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1 Phase-I project goals and Objectives:  

The broad research objective proposed in the DOE program is to develop a portable lab-
on-chip mid-IR gas detection system and integrate it on a small mobile platform, such as unmanned 
air vehicles (UAVs) and other airborne systems or stationary locations, for routine measurement.  

In Phase I of the DOE proposal, we designed an on-chip sensing waveguide, developed a 
platform for an adaptive sampling approach, and prepared a framework for AI/ML-based training 
for the overall feasibility of an integrated sensing platform. 

The key objectives of this study are as follows: 
1. Development of a highly sensitive and portable lab-on-chip mid-IR gas absorption 

device for the in situ detection of CH4 and NO2 with a targeted sensitivity in the ppb range. With 
this objective, a combustion-efficiency-level understanding of gas flare emission can be achieved. 
Furthermore, highly accurate and dense data can be generated to develop emission models and 
inventories.  

2. Implementation of an adaptive sampling approach for automated UAV motion 
planning (i.e., one or more coordinated airborne platforms carrying the proposed sensing system) 
to accumulate dense sampling data from desired locations. Through this approach, we can deploy 
our proposed chip-based sensor for observation near to the gas flare area, which will enable us to 
detect incomplete combustion during flaring operations with an autonomous mode of operation. 

3. Development of an AI/ML-based training approach to enhance our understanding 
of the combustion efficiency of internal/external variables and help identify better strategies for 
mitigating methane and other gas emissions.  

 

2 Performance Evaluation: Assessing Project Accomplishments Against Established 
Goals and Objectives 

Table 1 provides an overview of the tasks completed during Phase I and their 
corresponding achievements.  

First, the design and fabrication of a Mid-IR Slotted Photonic Crystal Waveguide in a 
silicon platform were successfully accomplished, optimizing the device for detecting methane and 
nitrogen dioxide. Subsequently, measurements of photonic crystal waveguides were conducted, 
confirming the successful testing of their optical characteristics. Moreover, the gas sensing 
performance of the integrated photonic crystal waveguides was experimentally evaluated and 
shown to achieve record performance for an on-chip device. In addition, a comprehensive drone-
based system for real-time gas detection was developed by integrating the critical hardware 
components and implementing an adaptive sampling algorithm. Initial testing using a 
commercially available CO2 sensor was conducted with plans to replace it with a more sensitive 
and selective sensor developed in-house. Looking ahead, deep learning analysis using an optical 
neural network will be performed once the data collection is completed. Finally, a Phase II plan 
was formulated based on the outcomes and insights gained during the Phase I tasks. 
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Table 1: Phase-I Tasks and Results 

 

Phase-I Tasks Result 
1. Design, and Fabrication of Mid-IR 

Photonic Crystal Waveguide in 
Silicon Platform 

The device is optimized and fabricated 
successfully for methane and nitrogen dioxide. 

2. Measurements of photonic crystal 
waveguides 

The optical characteristics of fabricated 
devices is successfully tested 

3. Design, Fabrication, and 
Characterization of polarization 

rotator in silicon on sapphire 

We plan to adapt ICL lasing technology 
with photonic wire-bonding techniques. It 
eliminates the need for any additional polarization 
rotator and makes the on-chip device more 
compact and easy to package. 

 
 

4. Experimentally demonstrate gas 
sensing performance in integrated 

slotted photonic crystal waveguides 
with TM/TE polarization rotator 

Device has been successfully tested and we 
detected methane and nitrogen dioxide with 3 ppm 
and 220 ppb detection limits. This sensitivity level is 
sufficient for methane measurement in the oil and 
gas flare.  

5. Development, testing, and 
validation of adaptive sampling 

algorithms 

We have achieved the development of a 
comprehensive drone-based system for real-time 
gas detection. Key components include a user 
interface, a physical drone environment, and a 
microcontroller network. We've integrated critical 
hardware components and designed an automated 
drone operation system. We've implemented an 
adaptive sampling algorithm and sophisticated user 
interface for real-time data visualization and 
analysis. 

