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Abstract: We study scattering amplitudes in massless non-abelian gauge theory where all

outgoing gluons have positive helicity. It has been argued recently by Costello that for a par-

ticular fermion representation (8 fundamentals plus one antisymmetric-tensor representation

in SU(N)) the one-loop amplitudes vanish identically. We show that this vanishing leads

to previously-observed identities among one-loop color-ordered partial amplitudes. We then

turn to two loops, where Costello has computed the all-plus amplitudes for this theory, as

rational functions of the kinematics for any number of gluons using the celestial chiral algebra

(CCA) bootstrap. We show that in dimensional regularization, these two-loop amplitudes are

not rational, and they are not even finite as ϵ → 0. However, the finite remainder for four

gluons agrees with the formula by Costello. In addition, we provide a mass regulator for the

infrared-divergent loop integrals; with this regulator, the CCA bootstrap formula is recovered

exactly. Finally, we use the CCA bootstrap to compute the double-trace terms in the theory

at two loops for an arbitrary number of gluons.
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1 Introduction

The study of scattering amplitudes has seen great advances in recent years. On the more

applied side, computing higher-point and higher-loop amplitudes in the Standard Model has

allowed for more precise comparisons to data collected at particle colliders (see e.g. refs. [1, 2]

and references therein). On the more formal side, amplitudes are fascinating theoretical

objects in their own right. They provide insight into the behavior and symmetries of a

theory, as well as exhibiting previously unforeseen mathematical structures. Having explicit
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analytic expressions for amplitudes is paramount for finding such structures, and for better

understanding aspects of quantum field theory.

Often, direct calculation of amplitudes by evaluating Feynman diagrams can be bypassed

for more computationally efficient methods. In particular, a general understanding of the

singular behavior of amplitudes can allow them to be “bootstrapped” to higher orders in

perturbation theory, or for a greater number of scattering particles. This program has had

remarkable success inN = 4 supersymmetric Yang-Mills in the planar limit (see e.g. refs. [3, 4]

and references therein).

Amplitudes in ordinary, non-supersymmetric Yang-Mills (YM) theory remain more chal-

lenging. There have been remarkable recent advances in computing the full-color all-helicity

massless QCD amplitudes for 2 → 3 scattering at two loops [5–7] and for 2 → 2 scattering at

three loops [8–10]. These amplitudes have a rather intricate analytic structure, and pushing

directly to one more loop or one more leg may be difficult.

Another avenue for progress, which we will pursue here, is to investigate the simplest

possible helicity configuration, called “all-plus”, when all n outgoing gluons have the same

positive helicity. Such amplitudes vanish for any n in any supersymmetric massless gauge

theory [11–13], and therefore they vanish at tree level in YM theory. At one loop, in any

massless gauge theory, their unitarity cuts vanish in four dimensions, and they are infrared

(IR) and ultraviolet (UV) finite, rational functions of the spinor products of the external

momenta, which are known for an arbitrary number of gluons [14, 15].

Self-dual Yang-Mills theory (sdYM) [16] involves path integrals over only self-dual gauge

field configurations. Classically, sdYM is integrable [17–19]. For free plane waves, such

configurations include only the positive-helicity gluons. Interactions between plane waves

include a (−++) vertex [20, 21], but not the parity conjugate (+−−) vertex. At tree level,

one can build the one-minus amplitude (−++ · · ·+) by sewing together (−++) vertices,

but this vanishes on shell. At loop level, the same sewing leads to the one-loop all-plus

amplitudes [22, 23], which validates the suggestion that the non-vanishing of these amplitudes

can be considered an anomaly in the conservation of the currents associated with integrability

of sdYM [24, 25].

At two loops, the connection to sdYM becomes less clear. Two-loop all-plus gauge

theory amplitudes were first computed for four gluons using generalized unitarity [26, 27].

For five external gluons, the leading-color terms were computed first numerically [28], and

later analytically [29, 30]. The nonplanar integrands in the pure-glue theory were found in

ref. [31], and the complete nonplanar results are available in refs. [5, 7]. For n > 5, the

polylogarithmic part of the leading-color result was proposed for arbitrarily many gluons

in ref. [32], and the rational part was computed using an augmented recursion relation for

n = 6 [33] and n = 7 [34]. (The planar n = 6 integrand was presented in ref. [35].) Full-color

results for n = 6 in pure gauge theory were given in ref. [36]. The all-n result for a particular

color structure has been conjectured in ref. [37], and checked numerically for n = 8 and 9

in refs. [38, 39] (where the n < 8 rational results were also checked). Many of these results

rely on D-dimensional generalized unitarity for the construction of integrands, although the
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polylogarithmic results in refs. [30, 32, 40] carry out the cuts four-dimensionally, and the

rational parts in refs. [30, 33, 34, 36, 37, 40] are constructed recursively.

The connection between twistors, string theory, and tree-level gluon scattering amplitudes

of (mostly) positive helicity goes back to Nair [41], Witten [42], the MHV rules of Cachazo,

Svrček and Witten [43], and the derivation of these rules from the YM action by Mason [44].

They have also been derived from a twistor action [45]. These works clarify the relations

between sdYM and tree level amplitudes. The MHV rules were applied to compute tree-

level form factors of operators composed of anti-self-dual field strengths, e.g. tr(F 2
ASD) [46].

The all-plus and one-minus form factors for this operator were computed at one loop in a

non-supersymmetric SU(N) theory in ref. [47].

Recently, a novel bootstrap method for amplitudes in special theories has been suggested

in ref. [48]. It stems from a combination of ideas from celestial holography, twisted holography,

and twistor theory. In some sense, it is a loop level generalization of the earlier tree-level

work [44, 45]. In this method, the cancellation of an anomaly in a theory that lives in twistor

space allows for the existence of a chiral algebra, the elements of which are in bijection with

the states of the theory. The correlators of the chiral algebra correspond to form factors

of the theory. The operator product expansions (OPEs) between the elements of the chiral

algebra are used to constrain the pole-structure of correlators, the residues of these poles

being lower-loop or lower-point correlators. In this way, one can bootstrap the form factors

of these theories.

In ref. [49], this celestial chiral algebra (CCA) bootstrap was used to compute a two-

loop n-gluon all-plus-helicity form factor in sdYM with Weyl fermions transforming in the

representation

R0 ≡ 8F ⊕ 8F̄ ⊕ ∧2F ⊕ ∧2F̄ (1.1)

of the Lie algebra of SU(N). Here F is the fundamental representation, and ∧2F is the

antisymmetric tensor representation. In terms of Dirac fermions, the representation has 8

fundamentals (quarks) plus one antisymmetric tensor. It solves the anomaly cancellation

condition from the six-dimensional twistor-space theory [48],

trR0(X
4) = trG(X

4), (1.2)

for any generator X of the SU(N) Lie algebra, where G denotes the adjoint representation.

The form factor is for an operator 1
2tr(B ∧ B), involving an adjoint-valued, antisymmetric,

anti-self-dual tensor field Bµν , which is used to enforce self-duality of the gauge field.

The sdYM form factor computed in ref. [49] should reproduce scattering amplitudes in

YM for arbitrary n. Due to the anomaly cancellation condition, the one-loop amplitude

should vanish in this theory. As we will see, this condition implies identities among the QCD

all-plus partial amplitudes. The identities include the “three-photon vanishing” relations first

noticed in ref. [15]. A more general set of linear relations was found in ref. [50]; we will show

that these relations are all explained by the vanishing of the one-loop all-plus amplitude for

representation R0.
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The relevant two-loop sdYM form factor was computed for all n in ref. [49]. The four-

point result is

A2-loop
4,sdYM =

g6

(4π)4
ρ

[(
12N − 4

s2 + 4st+ t2

st
− 24

N

)(
tr(1234) + tr(1432)

)
+

(
24 +

24

N

)
tr(12)tr(34)

]
+ C(234),

(1.3)

where

ρ = i
[12][34]

⟨12⟩⟨34⟩
, (1.4)

and s = (k1 + k2)
2 and t = (k2 + k3)

2 are the four-point Mandelstam variables. We use the

shorthand notation

trR(ij · · · k) = trR(t
aitaj · · · tak), (1.5)

which is the trace over the generators ta of the Lie algebra of SU(N) in an arbitrary repre-

sentation R. Throughout this paper, traces without a subscript, as in eq. (1.3), will mean the

trace over fundamental-representation generators. The “+C(234)” instructs one to add the

two non-trivial cyclic permutations of (2, 3, 4) acting on the previous expression.

In this paper, we wish to investigate the relation between the sdYM form factor given in

eq. (1.3) and all-plus amplitudes in ordinary YM. The two-loop all-plus four-point amplitude

in QCD was computed in dimensional regularization in refs. [26, 27]. Here we will replace the

fermion loops for QCD (i.e. for fermions in the fundamental (+ antifundamental) represen-

tation only) with fermion loops in the representation R0 in eq. (1.1). Then we can directly

compare the form factor in sdYM to the two-loop amplitude in YM. The double-trace term

is not provided in ref. [49], so we compute it in Appendix B. Our results agree only after

UV renormalization and after subtracting off the universal two-loop IR divergences given by

Catani [51]. This statement does not disprove eq. (1.3); rather, the discrepancy most likely

arises from the fact that the CCA bootstrap technique keeps all momenta four-dimensional,

in contrast to dimensional regularization. We resolve the discrepancy by using a different

IR regularization scheme, namely a mass regularization of the loop integrands. With this

scheme, the two-loop four-point sdYM form factor equals the YM amplitude, and we suppose

that the same will be true for n > 4. We also argue that the n-gluon sdYM result gives

the finite remainder of the YM amplitude in dimensional regularization. This result could

provide a check of higher-point two-loop all-plus helicity amplitudes, once all the fermionic

and subleading-color terms become available.

2 An overview of the CCA bootstrap

In this section, we provide a non-rigorous overview of a method used to bootstrap certain

two-loop amplitudes [49]. We will refer to this method as the celestial chiral algebra (CCA)

bootstrap. Positive- and negative-helicity states of sdYM on twistor space are in one-to-one

correspondence with local operators in an (extended) chiral algebra. The conformal blocks of
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this algebra are the local operators in the self-dual theory. Therefore, correlation functions of

the chiral algebra in a given conformal block correspond to form factors of the gauge theory.

Moreover, the OPEs in the algebra are collinear limits of states in the field theory. This

suggests that one can use the chiral algebra to “bootstrap” form factors of sdYM by using

the analytic properties of the OPEs.

A requirement for the existence of a chiral algebra is the associativity of its OPEs. As-

sociativity fails at the first loop correction for pure gauge theory, due to a gauge anomaly

arising from the all-plus helicity amplitude on twistor space. In order to remedy this, a

fourth-order scalar field that couples to the Yang-Mills topological term was introduced in

refs. [48, 52, 53]. However, the mechanism can only cancel double-trace contributions, and

so it is necessary for the gauge group to not have an independent quartic Casimir structure.

Alternatively, the anomaly can be cured by introducing fermions in special representations of

the gauge group [49]. In particular, the requirement is that the quartic Casimir in the adjoint

representation is exactly that in the (real) representation R

trG(X
4) = trR(X

4). (2.1)

For SU(N) guage theory, one such example of this type of representation is R0 given in

eq. (1.1).

With this choice of matter representation, the one-loop OPEs are associative. Therefore,

the chiral algebra exists for this theory and can be used to compute form factors. In fact,

associativity constrains all form factors of self-dual Yang-Mills (plus matter) to be rational

functions, with poles only in the spinor products ⟨ij⟩. The chiral algebra OPEs determine all

possible poles in the form factor, and the residues of these poles are chiral algebra correlators

that have fewer external states or are at lower loop order. In this way, one can determine the

n-point form factors inductively.

The form factor of most interest is the one with the operator

1

2
tr(B ∧B), (2.2)

inserted at the origin,1 where B is the adjoint-valued anti-self-dual two-form appearing in the

sdYM Lagrangian [21],

LsdYM = tr(B ∧ F ). (2.3)

Deforming the self-dual Lagrangian by 1
2g

2tr(B ∧B) and integrating out B yields the regular

Yang-Mills Lagrangian, up to a topological term which does not affect the perturbation theory.

So form factors of self-dual Yang-Mills with the operator 1
2tr(B ∧ B) inserted at the origin

are amplitudes of ordinary Yang-Mills theory.

Using the CCA bootstrap, massless QCD amplitudes with matter in the representation

(1.1) were computed at tree level [48], one loop [53], and two loops [49] for the two-minus,

1We mean the origin in position space x. The x-dependence of the correlator is ∝ exp(i
∑n

j=1 kj · x) where
kj are the gluon momenta.
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one-minus, and all-plus helicity configurations, respectively. The two-loop all-plus four-point

sdYM form factor is1

A2-loop
4,sdYM = g6

[
A2-loop

4;1,sdYM

(
tr(1234) + tr(1432)

)
+A2-loop

4;3,sdYMtr(12)tr(34)
]
+ C(234), (2.4)

where

A2-loop
4;1,sdYM =

i

(4π)4

[
(6N − 4− 8N−1)

(
[12][34]

⟨12⟩⟨34⟩
+

[14][23]

⟨14⟩⟨23⟩

)
− (4 + 8N−1)

[13][24]

⟨13⟩⟨24⟩

− 2
[12][34]

⟨12⟩⟨34⟩
⟨13⟩⟨24⟩+ ⟨14⟩⟨23⟩

⟨12⟩⟨34⟩
− 2

[14][23]

⟨14⟩⟨23⟩
⟨13⟩⟨24⟩+ ⟨12⟩⟨34⟩

⟨14⟩⟨23⟩

] (2.5)

and

A2-loop
4;3,sdYM =

8i

(4π)4
(1 +N−1)

(
[12][34]

⟨12⟩⟨34⟩
+

[13][24]

⟨13⟩⟨24⟩
+

[14][23]

⟨14⟩⟨23⟩

)
. (2.6)

This expression can be simplified using the Schouten spinor identity and four-point momentum

conservation, which includes the result that ρ is totally symmetric,2

ρ

i
=

[12][34]

⟨12⟩⟨34⟩
=

[13][24]

⟨13⟩⟨24⟩
=

[14][23]

⟨14⟩⟨23⟩
. (2.7)

Then eqs. (2.5) and (2.6) collapse to eq. (1.3). However, when computing n-point form

factors based on lower-point ones, one must remember not to use lower-point momentum

conservation to simplify the lower-point form factors, as it is the sum of the n gluon momenta

that is conserved, not a subset of them.

