatively similar for the samples of Tagish Lake measured by Poggiali et al. (2021), and from the spectra in the RELAB database of Tagish Lake ET01-B (Fig. 15).

Of the known chondrite groups, the reflectance spectra of Tarda appear most like those of some of the CI chondrites in terms of low albedo, spectral shapes (slope), and lack of well-defined absorption bands below 2500 nm (e.g., Cloutis et al., 2011a), but without any strong matches. Overall, the VNIR spectral properties of Tarda are better matched by Tagish Lake, WIS 91600, and MET 00432 (Figs. 12a,b).

667

668 **4.2. Comparison to WIS 91600 and MET 00432: A new carbonaceous chondrite grouplet?**

669 WIS 91600 and MET 00432 have been suggested to be related to Tagish Lake, and have been
670 dubbed Tagish Lake-like meteorites (e.g., Alexander et al., 2007; Moriarty et al., 2009; Yabuta et
671 al., 2010; Yamanobe et al., 2018). The bulk O isotope composition of WIS 91600 ($\Delta^{17}\text{O} = -0.08\text{\textperthousand}$;
672 Clayton and Mayeda, 2003) is distinct from those of CM chondrites but very similar to that of
673 Tagish Lake (e.g., Fig. 2 in Moriarty et al., 2009) and Tarda (e.g., Gattacceca et al., 2021). The Cr
674 and Ti isotopic compositions of WIS 91600 are also very similar to Tarda and Tagish Lake (Fig.
675 7; Render et al., 2022; Hellman et al., 2023). WIS 91600 resembles some lithologies of Tagish
676 Lake on the basis of the similar elemental and $\delta^{15}\text{N}$ isotopic compositions of their macromolecular
677 organic matter, although they have distinct N/C ratios, δD and $\delta^{13}\text{C}$ isotopic compositions
678 (Alexander et al., 2007). In addition, based on siderophile/lithophile element ratios, Moriarty et al.
679 (2009) proposed that WIS 91600 is more closely related to the CM chondrites than it is to Tagish
680 Lake. The bulk elemental composition of WIS 91600 (Choe et al., 2010) is similar to the CM
681 chondrites (Fig. 8), as well as Tagish Lake (Brown et al., 2000) and Tarda (Figs. 8c,d). Based on
682 WIS 91600's distinct bulk O isotope composition and the H-C-N compositions of its
683 macromolecular organic matter compared to CM chondrites, we find it likely that it is not a CM
684 chondrite. Several studies indicate that WIS 91600 underwent mild shock heating $<600^\circ\text{C}$ (Yabuta
685 et al., 2010; Tonui et al., 2014; Hanna et al., 2020), which could complicate some of these
686 comparisons. Therefore, it is possible that (1) WIS 91600 shared the same parent body/asteroid as
687 Tagish Lake and Tarda, and that the bulk elemental composition of this asteroid is very similar to
688 that of the CM chondrites, (2) that WIS 91600 is related to the CM chondrites and not from the
689 same asteroid as Tagish Lake and Tarda, or (3) WIS 91600 shares similarities to but is from a
690 different parent asteroid than either the CM chondrites or Tagish Lake and Tarda.

691 While the bulk O isotope composition of MET 00432 is similar to that of Tagish Lake
692 (Yamanobe et al., 2018) and therefore Tarda, the bulk H, C, and N abundances and isotopic
693 compositions of MET 00432 are more similar to those of the CM chondrites (Alexander et al.,
694 2013), not Tagish Lake or Tarda. Since WIS 91600 and MET 00432 have numerous differences
695 from Tagish Lake and Tarda, they may not be from the same parent asteroid, or they may have
696 experienced distinct alteration histories. Based on the current data, we find it possible that all four
697 meteorites could be related, but more analyses are required to conclude if WIS 91600 and MET

698 00432 are from the same parent asteroid as Tarda and Tagish Lake. Primarily, apparent (2D)
699 chondrule sizes, modal mineralogies, and chemical compositions of major minerals are needed.
700 Correlated H, C, N, O, Cr, and Ti isotopes for WIS 91600 and MET 00432 could also help resolve
701 this issue.

702 Tarda shows both spectral similarities and differences when compared to the Tagish Lake-like
703 meteorites (Figs. 12 and 13). Detailed spectroscopic analysis is hampered by their low overall
704 reflectance, which makes identification of subtle absorption bands somewhat uncertain. Spectral
705 shapes in the 500–2500 nm region range from concave up (Tarda) to concave down (MET 00432)
706 (Fig. 12). Spectral slopes, as measured by the 2500/555 nm reflectance ratio are all red, ranging
707 from \sim 1.3 to \sim 1.7 (a red slope is defined as a spectrum with increasing reflectance toward longer
708 wavelengths).

709 When compared with Tagish Lake and WIS 91600, the 350–2500 nm reflectance spectra of
710 Tarda exhibits a less-red spectral slope (Fig. 12b). The spectral slope is closest to that of MET
711 00432, but spectral slopes are sensitive to grain size (Cloutis et al., 2011a,b). The overall albedo
712 of Tarda is very similar to Tagish Lake and WIS 91600 (Fig. 12a), which may be expected, given
713 the relatively similar concentration of opaque minerals (Table 2). The most noticeable difference
714 between Tarda and the other Tagish Lake-like meteorites is the existence of the upward concave
715 spectral shape. In addition, different lithologies of Tagish Lake show variations in both albedo and
716 spectral slope (Fig. 15).

717 These results suggest that Tarda has strong similarities with the Tagish Lake-like meteorites,
718 yet exhibits some spectral properties and within-grouplet differences that are similar to those seen
719 in CI and CM chondrites (Cloutis et al., 2011a,b), as well as within different lithologies of Tagish
720 Lake (Izawa et al., 2015; Fig. 15). It remains to be seen whether multiple lithologies are identified
721 among samples of Tarda, although none were identified in this study or by Marrocchi et al. (2021).
722 Based on the similarities between Tarda and Tagish Lake, the finding of distinct Tarda lithologies
723 would not be surprising, given the spectral and compositional diversity in Tagish Lake lithologies
724 (Izawa et al., 2015; Gilmour et al., 2019).

725 Through a comparison of the reflectance spectra of all carbonaceous chondrite groups and
726 ungrouped samples (e.g., Cloutis et al. 1994, 2011a,b, 2012a,b,c,d,e,f; Donaldson Hanna et al.,
727 2019), we find that the VNIR spectral properties of Tarda are better matches with Tagish Lake,
728 WIS 91600, and MET 00432 than any other meteorite or known meteorite group (Figs. 12a,b). In

729 Figures 12a,b, we show Tarda compared to WIS 91600, MET 00432, and Tagish Lake as they are
730 most similar in terms of albedo, spectral slope, and weak or non-existent absorption bands. These
731 similarities support that Tarda, Tagish Lake, WIS 91600, and MET 00432 are potentially related
732 or at least contain similar minerals.

733

734 **4.3. The Tagish Lake-like meteorites and links to asteroids**

735

736 *4.3.1. P-type and D-type asteroids*

737 P-type and D-type asteroids are both considered to be spectrally featureless in the \sim 0.4-2.5 μm
738 region. Both groups are dark (geometric albedos \lesssim 0.03) but are distinguished mainly in terms of
739 their spectral slopes, with D-type asteroids having steeper red-sloped spectra than P-type asteroids
740 (Tholen, 1984). Multiple explanations have been advanced to explain this, mainly textural and
741 compositional.

742 Vilas and Smith (1985) studied the \sim 0.5–1.0 μm region reflectance spectra of a number of P-
743 and D-type asteroids. They found that the D-type asteroids have broadband reflectance spectra
744 which are low in the UV-visible spectral region, and exhibit an increase in relative reflectance
745 beginning around 0.7 μm . They also have low geometric albedos (\sim 0.03) as derived from thermal
746 radiometry (10- and 20- μm observations). The broadband spectra of some D-type asteroids flatten
747 in the near-infrared, while other spectra increase linearly in this interval. The P-type asteroids have
748 linear spectra showing a slight increase in slope with increasing wavelength, and low albedos
749 (\sim 0.03) comparable to the D-type asteroids. From this information, they subdivided the spectra
750 into four subgroups on the basis of spectral slope: two P-subgroups with flat barely-sloping spectra
751 or small positive slopes, and two D-subgroups with different red slopes. They provided two
752 possible explanations related to hydrocarbons: (1) simpler hydrocarbons with increasing
753 heliocentric distance or (2) color changes in hydrocarbons with increasing heliocentric distance
754 (i.e., temperature).

755 Fitzsimmons et al. (1994) found a possible correlation between asteroid diameter and color
756 (spectral slope). They speculated that this was due to redder objects being inherently weaker and
757 less resistant to break-up following impacts or, alternatively, that variations in shock processes
758 during collisions. Barucci et al. (1987) and Fitzsimmons et al. (1994) found spectral variations

759 within the D-type in terms of spectral shape, between concave and convex, and derived four
760 subgroups using slope and shape criteria.

761 Analysis of P-type asteroids in terms of carbonaceous chondrite spectra indicated that P-type
762 asteroids spectra can be reproduced by different proportions of various carbonaceous chondrites,
763 suggesting that compositional differences may explain the spectral differences between P- and D-
764 type asteroids (Hiroi et al., 2004).

765

766 *4.3.2. A genetic relationship between P- and D-type asteroids*

767 Previous work has shown that some P-type asteroids exhibit reflectance spectra that can be
768 described as intermediate between CI/CM chondrites and Tagish Lake (Hiroi et al., 2004). Given
769 the strong spectral similarities of Tarda to the Tagish Lake-like meteorites, albeit with subtle
770 similarities to some CI spectra, Tarda could be described as a meteorite that falls within this
771 intermediate space.

772 The VNIR spectral shape of Tarda does not closely match the mean values found for D-type
773 asteroids presented by DeMeo et al. (2009) (Fig. 16). Tarda is less red-sloped and shows variations
774 in spectral slope over the 400–2500 nm interval as compared to D-type asteroids. Instead, the
775 spectral slope and shape of the Tarda meteorite spectra share affinities with some Tholen (Tholen,
776 1989) taxonomic P-type and/or Bus X/Xc-type asteroids (Bus and Binzel, 2002a), with a
777 moderately-red spectral slope, a slope break near 500 nm and no resolvable absorption band
778 between 400 nm and 500 nm (e.g., DeMeo et al., 2009) (Fig. 17). The reflectance spectra from
779 both P-type asteroids 65 Cybele and 76 Freia (Bus and Binzel, 2002b; Burbine and Binzel, 2002;
780 Rayner et al., 2003) fall between the spectral slopes of the Tarda powder and chip, which may
781 suggest variations in the grain size distribution of Tholen P-type asteroid surfaces (e.g.,
782 Fitzsimmons et al., 1994). The visible spectral shapes of these two asteroids also resemble that
783 exhibited by Tarda. Given the similarities in spectral slope and visible spectral shape, it is likely
784 that Tarda and these asteroid surfaces are made of similar materials.

785 The petrologic, chemical, and isotopic characteristics of Tarda and Tagish Lake (§4.1) are
786 similar enough that there is a strong possibility that Tarda originated from the same outer Solar
787 System asteroid as Tagish Lake. If they are not from the same asteroid, they at least formed from
788 similar precursor materials under similar conditions. Here, we find that the spectral reflectance
789 properties of Tarda most closely resemble those of the Tagish Lake-like meteorites, yet also

790 exhibits affinities with some CI/CM chondrites, such as low albedo, and spectral slope (like CI
791 chondrites) and 1 μm region absorption features (like CM chondrites). The reflectance spectra
792 from the lithology of Tarda analyzed here appear to be a closer match to some Tholen P-type
793 asteroids than to Tholen D-types. Should additional samples of Tarda exhibit similar reflectance
794 properties (to test if Tarda is as homogenous as we found here), it may be that Tarda could
795 represent the first sample of a P-type asteroid surface. These results are not contradictory, but
796 highlight that numerous other possible scenarios exist; including that very subtle compositional
797 differences could explain variations in the spectral taxonomies of asteroids.

798 Since Tarda and Tagish Lake likely originated from the same parent asteroid, P-type and D-
799 type asteroid types may be genetically related, and differ spectrally due to differences in grain size
800 or small mineralogical variations. These variations could be due to the parent asteroid being
801 heterogeneous or having distinct degrees of alteration. Alternately, P-type and D-type asteroids
802 may now be separate objects, but may represent fragments of the same original parent asteroid.
803 This highlights that these subtle compositional and/or grain size differences also affect meteorite
804 reflectance spectra and that isolating the controlling variables of materials bearing multiple opaque
805 phases with variations in chemical compositions is complex.

806

807 5. Conclusions and Implications

808

809 1) Comparable mineral chemistries, modal abundances, bulk elemental compositions, as well as
810 abundances and isotopic compositions of H, C, N, Cr and Ti show that Tarda and Tagish Lake
811 share a close genetic relationship, indicating that they originate from the same outer Solar System
812 asteroid.

813

814 2) The Tarda meteorite shows several spectral similarities to other Tagish Lake-like meteorites;
815 low visible region reflectance, an overall red spectral slope over the 350 to 2500 nm interval, and
816 weak to non-existent absorption bands associated with their known mineralogies. The overall
817 spectral shape of Tarda shows greater affinities for taxonomic P-type versus D-type asteroids
818 (Tholen, 1989). Similarities in reflectance spectra suggest that P-type asteroids 65 Cybele and 76
819 Freia are potential parent bodies of Tarda and the Tagish Lake-like meteorites, or at least have
820 similar surface materials.

821
822 3) Tarda is a closer spectral match to a P-type asteroid (this study) and Tagish Lake is a closer
823 spectral match to a D-type asteroid (Hiroi et al., 2005). Since Tarda and Tagish Lake likely
824 originated from the same parent asteroid, P-type and D-type asteroid types may be genetically
825 related, and differ spectrally due to differences in grain size or small mineralogical variations. This
826 spectral difference among related samples is evidenced by the fact that subsamples of Tagish Lake
827 show variations in spectral slope due to compositional variations. While different grain size
828 fractions of a single lithology of Tagish Lake have not been spectrally characterized, other
829 carbonaceous chondrite powders show differences in spectral slope due to grain size variations
830 (Cloutis et al., 2018). Alternately, P-type and D-type asteroids may now be separate objects, but
831 may represent fragments of the same original parent asteroid.
832
833 4) Tarda is a highly hydrated type 2 carbonaceous chondrite that will likely provide an informative
834 comparison to the heavily hydrated CI-like material returned by Hayabusa2 from C-type asteroid
835 Ryugu (e.g., Yokoyama et al., 2022) and the material returned by OSIRIS-REx from B-type
836 asteroid Bennu (e.g., Hamilton et al., 2019) on September 24th, 2023. Additionally, because of the
837 potential relationship between P-type and D-type asteroids, Tarda is particularly important to study
838 in preparation for and comparison to the spectra of D-type (11351 Leucus and 21900 Orus) and P-
839 type (15094 Polymele, and 617 Patroclus and its binary companion Menoetius) Trojan asteroids
840 to be surveyed by NASA's Lucy mission (e.g., Levison et al., 2021), and spectra of and samples
841 from Mars' moon Phobos (similar to D-type asteroids) to be returned by JAXA's MMX mission
842 (Nakamura et al., 2021; Kuramoto et al., 2022).
843

844 **Acknowledgments:** We thank the ASU Buseck Center for Meteorite Studies for providing Tarda
845 and Tagish Lake from the Carleton B. Moore meteorite collection and the Smithsonian Institution
846 and NASA/NSF for the sample of MET 00432. We also thank Laurence Garvie for preparing
847 polished mounts of Tarda and Tagish Lake. US Antarctic meteorite samples are recovered by the
848 Antarctic Search for Meteorites (ANSMET) program, which has been funded by NSF and NASA,
849 and characterized and curated by the Department of Mineral Sciences of the Smithsonian
850 Institution and Astromaterials Acquisition and Curation Office at NASA Johnson Space Center.
851 We are grateful to Axel Wittmann for assistance with the EPMA at ASU. We thank Prof. Sho
852 Sasaki for providing us the opportunity to use a spectrometer at Mizusawa Very Long Baseline
853 Interferometer (VLBI) Observatory. We are also grateful to Yves Marrocchi, two anonymous
854 reviewers, and Associate Editor Frederic Moynier, whose constructive comments improved the
855 quality of the manuscript. This study was supported by NASA grants NNX17AE53G (DLS PI,
856 TJZ Co-I) and 80NSSC19K0559, 80NSSC20K0344, 80NSSC21K0654 (DF, CA), an ASU
857 Investigator Incentive Award (DLS), the Canadian Space Agency (CSA; grant 22EXPOSIWI), the
858 Natural Sciences and Engineering Research Council of Canada (NSERC grants RTI-2020-00157,
859 and RTI-2018-0032), the University of Winnipeg, and a Carnegie Postdoctoral Fellowship (ZAT).
860 Portions of this study were performed under the auspices of the US DOE by Lawrence Livermore
861 National Laboratory under Contract DE-AC52-07NA27344 with release number LLNL-JRNL-
862 853504. The Centre for Terrestrial and Planetary Exploration (C-TAPE;
863 <https://www.uwinnipeg.ca/c-tape/index.html>) was established with funding from the Canada
864 Foundation for Innovation (CFI, grant #1504 and 245), the Manitoba Research Innovations Fund,
865 and the CSA. Part of the data utilized in this publication were obtained and made available by the
866 MITHNEOS MIT-Hawaii Near-Earth Object Spectroscopic Survey. The IRTF is operated by the
867 University of Hawaii under contract 80HQTR19D0030 with the National Aeronautics and Space
868 Administration. The MIT component of this work is supported by NASA grant 80NSSC18K0849.
869 Any opinions, findings, and conclusions or recommendations expressed in this material are those
870 of the author(s) and do not necessarily reflect the views of NASA or the National Science
871 Foundation. We acknowledge the use of facilities within the Eyring Materials Center at Arizona
872 State University supported in part by NNCI-ECCS-1542160.

873

874

875

876 **APPENDIX A. SUPPLEMENTARY MATERIAL**

877

878 Supplementary Material (SM) consist of four files. These files contain: (SM 1) all images and X-
879 ray maps of samples, with the location of electron microprobe analyses; (SM 2) chondrule size
880 measurements for Tarda and Tagish Lake; (SM 3) all electron microprobe data; and (SM 4)
881 reflectance spectra.

882

883 **Data Availability**

884

885 Data are available through Mendeley Data at <https://doi.org/10.17632/2s8hvm3df2.1>.

886

REFERENCES

Adler, H. H. and Kerr, P. F. (1963a) Infrared absorption frequency trends for anhydrous normal carbonates. *Am. Mineral.* **48**, 124–137.

Adler, H. H. and Kerr, P. F. (1963b) Infrared spectra, symmetry and structure relations of some carbonate minerals. *Am. Mineral.* **48**, 839–853.

Alexander C.M.O'D., Fogel M., Yabuta H., and Cody G. D. (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. *Geochim. Cosmochim. Acta* **71**, 4380–4403.