6. Measurement analysis and analyze 
experimental data and compare with 

design 

Initial drone-based sensing testing has been 
done with commercially available CO2 sensors. 
This commercial sensor will be replaced by our 
package for highly sensitive and selective 
measurement. 

7. Deep learning analysis of optical 
neural network 

After the data-collection deep learning 
analysis will be performed using the in-house 
optical neural network. 

8. Development of Phase II Plan Completed  
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3 Detailed description of Phase I Research and Technical progress 

3.1.1 Task 1: Design, optimization, and fabrication of defect-based slow-light assisted 
waveguide photonic crystal waveguide 

To design and optimize the 2D hexagonal structures, we performed band-structure 
calculations, as illustrated in Figure 1. The band structure analysis shown in Figure 1 (a) and 1(b) 
was calculated for the TE band, while Figure 1 (c) and 1(d) were simulated for the TM bands. We 
employed the Plane Wave Expansion (PWE) simulation method and the Finite Difference Time 
Domain (FDTD) method to extract the dispersion relation of the hexagonal air hole lattice in the 
silicon platform, which has a refractive index of 3.42 and similar dimensions without a central 
defect air hole. It is worth noting that the two analyses conducted using different methods agree 
well for both the TE and TM cases (Yue An, 2023):  

We initially calculated in-plane 
dispersion relations, scanning wavevectors 
between Γ-M-K-Γ for various normalized 
frequencies to determine eigenmode 
solutions. In Figure 1, the solid red lines 
represent transverse magnetic (TM) bands, 
while the solid blue lines represent transverse 
electric (TE) bands, with the cross-hatched 
regions indicating bandgaps. These 
dispersion diagrams reveal notable band gaps 
for both the TE and TM polarizations. The 
dispersion calculations on the left side of the 
diagrams were derived using the Plane Wave 
Expansion (PWE) method, whereas those on 
the right side were obtained using the Finite-

Figure 2 Bandgap analysis for different r/a ratio in hexagonal air 
hole lattice engraved in silicon substrate. 

Figure 1 Comparative analysis of band structure calculations using FDTD (fig. a and c) and PWE simulation (fig. b and d) by 
assuming air holes in the high dielectric material of 3.42 refractive index. Band structure analysis is shown in fig. (a) and (b) are 

calculated for the TE band whereas fig. (c) and (d) are simulated for TM bands. 
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Difference Time-Domain (FDTD) method. Figure 2 depicts the dispersion analysis simulated 
through the PWE for a hexagonal air-hole lattice, employing varying radius-to-period ratios. This 
depiction is highly beneficial for selecting the desired regions of band gaps and determining the 
bandwidth within the band rejection area, all within a single diagram, and across different 
parameter dimensions. 

When calculating the band gap dispersion diagram in a PCWs, it is also important to 
consider the bottom cladding, as it establishes crucial boundary conditions for the propagating 
modes within the waveguide. The presence of the bottom cladding defines the environment in 
which the waveguide operates, and significantly influences the propagation characteristics of the 
guided modes. Moreover, the bottom cladding plays a key role in confining light within the 
waveguide structure and determining the effective refractive index of the guided modes, thereby 
impacting the band structure and dispersion diagram of the waveguide. Additionally, interactions 
between the guided modes in the photonic crystal waveguide and the modes supported by the 
bottom cladding can lead to important mode-coupling effects. We included the bottom cladding 
considering two different materials: SiO2 (Figure 3(a)) and Al2O3 (Figure 3(b)). Figure 3 illustrates 
the separation of modes based on the central plane of the Si slab, defining even parity (in red) and 
odd parity (in blue) within the light cone of the refractive index of the cladding. This figure 
distinctly outlines the bandgap region, which is crucial for designing a defect region that achieves 
a flat band to facilitate slow mode in the waveguide. Given our emphasis on enhancing the light-
analyte interaction, we introduced and optimized the central defect waveguide using the band 
structure from the plane wave expansion method and optimized it through particle swarm analysis 
via the FDTD method.  