With this in mind, the n-point color-ordered amplitude is constructed recursively, based

on eqs. (2.5) and (2.6), and is given by

A2-loop
n,sdYM = gn+2

[ ∑
σ∈Sn/Zn

tr(σ1 · · ·σn)

×
∑

1≤i<j<k<l≤n

A2-loop
4;1,sdYM(σi, σj , σk, σl)

⟨σiσj⟩⟨σjσk⟩⟨σkσl⟩⟨σlσi⟩
⟨σ1σ2⟩⟨σ2σ3⟩ · · · ⟨σnσ1⟩

+

⌊n/2⌋+1∑
c=3

∑
σ∈Sn/Sn;c

tr(σ1 · · ·σc−1)tr(σc · · ·σn)
∑

1≤i<j<k<l≤n

A2-loop
n;c,sdYM(σi, σj , σk, σl)

]
,

(2.8)

1The double-trace term was not provided in ref. [49]. However, Appendix B of ref. [49] outlines the

computation of the color factors, so that one can keep track of the double-trace terms if desired relatively

easily; see Appendix B.
2Our overall normalization of form factors and amplitudes differs from ref. [49] by a factor of i.
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where Sn;c is the subgroup of Sn consisting of permutations that keep the double-trace struc-

ture tr(1, . . . , c− 1)tr(c, . . . , n) invariant. A2-loop
n,c,sdYM(i, j, k, l) is the kinematic factor that mul-

tiplies this double-trace structure for the form factor with energy-level-1 insertions at i, j, k, l

(as explained in Appendix B). It is defined as

A2-loop
n;c,sdYM(i, j, k, l) =

A2-loop
4;3,sdYM(i, j, k, l)⟨ij⟩2⟨kl⟩2

⟨12⟩⟨23⟩ · · · ⟨c− 1, 1⟩⟨c, c+ 1⟩⟨c+ 1, c+ 2⟩ · · · ⟨n, c⟩
(2.9)

for 1 ≤ i < j ≤ c − 1 and c ≤ k < l ≤ n, and it is zero otherwise. In Appendix B, we prove

eq. (2.9) using the CCA bootstrap.

Note that for fermionic matter in R0 there is no triple trace contribution, which would be

present generically. The triple-trace cancellation is a consequence of the recursive construc-

tion, and its absence for n = 4 since tr(ta) = 0 in SU(N).

We wish to check eqs. (2.5)–(2.9) in the simplest case, n = 4, via an alternative method.

We will use the fact that the two-loop four-gluon amplitudes were computed in QCD in

dimensional regularization [26, 27] in a color-decomposed form which makes it straightforward

to modify the fermion representation to R0.

Before doing the two-loop color algebra, we first warm up by computing the one-loop

all-plus n-point amplitude, which vanishes (non-trivially) in this theory due to the anomaly

cancellation (1.2).

3 The One-loop Amplitude

Here, we compute the one-loop all-plus n-point amplitude for massless QCD with matter in

the representation (1.1). Color-decomposition plays a crucial role in this computation. We

begin by reviewing the color-decomposition of one-loop n-gluon amplitudes in QCD for gauge

group SU(N) with matter in the representation NF (F⊕F̄ ), where NF is the number of quark

flavors.

3.1 One-loop in QCD

The one-loop n-gluon QCD amplitude can be color-decomposed as [54]

A1-loop
n,QCD = gn

[
N

∑
σ∈Sn/Zn

tr(σ1 · · ·σn)A[1]
n (σ1, . . . , σn)

+

⌊n/2⌋+1∑
c=3

∑
σ∈Sn/Sn;c

tr(σ1 · · ·σc−1)tr(σc · · ·σn)An;c(σ1, . . . , σn)

+NF

∑
σ∈Sn/Zn

tr(σ1 · · ·σn)A[1/2]
n (σ1, . . . , σn)

]
,

(3.1)

where the An;c are the subamplitudes. The superscript [j] denotes the spin of the particle

circulating in the loop, j = 1/2 or 1. The subamplitudes A
[j]
n are color-ordered.
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The subleading subamplitudes An;c are obtained from the leading ones A
[1]
n through the

permutation sum [55, 56]

An;c(α, β) = (−1)|β|
∑

σ ∈α�βT

A[1]
n (σ1, . . . , σn), (3.2)

where α = (1, 2, . . . , c − 1) and β = (c, c + 1, . . . , n) are cyclicly ordered lists, and βT =

(n, . . . , c + 1, c) is the reverse ordering, with the understanding that α and βT are actually

equivalence classes under cyclic permutations of their arguments, i.e.

α = {(1, 2, . . . , c− 1), (2, . . . , c− 1, 1), . . . , (c− 1, 1, . . . , c− 2)}, (3.3)

βT = {(n, n− 1, . . . , c), (n− 1, . . . , c, n), . . . , (c, n, . . . , c+ 1)}. (3.4)

The symbol α� βT denotes the cyclic shuffle product, which is the set of all permutations

up to cycles of {1, 2, . . . , n} that preserve the cyclic ordering of α and βT , while allowing

all possible relative orderings of the elements of α with respect to the elements of βT . For

example, letting α = (1, 2, 3) and β = (4, 5), we have

α� βT = {(1, 2, 3, 4, 5), (1, 2, 4, 3, 5), (1, 4, 2, 3, 5), (1, 2, 4, 5, 3), (1, 4, 2, 5, 3), (1, 4, 5, 2, 3),
(1, 2, 3, 5, 4), (1, 2, 5, 3, 4), (1, 5, 2, 3, 4), (1, 2, 5, 4, 3), (1, 5, 2, 4, 3), (1, 5, 4, 2, 3)}.

(3.5)

Again, it is understood that the lists within this set are equivalence classes under cyclic

permutations of their arguments.

Another color decomposition also exists for the gluon (adjoint) contribution, in terms of

traces over generators in the adjoint representation of SU(N) [56]

A1-loop
n,QCD =

gn

2

∑
σ∈Sn/Zn

[
trG(σ1 . . . σn)A

[1]
n (σ1, . . . , σn) + 2NF tr(σ1 . . . σn)A

[1/2]
n (σ1, . . . , σn)

]
.

(3.6)

The factor of 1/2 accounts for a reflection identity trG(inin−1 · · · i1) = (−1)ntrG(i1i2 · · · in),
which implies a reflection identity on the color-ordered subamplitude A

[1]
n (which also holds

for A
[1/2]
n ):

A[j]
n (n, n− 1, . . . , 1) = (−1)nA[j]

n (1, 2, . . . , n). (3.7)

The sum in eq. (3.6) includes σT for all σ ∈ Sn/Zn, so the factor of 1/2 is needed.

The equivalence of eqs. (3.1) and (3.2) with eq. (3.6) can be seen by representing the

adjoint representation G in terms of fundamental representations, G⊕1 ∼= F ⊗ F̄ . Evaluating

the F ⊗ F̄ traces we have,

trG(1 · · ·n) = trF⊗F̄ (1 · · ·n) =
∑

I⊂(1,··· ,n)

tr(I)trF̄ (I
c)

= Ntr(1 . . . n) + (−1)nNtr(n . . . 1)

+
∑

∅≠I⊊(1,...,n)

(−1)|I
c|tr(I)tr((Ic)T ), (3.8)
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where Ic is the complement of the sublist I. The notation I ⊂ (1, . . . , n) means that I is a

sublist of (1, . . . , n) with respect to which I is ordered. (In SU(N), tr(ta) = 0, so one can drop

the cases with |I| = 1 and |I| = n− 1.) This relation has a nice diagrammatic representation

in terms of color graphs using the double-line notation, as shown in fig. 1. As a reminder,

in the double-line notation the rule is to sum all 2n ways of attaching the n external lines to

either the inner or outer ring of the annulus, with a minus sign for each attachment to the

inner (F̄ ) ring.

=

Figure 1: Graphical representation of the SU(N) identity G⊕ 1 ∼= F ⊗ F̄ . The diagram on

the right is evaluated by summing over all 2n ways of attaching n external legs to either ring

of the annulus, with a minus sign for each attachment to the inner (F̄ ) ring.

When all external gluons have positive helicities, the color-ordered subamplitudes are

finite, rational functions of spinor products ⟨ij⟩ and [ij] given by [14, 15]

A[1]
n (1, 2, . . . , n) = − i

48π2

∑
1≤i1<i2<i3<i4≤n

⟨i1i2⟩[i2i3]⟨i3i4⟩[i4i1]
⟨12⟩⟨23⟩ · · · ⟨n1⟩

, (3.9)

A[1/2]
n (1, 2, . . . , n) = −A[1]

n (1, 2, . . . , n), (3.10)

where we have takenNp = 2 for A
[1]
n , whereNp is the number of bosonic states minus fermionic

states. Eq. (3.10) is a supersymmetry Ward identity (SWI) [11–13] which holds in D = 4. At

two loops, we will need to use dimensional regularization in D = 4−2ϵ spacetime dimensions,

and we will need the one-loop result for n = 4 to higher orders in ϵ. For this purpose, a

formula for the subamplitudes in terms of a dimensionally-regulated box integral is given in

section 5.

3.2 Including Matter in 8F ⊕ 8F̄ ⊕ ∧2F ⊕ ∧2F̄

According to ref. [49], including matter in the representation (1.1) should nullify the one-loop

all-plus amplitude. This vanishing implies linear relations among the subamplitudes, which

we wish to elucidate. To do so, we need to compute traces over the antisymmetric tensor

representation in terms of traces over fundamental representation generators.

For this computation, we can simply replace the fermion loops in the fundamental repre-

sentation that appear in the one-loop color graphs with loops in the representation (1.1). This
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replacement is permitted for the following reason. Every Feynman diagram can be written

as the product of a color factor and a kinematic factor. The Jacobi identity on the color

factors can be used to remove color graphs with nontrivial trees attached to the loop [56],

and thereby rewrite the matter contribution as a sum of permutations of the “ring” color

diagram in fig. 2. Because the Jacobi identity is independent of the choice of representation

of the fermion loop, we arrive at the same sum over color diagrams, with the same choice

of fermion representation with which we began, without affecting the final kinematic factors.

That is to say, A
[j]
n depends solely on the spin of the particle propagating in the loop, not the

representation of the Lie algebra in which it resides.

R

Figure 2: The one-loop color diagram for matter in an arbitrary representation R of SU(N).

In other words, the contribution from matter in the representation (1.1) to the one-loop

amplitude is

gn
∑

σ∈Sn/Zn

trR0(σ1 · · ·σn)A[1/2]
n (σ1, . . . , σn). (3.11)

The color diagram trR0(σ1 · · ·σn) associated to A
[1/2]
n for this specific choice of representation

is shown in fig. 3. The rectangle covering the lines appearing in the diagrams denotes anti-

symmetrization of those lines, as depicted in fig. 4. The trace over R0 in terms of traces over

the fundamental is worked out in Appendix A, and is

trR0(t
a1 · · · tan) = 8tr(1 · · ·n) + 8trF̄ (1 · · ·n) + tr∧2F (1 · · ·n) + tr∧2F̄ (1 · · ·n)

= 8tr(1 · · ·n) + (−1)n8tr(n · · · 1) +Ntr(1 · · ·n) + (−1)nNtr(n · · · 1)

− 1

2

∑
I⊂(1,...,n)

[
tr(I · Ic) + (−1)ntr((I · Ic)T )

]
+

1

2

∑
∅≠I⊊(1,...,n)

[
tr(I)tr(Ic) + (−1)ntr(IT )tr((Ic)T )

]
,

(3.12)

where I · Ic means to concatenate the lists I and Ic.

Combining the decomposition (3.8) of the adjoint pure-gluon contribution with the R0
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8 + 8 + +

Figure 3: The one-loop color diagram for matter in the representation R0 = 8F ⊕ F̄ ⊕∧2F ⊕
∧2F̄ .

=
1

2

(
−

)

Figure 4: Graphical representation of the antisymmetric tensor product of the fundamental

representation in terms of two fundamental lines.

matter contribution (3.12) yields

trG(1 · · ·n)A[1]
n (1, . . . , n) + trR0(1 · · ·n)A[1/2]

n (1, . . . , n)

= − 8tr(1 · · ·n)A[1]
n (1, . . . , n)− 8tr(n · · · 1)A[1]

n (n, . . . , 1)

+
1

2

∑
I⊂(1,...,n)

[
tr(I · Ic)A[1]

n (1, . . . , n) + tr((I · Ic)T )A[1]
n (n, . . . , 1)

]
+

1

2

∑
∅̸=I⊊(1,...,n)

[
2tr(I)tr((Ic)T )− tr(I)tr(Ic)− tr(IT )tr((Ic)T )

]
A[1]

n (1, . . . , n),

(3.13)

where we have used the SWI (3.10) and the reflection identity (3.7) obeyed by the subampli-

tude. The full amplitude is then given by the sum over all permutations on n letters, modulo

permutations related by cycles and reflections.

We define the subamplitude AR0
n (1, . . . , n) to be the kinematic factor multiplying the

single-trace color factor tr(1, . . . , n) in eq. (3.13). It is given by

AR0
n (1, . . . , n) = −8A[1]

n (1, . . . , n) +

n∑
k=1

∑
σ ∈αk�βk

A[1]
n (1, σ), (3.14)

where αk = (2, . . . , k) and βk = (k+1, . . . , n). The first term comes from the trace over eight

copies of the fundamental. The remaining terms come from the exchange term in the trace
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over the antisymmetric tensor representation,

1

2
trF⊗F (1 · · ·nP ) =

1

2

∑
I⊂(1,...,n)

tr(I · Ic), (3.15)

where P is the permutation operator that exchanges the two F representations. In particular,

the sum over k appears since the list (1, . . . , k) = (1, αk) appears in the sum in eq. (3.15)

for all 1 ≤ k ≤ n. In Appendix C, we show that the subamplitude AR0
n (1, . . . , n) is given by

eq. (3.14).

Since the full amplitude vanishes for the fermion representation R0 and the traces over

the generators are linearly independent in SU(N) (up to dihedral symmetries), eq. (3.14)

must also vanish:

0 = −8A[1]
n (1, . . . , n) +

n∑
k=1

∑
σ ∈αk�βk

A[1]
n (1, σ). (3.16)

Remarkably, these relations are exactly the same all-plus relations conjectured in ref. [50].

