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ABSTRACT: We study scattering amplitudes in massless non-abelian gauge theory where all
outgoing gluons have positive helicity. It has been argued recently by Costello that for a par-
ticular fermion representation (8 fundamentals plus one antisymmetric-tensor representation
in SU(N)) the one-loop amplitudes vanish identically. We show that this vanishing leads
to previously-observed identities among one-loop color-ordered partial amplitudes. We then
turn to two loops, where Costello has computed the all-plus amplitudes for this theory, as
rational functions of the kinematics for any number of gluons using the celestial chiral algebra
(CCA) bootstrap. We show that in dimensional regularization, these two-loop amplitudes are
not rational, and they are not even finite as ¢ — 0. However, the finite remainder for four
gluons agrees with the formula by Costello. In addition, we provide a mass regulator for the
infrared-divergent loop integrals; with this regulator, the CCA bootstrap formula is recovered
exactly. Finally, we use the CCA bootstrap to compute the double-trace terms in the theory
at two loops for an arbitrary number of gluons.
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1 Introduction

The study of scattering amplitudes has seen great advances in recent years. On the more
applied side, computing higher-point and higher-loop amplitudes in the Standard Model has
allowed for more precise comparisons to data collected at particle colliders (see e.g. refs. [1, 2]
and references therein). On the more formal side, amplitudes are fascinating theoretical
objects in their own right. They provide insight into the behavior and symmetries of a
theory, as well as exhibiting previously unforeseen mathematical structures. Having explicit



analytic expressions for amplitudes is paramount for finding such structures, and for better
understanding aspects of quantum field theory.

Often, direct calculation of amplitudes by evaluating Feynman diagrams can be bypassed
for more computationally efficient methods. In particular, a general understanding of the
singular behavior of amplitudes can allow them to be “bootstrapped” to higher orders in
perturbation theory, or for a greater number of scattering particles. This program has had
remarkable success in N' = 4 supersymmetric Yang-Mills in the planar limit (see e.g. refs. [3, 4]
and references therein).

Amplitudes in ordinary, non-supersymmetric Yang-Mills (YM) theory remain more chal-
lenging. There have been remarkable recent advances in computing the full-color all-helicity
massless QCD amplitudes for 2 — 3 scattering at two loops [5—7] and for 2 — 2 scattering at
three loops [8-10]. These amplitudes have a rather intricate analytic structure, and pushing
directly to one more loop or one more leg may be difficult.

Another avenue for progress, which we will pursue here, is to investigate the simplest
possible helicity configuration, called “all-plus”, when all n outgoing gluons have the same
positive helicity. Such amplitudes vanish for any n in any supersymmetric massless gauge
theory [11-13], and therefore they vanish at tree level in YM theory. At one loop, in any
massless gauge theory, their unitarity cuts vanish in four dimensions, and they are infrared
(IR) and ultraviolet (UV) finite, rational functions of the spinor products of the external
momenta, which are known for an arbitrary number of gluons [14, 15].

Self-dual Yang-Mills theory (sdYM) [16] involves path integrals over only self-dual gauge
field configurations. Classically, sdYM is integrable [17-19]. For free plane waves, such
configurations include only the positive-helicity gluons. Interactions between plane waves
include a (—++) vertex [20, 21|, but not the parity conjugate (+——) vertex. At tree level,
one can build the one-minus amplitude (—++---+) by sewing together (—++) vertices,
but this vanishes on shell. At loop level, the same sewing leads to the one-loop all-plus
amplitudes [22, 23], which validates the suggestion that the non-vanishing of these amplitudes
can be considered an anomaly in the conservation of the currents associated with integrability
of sdYM [24, 25].

At two loops, the connection to sdYM becomes less clear. Two-loop all-plus gauge
theory amplitudes were first computed for four gluons using generalized unitarity [26, 27].
For five external gluons, the leading-color terms were computed first numerically [28], and
later analytically [29, 30]. The nonplanar integrands in the pure-glue theory were found in
ref. [31], and the complete nonplanar results are available in refs. [5, 7]. For n > 5, the
polylogarithmic part of the leading-color result was proposed for arbitrarily many gluons
in ref. [32], and the rational part was computed using an augmented recursion relation for
n =6 [33] and n = 7 [34]. (The planar n = 6 integrand was presented in ref. [35].) Full-color
results for n = 6 in pure gauge theory were given in ref. [36]. The all-n result for a particular
color structure has been conjectured in ref. [37], and checked numerically for n = 8 and 9
in refs. [38, 39] (where the n < 8 rational results were also checked). Many of these results
rely on D-dimensional generalized unitarity for the construction of integrands, although the



polylogarithmic results in refs. [30, 32, 40] carry out the cuts four-dimensionally, and the
rational parts in refs. [30, 33, 34, 36, 37, 40] are constructed recursively.