After calculating the dispersion characteristics and observing the bandgap location, we 
introduced a defect region to allow the desired mode to propagate in the waveguide with the slow-
light feature. This analysis parallels previous investigations conducted and documented in several 
previous studies. (Lai W.-C. a., 2013). Figure 4 shows the defect-based hexagonal waveguide 
design on an SOI-based platform. Figure 4(a) shows the centrally defined defect waveguide where 
regular holes (with radius “r”) have been replaced with the smaller radius (rs). Figure 4(b) shows 
the calculated detection mode location with the calculated bandgap, and Figure 4(c) illustrates the 
electric-field distribution of the defect mode around λ=3.4µm. The calculated group index for the 
defect mode was 73. It can be seen that the propagating mode is tightly bound in the defect region 
under a flattened dispersion regime, which results in the slow-light characteristics required for 
chip-scale miniaturization.  

a) 

Figure 3 The computed band diagram for hexagonal arranged air holes in silicon slab with (a) bottom SiO2 cladding, and (b) 
bottom sapphire cladding (Sourabh Jain, 2024). 

r/a = 0.255 r/a = 0.25 

(a) (b) 
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3.1.2  Task 2: Design and optimization of the grating coupler for the input-output coupling 

Given the nonpolarization-maintaining nature of mid-IR optical fibers, we addressed this 
limitation by developing polarization-selective grating couplers. These couplers effectively 
demonstrated the polarization rotation function at the operating wavelength. By employing these 
specialized couplers, we efficiently filtered the desired polarization at both the input and output 
stages of the optical system. 

To achieve an optimal performance, we meticulously optimized the parameters of the 
subwavelength structure. This optimization process involved calculating critical parameters such 
as the air trench width, length, and period. We used an effective index approximation method for 
this calculation. This rigorous optimization ensures precise alignment and functioning of the 
grating couplers, thereby enhancing the overall efficiency and effectiveness of the optical system. 
Figure 5 shows the design and optimization of the grating coupler used to couple the optical signals 
in and out between the optical fiber and sensor chip. Figure 5(b-c) and Figure 5(d-e) represent the 
TE- and TM-polarized optical characteristics at λ=3.4µm respectively. Figure 5(c and e) 
summarize our optimized design for TE- and TM-polarization-selective subwavelength grating 
couplers with 25:1 and 43:1 polarization selectivities, respectively, for the respective incident 
angles. In addition, we modeled the 3-dB bandwidth of the coupler as approximately 500 nm. This 
result is encouraging, as it accommodates nano-level fabrication tolerances, ensuring consistent 
and reliable performance. 

Hole of 
radius r 

Defect 
hole of 
radius rs 

a 

So
ur

c

e 

(a) (c) 

Figure 4 (a) Hexagonal photonic crystal waveguide with centrally defined defect region (rs = 0.7r). (b) calculated defect mode 
operating within the calculated bandgap region for h-PCW. (c) defect mode guided within the smaller holes. 
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Figure 5 (a) 3D schematic of the subwavelength grating coupler. (b) and (d) Optimized optical transmission at various input 

angles for the TE and TM inputs, respectively. (c) and (e) illustrate the ratios between the different polarizations at the 
transmission port. 

3.1.3 Task 3: Fabrication of grating coupler and photonic crystal   

 
Figure 6 (a) shows the representation extracted from the GDS file for the pattern transfer to the lithography system. The three 
yellow boxes highlight distinct segments of the photonic structure: the grating coupler, photonic crystal waveguide, and their 

interconnections. The corresponding top-view SEM images of each box are shown in Figures (b). (e) Cross-sectional depiction of 
the strip waveguide post-dicing. (f) Dimensional measurements of the grating coupler obtained from the fabricated device. (g) 

Optical image depicting grating coupler section. 