Alexander C. M. O. D., Newsome S. D., Fogel M. L., Nittler L. R., Busemann H., and Cody G. D. (2010) Deuterium enrichments in chondritic macromolecular material-Implications for the origin and evolution of organics, water and asteroids. *Geochim. Cosmochim. Acta* **74**, 4417–4437.

Alexander C. M. O'D., Bowden R., Fogel M. L., Howard K. T., Herd C. D. K., and Nittler L. R. (2012) The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. *Science* **337**, 721–723.

Alexander C. M. O'D., Howard K. T., Bowden R., and Fogel M. L. (2013) The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions. *Geochim. Cosmochim. Acta* **123**, 244–260.

Alexander C. M. O'D., Greenwood R. C., Bowden R., Gibson J. M., Howard K. T., and Franchi I. A. (2018) A multi-technique search for the most primitive CO chondrites. *Geochim. Cosmochim. Acta* **221**, 406–420.

Aviè G., Meier M. M. M., and Marrocchi Y. (2022) Origin of radiogenic ^{129}Xe variations in carbonaceous chondrites. *Geochem. Persp. Let.* **23**, 1–4.

Barucci, M.A., M.T. Capria, A. Coradini, and M. Fluchignoni (1987) Classification of asteroids using G-mode analysis. *Icarus* **72**, 304–324.

Beck P., Maturilli A., Garenne A., Vernazza P., Helbert J., Quirico E., and Schmitt B. (2018). What is controlling the reflectance spectra (0.35–150 μm) of hydrated (and dehydrated) carbonaceous chondrites? *Icarus* **313**, 124–138.

Bellamy, L.J. (1958) The Infra-red Spectra of Complex Organic Molecules, 2nd ed. John Wiley and Sons Inc., New York.

Berger E. L., Zega T. J., Keller L. P. and Lauretta D. S. (2011) Evidence for aqueous activity on comet 81P/Wild 2 from sulfide mineral assemblages in Stardust samples and CI chondrites. *Geochim. Cosmochim. Acta* **75**, 3501–3513.

Berlin J., Jones R. H., and Brearley A. J. (2011) Fe-Mn systematics of type IIA chondrules in unequilibrated CO, CR, and ordinary chondrites. *Meteorit. Planet. Sci.* **46**, 513–533.

Blinova A. I., Zega T. J., Herd C. D. K., and Stroud R. M. (2014) Testing variations within the Tagish Lake meteorite—I: Mineralogy and petrology of pristine samples. *Meteorit. Planet. Sci.* **49**, 473–502.

Brown P. G., Hildebrand A. R., Zolensky M. E., Grady M., Clayton R. N., Mayeda T. K., Tagliaferri E., Spalding R., Macrae N. D., Hoffman E. L., Mittlefehldt D. W., Wacker J. F., Bird A., Campbell M. D., Carpenter R., Gingerich H., Glatiotis M., Greiner E., Mazur M. J., McCausland P. JA., Plotkin H., and Rubak Mazur T. (2000) The Fall, Recovery, Orbit, and Composition of the Tagish Lake Meteorite: A New Type of Carbonaceous Chondrite. *Science* **290**, 320–325.

932 Bryson J. F. J., Weiss B. P., Biersteker J. B., King A. J., and Russell S. S. (2020) Constraints on
933 the Distances and Timescales of Solid Migration in the Early Solar System from Meteorite
934 Magnetism. *Astrophys. J.* **892**, 126.

935 Burbine T. H. and Binzel R. P. (2002) Small Main-Belt Asteroid Spectroscopic Survey in the
936 Infrared. *Icarus* **159**, 468–499.

937 Bus S. J., and Binzel R. P. (2002a) Phase II of the Small Main-Belt Asteroid Spectroscopic Survey:
938 A Feature-Based Taxonomy. *Icarus* **158**, 146–177.

939 Bus S. J. and Binzel R. P. (2002b) Phase II of the Small Main-Belt Asteroid Spectroscopic Survey:
940 The Observations. *Icarus* **158**, 106–145.

941 Busemann H., Alexander C. M. O'D. and Nittler L. R. (2007) Characterization of insoluble organic
942 matter in primitive meteorites by microRaman spectroscopy. *Meteorit. Planet. Sci.* **42**, 1387–
943 1416.

944 Cai W. K., Liu J. H., Zhou C. H., Keeling J., and Glasmacher U. A. (2021) Structure, genesis and
945 resources efficiency of dolomite: New insights and remaining enigmas. *Chem. Geol.* **573**,
946 120191.

947 Casado A. I., Alonso-Zarza A. M., La Iglesia Á. (2014) Morphology and origin of dolomite in
948 paleosols and lacustrine sequences. Examples from the Miocene of the Madrid Basin.
949 *Sediment. Geol.* **312**, 50–62.

950 Choe W. H., Huber H., Rubin A. E., Kallemeyn G. W., and Wasson J. T. (2010) Compositions
951 and taxonomy of 15 unusual carbonaceous chondrites. *Meteorit. Planet. Sci.* **45**, 531–554.

952 Clark R. N., King T. V. V., Klewja M., Swayze G. A., and Vergo N. (1990) High spectral
953 resolution reflectance spectroscopy of minerals. *J. Geophys. Res.* **95**, 12,653–12,680.

954 Clayton R. N. and Mayeda T. K. (1999) Oxygen isotope studies of carbonaceous chondrites.
955 *Geochim. Cosmochim. Acta* **63**, 2089–2104.

956 Clayton R. N. and Mayeda T. K. (2003) Oxygen isotopes in carbonaceous chondrites. In Evolution
957 of solar system materials: A new perspective from Antarctic meteorites. Tokyo: NIPR. pp. 13–
958 14.

959 Cloutis E. A., Gaffey M. J., and Moslow T. F. (1994) Spectral reflectance properties of carbon-
960 bearing materials. *Icarus* **107**, 276–287.

961 Cloutis E. A., Hiroi T., Gaffey M. J., Alexander C. M.O'D., and Mann P. (2011a) Spectral
962 reflectance properties of carbonaceous chondrites: 1. CI chondrites. *Icarus* **212**, 180–209.

963 Cloutis E. A., Hudon P., Hiroi T., Gaffey M. J., and Mann P. (2011b) Spectral reflectance
964 properties of carbonaceous chondrites: 2. CM chondrites. *Icarus* **216**, 309–346.

965 Cloutis, E.A., Hudon P., Hiroi T., and Gaffey M. J. (2012a) Spectral reflectance properties of
966 carbonaceous chondrites 4: Aqueously altered and thermally metamorphosed meteorites.
967 *Icarus* **220**, 586–617.

968 Cloutis E. A., Hudon P., Hiroi T., and Gaffey M. J. (2012b) Spectral reflectance properties of
969 carbonaceous chondrites: 3. CR chondrites. *Icarus* **217**, 389–407.

970 Cloutis E. A., Hudon P., Hiroi T., Gaffey M. J., and Mann P. (2012c) Spectral reflectance
971 properties of carbonaceous chondrites: 5. CO chondrites. *Icarus* **220**, 466–486.

972 Cloutis E. A., Hudon P., Hiroi T., Gaffey M. J., Mann P., and Bell III J. F. (2012d) Spectral
973 reflectance properties of carbonaceous chondrites: 6. CV chondrites. *Icarus* **221**, 328–358.

974 Cloutis E. A., Hudon P., Hiroi T., and Gaffey M. J. (2012e) Spectral reflectance properties of
975 carbonaceous chondrites: 7. CK chondrites. *Icarus* **221**, 911–924.

976 Cloutis E. A., Hudon P., Hiroi T., Gaffey M. J., and Mann P. (2012f) Spectral reflectance
977 properties of carbonaceous chondrites: 8. “Other” carbonaceous chondrites: CH, ungrouped,
978 polymict, xenolithic inclusions, and R chondrites. *Icarus* **221**, 984–1001.

979 Cloutis E. A., Pietrasz V. B., Kiddell C., Izawa M. R. M., Vernazza P., Burbine T. H., DeMeo F.,
980 Tait K. T., Bell III J. F., Mann P., Applin D. M., and Reddy V. (2018) Spectral reflectance
981 “deconstruction” of the Murchison CM2 carbonaceous chondrite and implications for
982 spectroscopic investigations of dark asteroids. *Icarus* **305**, 203–224.

983 Davidson J., Schrader D. L., Busemann H., Franchi I. A., Connolly, Jr., H. C., Lauretta D. S.,
984 Alexander C. M. O’D., Verchovsky A. and Greenwood R. C. (2014) Petrography, stable
985 isotope compositions, microRaman spectroscopy and presolar components of Roberts Massif
986 04133: A reduced CV3 carbonaceous chondrite. *Meteorit. Planet. Sci.* **49**, 2133–2151.

987 Davidson J., Alexander C. M. O’D., Stroud R. M., Busemann H. and Nittler L. R. (2019a)
988 Mineralogy and petrology of Dominion Range 08006: A very primitive CO3 carbonaceous
989 chondrite. *Geochim. Cosmochim. Acta* **265**, 259–278.

990 Davidson J., Schrader D. L., Alexander C. M. O’D., Nittler L. R. and Bowden R. (2019b) Re-
991 examining thermal metamorphism of the Renazzo-like (CR) carbonaceous chondrites: Insights
992 from pristine Miller Range 090657 and shock-heated Graves Nunataks 06100. *Geochim.*
993 *Cosmochim. Acta* **267**, 240–256.

994 de Leuw S., Rubin A. E., and Wasson J. T. (2010) Carbonates in CM chondrites: Complex
995 formation histories and comparison to carbonates in CI chondrites. *Meteorit. Planet. Sci.* **45**,
996 513–530.

997 DeMeo F. E., Binzel R.P., Slivan S. M., and Bus S. J. (2009) An extension of the Bus asteroid
998 taxonomy into the near-infrared. *Icarus* **202**, 160–180.

999 Donaldson Hanna K. L., Schrader D. L., Cloutis E. A., Cody G. D., King A. J., McCoy T. J.,
1000 Applin D. M., Mann J. P., Bowles N. E., Brucato J. R., Connolly H. C. Jr., Dotto E., Keller L.
1001 P., Lim L. F., Clark B. E., Hamilton V. E., Lantz C., Lauretta D. S., Russell S. S., and Schofield
1002 P. F. (2019) Spectral Characterization of Analog Samples in Anticipation of OSIRIS-REx’s
1003 Arrival at Bennu: A Blind Test Study. *Icarus* **319**, 701–723.

1004 Eisenhour D. D. (1996) Determining chondrule size distributions from thin-section measurements.
1005 *Meteorit. Planet. Sci.* **31**, 243–248.

1006 Fitzsimmons A., Dahlgren M., Lagerkvist C.-I., Magnusson P., and Williams I. P. (1994) A
1007 spectroscopic survey of D-type asteroids. *Astron. Astrophys.* **282**, 634–642.

1008 Fredricksson K. and Kerridge J. F. (1988) Carbonates and sulfates in CI chondrites: Formation by
1009 aqueous activity on the parent body. *Meteoritics* **23**, 35–44.

1010 Friedrich J. M., Wang M-S., and Lipschutz M. E. (2002) Comparison of the trace element
1011 composition of Tagish Lake with other primitive carbonaceous chondrites. *Meteorit. Planet.*
1012 *Sci.* **37**, 677–686.

1013 Foustoukos D. I., Alexander C.M.O.D. and Cody G. D. (2021) H and N systematics in thermally
1014 altered chondritic insoluble organic matter: An experimental study. *Geochim. Cosmochim.*
1015 *Acta* **300**, 44–64.

1016 Gaffey S. J. (1986) Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–
1017 2.55 microns): calcite, aragonite, and dolomite. *Am. Mineral.* **71**, 151–162.

1018 Garvie L. A. J., Trif L., Cotto-Figueroa D., Asphaug E., and Hoover C. G. (2024) High surface
1019 area and interconnected nanoporosity of clay-rich astromaterials. *Scientific Reports* **14**, 10358.

1020 Gattacceca J., McCubbin F. M., Grossman J., Bouvier A., Bullock E., Chennaoui Aoudjehane H.,
1021 Debaille V., D'Orazio M., Komatsu M., Miao B., and Schrader D. L. (2021) The Meteoritical
1022 Bulletin, No. 109. *Meteorit. Planet. Sci.* **56**, 1626–1630.

1023 Gerber S., Burkhardt C., Budde G., Metzler K., and Kleine T. (2017) Mixing and Transport of
1024 Dust in the Early Solar Nebula as Inferred from Titanium Isotope Variations among
1025 Chondrules. *Astrophys. J. Lett.* **841**, L17.

1026 Gilmour C. M., Herd C. D., and Beck, P. (2019). Water abundance in the Tagish Lake meteorite
1027 from TGA and IR spectroscopy: Evaluation of aqueous alteration. *Meteorit. Planet. Sci.* **54**,
1028 1951–1972.

1029 Göpel C., Birck J-L., Galy A., Barrat J-A., and Zanda B. (2015) Mn–Cr systematics in primitive
1030 meteorites: Insights from mineral separation and partial dissolution. *Geochim. Cosmochim.
1031 Acta* **156**, 1–24.

1032 Greenberger R. N., Mustard J. F., Cloutis E. A., Pratt L. M., Sauer P.E., Mann P., Turner K., Dyar
1033 M. D., and Bish D. L. (2015) Serpentization, iron oxidation, and aqueous conditions in an
1034 ophiolite: Implications for hydrogen production and habitability on Mars. *Earth Planet. Sci.
1035 Lett.* **416**, 21–34.

1036 Greenwood R. C. and Franchi I. A. (2004) Alteration and metamorphism of CO3 chondrites:
1037 Evidence from oxygen and carbon isotopes. *Meteorit. Planet. Sci.* **39**, 1823–1838.

1038 Greenwood R. C., Franchi I. A., Kearsley A. T. and Alard O. (2010) The relationship between
1039 CK and CV chondrites. *Geochim. Cosmochim. Acta* **74**, 1684–1705.

1040 Grossman J. N. (2000) The Meteoritical Bulletin, No. 84, 2000 August. *Meteorit. Planet. Sci.* **35**,
1041 A199–A225.

1042 Hamilton V., Simon A., Christensen P., Reuter D., Clark B., Barucci A., Bowles N., Boynton W.,
1043 Brucato J., Cloutis E., Connolly Jr. H., Donaldson Hanna K., Emery J., Enos H., Fornasier S.,
1044 Haberle C., Hanna R., Howell E., Kaplan H., Keller L., Lantz C., Li J.-Y., Lim L., McCoy T.,
1045 Merlin F., Nolan M., Praet A., Rozitis B., Sandford S., Schrader D. L., Thomas C., Zou X.-D.,
1046 Lauretta D., and the OSIRIS-REx Team. (2019) Evidence for widespread hydrated minerals
1047 on asteroid (101955) Bennu. *Nature Astronomy* **3**, 332–340.

1048 Hanna R. D., Hamilton V. E., Haberle C. W., King A. J., Abreu N. M., and Friedrich J. M. (2020)
1049 Distinguishing relative aqueous alteration and heating among CM chondrites with IR
1050 spectroscopy. *Icarus* **346**, 113760.

1051 Hellmann J. L., Schneider J. M., Wölfer E., Drażkowska J., Jansen C. A., Hopp T., Burkhardt C.
1052 and Kleine T. (2023) Origin of isotopic diversity among carbonaceous chondrites.
1053 *Astrophysical Journal Letters* **946**, L34.

1054 Hewins R. H., Bourot-Denise M., Zanda B., Leroux H., Barrat J.-A., Humayun M., Gopel C.,
1055 Greenwood R. C., Franchi I. A., Pont S., Lorand J.-P., Cournède C., Gattacceca J., Rochette
1056 P., Kuga M., Marrocchi Y. and Marty B. (2014) The Paris meteorite, the least altered CM
1057 chondrite so far. *Geochim. Cosmochim. Acta* **124**, 190–222.

1058 Hibiya Y., Archer G. J., Tanaka R., Sanborn M. E., Sata Y., Iizuka T., Ozawa K., Walker R. J.,
1059 Yamaguchi A., Yin Q-Z., Nakamura T., and Irving A. J. (2019) The origin of the unique
1060 achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re–Os, O and
1061 Ti isotope systematics. *Geochim. Cosmochim. Acta* **245**, 597–627.

1062 Hiroi T., Zolensky M. E., and Pieters C. M. (2001) The Tagish Lake meteorite: A possible sample
1063 from a D-type asteroid. *Science* **293**, 2234–2236.

1064 Hiroi T., Pieters C. M., Rutherford M. J., Zolensky M. E., Sasaki S., Ueda Y., and Miyamoto M.
1065 (2004) What are the P-type asteroids made of? *Lunar and Planetary Science Conference*
1066 XXXV, #1616 (abstract).

1067 Hiroi T., Tonui E., Pieters C. M., Zolensky M. E., Ueda Y., Miyamoto M., and Sasaki S. (2005)
1068 Meteorite WIS91600: A new sample related to a D- or T-type asteroid. *Lunar and Planetary*
1069 *Science Conference XXXVI*, #1564 (abstract).

1070 Hiroi T., Kaiden H., Imae N., Misawa K., Kojima H., Sasaki S., Matsuoka M., Nakamura T., Bish
1071 D. L., Ohtsuka K., Howard K. T., Robertson K. R., and Milliken R. E. (2021) UV-visible-
1072 infrared spectral survey of Antarctic carbonaceous chondrite chips. *Polar Sci.* **29**, 100723.

1073 Hopp T., Dauphas N., Abe Y., Aléon J., Alexander C. M. O'D., Amari S., Amelin Y., Bajo K.,
1074 Bizzarro M., Bouvier A., Carlson R. W., Chaussidon M., Choi B-G., Davis A. M., Di Rocco
1075 T., Fujiya W., Fukai R., Gautam I., Haba M. K., Hibiya Y., Hidaka H., Homma H., Hoppe P.,
1076 Huss G. R., Ichida K., Iizuka T., Ireland T. R., Ishikawa A., Ito M., Itoh S., Kawasaki N., Kita
1077 N. T., Kitajima K., Kleine T., Komatani S., Krot A. N., Liu M-C., Masuda Y., McKeegan K.
1078 D., Morita M., Motomura K., Moynier F., Nakai I., Nagashima K., Nesvorný D., Nguyen A.,
1079 Nittler L., Onose M., Pack A., Park C., Piani L., Qin L., Russell S. S., Sakamoto N.,
1080 Schönbächler M., Tafla L., Tang H., Terada K., Terada Y., Usui T., Wada S., Wadhwa M.,
1081 Walker R. J., Yamashita K., Yin Q-Z., Yokoyama T., Yoneda S., Young E. D., Yui H., Zhang
1082 A-C., Nakamura T., Naraoka H., Noguchi T., Okazaki R., Sakamoto K., Yabuta H., Abe M.,
1083 Miyazaki A., Nakato A., Nishimura M., Okada T., Yada T., Yogata K., Nakazawa S., Saiki T.,
1084 Tanaka S., Terui F., Tsuda Y., Watanabe S., Yoshikawa M., Tachibana S., and Yurimoto H.
1085 (2022) Ryugu's nucleosynthetic heritage from the outskirts of the Solar System. *Science*
1086 *Advances* **8**, eadd8141.