The connection between twistors, string theory, and tree-level gluon scattering amplitudes
of (mostly) positive helicity goes back to Nair [41], Witten [42], the MHV rules of Cachazo,
Svréek and Witten [43], and the derivation of these rules from the YM action by Mason [44].
They have also been derived from a twistor action [45]. These works clarify the relations
between sdYM and tree level amplitudes. The MHV rules were applied to compute tree-
level form factors of operators composed of anti-self-dual field strengths, e.g. tr(Figp) [46].
The all-plus and one-minus form factors for this operator were computed at one loop in a
non-supersymmetric SU(N) theory in ref. [47].

Recently, a novel bootstrap method for amplitudes in special theories has been suggested
in ref. [48]. It stems from a combination of ideas from celestial holography, twisted holography,
and twistor theory. In some sense, it is a loop level generalization of the earlier tree-level
work [44, 45]. In this method, the cancellation of an anomaly in a theory that lives in twistor
space allows for the existence of a chiral algebra, the elements of which are in bijection with
the states of the theory. The correlators of the chiral algebra correspond to form factors
of the theory. The operator product expansions (OPEs) between the elements of the chiral
algebra are used to constrain the pole-structure of correlators, the residues of these poles
being lower-loop or lower-point correlators. In this way, one can bootstrap the form factors
of these theories.

In ref. [49], this celestial chiral algebra (CCA) bootstrap was used to compute a two-
loop m-gluon all-plus-helicity form factor in sdYM with Weyl fermions transforming in the
representation

Ry =8F @ 8F & N*F © \*°F (1.1)

of the Lie algebra of SU(N). Here F is the fundamental representation, and A%F is the
antisymmetric tensor representation. In terms of Dirac fermions, the representation has 8
fundamentals (quarks) plus one antisymmetric tensor. It solves the anomaly cancellation
condition from the six-dimensional twistor-space theory [48],

trp, (X4) = trg(X1), (1.2)

for any generator X of the SU(N) Lie algebra, where G denotes the adjoint representation.
The form factor is for an operator %tr(B A B), involving an adjoint-valued, antisymmetric,
anti-self-dual tensor field By, which is used to enforce self-duality of the gauge field.

The sdYM form factor computed in ref. [49] should reproduce scattering amplitudes in
YM for arbitrary n. Due to the anomaly cancellation condition, the one-loop amplitude
should vanish in this theory. As we will see, this condition implies identities among the QCD
all-plus partial amplitudes. The identities include the “three-photon vanishing” relations first
noticed in ref. [15]. A more general set of linear relations was found in ref. [50]; we will show
that these relations are all explained by the vanishing of the one-loop all-plus amplitude for
representation Ry.



The relevant two-loop sdYM form factor was computed for all n in ref. [49]. The four-
point result is

6 52 s 2
ATR = (497T)4p[(12N — 4% — 2;) (tr(1234) + tr(1432)) )
4 (24 + %)tr(m)tr(?ﬂl)] +C(234),
where
_ (234 L4)
(12)(34)” '

and s = (ky + k2)? and t = (kg + k3)? are the four-point Mandelstam variables. We use the
shorthand notation
trr(ij---k) = trp(t®t® - - - t%), (1.5)

which is the trace over the generators t* of the Lie algebra of SU(N) in an arbitrary repre-
sentation R. Throughout this paper, traces without a subscript, as in eq. (1.3), will mean the
trace over fundamental-representation generators. The “+C(234)” instructs one to add the
two non-trivial cyclic permutations of (2,3,4) acting on the previous expression.