In Figure 6(a), according to the optimized parameters, we designed two sets of waveguides 
with lengths of 3 and 9 mm. Each set comprises designs featuring different structures, including 
grating couplers with strips, grating couplers with photonic crystal waveguides (PCWs), and 
grating couplers with periodically arranged PCWs. The PCW devices were fabricated on a silicon-
on-insulator (SOI) wafer, featuring a 500 nm thick device layer atop a 3 μm thick buried oxide 
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(BOX) layer. The passive waveguide pattern was transferred to the silicon device layer using 
electron beam lithography and inductively coupled plasma etching techniques. Initially, a 200 nm 
silicon dioxide layer was deposited onto the silicon layer using plasma-enhanced chemical vapor 
deposition, which served as a robust mask for pattern transfer. All components underwent a unified 
patterning step using the JEOL JBX-6000FS electron-beam lithography tool with a ZEP-520A e-
beam resist, followed by a 2-minute development in n-Amyl acetate (ZEP-N50) and rinsing in 
isopropyl alcohol. Subsequently, the e-beam resist pattern was translated to silicon dioxide through 
reactive ion etching employing CHF3 and O2 at a 400 V DC bias and 40 mTorr. This pattern was 
further transferred to silicon via inductively coupled plasma (ICP) etching, utilizing HBr and Cl2 
at 400 W ICP power, 200 W RF power, 10 mTorr pressure, and 20 Torr helium flow for backside 
cooling. Finally, the chip was cleaned with piranha solution, followed by three cycles of 
piranha/HF treatment. Figure 6(b-g) show various SEM and optical images of the fabricated 
devices that were tested in our measurement setup.  

3.1.4 Task 4: Experimental setup and measurement analysis  
Experimental Setup: Figure 7 presents a schematic overview of the gas-sensing 

measurement setup utilized in this study. Light emitted from a tunable pulsed laser (MIRcat-QT) 
undergoes collimation and is then coupled to a single-mode chalcogenide fiber using a biconvex 
lens. The input light, coupled into the fiber via the grating couplers, travels through the photonic 
crystal waveguides, and the transmitted light is subsequently extracted from the waveguide 
through the output gratings. Calibrated concentrations of methane and nitrogen dioxide 
(individually diluted in nitrogen) were introduced from a dynamic dilute system (KOFLOC) to the 
chip. Finally, the output signal was collected by another chalcogenide fiber and detected by an 
InSb detector connected to a lock-in amplifier, enhancing the signal-to-noise ratio. 

Measurement: Initially, we determined the loss of the strip waveguide by creating several 
sets of widths and lengths on the SOI waveguide, as shown in Figure 8. In Figure 8(a), the CAD 
design illustrates the various lengths and widths of waveguides connected to the grating coupler. 
Figure 8(b) shows the optimal performance of the optical loss, which measures 1.27 dB/cm. After 
the initial optical testing, we conducted gas-sensing measurements for CH4 and NO2, as shown in 
Figure 9. In Figure 9 (a) and 9(b), a decrease in intensity of 5.66% and 14.94% respectively at 
3.4µm and 3.42µm, is observed in the transmitted signal through the photonic crystal waveguide 
when CH4 and NO2 are activated with a flow of 25ppm concentration in N2. (It should be noted 
that our existing broadband mid-IR source possesses a minimum wavelength of 3.4 µm which is 
used for our experiments.) Upon deactivation of the standard gas flow, the signals returned to their 
original levels in a pure nitrogen flow. Figure 10 shows the sensing data for a PCW exposed to 
different concentrations of NO2. The absorbance values were calculated from the transmission data 
measured in the presence of different gas concentrations. The solid black line represents the best 
linear fit to the data. There are various sources of noise, including mechanical noise originating 
from vibrations, light source fluctuations, and the noise associated with the InSb photodiode 
detector. A smaller limit of detection is easily feasible by eliminating background noise. The 
dynamic system could provide concentrations down to 5 ppm. The limit of detection (LOD) for 
NO2 of this device, calculated as three times the standard deviation (3σ), was 210 ppb. Table 2 
presents a comparison and summary of the latest advancements in on-chip methane sensor 
performance, as demonstrated through experiments utilizing diverse technologies on various 
material platforms. 
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Table 2: Comparison of on-chip methane sensors 
Spectroscopy type Platform λ (µm) Sensitivity/LOD Analyte/Ref 