1087 Izawa, M. R., Flemming, R. L., King, P. L., Peterson, R. C., & McCausland, P. J. (2010).
1088 Mineralogical and spectroscopic investigation of the Tagish Lake carbonaceous chondrite by
1089 X-ray diffraction and infrared reflectance spectroscopy. *Meteorit. Planet. Sci.* **45**, 675–698.

1090 Izawa, M.R.M., M.A. Craig, D.M. Applin, J.A. Sanchez, V. Reddy, L. Le Corre, P. Mann, and
1091 E.A. Cloutis (2015) Variability, absorption features, and parent body searches in “spectrally
1092 featureless” meteorite reflectance spectra: Case study – Tagish Lake. *Icarus* **254**, 324–332.

1093 Jacquet E., Barrat J.-A., Beck P., Caste F., Gattaccea J., Sonzogni C. and Gounelle M. (2016)
1094 Northwest Africa 5958: A weakly altered CM-related ungrouped chondrite, not a CI3.
1095 *Meteorit. Planet. Sci.* **51**, 851–869.

1096 Jamsja N. and Ruzicka A. (2010) Shock and thermal history of Northwest Africa 4859, an annealed
1097 impact-melt breccia of LL chondrite parentage containing unusual igneous features and
1098 pentlandite. *Meteorit. Planet. Sci.* **45**, 828–849.

1099 Johnson C. A. and Prinz M. (1993) Carbonate compositions in CM and CI chondrites and
1100 implications for aqueous alteration. *Geochim. Cosmochim. Acta* **57**, 2843–2852.

1101 Jones R. H. (1990) Petrology and mineralogy of type II, FeO-rich chondrules in Semarkona
1102 (LL3.0): Origin by closed-system fractional crystallization, with evidence for supercooling.
1103 *Geochim. Cosmochim. Acta* **54**, 1785–1802.

1104 Jones R. H. (1992) On the relationship between isolated and chondrule olivine grains in the
1105 carbonaceous chondrite ALHA77307. *Geochim. Cosmochim. Acta* **56**, 467–482.

1106 Jones R. H. (2012) Petrographic constraints on the diversity of chondrule reservoirs in the
1107 protoplanetary disk. *Meteorit. Planet. Sci.* **47**, 1176–1190.

1108 Kadlag Y., Becker H., and Harbott A. (2019) Cr isotopes in physically separated components of
1109 the Allende CV3 and Murchison CM2 chondrites: Implications for isotopic heterogeneity in
1110 the solar nebula and parent body processes. *Meteorit. Planet. Sci.* **54**, 2116–2131.

1111 Kimura K., Grossman J. N., and Weisberg M. K. (2008) Fe-Ni metal in primitive chondrites:
1112 Indicators of classification and metamorphic conditions for ordinary and CO chondrites.
1113 *Meteorit. Planet. Sci.* **43**, 1161–1177.

1114 Kuramoto K., Kawakatsu Y., Fujimoto M., Araya A., Barucci M. A., Genda H., Hirata N., Ikeda
1115 H., Imamura T., Helbert J., Kameda S., Kobayashi M., Kusano H., Lawrence D. J., Matsumoto
1116 K., Michel P., Miyamoto H., Morota T., Nakagawa H., Nakamura T., Ogawa K., Otake H.,
1117 Ozaki M., Russell S., Sasaki S., Sawada H., Senshu H., Tachibana S., Terada N., Ulamec S.,
1118 Usui T., Wada K., Watanabe S., and Yokota S. (2022) Martian Moons Exploration MMX:
1119 Sample Return Mission to Phobos Elucidating Formation Processes of Habitable Planets.
1120 *Earth, Planets and Space* **74**, 1–31.

1121 Lantz C., Brunetto R., Barucci M. A., Fornasier S., Baklouti D., Bourcois J., and Dodard M. (2017)
1122 Ion irradiation of carbonaceous chondrites: A new view on space weathering on primitive
1123 asteroids. *Icarus* **285**, 43–57.

1124 Lee M. R., Hallis L. J., Daly L., and Boyce A. J. (2023) The water content of CM carbonaceous
1125 chondrite falls and finds, and their susceptibility to terrestrial contamination. *Meteorit. Planet.
1126 Sci.* **58**, 1760–1772.

1127 Levison H. F., Olkin C. B., Noll K. S., Marchi S., Bell III J. F., Bierhaus E., Binzel R., Bottke W.,
1128 Britt D., Brown M., Buie M., Christensen P., Emery J., Grundy W., Hamilton V. E., Howett
1129 C., Mottola S., Pätzold M., Reuter D., Spencer J., Statler T. S., Stern S. A., Sunshine J., Weaver
1130 H., and Wong I. (2021) Lucy Mission to the Trojan Asteroids: Science Goals. *Planetary
1131 Science Journal* **2**, 171.

1132 Lodders K. (2021) Relative atomic Solar System Abundances, mass fractions, and atomic masses
1133 of the elements and their isotopes, composition of the solar photosphere, and compositions of
1134 the major chondritic meteorite groups. *Space Science Reviews* **217**, 44.

1135 Marrocchi Y., Avielle G., and Barrat J-A. (2021) The Tarda Meteorite: A Window into the
1136 Formation of D-type Asteroids. *Astrophys. J. Lett.* **913**, L9.

1137 Marrocchi Y., Rigaudier T., Pirala M., and Piani L. (2023) Hydrogen isotopic evidence for nebular
1138 pre-hydration and the limited role of parent-body processes in CM chondrites. *Earth Planet.
1139 Sci. Lett.* **611**, 118151.

1140 Metzler K. (2018) From 2D to 3D chondrule sizes: Some empirical ground truths. *Meteorit.
1141 Planet. Sci.* **53**, 1489–1499.

1142 Metzler K., Hezel D. C., and Nellesen J. (2019) Various size-sorting processes for millimeter-
1143 sized particles in the Sun's protoplanetary disk? Evidence from chondrules in ordinary
1144 chondrites. *Astrophys. J.* **887**, 230.

1145 Metzler K., Hezel D. C., Barosch J., Wölfer E., Schneider J. M., Hellmann J. L., Berndt J., Stracke
1146 A., Gattacceca J., Greenwood R. C., Franchi I. A., Burkhardt C., and Kleine T. 2021. The
1147 Loongana (CL) group of carbonaceous chondrites. *Geochim. Cosmochim. Acta* **304**, 1–31.

1148 McAdam M. M., Sunshine J. M., Howard K. T., and McCoy, T. M. (2015). Aqueous alteration on
1149 asteroids: Linking the mineralogy and spectroscopy of CM and CI chondrites. *Icarus* **245**, 320–
1150 332.

1151 Morlok A., Schiller B., Weber I., Daswani M. M., Stojic A. N., Reitze M. P., Gramse T., Wolters
1152 S. D., Hiesinger H., Grady M. M., and Helbert J. (2020). Mid-infrared reflectance spectroscopy

1153 of carbonaceous chondrites and Calcium–Aluminum-rich inclusions. *Planetary and Space*
1154 *Science* **193**, 105078.

1155 Moriarty G. M., Rumble D. III, and Friedrich J. M. (2009) Compositions of four unusual CM or
1156 CM-related Antarctic chondrites. *Geochemistry* **69**, 161–168.

1157 Mouti Al-Hashimi X., Davidson J., Schrader D. L., and Bullock E. S. (2023) Fine-grained
1158 chondrule rims in Mighei-like carbonaceous chondrites: Evidence for a nebular origin and
1159 modification by impacts and recurrent solar radiation heating. *Meteorit. Planet. Sci.*, DOI:
1160 10.1111/maps.14076

1161 Nakamura T., Noguchi T., Zolensky M. E., and Tanaka M. (2003) Mineralogy and noble-gas
1162 signatures of the carbonate-rich lithology of the Tagish Lake carbonaceous chondrite:
1163 evidence for an accretionary breccia. *Earth Planet. Sci. Lett.* **207**, 83–101.

1164 Nakamura T., Ikeda H., Kouyama T., Nakagawa H., Kusano H., Senshu H., Kameda S.,
1165 Matsumoto K., Gonzalez-Franquesa F., Ozaki N., Takeo Y., Baresi N., Oki Y., Lawrence D.
1166 J., Chabot N. L., Peplowski P. N., Antonietta Barucci M., Sawyer E., Yokota S., Terada N.,
1167 Ulamec S., Michel P., Kobayashi M., Sasaki S., Hirata N., Wada K., Miyamoto H., Imamura
1168 T., Ogawa N., Ogawa K., Iwata T., Imada T., Otake H., Canalias E., Lorda L., Tardivel S.,
1169 Mary S., Kunugi M., Mitsuhashi S., Doressoundiram A., Merlin F., Fornasier S., Reess J-M.,
1170 Bernardi P., Imai S., Ito Y., Ishida H., Kuramoto K. and Kawakatsu Y. (2021) Science
1171 operation plan of Phobos and Deimos from the MMX spacecraft. *Earth, Planets and Space* **73**,
1172 227.

1173 Naldrett A. J. (1989) Magmatic Sulphide Deposits. Oxford University Press, Oxford.

1174 Petitat M., Birck J.-L., Luu T. H., and Gounelle M. (2011) The chromium isotopic composition of
1175 the ungrouped carbonaceous chondrite Tagish Lake. *Astrophys. J.* **736**, 23.

1176 Pinto G. A., Jacquet E., Corgne A., Olivares F., Villeneuve J., and Marrocchi Y. (2024)
1177 Deciphering recycling processes during solar system evolution from magnesium-rich relict
1178 olivine grains in type II chondrules. *Geochim. Cosmochim. Acta* **364**, 65–78.

1179 Poggiali G., Brucato J. R., Dotto E., Ieva S., Barucci M. A., and Pajola M. (2021) Temperature
1180 dependent mid-infrared (5–25 μm) reflectance spectroscopy of carbonaceous meteorites and
1181 minerals: Implication for remote sensing in Solar System exploration. *Icarus* **354**, 114040.

1182 Qin L., Alexander C. M. O. D., Carlson R. W., Horan M. F. and Yokoyama T. (2010)
1183 Contributors to chromium isotope variation of meteorites. *Geochim. Cosmochim. Acta* **74**,
1184 1122–1145.

1185 Raghavan V. (2004) Fe–Ni–S (iron–nickel–sulfur). *J. Phase Equilib.* **25**, 373–381.

1186 Rayner J. T., Toomey, D.W., Onaka, P.M., Denault, A.J., Stahlberger, W.E., Vacca, W.D.,
1187 Cushing M.C., Wang, S. (2003) SPEx: A medium-resolution 0.8–5.5 microns spectrograph and
1188 imager for the NASA Infrared Telescope Facility. *Publications of the Astronomical Society of
1189 the Pacific*, **115**, 362–382.

1190 Render J., Bryson J. F. J., Ebert S., and Brennecke G. A. (2022) Disk transport rates from Ti
1191 isotopic signatures of refractory inclusions. *Meteorit. Planet. Sci.* **57**, 2158–2169.

1192 Rubin A. E. (1989) Size-Frequency Distributions of Chondrules in CO₃ Chondrites. *Meteoritics*
1193 **24**, 179–189.

1194 Rüfenacht M., Morino P., Lai Y-J., Fehr M. A., Haba M. K., and Schönbächler M. (2023)
1195 Genetic relationships of solar system bodies based on their nucleosynthetic Ti isotope
1196 compositions and sub-structures of the solar protoplanetary disk. *Geochim. Cosmochim. Acta*
1197 **355**, 110–125.

1198 Ruzicka A., Grossman J., Bouvier A., Herd C. D. K., and Agee C. B (2015) The Meteoritical
1199 Bulletin, No. 102. *Meteorit. Planet. Sci.* **50**, 1662.

1200 Sanborn M. E., Wimpenny J., Williams C. D., Yamakawa A., Amelin Y., Irving A. J. and Yin Q.
1201 Z. (2019) Carbonaceous achondrites Northwest Africa 6704/6693: Milestones for early Solar
1202 System chronology and genealogy. *Geochim. Cosmochim. Acta* **245**, 577–596.

1203 Schrader D. L. and Davidson J. (2017) CM and CO chondrites: A common parent body or
1204 asteroidal neighbors? Insights from chondrule silicates. *Geochim. Cosmochim. Acta* **214**, 157–
1205 171.

1206 Schrader D. L. and Davidson J. (2022) Prolonged early migration of dust from the inner Solar
1207 System to the comet-forming region. *Earth Planet. Sci. Lett.* **589**, 117552.

1208 Schrader D. L., Franchi I. A., Connolly, Jr., H. C., Greenwood R. C., Lauretta D. S. and Gibson J.
1209 M. (2011) The formation and alteration of the Renazzo-like carbonaceous chondrites I:
1210 Implications of bulk-oxygen isotopic composition. *Geochim. Cosmochim. Acta* **75**, 308–325.

1211 Schrader D. L., Connolly, Jr., H. C., Lauretta D. S., Nagashima K., Huss G. R., Davidson J. and
1212 Domanik K. J. (2013) The formation and alteration of the Renazzo-like carbonaceous
1213 chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine.
1214 *Geochim. Cosmochim. Acta* **101**, 302–327.

1215 Schrader D. L., Davidson J., Greenwood R. C., Franchi I. A., and Gibson J. M. (2014) A water-
1216 ice rich minor body from the early Solar System: The CR chondrite parent asteroid. *Earth
1217 Planet. Sci. Lett.* **407**, 48–60.

1218 Schrader D. L., Connolly H. C. Jr., Lauretta D. S., Zega T. J., Davidson J. and Domanik K. J.
1219 (2015) The formation and alteration of the Renazzo-like carbonaceous chondrites III: Towards
1220 understanding the genesis of ferromagnesian chondrules. *Meteorit. Planet. Sci.* **50**, 15–50.

1221 Schrader D. L., Davidson J., and McCoy T. J. (2016) Widespread evidence for high-temperature
1222 formation of pentlandite in chondrites. *Geochim. Cosmochim. Acta* **189**, 359–376.

1223 Schrader D. L., Nagashima K., Krot A. N., Ogliore R. C., Yin Q.-Z., Amelin Y. A., Stirling C. H.
1224 and Kaltenbach A. (2017) Distribution of ^{26}Al in the CR chondrite chondrule-forming region
1225 of the protoplanetary disk. *Geochim. Cosmochim. Acta* **201**, 275–302.

1226 Schrader D. L., Nagashima K., Waitukaitis S. R., Davidson J., McCoy T. J., Connolly, Jr., H. C.
1227 and Lauretta D. S. (2018a) The retention of dust in protoplanetary disks: Evidence from
1228 agglomeratic olivine chondrules from the outer Solar System. *Geochim. Cosmochim. Acta*
1229 **223**, 405–421.

1230 Schrader D. L., Fu R. R., Desch S. J. and Davidson J. (2018b) The background temperature of the
1231 protoplanetary disk within the first four million years of the Solar System. *Earth Planet. Sci.
1232 Lett.* **504**, 30–37.

1233 Schrader D. L., Nagashima K., Davidson J., McCoy T. J., Ogliore R. C., and Fu R. R.
1234 (2020) Outward migration of chondrule fragments in the Early Solar System: O-isotopic
1235 evidence for rocky material crossing the Jupiter Gap? *Geochim. Cosmochim. Acta* **282**, 133–
1236 155.

1237 Schrader D. L., Davidson J., McCoy T. J., Zega T. J., Russell S. S., Domanik K. J., and King A. J.
1238 (2021) The Fe/S ratio of pyrrhotite group sulfides in chondrites: An indicator of oxidation and
1239 implications for return samples from asteroids Ryugu and Bennu. *Geochim. Cosmochim.
1240 Acta* **303**, 66–91.

1241 Sessions A. L., Burgoyne T. W., and Hayes J. M. (2001) Determination of the H-3 factor in
1242 hydrogen isotope ratio monitoring mass spectrometry. *Analytical Chemistry* **73**, 200–207.

1243 Shields W. R., Murphy J. T., Cantazaro E. J. and Garner E. L. (1966) Absolute isotopic abundance
1244 ratios and the atomic weight of a reference sample of chromium. *J. Res. Natl. Bur. Stand.* **70A**,
1245 193–197.

1246 Shukolyukov A. and Lugmair G. W. (2006) Manganese-chromium isotope systematics of
1247 carbonaceous chondrites. *Earth Planet. Sci. Lett.* **250**, 200–213.

1248 Tenner T. J., Nakashima D., Ushikubo T., Kita N. T. and Weisberg M. K. (2015) Oxygen isotope
1249 ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H₂O during
1250 chondrule formation. *Geochim. Cosmochim. Acta* **148**, 228–250.

1251 Tenner T. J., Ushikubo T., Nakashima D., Schrader D. L., Weisberg M. K., Kimura M., and Kita
1252 N. T. (2018) Oxygen isotope characteristics of chondrules from recent studies by secondary
1253 ion mass spectrometry. In: Russell, S., Connolly Jr. H.C., Krot, A.N. (Eds.), *Chondrules*.
1254 Cambridge University Press, pp. 196–246.

1255 Tholen D. J. (1989) Asteroid taxonomic classifications. In *Asteroids II* (ed. By R.P. Binzel et al.).
1256 Tucson, Univ. Arizona Press, pp. 1139–1150.

1257 Thompson, M. S., Morris, R. V., Clemett, S. J., Loeffler, M. J., Trang, D., Keller, L. P.,
1258 Christoffersen, R., Agresti, D. G. (2020). The effect of progressive space weathering on the
1259 organic and inorganic components of a carbonaceous chondrite. *Icarus* **346**, 113775.

1260 Tonui E., Zolensky M., Hiroi T., Nakamura T., Lipschutz M. E., Wang M-S., and Okudaira K.
1261 (2014) Petrographic, chemical and spectroscopic evidence for thermal metamorphism in
1262 carbonaceous chondrites I: CI and CM chondrites. *Geochim. Cosmochim. Acta* **126**, 284–306.

1263 Torrano Z. A., Brennecke G. A., Williams C. D., Romaniello S. J., Rai V. K., Hines R. R. and
1264 Wadhwa M. (2019) Titanium isotope signatures of calcium-aluminum-rich inclusions from
1265 CV and CK chondrites: Implications for early Solar System reservoirs and mixing. *Geochim.*
1266 *Cosmochim. Acta* **263**, 13–30.

1267 Torrano Z. A., Schrader D. L., Davidson J., Greenwood R. C., Dunlap D. R., and Wadhwa M.
1268 (2021) The relationship between CM and CO chondrites: Insights from combined analyses of
1269 titanium, chromium, and oxygen isotopes in CM, CO, and ungrouped chondrites. *Geochim.*
1270 *Cosmochim. Acta* **301**, 70–90.