Ref. [50] based their formula3 on a decomposition into kinematic diagrams containing a single

totally symmetric quartic vertex, and the remaining vertices are all cubic and totally anti-

symmetric. If one accepts that the twistor-space anomaly cancellation implies the vanishing

of the one-loop all-plus amplitude, then one obtains a proof of this conjecture. In a forth-

coming paper [57], we analyze these all-plus relations, relations among one-loop one-minus

amplitudes, as well as their connections to the twistor-space anomaly cancellation mechanism

that uses a fourth-order pseudoscalar [48, 52, 53].

We can verify eq. (3.16) for the case n = 4. The n = 4 all-plus partial amplitude is

A
[1]
4 (1, 2, 3, 4) = − i

48π2

[23][41]

⟨23⟩⟨41⟩
= − ρ

48π2
. (3.17)

This expression is totally symmetric, as shown in eq. (2.7). For general n, the number of

terms appearing in the sum over k in eq. (3.16) is

n∑
k=1

(
n− 1

k − 1

)
= 2n−1, (3.18)

counting multiplicities. So, for n = 4, there are 23 = 8 terms, all of which are equal, thanks

to the total symmetry of the four-point subamplitude. These eight copies come with the

opposite sign of the 8 terms not in the sum over k, resulting in a total of zero.

Because of the total kinematic symmetry of eq. (3.17), the above verification of eq. (3.16)

for n = 4 is equivalent to checking the anomaly cancellation condition (1.2); both involve the

same symmetrized trace over four generators in the appropriate representations.

3Note that the boundary terms k = 1 and k = n have an empty set for αk and for βk, respectively, so they

each just give A
[1]
n (1, . . . , n). Removing them from the sum over k puts the formula into the precise form in

ref. [50].
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For n > 4, eq. (3.16) is not so easily verified from the explicit formula (3.9). We have

checked [57] that it holds for n ≤ 11 by replacing all spinor brackets with 3n−10 independent

momentum-invariants, using a momentum-twistor-based parametrization [28, 58].

So far we have discussed the consequence of the all-plus vanishing for R0 via the coefficient

of the single trace tr(1 · · ·n). However, eq. (3.13) also has a double-trace contribution, which

must vanish as well. The relations among color-ordered amplitudes that follow from this

vanishing imply the the vanishing of amplitudes with three photons and (n−3) gluons observed

previously [15]. We will discuss these double-trace relations in a forthcoming paper [57].

The vanishing of the one-loop amplitude in the R0 theory suggests that the two-loop

amplitude should be finite and rational; indeed, such behavior is found via the CCA boot-

strap [49]. However, we will see that eq. (3.16) only holds at order ϵ0 in dimensional regular-

ization; it fails at higher orders in ϵ, for the case n = 4 (see section 5). Consequently, the IR

structure of the dimensionally-regulated two-loop result is more intricate, and not even finite

as ϵ → 0.

4 The 2-loop 4-gluon amplitude

We now turn to the computation of the two-loop all-plus four-gluon amplitude for fermions

in the representation R0.

Our starting point is the two-loop four-gluon amplitude in QCD, which is given in ref. [59]

as

A2-loop
4,QCD = Aadj

G +Afund
F , (4.1)

whereAadj
G is the adjoint gluon contribution andAfund

F is the fundamental matter contribution.

Each particle contribution above can be decomposed into a sum of “parent” diagrams,

Arep
X = g6

∑
Di

[
(Crep)

Di
1234A

Di
X1234 + (Crep)

Di
3421A

Di
X3421

]
+ C(234), (4.2)

where each Di corresponds to a parent diagram. The subscript X ∈ {G,F} denotes either

the pure-gluon contribution G, or a fermion F propagating in at least one of the two loops

in the diagrams. The quantities Crep denote the color factors associated to the kinematic

factors AX , with “rep” signifying the gauge group representation in which particle X resides.

The F parent diagrams span the space of all independent four-gluon color-factors with a

fermion-loop contribution and a non-vanishing kinematic factor. This result can be shown by

applying the Jacobi identity suitably to color diagrams containing triangle subdiagrams.

We want to compute the two-loop four-gluon amplitude with matter in the representation

R0,

A2-loop
4 = Aadj

G +AR0
F . (4.3)

4.1 Pure gauge contribution

The color decomposition of the pure Yang-Mills two-loop four-point amplitude is [26, 59]

Aadj
G = g6

(
CP
1234A

P
G1234 + CP

3421A
P
G3421 + CNP

1234A
NP
G1234 + CNP

3421A
NP
G3421

)
+ C(234), (4.4)
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1

2 3

4
P

1

2 3

4
NP

Figure 5: The planar (P ) and non-planar (NP ) parent color diagrams for the pure-gauge

two-loop amplitude.

where CP
1234 and CNP

1234 are color factors given by the planar and non-planar parent diagrams in

fig. 5. They are computed by dressing each vertex and each propagator with the diagrammatic

rules given in eq. (A.3).

The color factors evaluate to

CP
1234 = (N2 + 2)

[
tr(1234) + tr(1432)

]
+ 2
[
tr(1243) + tr(1342)

]
− 4
[
tr(1324) + tr(1423)

]
+ 6Ntr(12)tr(34) ,

(4.5)

CNP
1234 = 2

[
tr(1234) + tr(1432) + tr(1243) + tr(1342)

]
− 4
[
tr(1324) + tr(1423)

]
+ 2N

[
2 tr(12)tr(34)− tr(13)tr(24)− tr(14)tr(23)

]
.

(4.6)

These color factors have the following symmetries, which will prove useful in section 5:

CP
1234 = CP

3412 = CP
2143 = CP

4321 ,

CNP
1234 = CNP

2134 = CNP
1243 = CNP

2143 .
(4.7)

The planar and non-planar primitive amplitudes are given by

AP
G1234 = ρ

{
s(Ds − 2)IP

4

[
λ2
pλ

2
p+q + λ2

qλ
2
p+q

]
(s, t)

+
(Ds − 2)2

s
Ibow-tie
4

[
λ2
pλ

2
q

(
(p+ q)2 + s

)]
(s, t)

}
,

ANP
G1234 = ρs(Ds − 2)INP

4

[
λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

]
,

(4.8)

where we have only included non-vanishing terms at O(ϵ0) in the integral. The three two-loop

momentum integrals that appear above are the planar double box integral IP
4 , the non-planar

double box integral INP
4 , and the bow-tie integral Ibow-tie

4 . They are shown in fig. 6 and are

defined by,

IP
4 [P(λi, p, q, ki)](s, t)

=

∫
dDp

(2π)D
dDq

(2π)D
P(λi, p, q, ki)

p2q2(p+ q)2(p− k1)2(p− k1 − k2)2(q − k4)2(q − k3 − k4)2
, (4.9)
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INP
4 [P(λi, p, q, ki)](s, t)

=

∫
dDp

(2π)D
dDq

(2π)D
P(λi, p, q, ki)

p2q2(p+ q)2(p− k1)2(q − k2)2(p+ q + k3)2(p+ q + k3 + k4)2
, (4.10)

and

Ibow-tie
4 [P(λi, p, q, ki)](s, t)

=

∫
dDp

(2π)D
dDq

(2π)D
P(λi, p, q, ki)

p2q2(p− k1)2(p− k1 − k2)2(q − k4)2(q − k3 − k4)2
, (4.11)

where the ki are the external momenta. The numerator factor P(λi, p, q, ki) is a polynomial

in the external and loop momenta. The vectors λp and λq represent the (−2ϵ)-dimensional

components of the loop momenta p and q. We use the notation λ2
i = λi · λi ≥ 0 and

λ2
p+q = (λp + λq)

2 = λ2
p + λ2

q + 2λp · λq. The explicit values of these integrals, as a series in ϵ

and expressed in terms of polylogarithms, are given in appendix A of ref. [26]. We provide the

bow-tie integrals in eq. (4.23) and the remaining ones in appendix D of this manuscript. The

symmetries obeyed by the color factors (4.7) carry over to the primitive amplitudes (4.8).

4.2 Matter Contribution

In order to compute the color factors for the fermionic matter contribution in the represen-

tation R0, one can simply replace the fundamental loops appearing in the parent diagrams

with a loop in R0. This replacement is allowed, because one can rewrite any color diagram in

terms of parent diagrams using only Jacobi identities, which are independent of the fermion

representation. We denote the color factor given by a diagram Di with matter representation

R0 by RDi
1234. The color decomposition for the amplitude is then

AR0
F = g6

∑
Di

(
RDi

1234A
Di
F1234 +RDi

3421A
Di
F3421

)
+ C(234), (4.12)

where the seven parent diagrams Di are given in fig. 7. The full color factor RDi also has

the addition of the same diagram but with the matter representation arrows pointing in the

1

2 3

4
(a)

p q
1

2 3

4
(b)

q

p

1

2 3

4
(c)

p q

Figure 6: The three scalar integral topologies appearing in the two-loop all-plus amplitude,

with the loop-momentum routings displayed: (a) the planar double box; (b) the non-planar

double box; (c) the bow-tie.
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1

2 3

4P1
1

2 3

4P2
1

2 3

4P3

1

2 3

4P4
1

2 3

4NP1
1

2 3

4NP2

1

2 3

4NP3

Figure 7: Parent diagrams for the fermion loop R0 contributions.

FP4
1234 =

1

2 3

4

+

1

2 3

4

Figure 8: The total contribution to FP4
1234. Notice that the terms trF (12c)trF̄ (c34) and

trF̄ (12c)trF (c34) with partially-reversed arrows do not contribute to its value.

opposite direction. The color factors are then evaluated in terms of traces in the fundamental

with no contracted indices, using the rules given in eq. (A.3).

There is an exception to the evaluation procedure for RP4
1234, since we follow the con-

ventions of ref. [59]. In that reference, the color factors were evaluated by adding to the

diagram P4 the contribution of the anti-fundamental representation only, i.e. they reverse the

direction of the two arrows simultaneously. In particular, the full diagrammatic color factor

for FP4
1234 is in fig. 8. Notice that the F × F̄ and F̄ × F cross terms are not to be included;
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their contributions are already included in the definition of the kinematic factor AP4
F1234. We

must account for this convention by not including any terms of the form F × F̄ , F × ∧2F̄ ,

∧2F × ∧2F̄ , and their conjugates in RP4
1234. Thus, R

P4
1234 is given by

RP4
1234 = 82trF (12c)trF (c34) + 8trF (12c)tr∧2F (c34)

+ 8tr∧2F (12c)trF (c34) + tr∧2F (12c)tr∧2F (c34)

+ conjugate.

(4.13)

With some help from trace identities provided in Appendix A, the results are

RP1
1234 = (N2 + 4N + 2)

[
tr(1234) + tr(1432)

]
+ (−2N + 2)

[
tr(1243) + tr(1342)

]
− 4
[
tr(1324) + tr(1423)

]
+ (6N + 4)tr(12)tr(34) + 4

[
tr(13)tr(24) + tr(14)tr(23)

]
,

(4.14)

RP2
1234 = RP1

1234 , (4.15)

RP3
1234 = (N2 − 6N + 6 + 8N−1)

[
tr(1234) + tr(1432)

]
+ (−2N + 6 + 8N−1)

[
tr(1243) + tr(1342)

]
+ 8N−1

[
tr(1324) + tr(1423)

]
+ (6N − 8N−1)tr(12)tr(34)− 8N−1

[
tr(13)tr(24) + tr(14)tr(23)

]
,

(4.16)

RP4
1234 = (N2 + 10N + 26)

[
tr(1234) + tr(1432)

]
+ (−2N − 10)

[
tr(1243) + tr(1342)

]
+ (−2N − 16− 32N−1)tr(12)tr(34),

(4.17)

RNP1
1234 = 2

[
tr(1234) + tr(1432) + tr(1243) + tr(1342)

]
+ (2N − 4)

[
tr(1324) + tr(1423)

]
+ (4N + 4)tr(12)tr(34) + (−2N + 4)

[
tr(13)tr(24) + tr(14)tr(23)

]
,

(4.18)

RNP2
1234 = RNP1

1234 , (4.19)

RNP3
1234 = (−2N + 2)

[
tr(1234) + tr(1432) + tr(1243) + tr(1342)

]
− 4
[
tr(1324) + tr(1423)

]
+ (4N − 8)tr(12)tr(34) + (−2N − 8)

[
tr(13)tr(24) + tr(14)tr(23)

]
.

(4.20)

The color factors RP1 = RP2 and RNP3 also have the same symmetries as CP and CNP ,

respectively, in eq. (4.7):

RP1
1234 = RP1

3412 = RP1
2143 = RP1

4321 ,

RNP3
1234 = RNP3

2134 = RNP3
1243 = RNP3

2143 .
(4.21)

Again, this is evident directly from the diagrams by applying rotations and reflections to

them, as well as using RP1 = RP2 .

The primitive amplitudes associated to each diagram Di are given in ref. [59]; however

many of the integrals that compose them vanish. Removing the integrals that vanish at O(ϵ0),
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the primitive amplitudes are

AP1
F1234 = ρ

{
sIP

4

[
− 2λ2

pλ
2
p+q

]
(s, t)

− 2
Ds − 2

s
Ibow-tie
4

[
λ2
pλ

2
q

(
(p+ q)2 + s

)]
(s, t)

}
,

AP2
F1234 = ρ

{
sIP

4

[
− 2λ2

qλ
2
p+q

]
(s, t)

− 2
Ds − 2

s
Ibow-tie
4

[
λ2
pλ

2
q

(
(p+ q)2 + s

)]
(s, t)

}
,

AP3
F1234 = ρ(Ds − 2)Ibow-tie

4

[
λ2
pλ

2
q

]
(s, t),

AP4
F1234 = ρ

4

s
Ibow-tie
4

[
λ2
pλ

2
q

(
(p+ q)2 + 1

2s
)]
(s, t),

ANP1
F1234 = ρsINP

4

[
− 2λ2

pλ
2
p+q

]
(s, t),

ANP2
F1234 = ρsINP

4

[
− 2λ2

qλ
2
p+q

]
(s, t),

ANP3
F1234 = ρsINP

4

[
− 2λ2

pλ
2
q

]
(s, t).