Wavelength Modulation Spectroscopy (WMS)Nb2O5 3.3 348ppm CH4 (Bi, 2023) 

Direct Absorption Spectroscopy (DAS) SOI 1.67 100ppm 
CH4 (Lai W.-C. a., 
2011) 

Tunable laser diode absorption 
spectroscopy SOI 1.65 100ppmv 

CH4 (Tombez, 2017)

DAS/WMS Chalcogenide 3.291 155 ppm/75ppm CH4 (Zhao, 2022) 

DAS Chalcogenide 3.291 5.9ppm CH4 (Pi, 2023) 

Our Experiments SOI 3.3*/3.42 3.65ppm/220ppb CH4/NO2 

*Following Beer Lambert’s law, experimental data obtained from methane sensing at 3.4 µm was utilized to 
extrapolate methane absorption details to 3.3 µm. 

 

 
Figure 7 Photographs of the measurement system  The top image presents the entire setup, encompassing a wide tunable laser 

(with a wavelength range of λ=3.4µm to 11µm), lens optics, detector, lock-in amplifier, and camera. In the bottom-left image, the 
sensor chip is aligned with the in-out grating coupler, while the bottom-right image displays a circular gas pipe connected from 

the dynamic dilute system 
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3.1.5 Task 5: Comprehensive Drone-Based Gas Detection System with Adaptive Sampling 

Approach 
With the consultation and support of 

Dr. Maruthi Akella (serving as a consultant in 
Phase I), We develop a comprehensive drone-
based system for detecting and monitoring gas 
concentrations in real-time. Our system 
comprises three essential components: a user 
interface (web application), a physical drone 
environment, and a microcontroller 
communication network. The physical drone 
environment involves careful hardware 
integration, including the mounting of critical 
components such as the proposed miniaturized 
sensor, GPS module, Jetson Nano 
microcontroller, and Arduino Uno controller 
(Figure 11). To develop an automated drone 
operation, data transfer, and algorithm-based 
operation, we initially relied on a commercially available CO2 sensor, for which we designed a 
custom 3D-printed mount strategically positioned to mitigate the interference from propeller 
downwash during flight. Meanwhile, the microcontroller communication network enables 
seamless data transmission between the drone and the ground station, allowing for live monitoring 
and analysis of gas concentration data. This integrated approach forms a robust front-to-back end 

 
Figure 8 (a) CAD design of the various sets of optical waveguides. (b) measured 

optical waveguide loss normalized to the 1mm long waveguide. 

 
Figure 9 Measured transmitted light intensity through the 9 mm long 
PCW when exposed to CH4 (left) and NO2 gas (right) diluted in N2. 

 

 
Figure 10 Sensing data for different 

concentrations of NO2, blue dot is measurement 
data and black solid line is the best linear fit of 

the data. 

Figure 11 Real picture of drone with integrated navigation 
control and data transfer modules. The ground-based station 

(laptop) is used to automate the sampling process with adaptive 
sampling approach. 
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solution for detecting environmental incidents and shows promising precise, cost-effective, and 
scalable gas-monitoring capabilities. 