1271 Trinquier A., Birck J.-L. and Allègre C. J. (2007) Widespread ⁵⁴Cr heterogeneity in the inner
1272 solar system. *Astrophys. J.* **655**, 1179–1185.

1273 Trinquier A., Elliott T., Ulfbeck D., Coath C., Krot A. N. and Bizzarro M. (2009) Origin of
1274 nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. *Science* **324**, 374–376.

1275 Vacher L.G., Piani L., Rigaudier T., Thomassin D., Florin G., Piralla M., Marrocchi Y. (2020)
1276 Hydrogen in chondrites: influence of parent body alteration and atmospheric contamination on
1277 primordial components. *Geochim. Cosmochim. Acta* **281**, 53–66.

1278 van Kooten E., Cavalcante L., Wielandt D., and Bizzarro M. (2020) The role of Bells in the
1279 continuous accretion between the CM and CR chondrite reservoirs. *Meteorit. Planet. Sci.* **55**,
1280 575–590.

1281 Vernazza P., Fulvio D., Brunetto R., Emery J. P., Dukes C. A., Cipriani F., Witasse O., Schaible
1282 M. J., Zanda B., Strazzulla G. and Baragiola R. A. (2013). Paucity of Tagish Lake-like parent
1283 bodies in the Asteroid Belt and among Jupiter Trojans. *Icarus* **225**(1), 517–525.

1284 Vilas F. and Smith B. A. (1985) Reflectance spectrophotometry (~0.5–1.0 μm) of outer-belt
1285 asteroids: Implications for primitive, organic solar system material. *Icarus* **64**, 503–516.

1286 Ushikubo T. and Kimura M. (2021) Oxygen-isotope systematics of chondrules and olivine
1287 fragments from Tagish Lake C2 chondrite: Implications of chondrule-forming regions in
1288 protoplanetary disk. *Geochim. Cosmochim. Acta* **293**, 328–343.

1289 Wanas H. A. and Sallam E. (2016) Abiotically-formed, primary dolomite in the mid-Eocene
1290 lacustrine succession at Gebel El-Goza El-Hamra, NE Egypt: An approach to the role of
1291 smectitic clays. *Sedimentary Geology* **343**, 132–140.

1292 Weisberg M. K. and Huber H. (2007) The GRO 95577 CR1 chondrite and hydration of the CR
1293 parent body. *Meteorit. Planet. Sci.* **42**, 1495–1503.

1294 Weisberg M. K., Prinz M., Clayton R. N. and Mayeda T. K. (1993) The CR (Renazzo-type)
1295 carbonaceous chondrite group and its implications. *Geochim. Cosmochim. Acta* **57**, 1567–
1296 1586.

1297 Weisberg M. K., McCoy T. J. and Krot A. N. (2006) Systematic and evaluation of meteorite
1298 classification. In Meteorites and the Early Solar System II (eds. Lauretta D. S. and McSween
1299 H. Y.), pp. 19–52.

1300 Williams C. D., Sanborn M. E., Defouilloy C., Yin Q.-Z., Kita N. T., Ebel D. S., Yamakawa A.
1301 and Yamashita K. (2020) Chondrules reveal large-scale outward transport of inner Solar
1302 System materials in the protoplanetary disk. *Proc. Natl. Acad. Sci.* **117**, 23426–23435.

1303 Yabuta H., Alexander C. M. O'D., Fogel M. L., Kilcoyne A. L. D., and Cody G. D. (2010) A
1304 molecular and isotopic study of the macromolecular organic matter of the ungrouped C2 WIS
1305 91600 and its relationship to Tagish Lake and PCA 91008. *Meteorit. Planet. Sci.* **45**, 1446–
1306 1460.

1307 Yamada M., Sasaki S., Nagahara H., Fujiwara A., Hasegawa S., Yano H., Hiroi T., Ohashi H., and
1308 Otake H. (1999) Simulation of space weathering of planet-forming materials: Nanosecond
1309 pulse laser irradiation and proton implantation on olivine and pyroxene samples. *Earth, Planets
1310 and Space* **51**, 1255–1265.

1311 Yamanobe M., Nakamura T., and Nakashima D. (2018) Oxygen isotope reservoirs in the outer
1312 asteroid belt inferred from oxygen isotope systematics of chondrule olivines and isolated
1313 forsterite and olivine grains in Tagish Lake-type carbonaceous chondrites, WIS 91600 and
1314 MET 00432. *Polar Sci.* **15**, 29–38.

1315 Yamashita K., Maruyama S., Yamakawa A. and Nakamura E. (2010) ^{53}Mn – ^{53}Cr chronometry of
1316 CB chondrite: Evidence for uniform distribution of ^{53}Mn in the early Solar System.
1317 *Astrophys. J.* **723**, 20–24.

1318 Yesiltas M., Kebukawa Y., Glotch T. D., Zolensky M., Fries M., Aysal N., and Tukel F. S. (2022)
1319 Compositional and spectroscopic investigation of three ungrouped carbonaceous chondrites.
1320 *Meteorit. Planet. Sci.* **57**, 1665–1687.

1321 Yokoyama T., Nagashima K., Kakai I., Young E. D., Abe Y., Aléon J., Alexander C. M.O'D.,
1322 Amari S., Amelin Y., Bajo K-I., Bizzarro M., Bouvier A., Carlson R. W., Chaussidon M., Choi
1323 B-G., Dauphas N., Davis A. M., Di Rocco T., Fujiya W., Fukai R., Gautam I., Haba M. K.,
1324 Hibiya Y., Hidaka H., Homma H., Hoppe P., Huss G. R., Ichida K-R., Iizuka T., Ireland T. R.,
1325 Ishikawa A., Ito M., Itoh S., Kawasaki N., Kita N. T., Kitajima K., Kleine T., Komatani S.,
1326 Krot A. N., Liu M-C., Masuda Y., McKeegan K. D., Morita M., Motomura K., Moynier F.,
1327 Nguyen A., Nittler L., Onose M., Pack A., Park C., Piani L., Qin L., Russell S. S., Sakamoto
1328 N., Schönbächler M., Tafla L., Tang H., Terada K., Terada Y., Usui T., Wada S., Wadhwa M.,
1329 Walker R. J., Yamashita K., Yin Q-Z., Yoneda S., Yui H., Zhang A-C., Connolly H. C. Jr.,
1330 Lauretta D. S., Nakamura T., Naraoka H., Noguchi T., Okazaki R., Sakamoto K., Yabuta H.,
1331 Abe M., Arakawa M., Fujii A., Hayakawa, Hirata N., Hirata N., Honda R., Honda C., Hosoda
1332 S., Iijima Y-I., Ikeda H., Ishiguro M., Ishihara Y., Iwata T., Kawahara K., Kikuchi S., Kitazato
1333 K., Matsumoto K., Matsuoka M., Michikami T., Mimasu Y., Miura A., Morota T., Nakazawa
1334 S., Namiki N., Noda H., Noguchi R., Ogawa N., Ogawa K., Okada T., Okamoto C., Ono G.,

1335 Ozaki M., Saiki T., Sakatani N., Sawada H., Sunshu H., Shimaki Y., Shirai K., Sugita S., Takei
1336 Y., Takeuchi H., Tanaka S., Tatsumi E., Terui F., Tsuda Y., Tsukizaki R., Wada K., Watanabe
1337 S-I., Yamada M., Yamada T., Yamamoto Y., Kumagai K., Miyazaki A., Nakato A., Nishimura
1338 M., Soejima H., Suzuki A., Yada T., Yamamoto D., Yogata K., Yoshitake M., Tachibana S.,
1339 and Yurimoto H. (2022) Samples returned from the asteroid Ryugu are similar to Ivuna-type
1340 carbonaceous meteorites. *Science* **379**, 6634. 10.1126/science.abn7850.

1341 Yokoyama T., Wadhwa M., Iizuka T., Rai V., Gautam I., Hibiya Y., Masuda Y., Haba M. K., Fukai
1342 R., Hines R., Phelan N., Abe Y., Aléon J., Alexander C. M. O'D., Amari S., Amelin Y., Bajo
1343 K., Bizzarro M., Bouvier A., Carlson R. W., Chaussidon M., Choi B-G., Dauphas N., Davis A.
1344 M., Di Rocco T., Fujiya W., Hidaka H., Homma H., Hoppe P., Huss G. R., Ichida K., Ireland
1345 T., Ishikawa A., Itoh S., Kawasaki N., Kita N. T., Kitajima K., Kleine T., Komatani S., Krot
1346 A. N., Liu M-C., McKeegan K. D., Morita M., Motomura K., Moynier F., Nakai I., Nagashima
1347 K., Nguyen A., Nittler L., Onose M., Pack A., Park C., Piani L., Qin L., Russell S., Sakamot
1348 N., Schönbächler M., Tafla L., Tang H., Terada K., Terada Y., Usui T., Wada S., Walker R.
1349 J., Yamashita K., Yin Q-Z., Yoneda S., Young E. D., Yui H., Zhang A-C., Nakamura T.,
1350 Naraoka H., Noguchi T., Okazaki R., Sakamoto K., Yabuta H., Abe M., Miyazaki A., Nakato
1351 A., Nishimura M., Okada T., Yada T., Yogata K., Nakazawa S., Saiki T., Tanaka S., Terui F.,
1352 Tsuda Y., Watanabe S., Yoshikawa M., Tachibana S., and Yurimoto H. (2023) Water
1353 circulation in Ryugu asteroid affected the distribution of nucleosynthetic isotope anomalies in
1354 returned sample. *Sci. Adv.* **9**, eadi7048.

1355 Zhang J. J., Dauphas N., Davis A. M., and Pourmand A. (2011) A new method for MC-ICPMS
1356 measurement of titanium isotopic composition: Identification of correlated isotope anomalies
1357 in meteorites. *J. Anal. Atom. Spectrom.* **26**, 2197-2205.

1358 Zhang J., Dauphas N., Davis A. M., Leya I. and Fedkin A. (2012) The proto-Earth as a
1359 significant source of lunar material. *Nature Geosci.* **5**, 251–255.

1360 Zhu K., Moynier F., Schiller M., Alexander C. M. O'D., Davidson J., Schrader D. L., van Kooten
1361 E., and Bizzarro M. (2021) Chromium isotopic insights into the origin of chondrite parent
1362 bodies and the early terrestrial volatile depletion. *Geochim. Cosmochim. Acta* **301**, 158–186.

1363 Zhu K., Schiller M., Moynier F., Groen M., Alexander C. M. O'D., Davidson J., Schrader D. L.,
1364 Bischoff A., and Bizzarro M. (2023) Chondrite diversity revealed by chromium, calcium and
1365 magnesium isotopes. *Geochim. Cosmochim. Acta* **342**, 156–168.

1366 Zolensky M. E., Nakamura K., Gounelle M., Mikouchi T., Kasama T., Tachikawa O., and Tonui
1367 E. (2002) Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite. *Meteorit.*
1368 *Planet. Sci.* **37**, 737–761.

1369

1370

1371

1372
1373
1374
TABLES

Table 1.

Apparent (2D) chondrule sizes, and chondrule textural and chemical types for Tarda and Tagish Lake.

Meteorite	Tarda ASU2149_C1	Tarda ASU2149_C2	Tarda ASU2149_C1+C2 (combined)	Tagish Lake ASU1684_C1
Sample area (mm ²)	18.5	32.8	51.3	125.4
Avg. Diameter (mm)	0.30	0.21	0.26	0.29
2σ (mm)	0.66	0.19	0.52	0.40
2SE (mm)	0.10	0.06	0.11	0.05
min. (mm)	0.11	0.07	0.07	0.05
max (mm)	1.30	0.41	1.30	1.37
Total # Chondrules	12	9	21	57
# (%) Porphyritic	12 (100%)	9 (100%)	21 (100%)	54 (94.7%)
# (%) Barred Olivine	0 (0%)	0 (0%)	0 (0%)	2 (3.5%)
# (%) Cryptocrystalline	0 (0%)	0 (0%)	0 (0%)	1 (1.8%)
# (%) FeO-poor	11 (91.7%)	7 (77.8%)	18 (85.7%)	52 (91.2%)
# (%) FeO-rich	1 (8.3%)	2 (22.2%)	3 (14.3%)	5 (8.8%)

Fragments of chondrules and single mineral grains were not included
in chondrule size measurements.

% values are by number.

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393

Table 2.

Modal abundances of chondrules and matrix, and modal mineralogy of Tarda and Tagish Lake.

Meteorite	Tarda ASU2149_C1	Tarda ASU2149_C2	Tarda ASU2149_C1+C 2 (normalized)	Tagish Lake ASU1684_C1
Sample area (mm ²)	18.5	32.8	51.3	125.4
Chondrules, CAIs, Matrix				
Chondrules (vol.%)	10.6	3.3	6.5	5.9
CAIs (vol.%)	0.0	0.4	0.2	0.3
Matrix (vol.%)	89.4	96.3	93.3	93.8
Total (vol.%)	100.0	100.0	100.0	100.0
Individual Minerals				
Olivine (vol.% $\pm \sigma$)	4.41 \pm 0.49	2.44 \pm 0.37	3.30 \pm 0.30	4.11 \pm 0.31
Al-spinel (vol.% $\pm \sigma$)	none	trace	trace	0.02 \pm 0.01
Ca-carbonate (vol.% $\pm \sigma$)	3.76 \pm 0.56	2.85 \pm 0.34	3.24 \pm 0.33	3.20 \pm 0.83
Phosphate (vol.% $\pm \sigma$)	0.23 \pm 0.09	0.10 \pm 0.04	0.15 \pm 0.05	trace
Chromite (vol.% $\pm \sigma$)	trace	trace	trace	trace
Fe,Ni Metal (vol.% $\pm \sigma$)	trace	trace	trace	trace
Magnetite (vol.% $\pm \sigma$)	4.30 \pm 0.39	3.88 \pm 0.43	4.06 \pm 0.36	4.59 \pm 0.63
Fe-sulfide (vol.% $\pm \sigma$)	1.45 \pm 0.34	3.04 \pm 0.82	2.35 \pm 0.40	1.86 \pm 0.81
Total Identified Minerals (vol.% $\pm \sigma$)	14.15 \pm 1.07	12.33 \pm 1.11	13.12 \pm 0.78	13.79 \pm 1.59
Mean Deficit from 100 vol.% \approx Phyllosilicate Abundance (vol.%)	85.85	87.67	86.88	86.21

No pyroxene, plagioclase/glass, anorthite, or gypsum were identified in Tarda or Tagish Lake.

trace = abundance <0.01 vol.%

Mean Deficit from 100 vol.% = the estimated phyllosilicate abundance (e.g.,

Donaldson Hanna et al., 2019).

Tarda ASU2149_C1 and ASU2149_C2 combined abundances are area normalized

to account for sample size differences.

1394
1395
1396
1397
1398

Table 3.

Selected individual chondrule olivine analyses from Tarda and Tagish Lake.

Meteorite	Tarda ASU2149_C1	Tarda ASU2149_C1	Tarda ASU2149_C1	Tarda ASU2149_C2	Tarda ASU2149_C2	Tarda ASU2149_C2	Tagish Lake ASU1684_C1	Tagish Lake ASU1684_C1
Chondrule	Ch1	Ch5	Ch3	Ch1	Ch2	Ch9	Ch1	Ch7
Grain	G1	G2	G2	G1	G4	G1	G6	G5
Analysis #	26	92	72	3	25	49	36	119
Ch Type	dusty olivine	type I	type II	type II	type I	type II	type II	type I
Chemical Composition (wt.% oxides)								
P ₂ O ₅	bdl	bdl	0.09	bdl	bdl	bdl	bdl	bdl
SiO ₂	40.72	41.25	34.06	35.40	41.94	38.73	35.56	41.28
Al ₂ O ₃	0.05	0.02	bdl	bdl	bdl	bdl	bdl	bdl
Cr ₂ O ₃	0.35	0.49	0.30	0.18	0.37	0.38	0.26	0.43
FeO	3.18	1.61	44.40	35.39	0.74	15.15	34.89	0.76
MnO	0.13	0.16	0.55	0.36	0.12	0.20	0.29	0.15
MgO	53.99	57.16	19.85	27.54	57.26	44.42	28.66	56.67
CaO	0.19	0.15	0.67	0.42	0.26	0.30	0.21	0.21
NiO	bdl	bdl	0.14	0.19	bdl	0.16	0.16	bdl
Total	98.61	100.84	100.06	99.46	100.69	99.35	100.04	99.49
Cation formula based on four oxygens								
P	bdl	bdl	0.002	bdl	bdl	bdl	bdl	bdl
Si	0.983	0.970	0.996	0.992	0.983	0.984	0.988	0.979
Al	0.001	0.001	bdl	bdl	bdl	bdl	bdl	bdl
Cr	0.007	0.009	0.007	0.004	0.007	0.008	0.006	0.008
Fe	0.064	0.032	1.086	0.830	0.015	0.322	0.810	0.015
Mn	0.003	0.003	0.014	0.008	0.002	0.004	0.007	0.003
Mg	1.943	2.004	0.866	1.151	2.000	1.682	1.187	2.004
Ca	0.005	0.004	0.021	0.013	0.006	0.008	0.006	0.005

Ni	bdl	bdl	0.003	0.004	bdl	0.003	0.004	bdl
Total	3.006	3.023	2.996	3.002	3.013	3.011	3.007	3.014
Fa	3.2	1.6	55.6	41.9	0.7	16.1	40.6	0.7
Fo	96.8	98.4	44.4	58.1	99.3	83.9	59.4	99.3
Fe (afu)	0.064	0.032	1.086	0.830	0.015	0.322	0.810	0.015
Mn (afu)	0.003	0.003	0.014	0.008	0.002	0.004	0.007	0.003
Fe/Mg	0.03	0.02	1.25	0.72	0.01	0.19	0.68	0.01
Fe/Mn	25.0	9.7	80.4	98.3	5.9	75.1	118.8	5.0

Ch = chondrule; G = grain. bdl = below detection limit.

Standards and detection limits (in wt.%): albite for Na (0.03), apatite for P (0.02), diopside for Si (0.02), Mg (0.04), and Ca (0.01), anorthite for Al (0.02), orthoclase for K (0.02), rhodonite for Mn (0.05), rutile for Ti (0.02), fayalite for Fe (0.07), chromite for Cr (0.02), and nickel metal for Ni (0.07).

K, Ti, and Na were bdl in all analyses shown here. All analyses are provided in EA-1.

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

Table 4.
Selected individual sulfide and metal analyses from Tarda and Tagish Lake.