(4.22)

The bow-tie integrals are quite simple, as they are products of one-loop triangle integrals,

and are given by [26]

Ibow-tie
4 [λ2

pλ
2
q ](s, t) = −1

4

1

(4π)4
,

Ibow-tie
4 [λ2

pλ
2
q(p+ q)2](s, t) = − 1

36

1

(4π)4
(t− 4s).

(4.23)

We provide the results for the remaining integrals from ref. [26] in appendix D. The primitive

amplitudes AP1 , AP2 , and ANP3 obey the same relations as their corresponding color factors

in eq. (4.21). For later use, notice that these amplitudes are the only ones out of the matter

contribution that contain 1/ϵ poles.

4.3 The full amplitude

The two-loop four-gluon amplitude with fermionic matter in the representation R0 is the sum

of eqs. (4.12) and (4.4). Using the values of the color factors given above, we have

A2-loop
4 = g6

∑
σ∈S4/Z4

A2-loop
4;1 (σ(1, 2, 3, 4))tr(σ(1, 2, 3, 4))

+ g6
∑

σ∈S4/S4;3

A2-loop
4;3 (σ(1, 2, 3, 4))tr(σ(1, 2))tr(σ(3, 4)),

(4.24)

where the A2-loop
4;c , c = 1, 3 are the two-loop color-ordered subamplitudes. The A4;c contain

various powers of N , so we separate them into these different powers as

A2-loop
4;c = A4;c;2N

2 +A4;c;1N +A4;c;0 +A4;c;−1N
−1. (4.25)
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Of course, the A4;c;i are linear combinations of the primitive amplitudes ADi
G1234 and ADi

F1234,

which are given by

A4;1;2(1, 2, 3, 4) = AP
G1234 +AP

G2341 +
4∑

i=1

(
APi

F1234 +APi
F2341

)
, (4.26)

A4;1;1(1, 2, 3, 4) = 2AZ
F1234 + 2AZ

F2341 − 2ANP3
F1234 − 2ANP3

F2341

− 2ANP3
F3421 − 2ANP3

F1423 − 2
4∑

i=1

(
APi

F3421 +APi
F1423

)
+ 2ANP1

F1342 + 2ANP2
F1342 + 2ANP1

F4231 + 2ANP2
F4231,

(4.27)

A4;1;0(1, 2, 3, 4) = 2Aall
1234 + 2Aall

3421 − 4Aall
1342 − 4Aall

4231 + 2Aall
1423 + 2Aall

2341

+ 4
(
AP3

F1234 + perms
)

+ 24AP4
F1234 − 12AP4

F3421 + 4AP4
F1342

+ 4AP4
F4231 − 12AP4

F1423 + 24AP4
F2341,

(4.28)

A4;1;−1(1, 2, 3, 4) = 8
(
AP3

F1234 + perms
)
, (4.29)

A4;3;2(1, 2, 3, 4) = 0, (4.30)

A4;3;1(1, 2, 3, 4) = 6Aall
1234 + 6Aall

3421 − 6AP4
F1234 − 6AP4

F3421

− 2
(
ANP

G1234 +

3∑
i=1

ANPi
F1234 + perms

)
,

(4.31)

A4;3;0(1, 2, 3, 4) = 4
(
AP1

F1234 +AP2
F1234 +ANP1

F1234 +ANP2
F1234 − 2ANP3

F1234 + perms
)

− 16AP4
F1234 − 16AP4

F3421,
(4.32)

A4;3;−1(1, 2, 3, 4) = − 8
(
AP3

F1234 + perms
)
− 32AP4

F1234 − 32AP4
F3421, (4.33)

where Aall
1234 = AP

G1234 +ANP
G1234 +

∑
Di

ADi
F1234, the sum of all 9 primitive amplitudes, and

AZ
F1234 ≡ 2AP1

F1234 + 2AP2
F1234 − 3AP3

F1234 + 5AP4
F1234 . (4.34)

The term “+perms” means to add all non-trivial permutations

(3, 4, 2, 1), (1, 3, 4, 2), (4, 2, 3, 1), (1, 4, 2, 3), (2, 3, 4, 1), (4.35)

of the preceding terms inside the parentheses.

4.4 Dimensional regularization scheme

The primitive amplitudes are evaluated in refs. [26, 59] using dimensional regularization with

the loop momentum being in D = 4−2ϵ > 4 dimensions. The dimension of the “unobserved”

internal gluonic states Ds is left explicit in their results, with Ds ≥ D in intermediate steps

of their calculation. The unobserved states include virtual states in loops and virtual inter-

mediate states in trees. Setting Ds = D corresponds to the standard ’t Hooft-Veltman (HV)

scheme. In the four-dimensional helicity (FDH) scheme, one would set Ds = 4.
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The choice of Ds affects the compliance of the amplitudes with supersymmetry Ward

identities (SWI) [11–13]. In particular, preserving the number of bosonic states relative to

the fermionic states is necessary for preserving the SWI, and the choice Ds = 4 achieves

this [59]. The SWI manifest themselves in terms of the primitive amplitudes as

AP
G1234 +

4∑
i=1

APi
F1234 = 0,

ANP
G1234 +

3∑
i=1

ANPi
F1234 = 0

(4.36)

in the ϵ → 0 limit. These identities do not hold in the HV scheme. Applying the constraints

in eq. (4.36) simplifies the A4;c;i considerably, and we get agreement with eq. (1.3) at order

N2. Moreover, the choice Ds = 4 forces the one-loop partial amplitudes A
[1]
n and A

[1/2]
n to

be equal with opposite signs to all orders in ϵ. For these reasons, we take Ds = 4 when

evaluating the linear combinations of primitive amplitudes.

When eq. (4.36) is applied, the expressions for the A4;c;i in terms of the primitive ampli-

tudes simplify to

A4;1;2(1, 2, 3, 4) = 0, (4.37)

A4;1;1(1, 2, 3, 4) = 2AZ
F1234 + 2AZ

F2341 − 2ANP3
F1234 − 2ANP3

F2341

− 2ANP3
F3421 − 2ANP3

F1423 − 2
4∑

i=1

(
APi

F3421 +APi
F1423

)
+ 2ANP1

F1342 + 2ANP2
F1342 + 2ANP1

F4231 + 2ANP2
F4231,

(4.38)

A4;1;0(1, 2, 3, 4) = 4
(
AP3

F1234 + perms
)
+ 36AP4

F1234 + 36AP4
F2341, (4.39)

A4;1;−1(1, 2, 3, 4) = 8
(
AP3

F1234 + perms
)
, (4.40)

A4;3;2(1, 2, 3, 4) = 0, (4.41)

A4;3;1(1, 2, 3, 4) = 0, (4.42)

A4;3;0(1, 2, 3, 4) = 4
(
AP1

F1234 +AP2
F1234 +ANP1

F1234 +ANP2
F1234 − 2ANP3

F1234 + perms
)
, (4.43)

A4;3;−1(1, 2, 3, 4) = −8
(
AP3

F1234 + perms
)
, (4.44)

where we also made use of the fact that AP4
F1234 = −AP4

F3421, which follows from the reflection

identity of the associated color factor, FP4
1234 = −FP4

3421.

4.5 Evaluating the A4;c;i

The vanishing of A4;1;2, A4;3;2, and A4;3;1 agrees with eq. (1.3). Using the expressions given

in eqs. (4.22) and (4.23), we see that A4;1;0, A4;1;−1, and A4;3;−1 are finite and rational. They
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evaluate to

A4;1;0(1, 2, 3, 4) = − 4ρ

(4π)4
s2 + 4st+ t2

st
, (4.45)

A4;1;−1(1, 2, 3, 4) = − 24ρ

(4π)4
, (4.46)

A4;3;−1(1, 2, 3, 4) =
24ρ

(4π)4
, (4.47)

agreeing with eq. (1.3) at the corresponding powers of N .

The two remaining linear combinations of the primitive amplitudes, A4;1;1 and A4;3;0, do

not simplify further using the SWI, and they explicitly contain non-finite and non-rational

primitive amplitudes (see appendix D). Schematically, they are of the form

A4;1;1(1, 2, 3, 4) =
12ρ

(4π)4
+

1

ϵ
transcendental + transcendental +O(ϵ), (4.48)

and

A4;3;0(1, 2, 3, 4) =
24ρ

(4π)4
+ transcendental +O(ϵ), (4.49)

where transcendental refers to terms that (after multiplying by (4π)4) contain products of

ln, Li2, and Li3, which have as their arguments ±t/s, 1 + t/s, and t/(s + t) and which have

rational coefficients in t/s.

These expressions clearly do not agree with eq. (1.3), because they have transcendental

terms and/or 1/ϵ poles, along with the rational terms shown explicitly, which do appear in

eq. (1.3). This might at first seem to invalidate eq. (1.3). However, a comparison of the whole

amplitude with the expected universal IR behavior of two-loop amplitudes given by [51] sheds

light on the matter. We carry out this comparison next.

5 IR subtraction

In this section, we compare the IR behavior of eqs. (4.48) and (4.49) to that predicted on

general principles. We follow closely the analysis in section 5 of ref. [26]. The principal issue

is that the IR behavior of a two-loop amplitude in dimensional regularization involves 1/ϵ2

poles multiplying the one-loop amplitude, so that higher order terms in ϵ are required. And

while the one-loop amplitude in our case vanishes at O(ϵ0), it does not vanish at higher orders

in ϵ, because the box integrals that enter it do not have the same symmetry properties beyond

leading order in ϵ.

Catani provides a universal factorization formula for dimensionally regulated, UV-renorm-

alized two-loop amplitudes [51]. In the color-space operator formalism, the renormalized

two-loop n-point amplitude is given by

|M(2)
n (µ2; {p})⟩R.S. = I(1)(ϵ, µ2; {p})|M(1)

n (µ2; {p})⟩R.S.

+ I
(2)
R.S.(ϵ, µ

2; {p})|M(0)
n (µ2; {p})⟩R.S. + |M(2),fin

n (µ2; {p})⟩R.S.,
(5.1)
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where |M(L)
n (µ2; {p})⟩R.S. is the vector in color space that represents the renormalized L-loop

amplitude. The subscript R.S. signifies a dependence on the renormalization scheme, and µ

is the renormalization mass scale. For notational simplicity, we set µ = 1. The amplitudes

are recovered by

An(1
a1 , . . . , nan) = ⟨a1, . . . , an|Mn(p1, . . . , pn)⟩, (5.2)

where the ai is the color index of the i-th external parton.

The operators I(1) and I(2) encode the IR divergences of An. For all-plus helicity external

gluons, the tree-level amplitude M(0)
n (µ2; {p}) vanishes, meaning that only I(1) contributes

to the divergences. This operator is given by

I(1)(ϵ; {p}) = cΓ
2

n∑
i=1

n∑
j ̸=i

Ti ·Tj

[
1

ϵ2

(
e−iλijπ

sij

)ϵ

+ 2
γi
T2

i

1

ϵ

]
, (5.3)

where λij = +1 if i and j are both incoming or outgoing partons and λij = 0 otherwise. The

factor cΓ is

cΓ =
1

(4π)2−ϵ

Γ(1 + ϵ)Γ2(1− ϵ)

Γ(1− 2ϵ)
. (5.4)

The color charge Ti = {T a
i } is a vector with respect to the generator label a and an SU(N)

matrix with respect to the color indices of the outgoing parton i. For the adjoint representa-

tion T a
bc = if bac, so T2

i = CA = 2TFN .

For external gluons, γi = b0, where b0 is the one-loop β-function coefficient. For QCD

with NF quark flavors,

bQCD
0 =

11CA − 4TFNF

6
, (5.5)

and for fermions in the representation R0 (see eq. (A.19)),

bR0
0 =

11CA − 4TFNF − 4T∧2FN∧2F

6

∣∣∣∣
TF=1,NF=8,T∧2F=N−2,N∧2F=1

= 3N − 4. (5.6)

Note that eq. (5.3) differs slightly from Catani’s original formula. We have defined our

structure constants such that they are greater by a factor of
√
2, and we have included

a factor of 2cΓ instead of eϵγ due to a different normalization convention for the coupling

expansion parameter (g2 vs. Catani’s αs/(2π) = g2/(8π2)).

For external gluons of positive helicity only, we can rewrite the predicted divergent part

of the renormalized two-loop amplitude in our notation as

A2-loop,ren.
n (1a1 , . . . , nan)

∣∣∣
pred. div.

= g2
∑

1≤i<j≤n

A(i,j)
n (1, . . . , n), (5.7)

where

A(i,j)
n (1, . . . , n) = cΓ(if

aicbi)(ifajcbj )

[
1

ϵ2
(−sij)

−ϵ + 2
bR0
0

CA

1

ϵ

]
×A1-loop

n (1a1 , . . . , ibi , . . . , jbj , . . . , nan)

(5.8)

– 22 –



acts on the colors of legs i and j. Specializing to four points, we only need to evaluate the

case (i, j) = (1, 2),

A(1,2)
4 (1a1 , 2a2 , 3a3 , 4a4) =cΓ(if

a1cb1)(ifa2cb2)

[
1

ϵ2
(−s)−ϵ + 2

bR0
0

CA

1

ϵ

]
×A1-loop

4 (1b1 , 2b2 , 3a3 , 4a4),

(5.9)

as the other five cases are obtained by relabeling i and j.

It should be noted that there are two conventions for the placement of (e−iλijπ/sij)
ϵ in

eq. (5.3). The other convention is to have it multiplying both powers of ϵ rather than just

the ϵ−2 as in eq. (5.3). With our choice of the matter representation, the two choices are

equivalent up to and including O(ϵ0), since the one-loop amplitude vanishes identically at ϵ0,

i.e. [
1

ϵ2
(−sij)

−ϵ + 2
b0
CA

1

ϵ

]
A1-loop

n =

[
1

ϵ2
+ 2

b0
CA

1

ϵ

]
(−sij)

−ϵA1-loop
n +O(ϵ). (5.10)

The one-loop amplitude with matter in the representation R0 decomposes as

A1-loop
4 (1, 2, 3, 4) = g4

[
C1-loop
G1234A

[1]
4 (1, 2, 3, 4) + C1-loop

G1243A
[1]
4 (1, 2, 4, 3) + C1-loop

G1423A
[1]
4 (1, 4, 2, 3)

+ C1-loop
R1234A

[1/2]
4 (1, 2, 3, 4) + C1-loop

R1243A
[1/2]
4 (1, 2, 4, 3) + C1-loop

R1423A
[1/2]
4 (1, 4, 2, 3)

]
.