Additionally, the system incorporates an adaptive sampling algorithm using the Robot 
Operating System (ROS) and the integration of our GPS module and sensor data within the drone's 
flight model, enabling autonomous detection of the targeted gas. In our preliminary study, we 
aimed to detect the point source location of CO2 gas emissions. For this purpose, our algorithm 
initiates data collection at predefined positions and iteratively moves the drone forward, comparing 
CO2 readings at each location to identify points of the maximum concentration gradient. By 
systematically traversing the designated area, the drone autonomously logs the coordinates of areas 
with heightened CO2 levels, thereby facilitating timely response actions. However, our Phase-I 
approach only considers static environmental conditions, and in the next phase of this program, 
we will introduce 3D wind model-based learning to enable autonomous data collection in practical 
dynamic environmental conditions. Furthermore, a sophisticated user interface provides real-time 
data visualization, signal conditioning through noise reduction using baseline correction 
algorithms, and intuitive interaction for sensor calibration and data denoising. The robust data 
storage capabilities of the interface ensure efficient organization and accessibility of sensor data, 
empowering users to make informed decisions based on accurate environmental insights. 
Together, these components and functionalities constitute a versatile and efficient system for 
detecting gas concentrations, addressing environmental challenges, and contributing to public 
health and safety.  

3.1.6 Task 6: Algorithm development for spectral data analysis and graphical user interface   
In this task, we 

developed a comprehensive 
software interface for 
visualizing and processing data 
from gas sensors mounted on 
drones. Developed using 
JavaScript and HTML, it 
incorporates a Python Baseline 
Correction algorithm, 
specifically the "Asymmetric 
Least Squares Smoothing" 
method, ensuring accurate data 
visualization and noise 
reduction. As shown in Figure 12(a), our designed interface features three main tabs: one for file 
uploads and processing, another for displaying interactive graphs, and a third for accessing stored 
data. Through rigorous testing, including real-time visualization and the evaluation of baseline 
correction algorithms, we confirmed the effectiveness of the interface in providing clear gas 
concentration representations. The adoption of the asymmetric least-squares smoothing algorithm 
notably improved visual displays (Figure 12(b)) despite sensor data noise, enhancing user 
interaction and data storage efficiency.  

The part of the work progress mentioned in the Task 5 and 6 can be found at 
(https://www.youtube.com/watch?v=JpRfepijOEs&ab_channel=RayLee) 

Figure 12 (a) Graphical user interface and data management for spectral analysis. 
(b) Denoised and baseline-corrected data using the developed Asymmetric Least 

Squares Smoothing Algorithm. Please note, raw data is obtained from the standard 
FTIR microscope. 



Report # DOE-OO-23917 
Title: Mid-IR UAV-based sensing platform with deep learning to Identify 

and Quantify Gaseous Emission in Gas Flares 
 

13 
 

 
4 Schedule Status 

Proposed Milestones in Phase-I  
1. Milestone 1: Design, and Fabrication of Mid-IR Photonic Crystal Waveguide in 

Silicon Platform 
Status: Completed  
 

2. Milestone 2: Measurements of photonic crystal waveguides 
Status: Completed  
 

3. Milestone 3: Experimentally demonstrate gas sensing performance in photonic crystal 
waveguides  
Status: Completed, Methane and nitrogen dioxide gas measurements at mid-IR 
wavelengths near λ≈3.4µm were performed. Further developments will be performed 
during Phase II.  
 

4. Milestone 4: Development, testing, and validation of adaptive sampling algorithms 
Status: Completed. Further development will be performed during Phase II.  
 

5. Milestones 5: Measurement analysis and comparison with design 
Status: Completed. 
 

5 Research Product  

5.1 Publication 
1. Sourabh Jain, May H. Hlaing, Kang-Chieh Fan, Jason Midkiff, and Ray T. Chen, 

“On-Chip Mid-IR Spectroscopy with Slow Light Enhanced Silicon-on-Sapphire 
Waveguide” JTh2A.62, CLEO-2024 (Accepted). 

2. Sourabh Jain, May Hlaing, Kang Chieh Fan, Jason Midkiff, Shupeng Ning, 
Chenghao Feng, Po Yu Hsiao, Patrick Camp, Ray Chen, “Incubating Advances in 
Integrated Photonics with Emerging Sensing and Computational Capabilities”, 
arxiv.org/abs/2403.19850, 2024. 

3. We are currently writing a technical manuscript entitled “Revolutionizing Methane 
Detection: Cutting-edge Mid-IR On-Chip Spectrometer Enhanced by Slow-Light 
Technology.”  
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