Meteorite	Tarda ASU2149_C2	Tarda ASU2149_C1	Tarda ASU2149_C1	Tarda ASU2149_C2	Tarda ASU2149_C1	Tarda ASU2149_C2	Tarda ASU2149_C1	Tagish Lake ASU1684_C1	Tagish Lake ASU1684_C1
Area	Ch2	OA5	-	-	OA5	-	MOA9	Ch4	
Grain	G3	OA5	OA3	OA3	OA5	OA3		OA3	
Analysis #	23	8	16	44	4	46	10	71	
Mineral	Ni-poor metal	Pyrrhotite	Pyrrhotite	Pyrrhotite	Pentlandite	Pentlandite	Pyrrhotite	Pentlandite	
Chemical Composition (wt.%)									
Fe	90.3	59.5	60.2	59.9	34.5	30.7	59.0	32.5	
S	bdl	39.38	39.34	38.92	34.21	33.04	39.24	33.19	
Si	0.21	bdl	bdl	bdl	bdl	0.03	0.14	0.29	
P	1.17	bdl							
Mn	bdl	bdl	0.04	bdl	bdl	bdl	0.04	bdl	
Ni	6.2	1.0	0.1	1.1	30.5	35.0	1.7	32.1	
Co	0.20	0.13	bdl	bdl	0.72	0.96	bdl	1.23	
Cr	0.46	0.03	0.18	0.04	0.03	0.04	0.09	0.03	
Mg	0.33	bdl	bdl	bdl	bdl	bdl	0.11	0.16	
Al	0.03	bdl							
Total	98.9	100.0	99.9	100.0	100.0	99.8	100.3	99.5	
Chemical Composition (at.%)									
Fe	90.1	46.1	46.7	46.5	27.9	25.1	45.5	26.4	
S	0.00	53.11	53.08	52.64	48.11	46.93	52.71	47.01	
Si	0.42	bdl	bdl	bdl	bdl	0.05	0.22	0.46	
P	2.11	bdl							
Mn	bdl	bdl	0.03	bdl	bdl	bdl	0.03	bdl	
Ni	5.9	0.7	0.1	0.8	23.4	27.2	1.2	24.8	

Co	0.19	0.10	0.00	0.00	0.55	0.74	bdl	0.95
Cr	0.50	0.02	0.15	0.03	0.03	0.03	0.07	0.03
Mg	0.76	bdl	bdl	bdl	bdl	bdl	0.20	0.30
Al	0.07	bdl						
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
at.% ratios								
Fe/S (at.%)		0.87	0.88					
Cations/S (at.%)		0.88	0.88	0.90	1.08	1.13	0.89	1.11

Ch = chondrule; OA = opaque assemblage; MOA = matrix opaque assemblage. G = grain. bdl = below detection limit.

Fe/S for pyrrhotite if Ni < 1 wt.%.

Cations = Fe+Ni+Cr+Ti+Co+Cu.

Standards and detection limits (in wt.%): San Carlos olivine for Si (0.02) and Mg (0.02), indium phosphide for P (0.03), troilite for S (0.03) and Fe (0.11), chromite for Cr (0.02), chalcopyrite for Cu (0.12), Co-metal for Co (0.08), Ni-metal for Ni (0.11), anorthite for Al (0.02), Mn-metal for Mn (0.03), and rutile for Ti (0.02).

Ti and Cu are all below detection limits in analyses shown here. All analyses are provided in EA-1.

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435

Table 5.

Selected individual carbonate analyses from Tarda, Tagish Lake, Orgueil, and Kolang.

Meteorite	Tarda	Tarda	Tagish Lake	Tagish Lake	USNM6765-	Orgueil		
	ASU2149_C1	ASU2149_C2	ASU1684_C1	ASU1684_C1	2	ASU2147_C1	ASU2147_C3c	ASU2147_C3c
Type	C2-ung	C2-ung	C2-ung	C2-ung	Cl	CM1/2 (host)	CM1-clast	CM1-clast
Grain	CC2	CC2	CC1	CC3	CC1	CC3	CC4	CC1
Analysis #	115	72	173	175	15	32	34	35
Mineral	dolomite	dolomite	dolomite	calcite	dolomite	dolomite	dolomite	calcite
Chemical Composition (wt.% oxides)								
Na ₂ O	0.07	0.07	0.16	0.07	0.19	bdl	bdl	bdl
SiO ₂	0.77	0.20	bdl	0.16	bdl	0.41	0.13	bdl
MgO	16.30	20.32	15.20	0.17	21.25	19.27	18.92	bdl
P ₂ O ₅	0.12	bdl	0.38	0.12	0.20	bdl	bdl	0.13
K ₂ O	bdl	bdl	bdl	bdl	bdl	bdl	bdl	0.04
CaO	29.29	28.01	29.05	54.76	28.13	29.55	29.31	55.13
MnO	3.85	0.72	4.22	bdl	0.37	1.61	0.22	0.44
FeO	3.89	4.26	5.15	0.97	1.98	2.56	4.46	0.60
SO ₃	0.09	0.15	bdl	1.15	bdl	bdl	bdl	bdl
Cr ₂ O ₃	bdl	0.19	bdl	bdl	bdl	bdl	bdl	bdl
CO ₂	45.46	45.93	45.79	42.46	47.82	46.49	46.77	43.52
Total	99.85	99.85	99.95	99.86	99.94	99.89	99.81	99.87
Cation formula based on three oxygens								
Na	0.002	0.002	0.005	0.002	0.006	bdl	bdl	bdl
Si	0.012	0.003	bdl	0.003	bdl	0.006	0.002	bdl
Mg	0.387	0.476	0.362	0.004	0.487	0.449	0.441	bdl
P	0.002	bdl	0.005	0.002	0.003	bdl	bdl	0.002
K	bdl	bdl	bdl	bdl	bdl	bdl	bdl	0.001
Ca	0.499	0.471	0.497	0.983	0.464	0.495	0.491	0.989
Mn	0.052	0.010	0.057	bdl	0.005	0.021	0.003	0.006

Fe	0.052	0.056	0.069	0.014	0.025	0.034	0.058	0.008
S	0.001	0.002	bdl	0.014	bdl	bdl	bdl	bdl
Cr	bdl	0.002	bdl	bdl	bdl	bdl	bdl	bdl
C	0.987	0.984	0.999	0.971	1.004	0.993	0.999	0.994
Sum	1.994	2.006	1.994	1.993	1.993	1.999	1.995	2.000
Normalized mol.%								
Fe+Mn	10.5	6.5	12.8	1.4	3.1	5.5	6.2	1.5
Ca	50.5	46.5	50.5	98.2	47.2	49.6	49.4	98.5
Mg	39.1	47.0	36.7	0.4	49.7	45.0	44.4	0.0

CC = carbonate grain. bdl = below detection limit.

Standards and detection limits (in wt.%): San Carlos olivine for Si (0.02), albite for Na (0.04), Mg-carbonate for Mg (0.05), anorthite for Al (0.02), apatite for P (0.03), K-feldspar for K (0.02), diopside for Ca (0.04), Mn-carbonate for Mn (0.08), fayalite for Fe (0.10), barite for S (0.02), Ni-metal for Ni (0.11), rutile for Ti (0.03), and chromite for Cr (0.03).

Al, Ni, Ti all bdl in analyses shown here. Included to check for beam overlap into other phases. All analyses are provided in EA-1.

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454

Table 6.

The bulk H, C and N elemental and isotopic compositions of Tarda, Tagish Lake, and MET 00432.

Meteorite	Classification	H (wt.%) $\pm \sigma$	δD (‰) $\pm \sigma$	C (wt.%) $\pm \sigma$	$\delta^{13}C$ (‰) $\pm \sigma$	N (wt.%) $\pm \sigma$	$\delta^{15}N$ (‰) $\pm \sigma$	Reference
Tarda ASU2149	C2-ung	0.916 \pm 0.010	607.9 \pm 18.1	4.167 \pm 0.034	8.0 \pm 0.4	0.297 \pm 0.003	62.04 \pm 0.15	This study
Literature data								
Tarda 1	C2-ung	0.948	678.4					Marrocchi et al. (2021)
Tarda 2	C2-ung	0.952	681.6					Marrocchi et al. (2021)
Tarda 3	C2-ung			4.00	11.3	0.28	54.7	Marrocchi et al. (2021)
Tarda 4	C2-ung			4.06	10.7	0.28	55.3	Marrocchi et al. (2021)
Tarda 5	C2-ung			4.11	10.7	0.30	55.9	Marrocchi et al. (2021)
Tagish Lake 11i	C2-ung	0.738 \pm 0.009	542.0 \pm 8.7	3.95	14.0	0.17	59.7	Alexander et al. (2012)
Tagish Lake 11h	C2-ung	0.872 \pm 0.004	556.6 \pm 6.2	4.13	9.4	0.19	62.6	Alexander et al. (2012)
Tagish Lake 5b	C2-ung	0.945 \pm 0.003	507.6 \pm 4.0	4.11	10.1	0.24	76.2 \pm 0.1	Alexander et al. (2012)
MET 00432	CM2	1.065 \pm 0.020	45.3 \pm 0.2	2.724 \pm 0.021	3.0 \pm 0.5	0.118 \pm 0.004	29.8 \pm 1.0	Alexander et al. (2012)

The uncertainties from this study and Alexander et al. (2012) are 1σ and are based on replicate analyses.

1459
1460
1461

Table 7.
Cr and Ti isotope compositions measured for samples in this study.

Cr isotope compositions			
Sample	$\epsilon^{53}\text{Cr}$	$\epsilon^{54}\text{Cr}$	N
DTS-1	0.08 \pm 0.15	0.20 \pm 0.27	4
Allende	0.14 \pm 0.17	0.91 \pm 0.31	4
Tarda ASU2149	0.02 \pm 0.14	1.14 \pm 0.17	4

Ti isotope compositions			
Sample	$\epsilon^{46}\text{Ti}$	$\epsilon^{48}\text{Ti}$	$\epsilon^{50}\text{Ti}$
BCR-2	-0.02 \pm 0.11	0.02 \pm 0.04	-0.16 \pm 0.12
Allende	0.68 \pm 0.08	-0.05 \pm 0.07	2.99 \pm 0.07
Tarda ASU2149	0.55 \pm 0.10	-0.06 \pm 0.03	2.94 \pm 0.13

DTS-1 = dunite from Twin Sisters area, Hamilton, Washington Reference Material

BCR-2 = Columbia River Basalt Reference Material

Allende = Allende Smithsonian Reference Material

value \pm 2SE; N = number of replicates.

1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489

1490
1491
1492
1493

Table 8.
Bulk Cr, Ti, and O isotopic compositions of Tarda and Tagish Lake.

Sample	Tarda	Tagish Lake
$\epsilon^{53}\text{Cr}$	0.02	0.53
2SE	0.14	0.04
$\epsilon^{54}\text{Cr}$	1.14	1.19
2SE	0.17	0.11
Cr reference	this study	Petitat et al. (2011)
$\epsilon^{50}\text{Ti}$	2.94	2.76
2SE	0.13	0.26
Ti reference	this study	Trinquier et al. (2009)
$\Delta^{17}\text{O}$	-0.284	-0.870
2SE	± 0.053	± 0.38
O Reference	Gattacceca et al. (2021)	Grossman (2000)

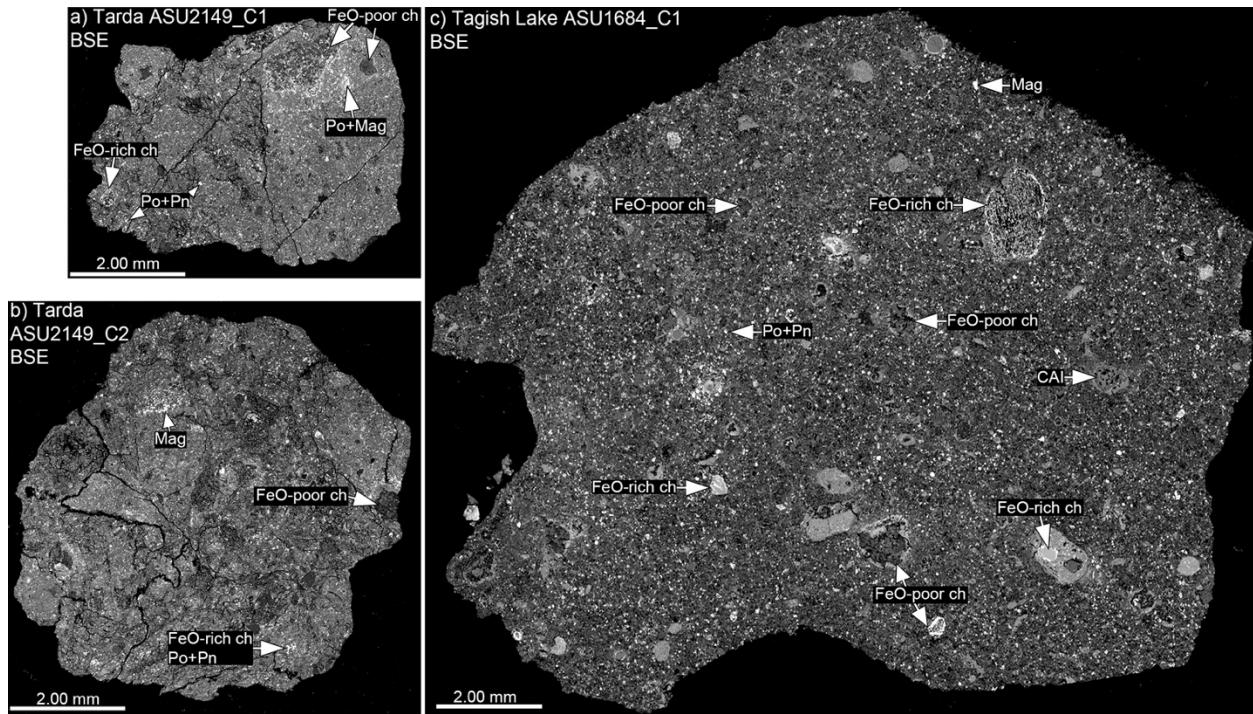
For this study, sample was Tarda ASU2149, homogenized powder made from 1.03 g of interior chips. The same powder that was also used for H, C, and N analyses (Table 6).

1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517

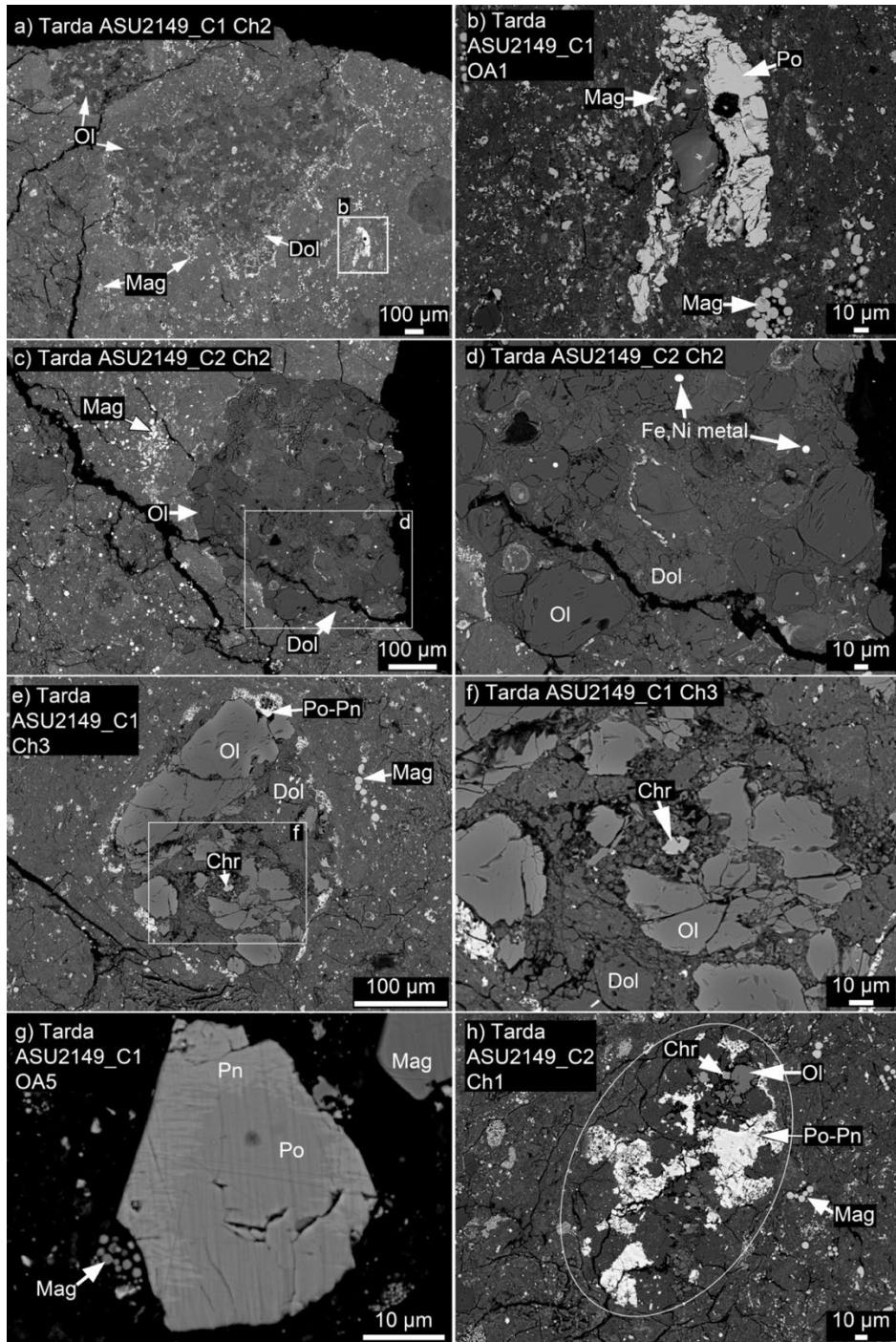
Table 9.
Bulk elemental abundances of Tarda
ASU2149.

Element	Abundance (ppm)
Mg	98975
Al	9230
K	329
Ca	8943
Sc	5.87
Ti	469
V	55
Cr	2465
Mn	1377
Fe	161388
Co	456
Ni	9846
Cu	111
Zn	184
Ga	6.31
Sr	5.94
Zr	3.97
Nb	0.358
Mo	1.158
Rh	0.119
Cd	0.369
Te	1.13
Cs	0.1153
Ba	2.18
La	0.250
Ce	0.620
Nd	0.483
Sm	0.159
Eu	0.060
Gd	0.214
Tb	0.037
Dy	0.225
Ho	0.053
Er	0.168
Tm	0.026
Yb	0.172
Lu	0.024

Typical error is <10%.