In this paper, we wish to investigate the relation between the sdYM form factor given in
eq. (1.3) and all-plus amplitudes in ordinary YM. The two-loop all-plus four-point amplitude
in QCD was computed in dimensional regularization in refs. [26, 27]. Here we will replace the
fermion loops for QCD (i.e. for fermions in the fundamental (+ antifundamental) represen-
tation only) with fermion loops in the representation Ry in eq. (1.1). Then we can directly
compare the form factor in sdYM to the two-loop amplitude in YM. The double-trace term
is not provided in ref. [49], so we compute it in Appendix B. Our results agree only after
UV renormalization and after subtracting off the universal two-loop IR divergences given by
Catani [51]. This statement does not disprove eq. (1.3); rather, the discrepancy most likely
arises from the fact that the CCA bootstrap technique keeps all momenta four-dimensional,
in contrast to dimensional regularization. We resolve the discrepancy by using a different
IR regularization scheme, namely a mass regularization of the loop integrands. With this
scheme, the two-loop four-point sdYM form factor equals the YM amplitude, and we suppose
that the same will be true for n > 4. We also argue that the n-gluon sdYM result gives
the finite remainder of the YM amplitude in dimensional regularization. This result could
provide a check of higher-point two-loop all-plus helicity amplitudes, once all the fermionic
and subleading-color terms become available.

2 An overview of the CCA bootstrap

In this section, we provide a non-rigorous overview of a method used to bootstrap certain
two-loop amplitudes [49]. We will refer to this method as the celestial chiral algebra (CCA)
bootstrap. Positive- and negative-helicity states of sdYM on twistor space are in one-to-one
correspondence with local operators in an (extended) chiral algebra. The conformal blocks of



this algebra are the local operators in the self-dual theory. Therefore, correlation functions of
the chiral algebra in a given conformal block correspond to form factors of the gauge theory.
Moreover, the OPEs in the algebra are collinear limits of states in the field theory. This
suggests that one can use the chiral algebra to “bootstrap” form factors of sdYM by using
the analytic properties of the OPEs.

A requirement for the existence of a chiral algebra is the associativity of its OPEs. As-
sociativity fails at the first loop correction for pure gauge theory, due to a gauge anomaly
arising from the all-plus helicity amplitude on twistor space. In order to remedy this, a
fourth-order scalar field that couples to the Yang-Mills topological term was introduced in
refs. [48, 52, 53]. However, the mechanism can only cancel double-trace contributions, and
so it is necessary for the gauge group to not have an independent quartic Casimir structure.
Alternatively, the anomaly can be cured by introducing fermions in special representations of
the gauge group [49]. In particular, the requirement is that the quartic Casimir in the adjoint
representation is exactly that in the (real) representation R

tra(X?) = trp(X?). (2.1)

For SU(N) guage theory, one such example of this type of representation is Ry given in
eq. (1.1).

With this choice of matter representation, the one-loop OPEs are associative. Therefore,
the chiral algebra exists for this theory and can be used to compute form factors. In fact,
associativity constrains all form factors of self-dual Yang-Mills (plus matter) to be rational
functions, with poles only in the spinor products (ij). The chiral algebra OPEs determine all
possible poles in the form factor, and the residues of these poles are chiral algebra correlators
that have fewer external states or are at lower loop order. In this way, one can determine the
n-point form factors inductively.

The form factor of most interest is the one with the operator

%tr(B AB), (2.2)

inserted at the origin,! where B is the adjoint-valued anti-self-dual two-form appearing in the
sdYM Lagrangian [21],
Lsaym = tr(BAF). (2.3)

Deforming the self-dual Lagrangian by %thr(B A B) and integrating out B yields the regular
Yang-Mills Lagrangian, up to a topological term which does not affect the perturbation theory.
So form factors of self-dual Yang-Mills with the operator %tr(B A B) inserted at the origin
are amplitudes of ordinary Yang-Mills theory.

Using the CCA bootstrap, massless QCD amplitudes with matter in the representation
(1.1) were computed at tree level [48], one loop [53], and two loops [49] for the two-minus,

1We mean the origin in position space x. The z-dependence of the correlator is o< exp(i Z;.;l kj - ) where
k; are the gluon momenta.



one-minus, and all-plus helicity configurations, respectively. The two-loop all-plus four-point
sdYM form factor is!