(5.11)

Here, the C1-loop
X1234 with X ∈ {G,R} are given by ring graphs with the loop being in the

representation X. They are depicted in the left-hand side of fig. 1 for X = G and in fig. 3 for

X = R.

The kinematic factors A
[j]
4 are the familiar one-loop color-ordered all-plus amplitudes for

a particle of spin j propagating in the loop. However, unlike in eq. (3.9), here we will need

the result to higher orders in ϵ:

A
[1]
4 (1, 2, 3, 4) = −(Ds − 2)iρI1-loop

4 [λ4
ℓ ](s, t), (5.12)

A
[1/2]
4 (1, 2, 3, 4) = 2iρI1-loop

4 [λ4
ℓ ](s, t), (5.13)

with

I1-loop
4 [λ4

ℓ ](s, t) =

∫
dDℓ

(2π)D
λ4
ℓ

ℓ2(ℓ− k1)2(ℓ− k1 − k2)2(ℓ+ k4)2
, (5.14)

and λℓ represents the (−2ϵ)-dimensional components of the loop momentum ℓ. The box

integral I1-loop
4 [λ4

ℓ ] is finite as ϵ → 0 so that

A
[1/2]
4 (1, 2, 3, 4) = −A

[1]
4 (1, 2, 3, 4), (5.15)

in this limit, or when Ds = 4. We will keep A
[1]
4 and A

[1/2]
4 distinct for now.
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After inserting eq. (5.11) into eq. (5.9), the two structure constants from the operator

I(1) will be contracted with the different one-loop color coefficients, and these contractions

give rise to two-loop color diagrams,

(if b1a1c)(if ca2b2)C1-loop
Gb1b234

= CP
1234,

(if b1a1c)(if ca2b2)C1-loop
Gb1b243

= CP
1243,

(if b1a1c)(if ca2b2)C1-loop
Gb14b23

= CNP
3412,

(if b1a1c)(if ca2b2)C1-loop
Rb1b234

= RP1
1234,

(if b1a1c)(if ca2b2)C1-loop
Rb1b243

= RP1
1243,

(if b1a1c)(if ca2b2)C1-loop
Rb14b23

= RNP3
3412.

(5.16)

These relations allow us to write A(1,2)
4 as

A(1,2)
4 (1, 2, 3, 4) = −g6

[
1

ϵ2
(−s)−ϵ + 2

bR0
0

CA

1

ϵ

]
×
[
CP
1234A

[1]
4 (1, 2, 3, 4) + CP

1243A
[1]
4 (1, 2, 4, 3) + CNP

3412A
[1]
4 (1, 3, 2, 4)

+RP1
1234A

[1/2]
4 (1, 2, 3, 4) +RP1

1243A
[1/2]
4 (1, 2, 4, 3) +RNP3

3412A
[1/2]
4 (1, 3, 2, 4)

]
.

(5.17)

Now we insert eq. (5.17) into eq. (5.7) and perform the sum over i and j by first adding the

term with (i, j) = (3, 4). We arrive at

A2-loop,ren.
n (1, 2, 3, 4)

∣∣∣
pred. div.

= − g6cΓ

[
1

ϵ2
(−s)−ϵ + 2

bR0
0

CA

1

ϵ

]
×
[
2CP

1234A
[1]
4 (1, 2, 3, 4) + 2CP

1243A
[1]
4 (1, 2, 4, 3)

+
(
CNP
3412 + CNP

1234

)
A

[1]
4 (1, 3, 2, 4)

+ 2RP1
1234A

[1/2]
4 (1, 2, 3, 4) + 2RP1

1243A
[1/2]
4 (1, 2, 4, 3)

+
(
RNP3

3412 +RNP3
1234

)
A

[1/2]
4 (1, 3, 2, 4)

]
+ C(234).

(5.18)

Let us compare the predicted two-loop divergences for matter in the representation R0

eq. (5.18) to those appearing in the actual two-loop amplitude. There are two divergent

integrals contributing to the this amplitude, namely IP
4 [λ2

qλ
2
p+q] = IP

4 [λ2
pλ

2
p+q] and INP

4 [λ2
pλ

2
q ]

[26]. The divergent parts of these integrals are proportional to the one-loop box integral,

IP
4 [λ2

qλ
2
p+q](s, t)

∣∣∣
div.

= −icΓ
1

ϵ2
(−s)−1−ϵ I1-loop

4 [λ4
ℓ ](s, t),

INP
4 [λ2

pλ
2
q ](s, t)

∣∣∣
div.

= −icΓ
1

ϵ2
(−s)−1−ϵ I1-loop

4 [λ4
ℓ ](u, t),

(5.19)
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as expected if eq. (5.18) is to be recovered. A heuristic reason for this factorization is given in

ref. [26], but we briefly summarize it here. When loop momenta are simultaneously soft and

collinear with two adjacent external legs, three consecutive propagators can go on shell. When

they go on shell, the remaining propagators become exactly that of the finite box integral

with external momenta k1, k2, k3, k4 in the planar case and k1, k4, k2, k3 in the nonplanar case.

The (−2ϵ)-dimensional numerator in both cases becomes the numerator λ4
ℓ in eq. (5.14). The

spacetime picture is then a small finite box times an enlarged divergent triangle.

The divergences of the primitive amplitudes in terms of the one-loop amplitudes are given

by

AP
G1234

∣∣∣
div.

= −2cΓ
1

ϵ2
(−s)−ϵA

[1]
4 (1, 2, 3, 4),

ANP
G1234

∣∣∣
div.

= −cΓ
1

ϵ2
(−s)−ϵA

[1]
4 (1, 3, 2, 4),

AP1
F1234

∣∣∣
div.

= AP2
F1234

∣∣∣
div.

= −cΓ
1

ϵ2
(−s)−ϵA

[1/2]
4 (1, 2, 3, 4),

ANP3
F1234

∣∣∣
div.

= −cΓ
1

ϵ2
(−s)−ϵA

[1/2]
4 (1, 3, 2, 4),

ADi
F1234

∣∣∣
div.

= 0,

(5.20)

where Di ∈ {P3, P4, NP1, NP2} for the last equality. Plugging these formulae into the sum

of (4.12) and (4.4) yields

A2-loop
4 (1, 2, 3, 4)

∣∣∣
div.

= g6
[
CP
1234A

P
G1234 + CP

3421A
P
G3421 + CNP

1234A
NP
G1234 + CNP

3421A
NP
G3421

+RP1
1234A

P1
F1234 +RP1

3421A
P1
F3421 +RP2

1234A
P2
F1234 +RP2

3421A
P2
F3421

+RNP3
1234A

NP3
F1234 +RNP3

3421A
NP3
F3421

]∣∣∣
div.

+ C(234)

= −g6cΓ
1

ϵ2
(−s)−ϵ

[
2CP

1234A
[1]
4 (1, 2, 3, 4) + 2CP

1243A
[1]
4 (1, 2, 4, 3)

+
(
CNP
3412 + CNP

1234

)
A

[1]
4 (1, 3, 2, 4)

+ 2RP1
1234A

[1/2]
4 (1, 2, 3, 4) + 2RP1

1243A
[1/2]
4 (1, 2, 4, 3)

+
(
RNP3

3412 +RNP3
1234

)
A

[1/2]
4 (1, 3, 2, 4)

]
+ C(234),

(5.21)

where we used the fact that RP1
1234 = RP2

1234. This matches eq. (5.18) at the level of the

(−s)−ϵ/ϵ2 term, i.e. except for the term proportional to bR0
0 .

Now the expression (5.21) is for the unrenormalized two-loop amplitude, whereas the

Catani formula (5.18) predicts the UV renormalized one. The renormalized amplitudeA2-loop,ren.
4

is given by adding the MS counterterm

−4g2cΓb
R0
0

1

ϵ
A1-loop

4 (1, 2, 3, 4). (5.22)
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No other terms are needed due to the vanishing of the all-plus helicity amplitude at tree level.

To arrive at the term proportional to bR0
0 in eq. (5.18), we use the color conservation

identity
n∑

i=1

Ti = 0 (5.23)

to write

nCA|Mn⟩ =
n∑

i=1

T2
i |Mn⟩ = −2

∑
1≤i<j≤n

Ti ·Tj |Mn⟩. (5.24)

This identity allows us to write the counterterm (5.22) in our notation as

−4g2cΓb
R0
0

1

ϵ
A1-loop

4 (1, 2, 3, 4) = −g2cΓ
bR0
0

CA

1

ϵ

(
4CAA1-loop

4 (1, 2, 3, 4)
)

= −2g2cΓ
bR0
0

CA

1

ϵ

∑
1≤i<j≤4

(if biaic)(if cajbj )

×A1-loop
4 (1a1 , . . . , ibi , . . . , jbj , . . . , 4a4).

(5.25)

Now it matches precisely the bR0
0 -containing term of eq. (5.18), in the form of eqs. (5.7) and

(5.8).

Thus, once the UV counterterm is included, we have exact agreement between the infrared

divergences of the renormalized two-loop amplitude and the ones predicted by eq. (5.18). In

other words, the non-bR0
0 , 1/ϵ2 term of eq. (5.18) precisely matches the divergences of the

unrenormalized two-loop amplitude.

Next we evaluate eq. (5.18), but including also the O(ϵ0) terms. We subtract the result

from the UV renormalized two-loop amplitude, in order to obtain the Catani finite remainder,

M(2),fin
4 . This result exactly yields the CCA bootstrap formula (1.3). In other words, eq. (1.3)

gives the IR-subtracted two-loop amplitude. In the next section, we explore how to avoid an

explicit IR divergence and subtraction.

6 Mass regularization

The requirement to subtract the IR divergences is unsatisfactory for the following reasons.

Firstly, the CCA bootstrap requires no such subtraction; it is a completely finite procedure.

Secondly, there is no dimensional regularization prescription for sdYM, since its definition

requires the four-dimensional Levi-Civita tensor. In some sense, the IR subtraction remedies

a problem that is introduced by our lack of understanding of how to regulate Feynman

integrals in sdYM. We remedy this by regulating the internal propagators that give rise to

IR divergences of the loop momenta with a particle mass. Then we can take ϵ → 0 without

encountering any poles in ϵ.

There is a fundamental difference between mass regularization and dimensional regular-

ization in when small terms can be neglected. In dimensional regularization, divergences are
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powers of 1/ϵ, whose degree rises with the loop order. Therefore terms suppressed by powers

of ϵ in lower-loop amplitudes generally have to be retained. On the other hand, when reg-

ulating with a particle mass m, divergences are logarithmic in m. Hence power-suppressed

contributions can always be dropped, because any positive power of m vanishes much faster

than (any power of) lnm increases, in the limit m → 0.

Mass regularization has previously been used in planar N = 4 supersymmetric YM [60–

64]. Our method for assigning a mass to the propagators differs from these examples. Indeed,

planar N = 4 supersymmetric YM has dual conformal symmetry, which is closely related to

these regularization schemes. It is not clear whether one can find a fully consistent massive

regulator of nonplanar YM theory, given that the number of helicity states for massive vector

bosons does not match the massless case. Hence, we do not claim that our method can

consistently reproduce the correct IR divergences in the massless limit for more complicated

amplitudes or integrals. We are merely regulating the few divergent integrals that appear in

the all-plus four-point case.

In our scheme, a propagator is given a mass m when a limit of the loop momentum

that puts it on shell also results in one or more of its neighboring propagators going on

shell. The mass prevents the other propagators from diverging when the initial one does. For

example, in the case of diagram (a) of fig. 6, when the loop momentum p → k1, all three of

(p−k1)
2, p2, and (p−k1−k2)

2 approach zero. So the mass m is added to the first propagator

(p−k1)
2 7→ (p−k1)

2−m2. Now, no two or more neighboring propagators can simultaneously

diverge. We could have achieved the same result by adding a mass m to both the p2 and

(p−k1−k2)
2 propagators; however, adding the mass to (p−k1)

2 is the minimal solution and

leads to very simple integrals.

It is unnecessary to add a mass to propagators containing loop momentum ℓ if the integral

has a numerator factor of (λ2
ℓ )

n for some positive integer n. This purely (−2ϵ)-component of

ℓ vanishes when ℓ is purely four-dimensional, which in turn prevents the appearance of the

soft or collinear IR singularity associated with the divergence of a propagator. This argument

includes cases where ℓ is a sum (or difference) of loop momenta.

For the integrals appearing in eqs. (4.8) and (4.22) and depicted in fig. 6, only the

following replacements are necessary:

IP
4 [λ2

pλ
2
p+q] : (q − k4)

2 7→ (q − k4)
2 −m2,

IP
4 [λ2

qλ
2
p+q] : (p− k1)

2 7→ (p− k1)
2 −m2,

INP
4 [λ2

pλ
2
p+q] : (q − k2)

2 7→ (q − k2)
2 −m2,

INP
4 [λ2

qλ
2
p+q] : (p− k1)

2 7→ (p− k1)
2 −m2,

INP
4 [λ2

pλ
2
q ] : (p+ q + k3)

2 7→ (p+ q + k3)
2 −m2.

(6.1)

These new integrals can be evaluated directly using Feynman parameters, giving

IP
4,m2 [λ

2
pλ

2
p+q] = IP

4,m2 [λ
2
qλ

2
p+q] = INP

4,m2 [λ
2
pλ

2
q ] =

s−1

6(4π)4
[
Li2(1 + s/m2)− ζ2

]
+O(ϵ), (6.2)

INP
4,m2 [λ

2
pλ

2
p+q] = INP

4,m2 [λ
2
qλ

2
p+q] = O(ϵ), (6.3)
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where ζ2 = ζ(2) = Li2(1) = π2/6. The bow-tie integrals remain unchanged and are given in

eq. (4.23). In the m → 0 limit, eq. (6.2) has the asymptotic behavior

s−1

6(4π)4
[
Li2(1 + s/m2)− ζ2

]
∼ − s−1

6(4π)4

[
1

2
ln2
(
m2

−s

)
+ 2ζ2

]
+ O(m2). (6.4)

The divergent log term agrees with the leading-order divergent term in the dimensionally-

regulated integrals eqs. (D.1) and (D.4), i.e. the coefficient of the leading-order 1/ϵ2 equals

the coefficient of 1
2 ln

2(−m2/s). Although it is necessary to take m → 0 to make apparent

the IR divergence, we will continue to work with the expression for generic m, eq. (6.2), as it

will not affect our analysis below.