1521
1522
1523
1524
1525
1526

FIGURES


1527
1528
1529 **Figure 1.** Individual stones and fragments of Tarda in the Carleton B. Moore Meteorite
1530 Collection in the Buseck Center for Meteorite Studies at Arizona State University (a total of ~24
1531 grams of material is shown).
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546

1547
1548
1549

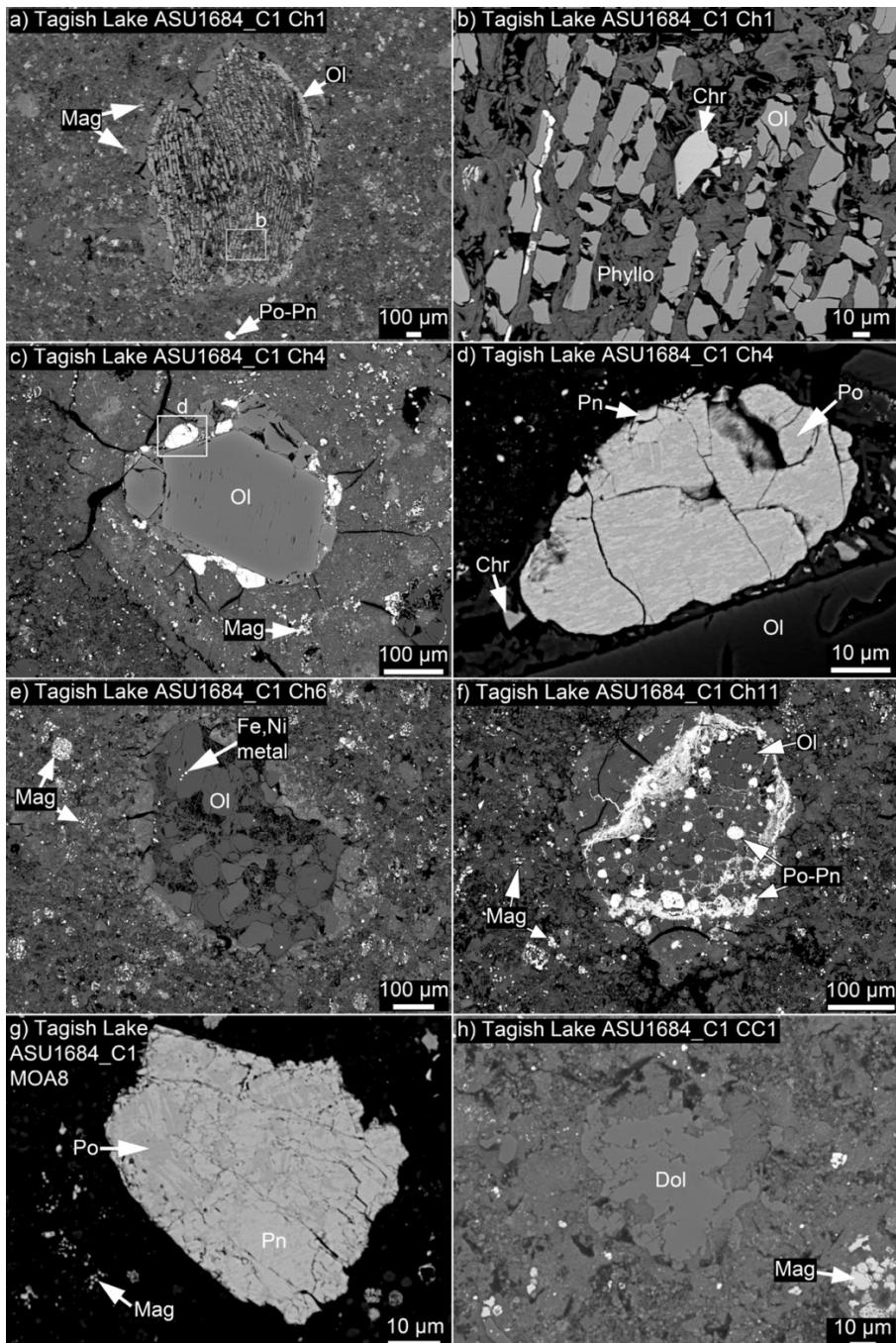

1550
1551
1552
1553
1554
1555
1556
1557
1558

Figure 2. Full backscattered electron (BSE) images of (a) Tarda ASU2149_C1, (b) Tarda ASU2149_C2, and (c) Tagish Lake ASU1684_C1. All images are shown at the same scale for ease of comparison between samples. For sizes and modal mineralogy, see Tables 1 and 2. CAI = calcium aluminum rich inclusion, ch = chondrule, Po = pyrrhotite, Pn = pentlandite, and Mag = magnetite.

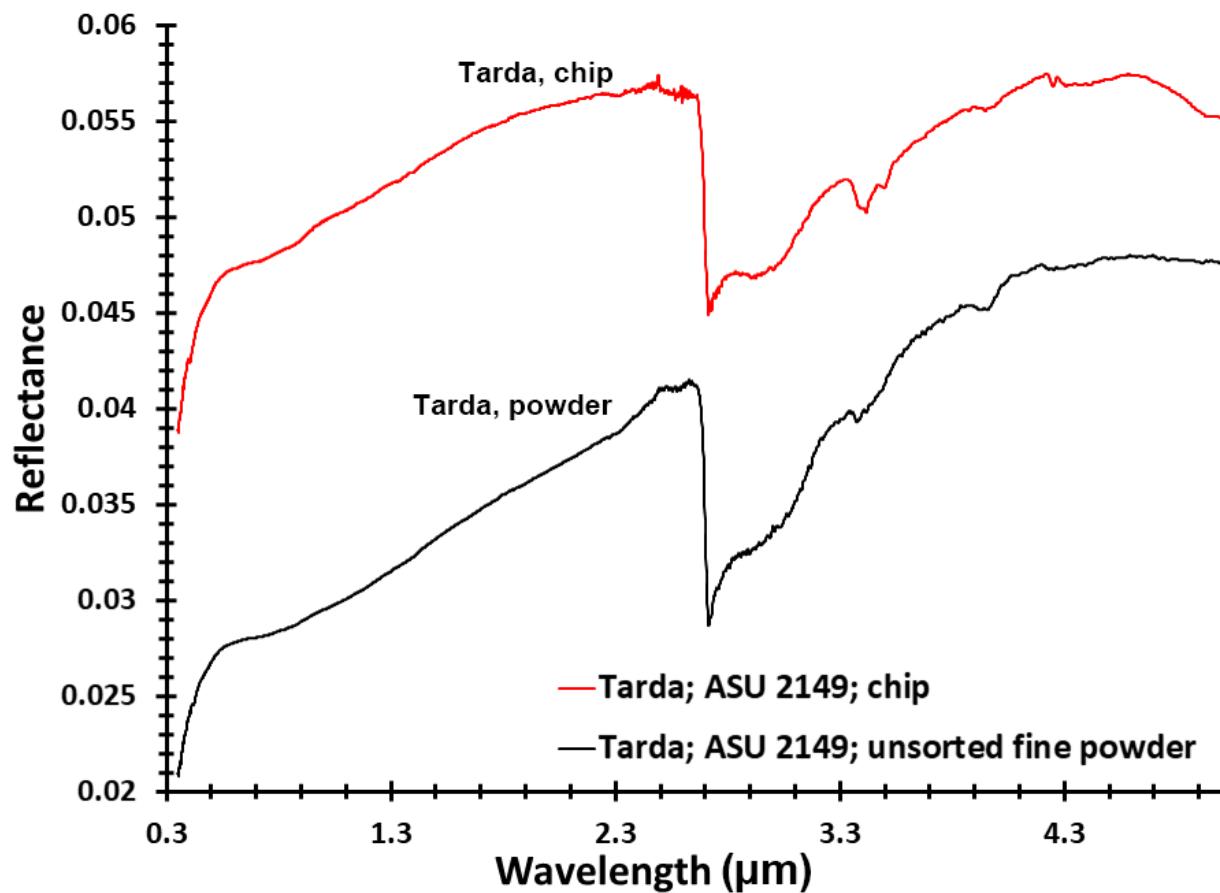
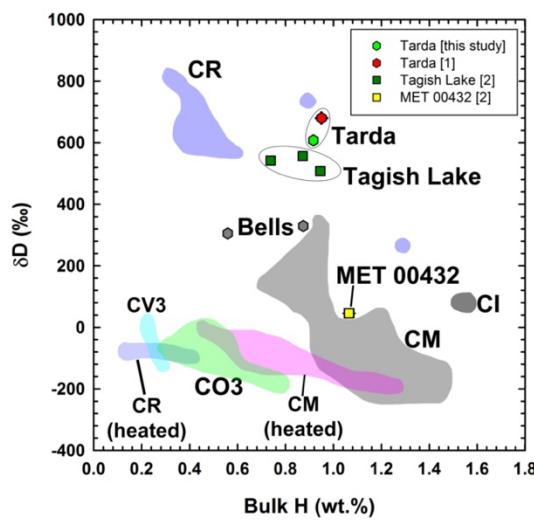
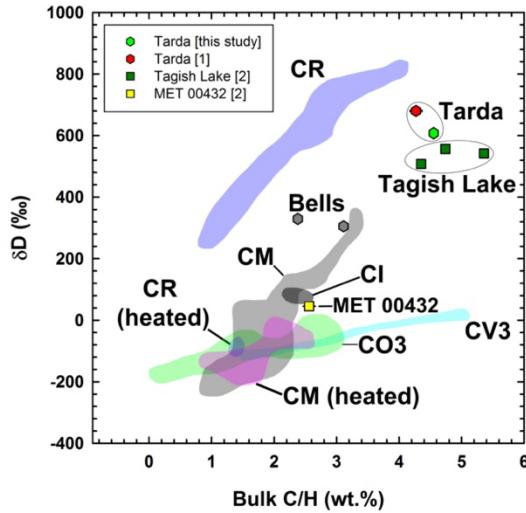

1559
1560
1561
1562
1563
1564
1565
1566
1567

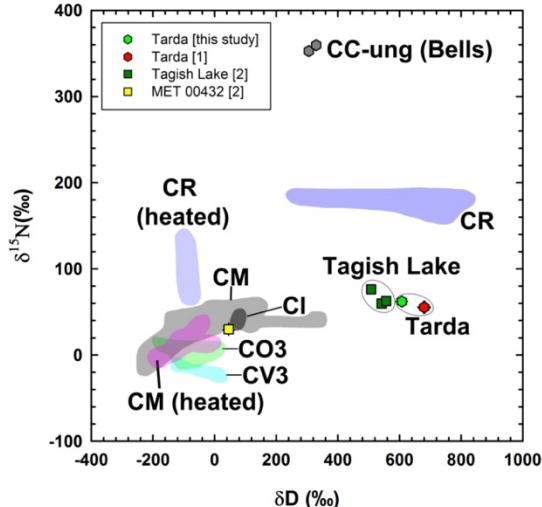
Figure 3. Back scattered electron (BSE) images of Tarda ASU2149_C1 and ASU2149_C2; (a,c) FeO-poor chondrules, an (e,f) FeO-rich chondrule, (a,b,c,e,g,h) magnetite (Mag), (b,g) including magnetite frambooids, (b,e,g,h) pyrrhotite (Po) and pentlandite (Pn), (e) dolomite (Dol) and chromite (Chr) inside a partially replaced FeO-rich chondrule, and a (h) chondrule nearly completely replaced by phyllosilicates. Ch = chondrule. OA = opaque assemblage in the matrix. Ol = olivine.

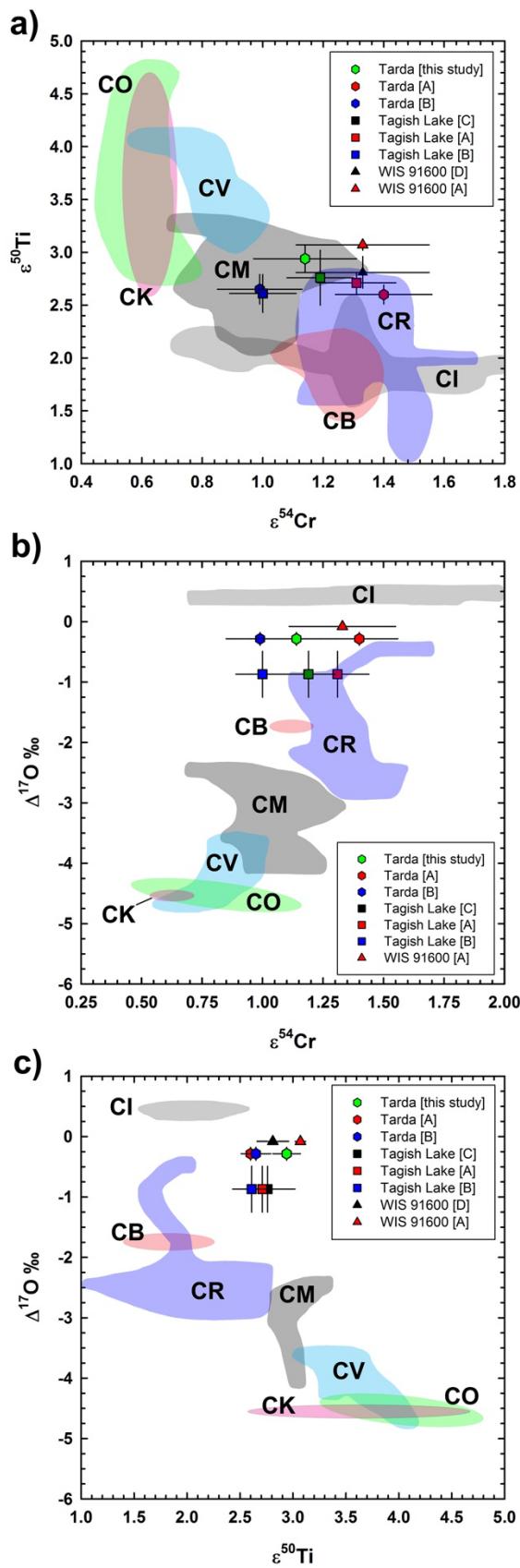

1568
1569

1570 **Figure 4.** BSE images of Tagish Lake ASU1684_C1; (a,b) FeO-rich barred olivine chondrule
1571 containing olivine (Ol) and chromite (Chr), and phyllosilicates (Phyllo), (c) FeO-rich porphyritic
1572 olivine chondrule with pyrrhotite, pentlandite, and chromite, (e) FeO-poor porphyritic olivine
1573 chondrule containing Fe,Ni metal grains in olivine, (f) FeO-poor porphyritic olivine chondrule
1574 containing abundant pyrrhotite and pentlandite, (g) matrix opaque assemblage (MOA) consisting
1575 of pyrrhotite (Po) and pentlandite (Pn) with nearby magnetite (Mag) frambooids, and a dolomite
1576 (Dol) in the matrix with nearby magnetite. Ch = chondrule.
1577
1578

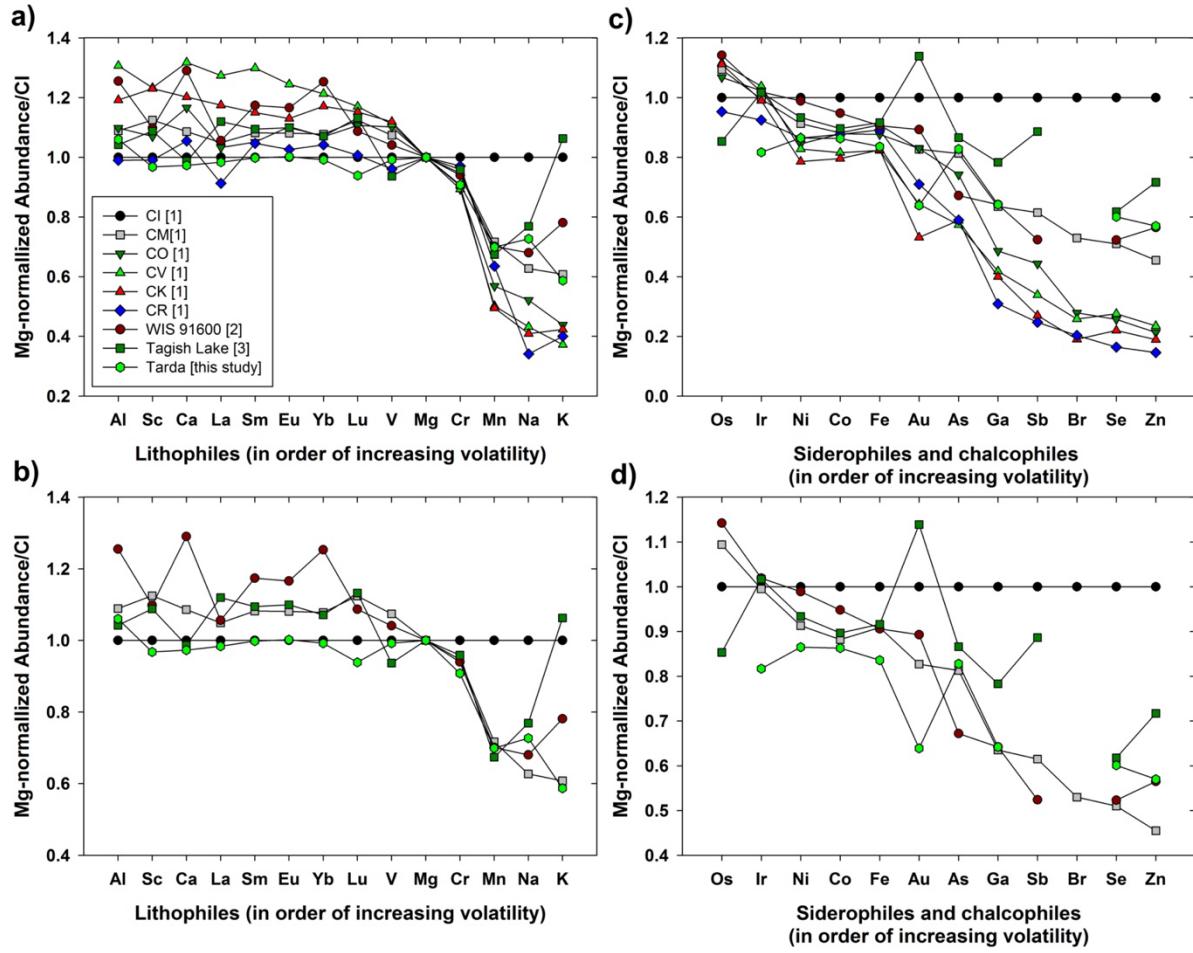


1581 **Figure 5.** Reflectance spectra of a chip and unsorted fine powder of the Tarda meteorite. Spectra
 1582 were measured at $i=30^\circ$ and $e=0^\circ$. See text for details.


a)