AT = [Aj;i‘j;?m (tr(1234) + tr(1432)) + AZ;;?E&’YMU(R)U(SAL)} +C(234), (2.4)

where
doop & _ [12][34] [14][23] _1. [13][24]
Aulbon = Gy [<6N == ((iaien + ) ~ 4 Viisen 2
R5)
9 [12] [34] <13><24> -+ <14><23> [14][23] (13)(24> + <12>(34) ( )
©7(12)(34) (12)(34) - 7(14)(23) (14)(23)
and
o8 (24 (324 (1423
Aty = (LN 1><<12> a1y ey <14><23>> (26)

This expression can be simplified using the Schouten spinor identity and four-point momentum
conservation, which includes the result that p is totally symmetric,?

' = - - . (2.7)

Then egs. (2.5) and (2.6) collapse to eq. (1.3). However, when computing n-point form
factors based on lower-point ones, one must remember not to use lower-point momentum
conservation to simplify the lower-point form factors, as it is the sum of the n gluon momenta
that is conserved, not a subset of them.

With this in mind, the n-point color-ordered amplitude is constructed recursively, based
on egs. (2.5) and (2.6), and is given by

2-loop _  n42 E :
A'I’L,SdYM — g tI’(Ul st Un)

0ESn/ln
2] oo\ oiop) oo (o105
x D A4;1?§§YM(UZ"UJ"U’“’W)<<; ;>§<; a>§ . <L< o ;>
1<i<j<k<l<n 192719293 nol
[n/2)+1
1
+ E Z tI'(Ul tt Uc—l)tr(ac t Jn) Z Ai;c(?;)gYM(aia 04,0k, Jl) )
c=3 0€8n/Sn.c 1<i<j<k<I<n

(2.8)

'The double-trace term was not provided in ref. [49]. However, Appendix B of ref. [49] outlines the
computation of the color factors, so that one can keep track of the double-trace terms if desired relatively
easily; see Appendix B.

20ur overall normalization of form factors and amplitudes differs from ref. [49] by a factor of i.



where S, is the subgroup of S, consisting of permutations that keep the double-trace struc-
ture tr(1,...,c—1)tr(c,...,n) invariant. Ai'lcoggYM (i, 7, k,1) is the kinematic factor that mul-
tiplies this double-trace structure for the form factor with energy-level-1 insertions at 4, j, k,
(as explained in Appendix B). It is defined as

AT (i, 5, K, D) (i) (kD)2
(12)(23) - {c — 1, 1){c,c+ 1) (c+ 1,¢+ 2) --- (n, )

Areniyn(i: .k, 1) =

n;c,sdYM (29)

forl1<i<j<c—1land c<k<l<n,and it is zero otherwise. In Appendix B, we prove
eq. (2.9) using the CCA bootstrap.

Note that for fermionic matter in Ry there is no triple trace contribution, which would be
present generically. The triple-trace cancellation is a consequence of the recursive construc-
tion, and its absence for n = 4 since tr(t*) =0 in SU(N).

We wish to check egs. (2.5)-(2.9) in the simplest case, n = 4, via an alternative method.
We will use the fact that the two-loop four-gluon amplitudes were computed in QCD in
dimensional regularization [26, 27] in a color-decomposed form which makes it straightforward
to modify the fermion representation to Ry.

Before doing the two-loop color algebra, we first warm up by computing the one-loop
all-plus n-point amplitude, which vanishes (non-trivially) in this theory due to the anomaly
cancellation (1.2).

3 The One-loop Amplitude

Here, we compute the one-loop all-plus n-point amplitude for massless QCD with matter in
the representation (1.1). Color-decomposition plays a crucial role in this computation. We
begin by reviewing the color-decomposition of one-loop n-gluon amplitudes in QCD for gauge
group SU(N) with matter in the representation Np(F @ F'), where N is the number of quark
flavors.

3.1 One-loop in QCD

The one-loop n-gluon QCD amplitude can be color-decomposed as [54]

Ai:l(gcé% =g¢"|N Z tr(oy - o)Al (01, ... o)
0€Sn/Ln
[n/2]+1
+ > > tr(or e oe1)tr(oe o) Ane(o, -, 0n) (3.1)

c=3 0€Sn/Sn;c

+ Nf Z tr(o'l"‘O'n)Ag/ﬂ(Ulwu,Un)a
€S/ Ln

where the A,.. are the subamplitudes. The superscript [j] denotes the spin of the particle

circulating in the loop, 7 = 1/2 or 1. The subamplitudes Ag} are color-ordered.