These mass-regulated integrals are much simpler than their purely dimensionally-regulated

counterparts. We can understand these results heuristically by considering the IR divergences

appearing in the original integrals.

First consider eq. (6.2). When m = 0, the divergent terms in ϵ are given by eq. (5.19),

the massless triangle times the massless box. The mass-regulated planar integral in eq. (6.2)

should factorize similarly when m → 0. The mass-regulated triangle is

I1-loop
3,m2 [1](s) =

i

(4π)2
s−1
[
Li2(1 + s/m2)− ζ2

]
+O(ϵ), (6.5)

and the box to zeroth order in ϵ is

I1-loop
4 [λ4

ℓ ] = − i

(4π)2
1

6
+O(ϵ). (6.6)

So, eq. (6.2) indeed agrees with the divergence statement when m → 0. Surprisingly though,

these mass-regulated two-loop integrals are exactly the product of the mass-regulated triangle

and the massless box, even for generic mass m.

As a check on the results, consider the s-channel cut in four dimensions of IP
4,m2 [λ

2
pλ

2
p+q],

where we cut the propagators neighboring the massive one, which corresponds to cutting the

right box vertically in fig. 6(a). Indeed, the unitarity cuts can be performed in four dimensions

since the mass-regulated double box is finite a priori. This produces a factor of the massless

box within the phase-space integral, which is constant in four dimensions. So, the massless

box can be factored out of the phase-space integral, and what remains within the integral is

nothing more than the s-channel cut of the mass-regulated triangle. In other words,

Discs>0 IP
4,m2 [λ

2
pλ

2
p+q] = I1-loop

4 [λ4
p] Discs>0 I1-loop

3,m2 [1]. (6.7)

This is the only non-vanishing four-dimensional cut of the double-box, since all other cuts

vanish due to the vanishing of the λ2 numerator factors in four dimensions. The discontinuity

of the mass-regulated triangle is easily computed from eq. (6.5) to be

Discs>0 I1-loop
3,m2 [1] =

i

(4π)2
2πi

log(1 + s/m2)

s
. (6.8)
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Since
∣∣I1-loop

3,m2 [1](s)
∣∣ → 0 sufficiently fast as |s| → ∞, we can use a dispersion relation to

compute the triangle integral from its discontinuity along s > 0. In other words,

IP
4,m2 [λ

2
pλ

2
p+q](s) =

I1-loop
4 [λ4

p]

2πi

∫ ∞

0
dx

Discx≥0 I1-loop
3,m2 [1]

x− s
= I1-loop

4 [λ4
p] I

1-loop
3,m2 [1](s). (6.9)

We can understand the vanishing of the integrals in eq. (6.3) by again understanding the

IR divergences when m = 0. Consider the divergences of INP
4,m2 [λ

2
pλ

2
p+q]. The only propagators

that are not suppressed by a (−2ϵ)-component of the loop momenta are q2 and (q−k2)
2. When

the latter goes on shell, the former does as well. This gives a O(1/ϵ) divergent term, since

they are neighboring propagators, multiplied by a box with a doubled propagator, denoted

by I1-loop
4 [λ4/(p − k1)

2], which is O(ϵ) because it is related to an UV finite integral in six

dimensions. The result is an integral that begins at O(ϵ0). Following our procedure for mass

regularizing, the only propagator given a mass is (q − k2)
2. This replaces the O(1/ϵ) term

by a O(ϵ0) one, but it is still multiplied by a box of O(ϵ). Thus, the mass-regulated integral

is O(ϵ). Notice also that there is no four-dimensional unitarity cut of this integral, so its

vanishing is consistent with the vanishing of its cuts.

Mass regularization of the integrals renders the primitive amplitudes (4.8) and (4.22)

much simpler. Substituting eqs. (6.2) and (6.3) into eq. (4.22) yields

AP1
F1234 =

ρ

(4π)4

{
− 1

3

[
Li2(1 + s/m2)− ζ2

]
+

1

9

(
t

s
− 4

)
+ 1

}
+O(ϵ),

AP2
F1234 =

ρ

(4π)4

{
− 1

3

[
Li2(1 + s/m2)− ζ2

]
+

1

9

(
t

s
− 4

)
+ 1

}
+O(ϵ),

AP3
F1234 = − ρ

(4π)4
1

2
,

AP4
F1234 = − ρ

(4π)4

{
1

9

(
t

s
− 4

)
+

1

2

}
,

ANP1
F1234 = O(ϵ),

ANP2
F1234 = O(ϵ),

ANP3
F1234 = − ρ

(4π)4
1

3

[
Li2(1 + s/m2)− ζ2

]
+O(ϵ).

(6.10)

The above primitive amplitudes are now a sum of rational terms and terms of uniform tran-

scendental weight two, which contain the mass regulator m. In particular, ANP1
F and ANP2

F

now vanish at O(ϵ0), and AP1
F = AP2

F and ANP3
F share the same transcendental terms. Inspec-

tion of eqs. (4.38) and (4.43) shows that no transcendental terms remain in A4;1;1 and A4;3;0

when eq. (6.10) is used,

A4;1;1(1, 2, 3, 4) =
12ρ

(4π)4
+O(ϵ), (6.11)

and

A4;3;0(1, 2, 3, 4) =
24ρ

(4π)4
+O(ϵ), (6.12)
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and we now obtain complete agreement with eq. (1.3). Notice that this is true even without

taking the limit m → 0.

7 Conclusions and outlook

In this paper, we used previously-derived results [26, 59] and color algebra to perform a

check in dimensional regularization of the two-loop four-point all-plus result (1.3) from the

CCA bootstrap. The primitive amplitudes of refs. [26, 59] begin at O(1/ϵ2) and contain

transcendental functions. By placing the matter in the representation R0, we found that the

color-ordered two-loop amplitudes in this theory contain both 1/ϵ poles and transcendental

terms. At first sight, this might seem to contradict eq. (1.3). However, Catani’s universal

factorization formula (5.1) exactly predicts these terms, and our computation agrees with

(1.3) after we subtract the universal IR divergences.

The discrepancy arises due to the non-vanishing of the one-loop amplitude in this theory

at O(ϵ). We remedy this by mass-regulating the already dimensionally-regulated integrals

comprising the primitive amplitudes (4.8) and (4.22). All appearances of the dimension

regulator ϵ are replaced by expressions involving the mass regulator m, resulting in finite

quantities when m ̸= 0. The new mass-regulated amplitudes give exact agreement with

eq. (2.4), even for generic mass m. Removing the dependence on ϵ is essential for comparing

the YM and sdYM results. The self-dual equations explicitly depend on the Levi-Civita

tensor, which does not have a sensible definition for non-integer dimensions. So, the CCA

bootstrap must implicitly use a different IR regularization scheme that involves keeping all

momenta in four dimensions. Mass regularization appears to be such a scheme, at least at

four points, and a suitable mass regularization for higher-point all-plus amplitudes seems

likely to lead to agreement with eq. (2.8) as well.

Despite the discrepancy between the sdYM form factor and the YM amplitude in di-

mensional regularization, we are confident in the validity of eq. (2.8) when using a suitable

mass regulator. Taking all possible four-dimensional unitarity cuts of the two-loop all-plus

sdYM form factor shows that it cannot have any branch cuts in the R0 theory. Moreover,

the vanishing of the one-loop form factor forces the two-loop one to behave like a tree-level

form factor in collinear limits, suggesting that the two-loop one is finite. We believe that

eq. (2.8) predicts the finite remainder of the YM amplitude in dimensional regularization. In

particular, we predict that

A2-loop
n = A2-loop

n

∣∣
pred. div.

+A2-loop
n,sdYM, (7.1)

where A2-loop
n

∣∣
pred. div.

is the predicted IR divergence of Catani given by eqs. (5.7) and (5.8),

including its O(ϵ0) parts, and A2-loop
n,sdYM is the two-loop result computed from the CCA boot-

strap given by eq. (2.8). Evaluating A2-loop
n

∣∣
pred. div.

to O(ϵ0)requires knowing the one-loop

all-plus n-point amplitude to O(ϵ2). A closed-form formula is not known for this, but in prin-

ciple it can be computed for each n by using a basis of scalar integrals. The complete basis
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to all-orders in ϵ includes pentagons, boxes, bubbles and triangles [65–69], the coefficients of

which can be computed using D-dimensional unitarity [70, 71].

The combination of the single-trace term computed in ref. [49] and the double-trace

term that we have computed, eq. (2.8), is a complete two-loop n-point result for a non-

supersymmetric gauge theory with matter. We have conjectured that the YM amplitude has

the form given by (7.1) with dimensional regularization as the IR regulator. Mass regulariza-

tion of the four-point integrals allows for complete agreement between the YM amplitudes and

the sdYM form factor. We further conjecture that this scheme, and perhaps other IR regular-

ization schemes which do not change the dimensions of spacetime, give complete agreement

between the two approaches at higher points. In light of the simple behavior of the two-loop

all-plus four-point amplitudes when dimensional regularization is combined with suitable mass

regularization, it may be worth investigating similar mass regularization for other types of

gauge theory amplitudes. Although the two-loop all-plus n-point amplitude was not com-

puted in QCD, where the fermions are in the representation NF (F ⊕ F̄ ), methods similar

to the CCA bootstrap, perhaps when combined with other bootstrap methods, may lead to

analytic progress in the computation of higher-order corrections in more realistic theories.
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A Colorful identities

In order to evaluate the color factors in terms of traces over the fundamental representation

without any contracted indices, we make use of various SU(N) identities. In this appendix,

we let R be an arbitrary irreducible representation of SU(N). The fundamental (defining)

representation is denoted by F , and G denotes the adjoint representation.

In the main text, we normalize the generators such that the Dynkin index of the funda-

mental representation TF is unity, i.e.

tr(tatb) = δab ⇐⇒ TF = 1. (A.1)

Furthermore, we define the the SU(N) structure constants fabc to be real and normalized

such that

ifabc = tr([ta, tb]tc). (A.2)
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We will make use of color diagrams to describe one- and two-loop color factors. The rules

for evaluating color diagrams are

b c

a

= ifabc

a b = δab

j
R

i
R

a

= (taR)
i
j

i j
R

= (δR)
i
j

(A.3)

where taR is an SU(N) generator in a representation R. If the “R” is omitted, then it is

implied that the generators are in the fundamental/anti-fundamental representation. The

graphical depiction of the antisymmetric tensor product of the fundamental ∧2F is given in

fig. 4.

In this appendix, we will keep the Dynkin index of the fundamental representation TF

arbitrary. It is set to 1 outside this appendix.

Recall that the quadratic Casimir in R is defined by

taRt
a
R = CR · idR . (A.4)

Two other contractions of generators that appear in the computations are

tcRt
a
Rt

c
R =

(
CR − CG

2

)
taR , (A.5)

tcRt
a
Rt

b
Rt

c
R = (CR − CG)t

a
Rt

b
R + (ifadc)(if ceb)tdRt

e
R . (A.6)

The SU(N) Fierz identity,

(ta)ij(t
a)kl = TF δ

i
lδ

k
j − TF

N
δijδ

k
l , (A.7)

when in the presence of other matrices and inside traces is given by

tr(XtaY taZ) = TF tr(Y )tr(XZ)− TF

N
tr(XY Z), (A.8)

tr(WtaX)tr(Y taZ) = TF tr(ZY XW )− TF

N
tr(WX)tr(Y Z), (A.9)

tr(WtaX)Y taZ = TFY XWZ − TF

N
tr(WX)Y Z. (A.10)
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=
1

2
− 1

2

Figure 9: Color diagram for the trace over the representation ∧2F in terms of traces over

the fundamental F .

The trace over the exterior square of the fundamental ∧2F has a realization as traces

over F . Letting P : F ⊗ F → F ⊗ F be the permutation operator, the exterior square is the

image of the projector 1
2(1− P ). Thus, the trace over ∧2F is given by

tr∧2F (t
a1 · · · tan) = trF⊗F (t

a1 · · · tan 1
2(1− P )). (A.11)

The generators of F ⊗ F are related to the generators of F by

taF⊗F = ta ⊗ 1 + 1⊗ ta, (A.12)

which implies that there are 2n contributions to the trace over n generators taiF⊗F , according

to the choice of first or second term in eq. (A.12). In other words,

trF⊗F (t
a1 · · · tan) =

∑
I⊂(1,...,n)

tr(tI)tr(tIc), (A.13)

where tI denotes the product tai1 · · · taim for I = (i1, . . . , im) with the ordering inherited from

the ordered list (1, . . . , n), and Ic is the complement of I, again with the inherited ordering.

Similarly,

trF⊗F (t
a1 · · · tanP ) =

∑
I⊂(1,...,n)

tr(tItIc), (A.14)

so that

tr∧2F (t
a1 · · · tan) = 1

2

∑
I⊂(1,...,n)

[
tr(tI)tr(tIc)− tr(tItIc)

]
. (A.15)

Note that

t∅ = 1, (A.16)

with this notation, so

tr(t∅) = tr(1) = N. (A.17)

The associated color diagram for the trace over ∧2F is shown in fig. 9. It uses the diagramatic

rules for antisymmetrizing two lines shown in fig. 4.
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The Dynkin index of ∧2F is read off from

tr∧2F (t
atb) =

1

2

[
2Ntr(tatb)− 4tr(tatb)

]
= TF (N − 2)δab, (A.18)

i.e.

T∧2F = TF (N − 2). (A.19)

The quadratic Casimir is then

C∧2F =
T∧2F dimG

dim∧2F
= 2TF (N − 1− 2N−1). (A.20)

B Computation of the double-trace kinematic terms in eq. (2.8)

The color factors computed in ref. [49] leave out the double-trace terms. Here, we recompute

these color factors while keeping track of the double-trace structure. Afterwards, we use the

CCA bootstrap to prove eq. (2.9). In order to do this, we first introduce some notation from

ref. [49].