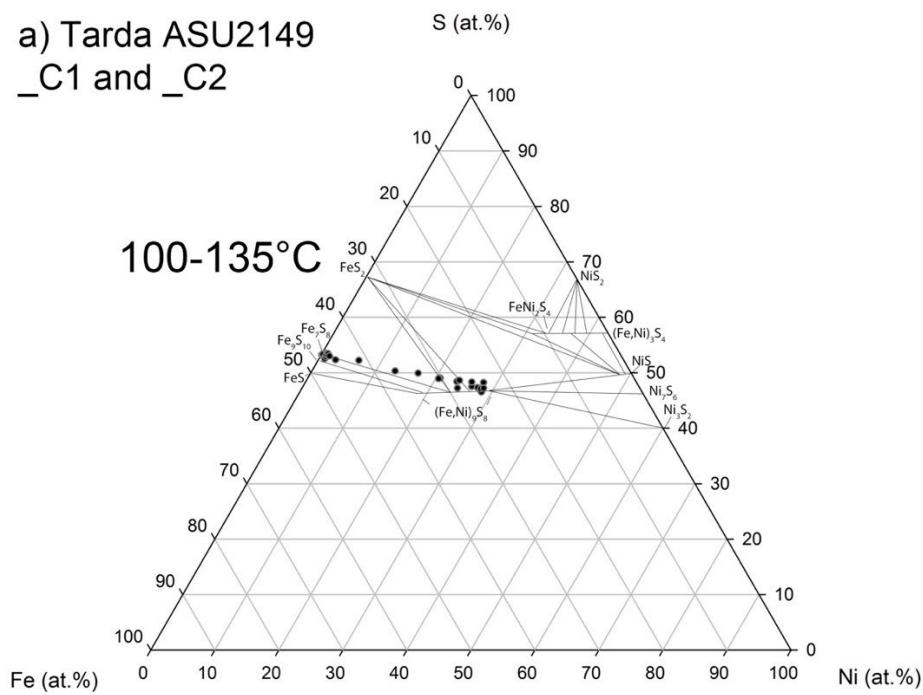

b)

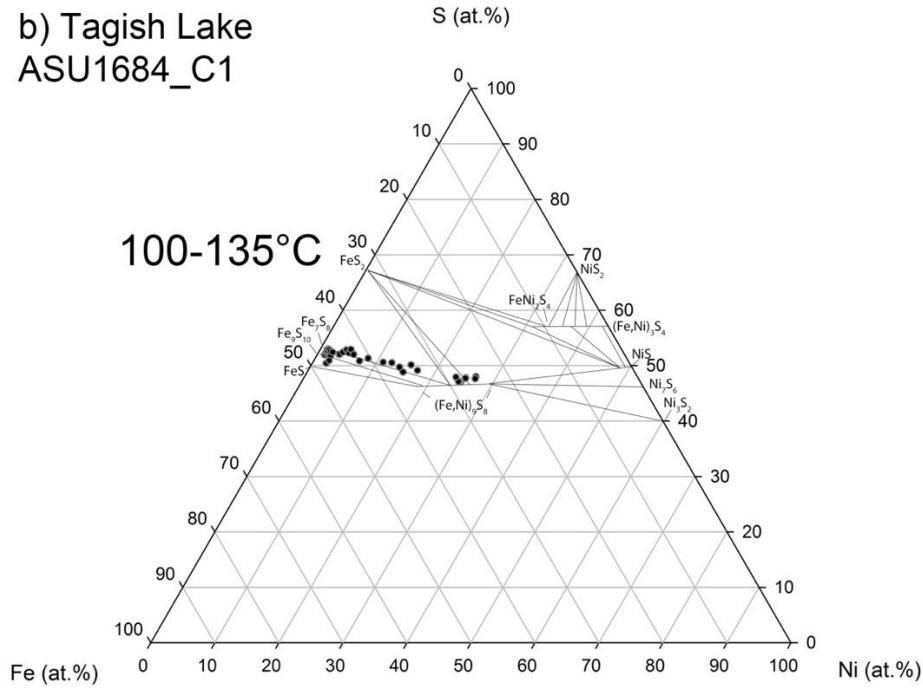
c)


1602 **Figure 6.** The bulk H, C, and N isotopic compositions and abundances of Tarda (this study),
1603 compared to literature data from Tarda (average values from [1] Marrocchi et al., 2021), Tagish
1604 Lake and MET 00432 (from [2] Alexander et al., 2012), the ungrouped carbonaceous chondrite
1605 Bells from [2], and the CO, CM (heated and unheated), CV, CR (heated and unheated), and CI
1606 chondrites. (a) Bulk H (wt.%) vs. δ D (‰); (b) Bulk C/H (wt.%) vs. δ D (‰); (c) δ D (‰) vs. $\delta^{15}\text{N}$
1607 (‰). Tarda is most similar to Tagish Lake, and not like any other meteorite or meteorite group.
1608 For direct comparison, the chondrite fields shown are from data collected using the same technique
1609 as for Tarda in this study: CM chondrites (Alexander et al., 2012); heated CM chondrites
1610 (Alexander et al., 2012); CR chondrites (Alexander et al., 2012; Davidson et al., 2019b); heated
1611 CR chondrites (Alexander et al., 2013); CV3 chondrites (Alexander et al., 2012; Davidson et al.,
1612 2014); CO3 chondrites (Alexander et al., 2012; Alexander et al., 2018), and CI chondrites
1613 (Alexander et al., 2012).
1614
1615
1616

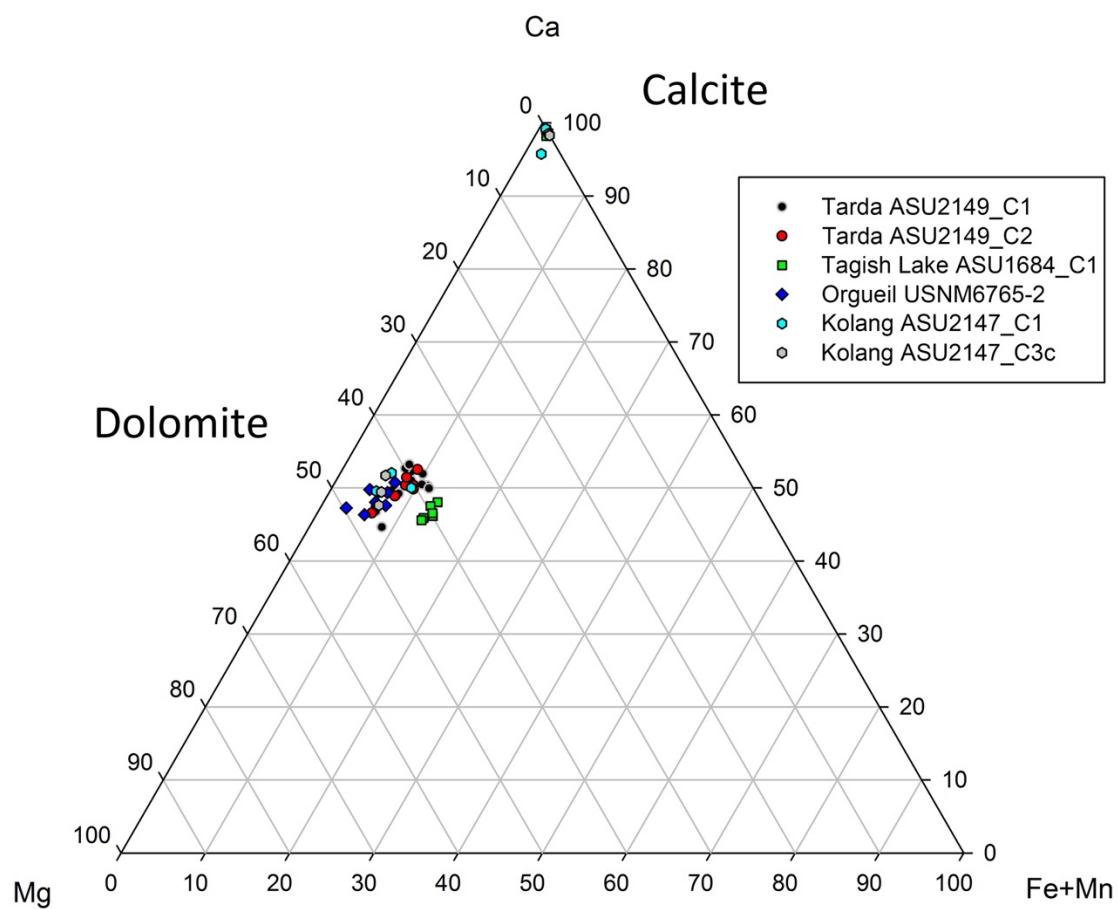
1618 **Figure 7.** $\varepsilon^{54}\text{Cr}$, $\varepsilon^{50}\text{Ti}$, and $\Delta^{17}\text{O}$ isotopic compositions of Tarda compared to literature values data
1619 for Tarda, Tagish Lake, WIS 91600, and fields for CO, CM, CV, CK, CR, and CI chondrites [1–
1620 25]. (a) $\varepsilon^{54}\text{Cr}$ vs. $\varepsilon^{50}\text{Ti}$ (b) $\varepsilon^{54}\text{Cr}$ vs. $\Delta^{17}\text{O}$ (c) $\varepsilon^{50}\text{Ti}$ vs. $\Delta^{17}\text{O}$. The $\varepsilon^{54}\text{Cr}$ and $\varepsilon^{50}\text{Ti}$ values for Tarda
1621 are this study, while $\Delta^{17}\text{O}$ for Tarda is from Gattacceca et al. (2021). Uncertainties on Tarda,
1622 Tagish Lake, and WIS 91600 are $\pm 2\text{SE}$ (e.g., Table 7). [A] Literature data for Tarda, Tagish Lake,
1623 and WIS 91600 plotted for comparison ($\varepsilon^{54}\text{Cr}$ and $\varepsilon^{50}\text{Ti}$, Hellman et al., 2023; $\Delta^{17}\text{O}$ for Tarda,
1624 Gattacceca et al., 2021; $\Delta^{17}\text{O}$ for Tagish Lake, Grossman, 2000; and $\Delta^{17}\text{O}$ for WIS 91600, Clayton
1625 and Mayeda, 2003). [B] Literature data for Tarda and Tagish Lake plotted for comparison ($\varepsilon^{54}\text{Cr}$
1626 and $\varepsilon^{50}\text{Ti}$, Yokoyama et al., 2023; $\Delta^{17}\text{O}$ for Tarda, Gattacceca et al., 2021; and $\Delta^{17}\text{O}$ for Tagish
1627 Lake, Grossman, 2000). [C] Literature data for Tagish Lake plotted for comparison ($\varepsilon^{54}\text{Cr}$, Petitat
1628 et al., 2011; $\varepsilon^{50}\text{Ti}$, Trinquier et al., 2009; and $\Delta^{17}\text{O}$, Grossman, 2000). [D] Literature data for WIS
1629 91600 plotted for comparison ($\varepsilon^{54}\text{Cr}$, Hellman et al., 2023; $\varepsilon^{50}\text{Ti}$, Render et al., 2022; and $\Delta^{17}\text{O}$,
1630 Clayton and Mayeda, 2003). The $\varepsilon^{54}\text{Cr}$, $\varepsilon^{50}\text{Ti}$, and $\Delta^{17}\text{O}$ data used to construct the compositional
1631 fields for the CO [1–4,7,16], CM [2,3,4,6,10,16,18–21], CV [1–4,6,7,9,10,18,22], CK [2,3,4,7],
1632 CR [2,4,7,8,9,10,13,18,23], CB [2,3,5], and CI [1–4,9,10,18,23,24,25] chondrites are: [1]
1633 Shukolyukov and Lugmair (2006); [2] Trinquier et al. (2007); [3] Trinquier et al. (2009); [4] Qin
1634 et al. (2010); [5] Yamashita et al. (2010); [6] Zhang et al. (2011); [7] Zhang et al. (2012); [8]
1635 Sanborn et al. (2019); [9] Weisberg et al. (1993); [10] Clayton and Mayeda (1999); [11]
1636 Greenwood and Franchi (2004); [12] Greenwood et al. (2010); [13] Schrader et al. (2011); [14]
1637 Hewins et al. (2014); [15] Jacquet et al. (2016); [16] Williams et al. (2020); [17] Torrano et al.
1638 (2021); [18] Rüfenacht et al. (2023); [19] Göpel et al. (2015); [20] Ruzicka et al. (2015); [21] van
1639 Kooten et al. (2020); [22] Zhu et al. (2021); [23]; Hellman et al. (2023); [24] Kadlag et al. (2019);
1640 [25] Yokoyama et al. (2023).

1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663

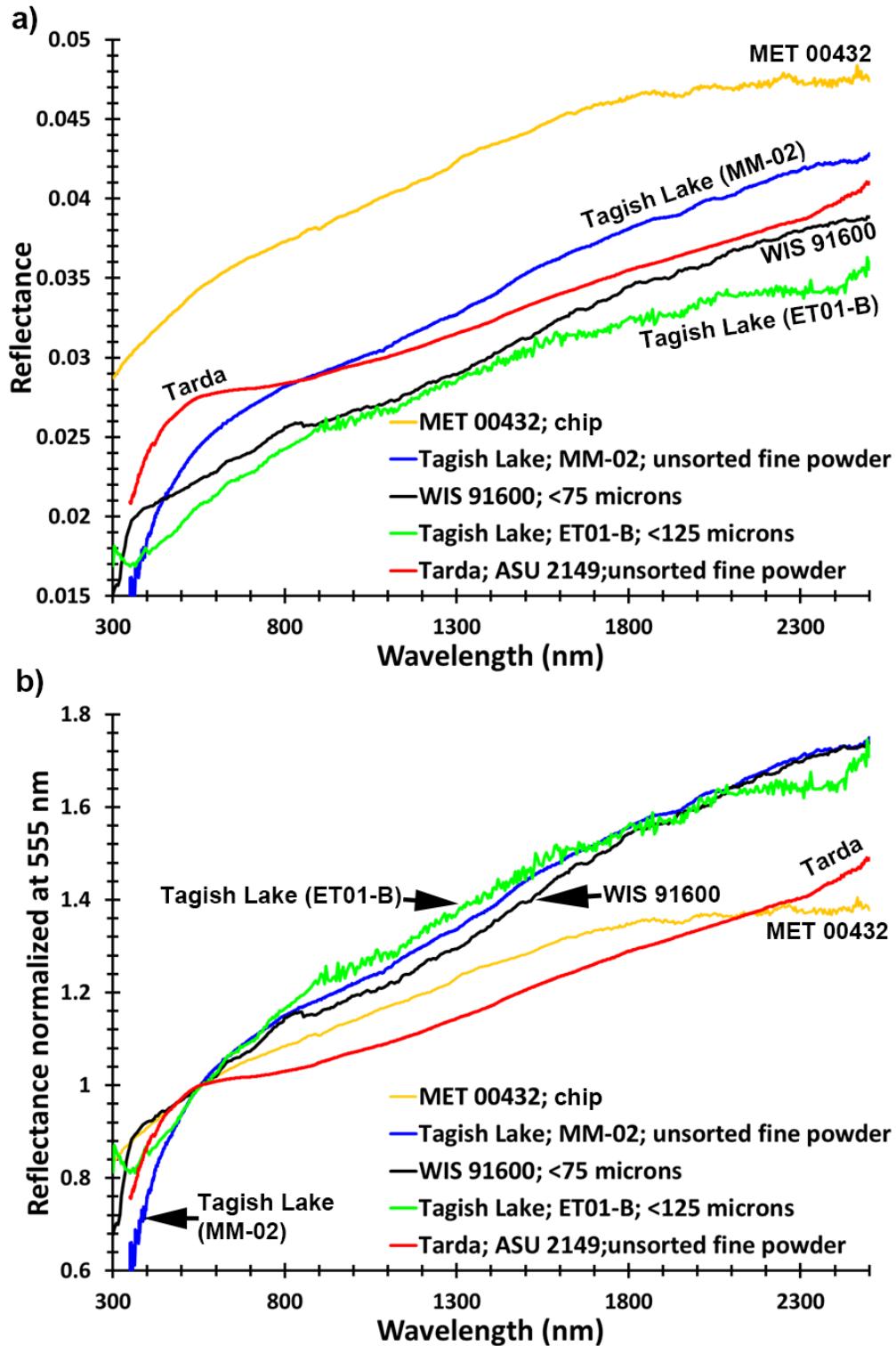

1664
1665
1666


1667
1668

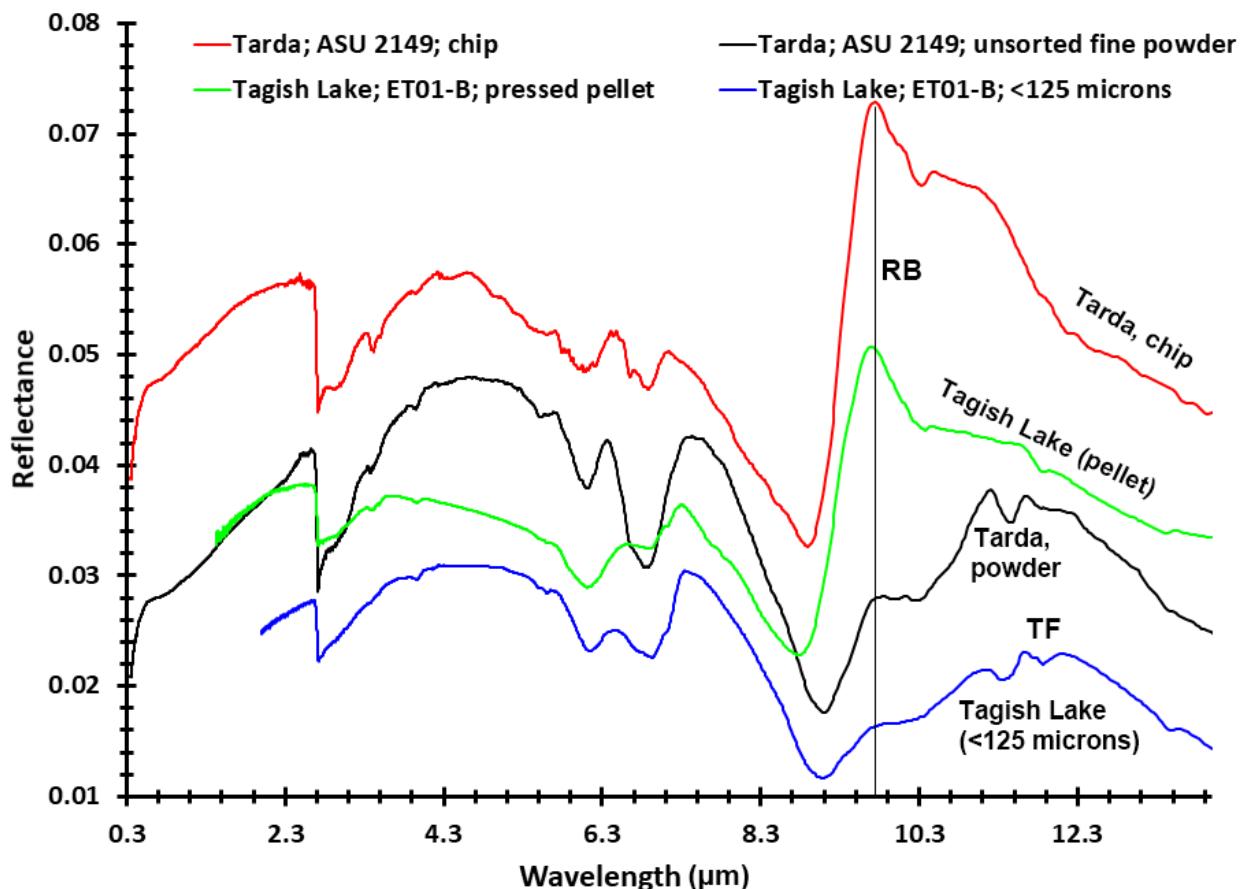
1669 **Figure 8.** Bulk elemental composition “spider diagrams” showing the chemical differences
1670 between the CI, CM, CO, CV, CK and CR chondrites ([1] Lodders et al., 2021), compared to WIS
1671 91600 ([2] Choe et al., 2010), Tagish Lake ([3] Brown et al., 2000), and Tarda (this study). (a, b)
1672 Mg- and CI-normalized abundances of lithophile elements in (a) the Tagish Lake-like meteorites
1673 compared established meteorite groups and (b) only CI and CM chondrites. (c, d) Mg- and CI-
1674 normalized abundances of siderophile and chalcophile elements in (c) the Tagish Lake-like
1675 meteorites compared to established meteorite groups and (d) only CI and CM chondrites. Elements
1676 are ordered by volatility (50% condensation temperatures; Lodders, 2021).
1677
1678
1679
1680
1681
1682
1683
1684


a) Tarda ASU2149
_C1 and _C2

b) Tagish Lake
ASU1684_C1


Figure 9. Fe–Ni–S (at.%) ternary phase diagrams that most closely match the sulfide compositions in (a) Tarda ASU2149_C1 and _C2, and (b) Tagish Lake ASU1684_C1. Sulfide compositions are consistent with equilibration between 100 °C and 135 °C; pentlandite in each sample is near the pentlandite stability field and pyrrhotite is along the tie line between pyrrhotite and the pentlandite field. Phase diagrams adapted from Raghavan (2004) with original data from Naldrett (1989) (100–135 °C).