The momenta for massless states satisfy

pαα̇ = λαλ̃α̇, (B.1)

where λ, λ̃ are two-component Weyl spinors. We can scale λ, λ̃ while keeping the momentum

p fixed such that

λ = (1, z). (B.2)

The parameter z is then the coordinate on the CP1 where the chiral algebra lives. A massless

state of energy ω is described by a function of z and λ̃. For a set of n outgoing momenta

{pi}, the familiar spinor brackets are defined by

⟨ij⟩ = 2πi(zi − zj), (B.3)

[ij] = −ϵα̇β̇λ̃
α̇
i λ̃

β̇
j . (B.4)

Positive- and negative-helicity states of a gauge theory are denoted by

Ja[ωλ̃](z) and J̃a[ωλ̃](z), (B.5)

respectively, where a is the color index. The states can be expanded in a series in ω as

Ja[ωλ̃](z) =
∑
k

ωkJa[k](z),

J̃a[ωλ̃](z) =
∑
k

ωkJ̃a[k](z),
(B.6)
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where Ja[k], J̃a[k] are homogeneous polynomials of order k in λ̃. These quantities are ex-

panded further as

Ja[k](z) =
∑

r+s=k

1

r!s!

(
λ̃1̇

)r(
λ̃2̇

)s
Ja[r, s](z),

J̃a[k](z) =
∑

r+s=k

1

r!s!

(
λ̃1̇

)r(
λ̃2̇

)s
J̃a[r, s](z).

(B.7)

The states Ja[r, s], J̃a[r, s] generate the (extended) chiral algebra for pure sdYM living on the

z-plane. These states should be thought of as soft modes, since they result from an expansion

in ω.

The OPEs in the chiral algebra correspond to collinear limits of states in sdYM. At

tree-level, the OPEs are

Ja[λ̃i](zi)J
b[λ̃j ](zj) ∼ ifabc 1

⟨ij⟩
Jc[λ̃i + λ̃j ](zi), (B.8)

Ja[λ̃i](zi)J̃
b[λ̃j ](zj) ∼ ifabc 1

⟨ij⟩
J̃c[λ̃i + λ̃j ](zi). (B.9)

We have redefined the normalization of the λ̃ in order to remove the appearance of the energy

ω. Notice that the structure constants used here differ from that of ref. [49] by a factor of

i. The higher loop-order OPEs (including those with matter) are found in ref. [49], but they

are not necessary for our purposes here.

As mentioned in the main body of the paper, correlation functions of the chiral algebra

in a given conformal block are form factors of sdYM with an operator insertion O at a point

in spacetime corresponding to the conformal block. We denote these correlators as

⟨O|J [λ̃1](z1) · · · J̃ [λ̃k](zk) · · · ⟩. (B.10)

Expanding the external states as a sum of soft modes, we are left with computing correlators

of the form

⟨O|J [k1](z1) · · · J̃ [k2](zk) · · · ⟩. (B.11)

Since correlators on twistor space must not scale with dilations of R4, the scaling dimensions

of the external states must sum to minus the scaling dimension of the operator. Positive-

helicity states J [k] contribute dimension −k, while negative-helicity states J̃ [k] contribute

−k − 2.

The OPEs constrain the poles of the correlators. In order to compute the two-loop

amplitude eq. (2.8), only knowledge of tree-level and one-loop OPEs are needed. In particular,

poles that involve J [0] and J [1] insertions are dictated by tree-level and one-loop OPEs,

respectively.

The chiral algebra also places constraints on terms which are regular in a given limit.

The algebra can be derived directly via Koszul duality [48]. This involves coupling J [k] and

J̃ [k] to the gauge field and the auxiliary field of sdYM on twistor space, which requires J [k]
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to have a zero of order 2 − k at z = ∞ and J̃ [k] to have a pole of order 2 + k at z = ∞ in

order for the coupling to be well-defined.

Form factors of sdYM with the operator O = 1
2tr(B ∧ B) inserted at the origin give

YM amplitudes when the sum of the gluon momenta vanishes. However, at two loops, the

operator is chosen to be
1
2tr(B ∧B) + ℏ2Ctr(F ∧ F ), (B.12)

where C is some constant. The tr(F ∧ F ) term is added as a two-loop counterterm, with ℏ2

to remind us that the term is added at two loops. This term is added in order to remove an

all-plus-helicity two-loop two-point correlator that can only be determined up to an overall

constant C; this addition also forces the two-loop three-point correlators to vanish. The

operator tr(F ∧ F ) is a total derivative, which means that form factors with this operator

vanish when we impose that the momenta of the gluons add up to zero, which we do when we

pass to a scattering amplitude. So in practice we can neglect the second term in eq. (B.12).

Since O has dimension four, and J [1] dimension −1, we consider the scale-invariant four-

point correlator

⟨O|Ja1 [1](z1)J
a2 [1](z2)J

a3 [1](z3)J
a4 [1](z4)⟩, (B.13)

where O means eq. (B.12) from now on. Eq. (B.13) is determined by one-loop OPEs between

any two J [1]’s; hence we get a two-loop result. It evaluates to (see ref. [49] for how this is

computed)

⟨O|Ja1 [1](z1)J
a2 [1](z2)J

a3 [1](z3)J
a4 [1](z4)⟩

=
i

(4π)4
[12][34]

⟨12⟩⟨34⟩
Ra1a2a3a4

4

− 2i

(4π)4
[12][34]

⟨12⟩⟨34⟩
⟨13⟩⟨24⟩+ ⟨14⟩⟨23⟩

⟨12⟩⟨34⟩
(
tr(1234) + tr(1432)− tr(1243)− tr(1342)

)
+ (1324) + (1423), (B.14)

where the last line adds two more permutations, and the color factor Ra1a2a3a4 is given by

Ra1a2a3a4 = 4
(
t
(a1
G t

a2)
G

)
b1b2

(
t
(a3
G t

a4)
G

)
b3b4

(
− 2tr

(
(b1b2)(b3b4)

)
+ tr(b1b3b2b4) + tr(b1b4b2b3)

)
+ 4
(
t
(a1
G t

a2)
G

)
b1b2

trR0

(
(a3a4)(b1b2)

)
+ 4
(
t
(a3
G t

a4)
G

)
b1b2

trR0

(
(a1a2)(b1b2)

)
− 4trR0

(
c(a1a2)c(a3a4)

)
.

(B.15)

The parentheses around color indices means to symmetrize on said indices. Recall that taG
are the generators of SU(N) in the adjoint representation defined by

(taG)bc = −ifabc. (B.16)
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Writing eq. (B.15) as traces over the fundamental without contracted indices requires the use

of the identities in Appendix A. Doing so results in

Ra1a2a3a4 = (24N − 16− 32N−1)
(
tr(1234) + tr(1243) + tr(1342) + tr(1432)

)
− (16 + 32N−1)

(
tr(1324) + tr(1423)

)
+ (32 + 32N−1)

(
tr(12)tr(34) + tr(13)tr(24) + tr(14)tr(23)

)
.

(B.17)

With this formula, eq. (B.14) can now be expressed as a sum over permutations of different

trace structures, resulting in eqs. (2.4)–(2.6).

We now prove the formula (2.9) for the n-point double-trace term by induction. Eq. (2.9)

clearly reproduces the n = 4 case. For the n > 4 case, the correlator giving rise to

A2-loop
n;c (i1, i2, i3, i4) is

⟨O| · · · Jai1 [1](zi1) · · · Jai2 [1](zi2) · · · Jai3 [1](zi3) · · · Jai4 [1](zi4) · · · ⟩, (B.18)

where ellipses indicate J [0] insertions. Assume the n-th insertion is a J [0]. Viewing eq. (B.18)

as a function of zn, the poles with respect to zn are dictated by the OPEs of Jan [0](zn) with

the other insertions. The OPEs are

Jam [0](zm)Jan [0](zn) ∼ ifamanb 1

⟨mn⟩
Jb[0](zm), (B.19)

Jam [1](zm)Jan [0](zn) ∼ ifamanb 1

⟨mn⟩
Jb[1](zm). (B.20)

The OPEs dictate that the residues at the simple poles ⟨mn⟩ will be (n−1)-point correlators.

The double-trace structures in eq. (B.18) for (n−1) points with the ordering 1, 2, . . . , n−1

are
n−2∑
c=3

A2-loop
n−1;c (i1, i2, i3, i4)tr(1 · · · c− 1)tr(c · · ·n− 1). (B.21)

Since we are only concerned with the ordering 1, 2, . . . , n in the trace structures for n points,

to determine the dependence on zn we only need to consider two OPEs, where the point zn
is near zc and where it is near zn−1, for a given c ∈ {3, . . . , n − 2}. Then the double-trace

structure of eq. (B.18) at a given c has the form

ifan−1anb 1

⟨n− 1, n⟩
A2-loop

n−1;c (i1, i2, i3, i4)tr(1 · · · c− 1)tr(c · · · (n− 2)b)

+ ifanacb 1

⟨nc⟩
A2-loop

n−1;c (i1, i2, i3, i4)tr(1 · · · c− 1)tr(b(c+ 1) · · ·n− 1)

= A2-loop
n−1;c (i1, i2, i3, i4)

(
1

⟨n− 1, n⟩
+

1

⟨nc⟩

)
tr(1 · · · c− 1)tr(c · · ·n)

= A2-loop
n−1;c (i1, i2, i3, i4)

⟨n− 1, c⟩
⟨n− 1, n⟩⟨nc⟩

tr(1 · · · c− 1)tr(c · · ·n)

= A2-loop
n;c (i1, i2, i3, i4)tr(1 · · · c− 1)tr(c · · ·n).

(B.22)
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In the first equality, we performed the contractions between the structure constants and the

generators within the traces and kept only the double-trace terms with the ordering 1, 2, . . . , n.

In the second equality, we used the definition of the angle spinor brackets in terms of the zi
variables, eq. (B.3). The last equality follows by induction from the definition (2.9).

Summing over c then yields

n−2∑
c=3

A2-loop
n;c (i1, i2, i3, i4)tr(1 · · · c− 1)tr(c · · ·n)

=
n−1∑
c=3

A2-loop
n;c (i1, i2, i3, i4)tr(1 · · · c− 1)tr(c · · ·n), (B.23)

where we added 0 = A2-loop
n;n−1(i1, i2, i3, i4) in the second line, which agrees with eq. (2.9), since

the condition c = n − 1 ≤ i3 < i4 ≤ n is incompatible with i4 < n, which holds because a

J [0] is inserted at the n-th position.

In the above, we ignored the terms regular in ⟨n−1, n⟩ and ⟨nc⟩; however, these terms are

null since they would not allow Jan [0](zn) to have a second-order zero at zn = ∞. Eq. (B.23)

shows that the dependence on zn is compatible inductively with eq. (2.9).

Next we consider the dependence on zm, when there is a J [0] inserted into eq. (B.18) at zm
for m < n. The computation goes very similarly for the three cases: 1 ≤ m < i1, i1 < m < i2,

and i3 < m < i4. The vanishing conditions for eq. (2.9) mean that the Jam [0] contributes to

only one of the two traces in the double-trace structure when only considering the ordering

1, 2, . . . , n. The case i2 < m < i3 differs slightly. Taking m = i2 + 1, the OPEs involving

Jai2+1 [0](zi2+1) dictate that there are simple poles at zi2+1 = zj for j ∈ {1, . . . n} \ {i2 + 1},
and their residues are (n− 1)-point correlators with Jai2+1 [0](zi2+1) removed.

The double-trace structure in the ordering 1, 2, . . . , n of the (n− 1)-point correlator with

this operator removed is

n−2∑
j=3

A2-loop
n;cj (i1, i2, i3, i4)tr(c1 · · · cj−1)tr(cj · · · cn−1), (B.24)

where cj is the j-th element of the ordered list (1, . . . , i2, i2 + 2, . . . , n). We can ignore terms

with j < i2 + 1, since A2-loop
n−1;cj

(i1, i2, i3, i4) vanishes with this condition. For j > i2 + 1, the

insertion Jai2+1 [0](zi2+1) only contributes to the right trace in the double-trace structure. So

the computation is very similar to the zn case described above.

For j = i2 + 1, Jai2+1 [0](zi2+1) must contribute to both traces in the double-trace struc-

ture, since the generator tai2+1 can be inserted in either of the traces in

tr(1 · · · i2)tr(i2 + 2 · · ·n) (B.25)

while preserving the ordering 1, . . . , n. Correspondingly, there are four poles instead of two,

– 38 –



at zi2+1 ∈ {z1, zi2 , zi2+2, zn}, with residues dictated by the OPEs:

ifai2ai2+1b
1

⟨i2, i2 + 1⟩
A2-loop

n−1;ci2+1
(i1, i2, i3, i4)tr(1 · · · (i2 − 1)b)tr(i2 + 2 · · ·n)

+ ifai2+1a1b
1

⟨i2 + 1, 1⟩
A2-loop

n−1;ci2+1
(i1, i2, i3, i4)tr(b2 · · · i2)tr(i2 + 2 · · ·n)

+ ifai2+1ai2+2b
1

⟨i2 + 1, i2 + 2⟩
A2-loop

n−1;ci2+1
(i1, i2, i3, i4)tr(1 · · · i2)tr(b(i2 + 3) · · ·n)

+ ifanai2+1b
1

⟨n, i2 + 1⟩
A2-loop

n−1;ci2+1
(i1, i2, i3, i4)tr(1 · · · i2)tr(i2 + 2 · · · (n− 1)b)

=A2-loop
n−1;ci2+1

(i1, i2, i3, i4)
⟨i21⟩

⟨i2, i2 + 1⟩⟨i2 + 1, 1⟩
tr(1 · · · i2 + 1)tr(i2 + 2 · · ·n)

+A2-loop
n−1;ci2+1

(i1, i2, i3, i4)
⟨n, i2 + 2⟩

⟨i2 + 1, i2 + 2⟩⟨n, i2 + 1⟩
tr(1 · · · i2)tr(i2 + 1 · · ·n)

=A2-loop
n;i2+2(i1, i2, i3, i4)tr(1 · · · i2 + 1)tr(i2 + 2 · · ·n)

+A2-loop
n;i2+1(i1, i2, i3, i4)tr(1 · · · i2)tr(i2 + 1 · · ·n).

(B.26)

The first equality follows from taking only the double-traces with the ordering 1, . . . , n after

removing the index contraction. The second equality follows from the definition (2.9). This

exhausts all cases, and the result follows by induction.

C Proof of eq. (3.14)

In this section, we prove that the single-trace color-ordered one-loop subamplitude when

matter lives in the representation (1.1) is given by eq. (3.14), which we repeat here for

convenience:

−8A[1]
n (1, . . . , n) +

n∑
k=1

∑
σ ∈αk�βk

A[1]
n (1, σ), (C.1)

where αk = (2, . . . , k) and βk = (k + 1, . . . , n). The first term immediately follows from the

eight copies of the fundamental representation for the fermions, together with the sign flip

associated with the SWI (3.10). The second term must then come from the single copy of the

antisymmetric tensor representation, in particular from the exchange graph shown in figure

9. (The gluon loop only generates double traces, and single traces with a factor of N which

cancel against non-exchange contributions from ∧2F .) Figure 10 provides an example, for

n = 6, of how a particular shuffle of α4 and β4, i.e. an element of αk � βk for k = 4, can

contribute to the trace ordering tr(1 · · ·n).
We now provide a rigorous argument for the validity of eq. (3.14). That is, we will show

that the contributing color-orderings for the exchange terms are in bijection with the shuffles

αk�βk for some k. Recall that the single-trace terms of the one-loop amplitude with matter
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Figure 10: An example for n = 6 which illustrates how the color-ordered sub-amplitude

A
[1]
6 (1, 5, 2, 3, 6, 4) can contribute to the color factor tr(123456) via the exchange term P . The

ordering (1, 5, 2, 3, 6, 4) corresponds to a shuffle of α4 = (2, 3, 4) and β4 = (5, 6).

in the representation (1.1) is given by

∑
σ∈Sn/Zn

[
− 8tr(σ1 · · ·σn)A[1]

n (σ1, . . . , σn)

+
1

2

∑
I⊂(1,...,n)

tr(σ(I · Ic))A[1]
n (σ1, . . . , σn)

]
.

(C.2)

The sum is over the group Sn/Zn
∼= Sn−1, allowing us to choose an element from 1, . . . , n

which can be fixed by all σ ∈ Sn−1. We choose 1 to be this fixed element. After summing over

Sn−1 and collecting on the traces, the color-ordered term multiplying tr(1 · · ·n) is generically

−8A[1]
n (1, . . . , n) +

1

2

∑
σ∈S

A[1]
n (1, σ), (C.3)

where S ⊂ Sn−1 is

S = {σ ∈ Sn−1|σ(I · Ic) ∈ [(1, . . . , n)] for some I ⊂ (1, . . . , n)}, (C.4)

where is [(1, . . . , n)] is an equivalence class containing all cycles of (1, . . . , n). Here S is written

as a set, but we are counting multiplicities, meaning that σ is included in the sum the same

number of times there is an instance of a sublist I ⊂ (1, . . . , n) with σ(I · Ic) ∈ [(1, . . . , n)].

The set S can be written as a disjoint union over subsets Ŝk which require the sublist I

to be of size k, allowing for the sum over S to be written as a sum over k,

1

2

∑
σ∈S

A[1]
n (1, σ) =

1

2

n∑
k=0

∑
σ∈Ŝk

A[1]
n (1, σ), (C.5)

where the collection of permutations Ŝk is

Ŝk = {σ ∈ Sn−1|σ(I · Ic) ∈ [(1, . . . , n)] for some I ⊂ (1, . . . , n) with |I| = k}. (C.6)
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Notice that if σ ∈ Ŝk then σ ∈ Ŝn−k, which follows from the fact that if σ(I · Ic) ∈ [(1, . . . , n)]

then σ(Ic · I) ∈ [(1, . . . , n)], since Ic · I is related to I · Ic by a cyclic transformation. We can

use this pairing between I and Ic to require that 1 ∈ I ⊂ (1, . . . , n). This restriction removes

the overall factor of 1/2 and the sum becomes

1

2

n∑
k=0

∑
σ∈Ŝk⊂Sn−1

A[1]
n (1, σ) =

n∑
k=1

∑
σ∈S̃k

A[1]
n (1, σ), (C.7)

where the new subset S̃k is

S̃k = {σ ∈ Sn−1|σ(I · Ic) ∈ [(1, . . . , n)] for some I ⊂ (1, . . . , n) with |I| = k and 1 ∈ I} (C.8)

for all 1 ≤ k ≤ n.

We will show that S̃k = αk � βk, which will complete the proof of eq. (3.14). As a

reminder, αk = (2, . . . , k) and βk = (k + 1, . . . , n). Consider an element τ ∈ αk � βk, and set

J = (1, τ−1(αk)). The permutation τ is generically of the form

τ = (βI1 , 2, βI2 , 3, . . . , βIk−1
, k, βIk), (C.9)

where βIj represents some sublist of βk such that βI1 · βI2 · · ·βIk = βk. Since τ ∈ Sn−1, we

can identify τ with (1, τ) ∈ Sn. So the j-th element of τ is in the (j+1)-th position in (1, τ).

Letting ji be the position of i in τ for 2 ≤ i ≤ n, we then have that

J = (1, j2 + 1, j3 + 1, . . . , jk + 1). (C.10)

Also, ji < jl for i < l, since (αk)i = i + 1 < l + 1 = (αk)l and the shuffle product preserves

the ordering of αk. This means that J is ordered with respect to (1, . . . , n). It follows that

the complement of Jc is

Jc = (jk+1 + 1, . . . , jn + 1) = τ−1(βk). (C.11)

Thus,

τ(J · Jc) = (1, αk, βk) = (1, 2, . . . , n), (C.12)

which implies that τ ∈ S̃k, i.e. αk � βk ⊆ S̃k.

The shuffle product αk � βk has size

|αk � βk| =
(
|αk|+ |βk|

|αk|

)
=

(
n− 1

k − 1

)
. (C.13)

The size of S̃k is at most the number of size-k sublists of (1, . . . , n) containing 1, i.e.

|S̃k| ≤
(
n− 1

k − 1

)
. (C.14)

It cannot be larger, because σ ∈ S̃k if and only if there exists I ⊂ (1, . . . , n) containing 1

such that σ(I · Ic) ∈ [(1, . . . , n)]. Since σ ∈ Sn−1 has 1 as a fixed point, it must be that

σ(I · Ic) = (1, . . . , n). By uniqueness, this means there is only one such σ for a given I. So

the size of S̃k is bounded by eq. (C.14). Given that αk� βk ⊆ S̃k, and eq. (C.13), the bound

must be saturated, and then S̃k = αk � βk follows. This proves the equality.
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D Integrals

In this section, we reproduce the evaluated integrals from ref. [26] that enter the two-loop

primitive amplitudes in eqs. (4.8) and (4.22). The results for the two-loop integrals are given

in the Euclidean region s, t < 0 and u > 0, for which χ = t/s > 0. They can be analytically

continued to other regions by substituting (−s)−ϵ 7→ s−ϵeϵiπ and lnχ 7→ ln |χ| + iπ. The

planar double-box integral, expressed in terms of the one-loop box integral, is

IP
4

[
λ2
pλ

2
p+q

]
(s, t) = IP

4

[
λ2
qλ

2
p+q

]
(s, t)

= −icΓ
1

ϵ2
(−s)−1−ϵ I1-loop

4 [λ4
p](s, t) +

FRP
p+q,q

(4π)4(−s)
+O(ϵ).

(D.1)

The one-loop box integral to O(ϵ2) is

I1-loop
4 [λ4

p](s, t) = icΓ(−s)−ϵ(−ϵ)(1− ϵ)
1

6

{
1

ϵ
− 1

2

χ(ln2 χ+ π2)

(1 + χ)2
− χ lnχ

1 + χ
+

11

3

+ ϵ

[
χ

(1 + χ)2

[
Li3(−χ)− ζ3 − lnχLi2(−χ) +

1

3
ln3 χ− 1

2
ln2 χ ln(1 + χ)

+
π2

2
ln
( χ

1 + χ

)
+

1

2

(
(2 + χ) ln2 χ+ π2

)]
+

11

3

(
− 1

2

χ(ln2 χ+ π2)

(1 + χ)2
− χ lnχ

1 + χ
+

11

3

)
− 4

]}
+O(ϵ3). (D.2)

The planar finite remainder FRP
p+q,q is

FRP
p+q,q =

1

18

χ

(1 + χ)2

[
− lnχ(ln2 χ+ π2) +

(
χ− 1

χ

)
π2

]
. (D.3)

The divergent non-planar integral in terms of the one-loop box integral is

INP
4 [λ2

pλ
2
q ](s, t) = −icΓ

1

ϵ2
(−s)−1−ϵ I1-loop

4 [λ4
p](u, t) +

FRNP
p,q

(4π)4(−s)
, (D.4)

where the finite remainder is

FRNP
p,q =

1

6

{
−2χ(1+χ)

[
Li3

( χ

1 + χ

)
−ζ3− ln

( χ

1 + χ

)(
Li2

( χ

1 + χ

)
+
π2

2

)
− 1

6
ln3
( χ

1 + χ

)]
+ 3χ(1 + χ) ln(1 + χ) lnχ− 1

2
(1 + χ)2

(
− 1

χ
+ 3

)
ln2(1 + χ)− 1

2
χ2

(
1

1 + χ
+ 3

)
ln2 χ

+ π2

(
χ− 1

2

1

1 + χ
+

5

6

)
+ (1 + χ) ln(1 + χ)− χ lnχ

+ iπ

(
2χ(1+χ)

[
Li2

( χ

1 + χ

)
− π2

6
− 3

2
lnχ

]
+(1+χ)

[
(1+χ)

(
− 1

χ
+3
)
ln(1+χ)− 1

])}
.

(D.5)
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The finite non-planar integral INP
4 [λ2

qλ
2
p+q] = INP

4 [λ2
pλ

2
p+q] is

INP
4 [λ2

qλ
2
p+q](s, t) =

1

(4π)4(−s)

1

6

{
χ

(1 + χ)2

[
Li3(−χ)−ζ3−lnχ

(
Li2(−χ)−π2

6

)
−3

4
χ
(
ln2 χ−π2

)]
− 1 + χ

χ2

[
Li3

( 1

1 + χ

)
− ζ3 + ln(1 + χ)

(
Li2

( 1

1 + χ

)
+

π2

6

)
+

3

4
(1 + χ) ln2(1 + χ) +

1

3
ln3(1 + χ)

]
+

(
1

χ(1 + χ)
+

3

2

)
ln(1 + χ) lnχ

+ π2

(
1

6χ
+

4

3(1 + χ)
+

3

2

χ

(1 + χ)2
− 3

4

)
+

ln(1 + χ)

2χ
− lnχ

2(1 + χ)

+ iπ

(
−1 + χ

χ2

[
Li2

( χ

1 + χ

)
− ln(1 + χ) lnχ+

1

2
ln2(1 + χ)− 3

2
(1 + χ) ln(1 + χ)

]
− 1

2

χ

(1 + χ)2
(
ln2 χ+ π2

)
−
(

1

χ(1 + χ)
+

3

2

)
lnχ− 1

2χ

)}
. (D.6)

Finally, we provide parts of the explicit expressions for eqs. (4.48) and (4.49). They are

A4;1;1(1, 2, 3, 4) =
4

3
ρc2Γ

(−s)−2ϵ

χ2(1 + χ)2
1

ϵ

×

[
χ3(3 + 3χ+ 3χ2 + χ3) ln2

(
χ

1 + χ

)
+ 4χ3 ln(1 + χ) ln

(
χ

1 + χ

)
+ (1 + 3χ+ 3χ2 + 3χ3) ln2(1 + χ) + 2π2χ3

+ 2χ3(1 + χ)(3 + χ) ln

(
χ

1 + χ

)
− 2χ(1 + χ)(1 + 3χ) ln(1 + χ)

+ 2iπ(1 + χ)3
{
χ3 ln

(
χ

1 + χ

)
− ln(1 + χ) + χ(1 + χ)

}]
+O(ϵ0) (D.7)
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and

A4;3;0(1, 2, 3, 4) =
4

3

ρ

(4π)4
1

χ2(1 + χ)2

×

{
χ4(3 + 3χ+ χ2) ln3

(
χ

1 + χ

)
− (1 + 3χ+ 3χ2) ln3(1 + χ)

+ χ3(1 + 6χ+ 6χ2 + 2χ3)

(
ln(1 + χ) ln

(
χ

1 + χ

)
+ π2

)
ln

(
χ

1 + χ

)
− (2 + 6χ+ 6χ2 + χ3)

(
ln(1 + χ) ln

(
χ

1 + χ

)
+ π2

)
ln(1 + χ)

+ 2χ4(1 + χ) ln2
(

χ

1 + χ

)
+ 2χ(1 + χ) ln2(1 + χ)

+ 2χ(2 + χ+ 2χ2)(1 + χ)2 ln(1 + χ) ln

(
χ

1 + χ

)
+ 2π2χ(1 + χ)4 + 18χ2(1 + χ)2

+ iπ

[
4(1 + 3χ+ 3χ2 + χ3 + 3χ4 + 3χ5 + χ6) ln(1 + χ) ln

(
χ

1 + χ

)
+ χ3(−1 + 3χ+ 3χ2 + χ3) ln2

(
χ

1 + χ

)
+ (1 + 3χ+ 3χ2 − χ3) ln2(1 + χ)

−2χ(1+χ)(2+3χ+3χ2) ln

(
χ

1 + χ

)
+2χ2(1+χ)(3+3χ+2χ2) ln(1+χ)−2π2χ3

]}
+O(ϵ).

(D.8)

We only give the lowest order in ϵ term for A4;1;1 due to the complexity of the O(ϵ0) term. It is

already evident at this order that the dimensionally-regulated YM amplitude does not agree

with eq. (2.4), the sdYM form-factor result. The predicted answer from the CCA bootstrap

for A4;3;0 is merely the 18χ2(1 + χ2) term in eq. (D.8).

References

[1] G. Heinrich, Collider Physics at the Precision Frontier, Phys. Rept. 922 (2021) 1 [2009.00516].

[2] J. Andersen et al., Les Houches 2023: Physics at TeV Colliders: Standard Model Working

Group Report, in Physics of the TeV Scale and Beyond the Standard Model: Intensifying the

Quest for New Physics, 6, 2024, 2406.00708.

[3] S. Caron-Huot, L. J. Dixon, J. M. Drummond, F. Dulat, J. Foster, O. Gürdoğan et al., The
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