1696 **Figure 10.** Fe+Mn–Ca–Mg (mol.%) ternary diagram of carbonates in Tarda ASU2149_C1 and
 1697 _C2 (C2-ung), Tagish Lake ASU1684_C1 (C2-ung), Orgueil USNM6765-2 (CI), Kolang
 1698 ASU2147_C1 (CM1/2), and Kolang ASU2147_C3c (CM1 clast). Most carbonates analyzed were
 1699 dolomite, but calcite was also observed in Kolang and Tagish Lake.


1704
 1705 **Figure 11.** Fe vs. Mn (atomic formula unit or afu) compositions of chondrule olivine from (a)
 1706 Tarda with _C1 and _C2 separated with black and red, and (b) Tarda vs. Tagish Lake vs. chondrite
 1707 compositional fields (2 block). Compositional ranges of chondrules are shown for CR (Berlin et
 1708 al., 2011; Schrader et al., 2015), CO (Jones, 1992; Berlin et al., 2011), CM (Schrader and
 1709 Davidson, 2017) chondrites, and unequilibrated ordinary chondrites or UOCs (Jones, 1990; Berlin
 1710 et al., 2011; Schrader and Davidson, 2022).
 1711
 1712
 1713
 1714
 1715
 1716
 1717

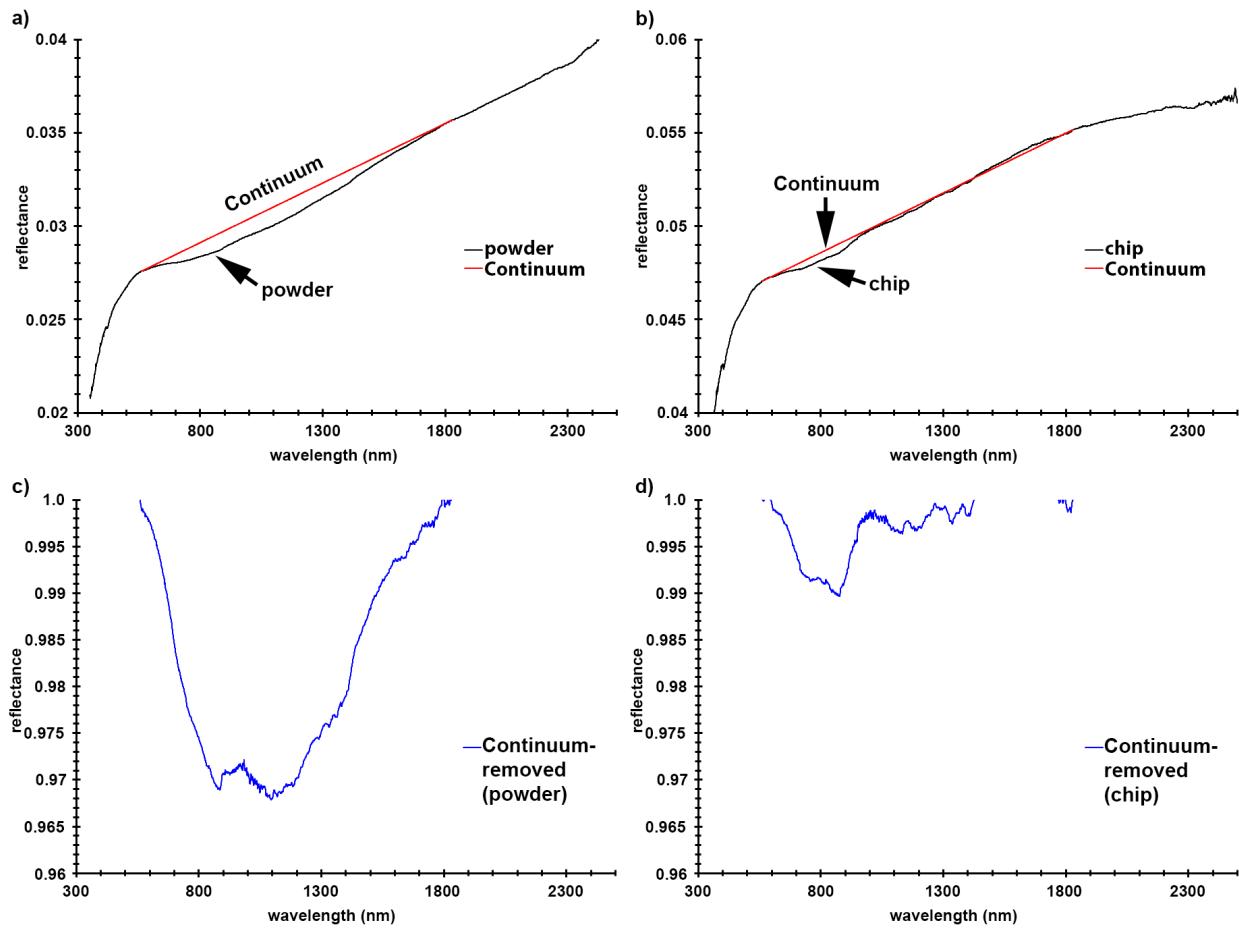
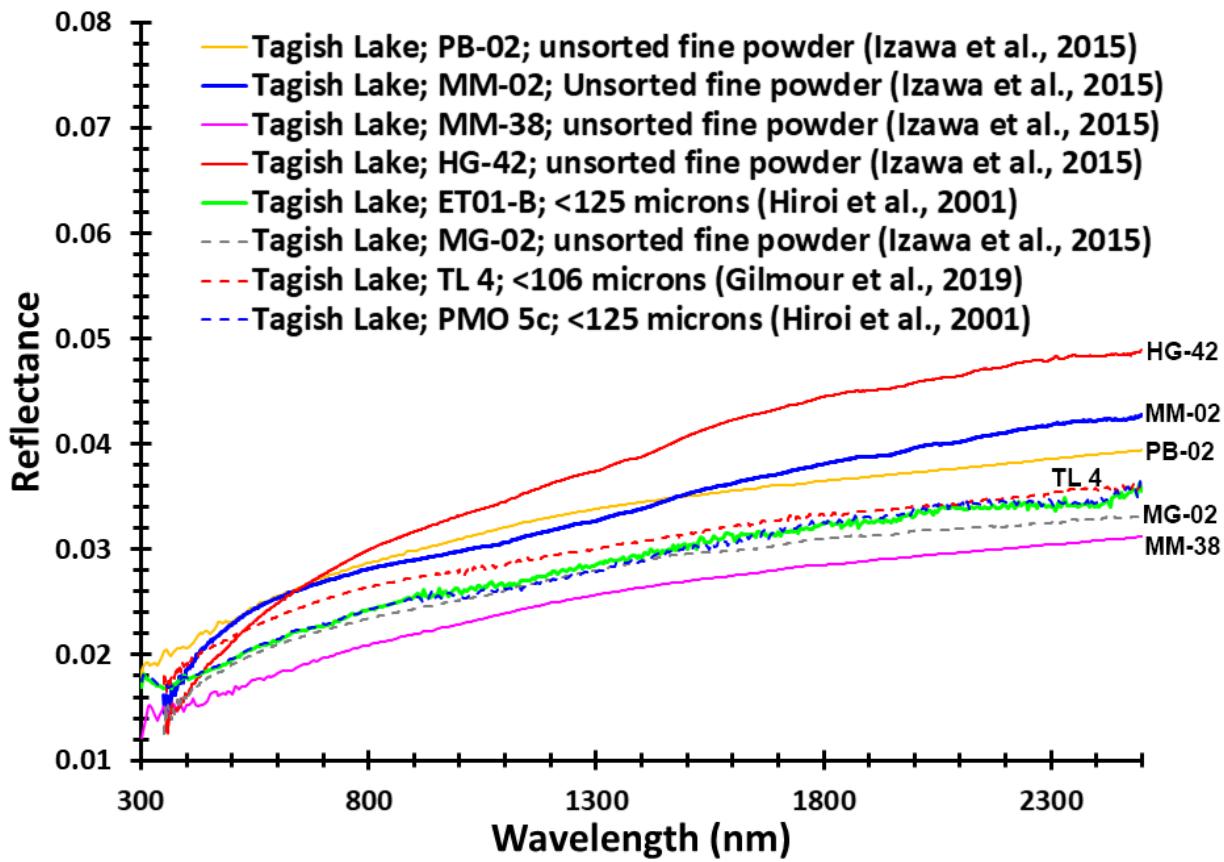

1718
1719
1720
1721
1722
1723

Figure 12. Reflectance spectra of the Tarda (measured at C-TAPE), WIS 91600 and Tagish Lake (measured at RELAB), and MET 00432 (measured at Mizusawa VLBI Observatory) meteorites. These are the few meteorite spectra that are most similar to Tarda in terms of low albedo, red spectral slope, and weak or non-existent absorption bands. a) absolute reflectance. b) spectra normalized to one at 555 nm. See text for details.

1724
1725
1726
1727
1728
1729



1730
1731
1732 **Figure 13.** Reflectance spectra of the Tarda chip and powder, Tagish Lake pressed pellet and
1733 powder. The vertical line near 9.80 μm shows location of the reststrahlen band (RB) and a
1734 transparency feature (TF) is labeled at 11.5 μm . See text in §4.1.6. for details.
1735
1736
1737
1738
1739

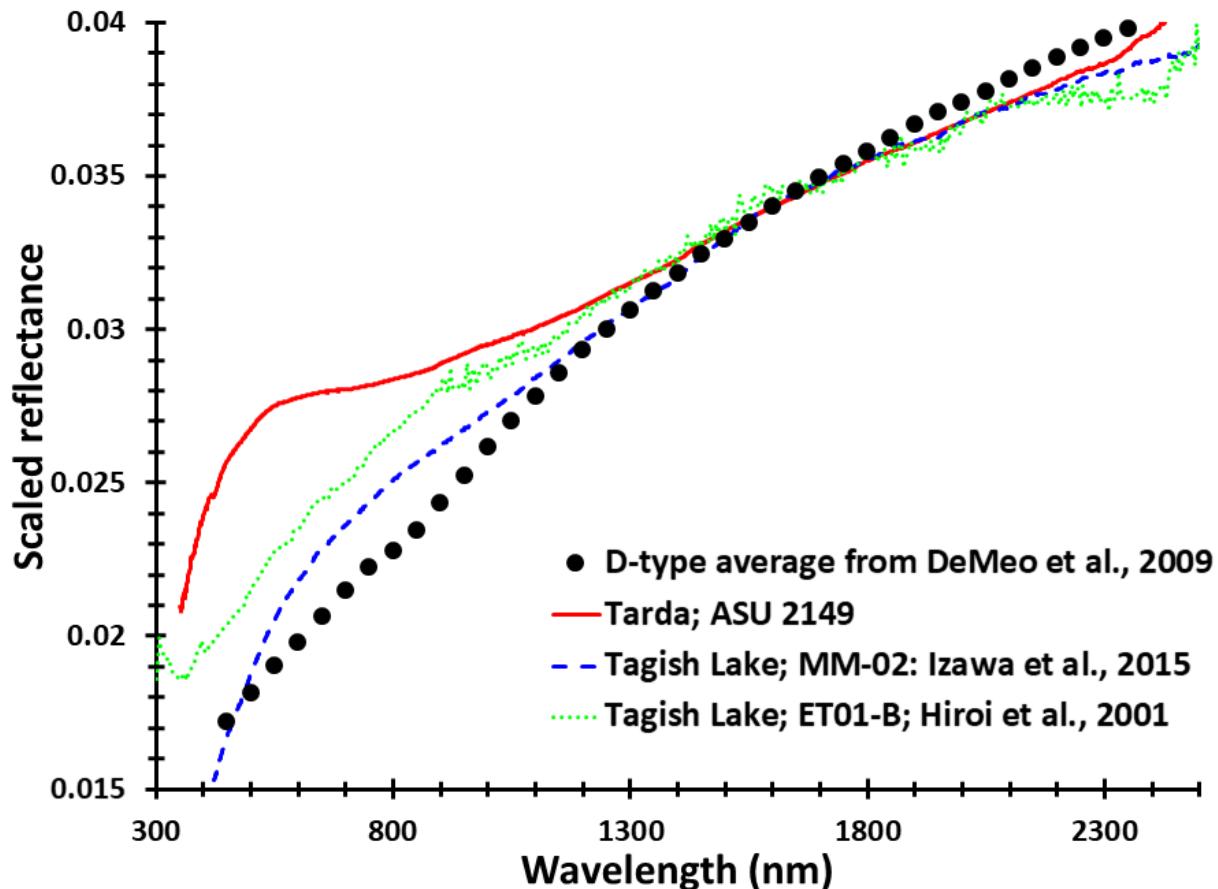
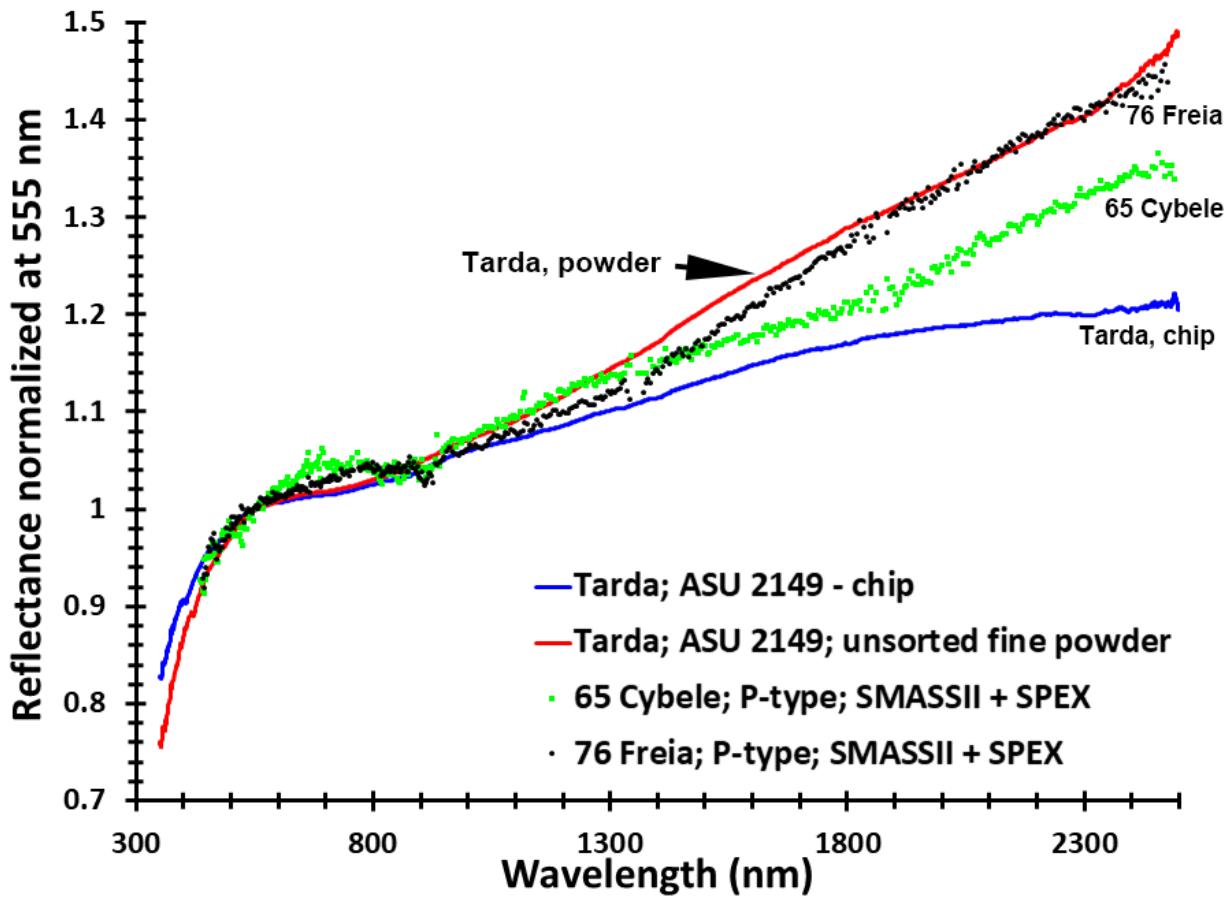


Figure 14. Reflectance spectra of the Tarda powder (a) and chip (b), showing straight line continua (red lines), used to isolate absorption features in the ~ 500 – 1800 nm region. Continuum-removed spectra of the powder (c) and chip (d). See text for details.

1740
1741
1742
1743
1744
1745
1746
1747
1748
1749



1750
1751 **Figure 15.** Reflectance spectra of various subsamples of the Tagish Lake meteorite, showing
1752 diversity of spectral slopes. The spectra are from the RELAB archive and C-TAPE.
1753
1754

1755
1756
1757
1758
1759
1760
1761
1762
1763

Figure 16. Comparison of the Tarda unsorted fine powder spectrum to an average of D-type asteroids (from DeMeo et al., 2009), as well as Tagish Lake powder (Hiroi et al. 2001; Izawa et al., 2015). The D-type asteroid spectra average has been multiplied by 0.019 to match the Tarda spectrum at 1600 nm. This was done to account for the lack of absolute reflectance for most D-type asteroids.

1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786

Figure 17. Comparison of normalized reflectance spectra of the Tarda chip and powder spectra to two spectral P-type asteroids (65 Cybele and 76 Freia, data from: Bus and Binzel, 2002b; Burbine and Binzel, 2002; Rayner et al., 2003).