The subleading subamplitudes A,.. are obtained from the leading ones ALI ] through the
permutation sum [55, 56]

Ape(e, 8) = (=111 3" Aoy, 00), (3.2)

o€ awpT

where o« = (1,2,...,c—1) and B = (c,c+ 1,...,n) are cyclicly ordered lists, and g7 =
(ny...,c+ 1,¢) is the reverse ordering, with the understanding that « and BT are actually
equivalence classes under cyclic permutations of their arguments, i.e.

a={(1,2,...,c=1),(2,...,c—=1,1),...,(c=1,1,...,c — 2)}, (3.3)
ﬂT:{(n,nf1,...,0),(7171,...,c,n),...,(c,n,...,c+1)}. (3.4)

The symbol a W BT denotes the cyclic shuffle product, which is the set of all permutations
up to cycles of {1,2,...,n} that preserve the cyclic ordering of o and 7, while allowing
all possible relative orderings of the elements of o with respect to the elements of 7. For
example, letting a = (1,2,3) and 8 = (4,5), we have

a LLl /BT = {(1’ 2’ 3’ 47 5)7 (1’ 2’ 4’ 37 5)7 (]"4’ 2’ 37 5)7 (1’ 2’ 4’ 57 3)7 (]"4’ 2’ 57 3)7 (1’4’ 5’ 27 3)7
(1,2,3,5,4),(1,2,5,3,4),(1,5,2,3,4),(1,2,5,4,3),(1,5,2,4,3),(1,5,4,2,3) }.
(3.5)

Again, it is understood that the lists within this set are equivalence classes under cyclic
permutations of their arguments.

Another color decomposition also exists for the gluon (adjoint) contribution, in terms of
traces over generators in the adjoint representation of SU(N) [56]

.Atg%% = % Z [trg(crl . an)Anl] (01,...,0pn) + 2Nptr(oy ... an)AEm(al, ce on)| -
O'eSn/Zn
(3.6)
The factor of 1/2 accounts for a reflection identity trg(inin—1---i1) = (—=1)"trg(i1iz - - in),
which implies a reflection identity on the color-ordered subamplitude AT} (which also holds
for ALI/Q]):
All(n,n—1,...,1) = (=1)" All(1,2,... ,n). (3.7)

n
The sum in eq. (3.6) includes o7 for all o € S,,/Zy, so the factor of 1/2 is needed.
The equivalence of egs. (3.1) and (3.2) with eq. (3.6) can be seen by representing the
adjoint representation G in terms of fundamental representations, G®1 = F ® F. Evaluating
the F ® F traces we have,

trg(1-+n) =trpgp(l--n) = > tr(Dtrp(I°)
IC(1,-,n)
= Ntr(l...n)+ (=1)"Ntr(n...1)
+ > ()P, (3.8)

0AIC(1,...m)



where [¢ is the complement of the sublist /. The notation I C (1,...,n) means that I is a
sublist of (1,...,n) with respect to which I is ordered. (In SU(N), tr(t*) = 0, so one can drop
the cases with |I| =1 and |I| = n —1.) This relation has a nice diagrammatic representation
in terms of color graphs using the double-line notation, as shown in fig. 1. As a reminder,
in the double-line notation the rule is to sum all 2" ways of attaching the n external lines to
either the inner or outer ring of the annulus, with a minus sign for each attachment to the
inner (F) ring.

Figure 1: Graphical representation of the SU(NN) identity G 1 =~ F ® F. The diagram on
the right is evaluated by summing over all 2" ways of attaching n external legs to either ring
of the annulus, with a minus sign for each attachment to the inner (F) ring.

When all external gluons have positive helicities, the color-ordered subamplitudes are
finite, rational functions of spinor products (ij) and [ij] given by [14, 15]

A1, ny =~ {inia)[izis)(igia)[iain]. 20
| ) 4872 1<i1<i22<i:3<i4<n (12)(23) -- - (n1) (39)
Ag/2](]‘72"“7n):_Ag}(]WQ?“‘?n)? (310)

where we have taken N,, = 2 for A[n1 }, where IV, is the number of bosonic states minus fermionic
states. Eq. (3.10) is a supersymmetry Ward identity (SWI) [11-13] which holds in D = 4. At
two loops, we will need to use dimensional regularization in D = 4 — 2¢ spacetime dimensions,
and we will need the one-loop result for n = 4 to higher orders in €. For this purpose, a
formula for the subamplitudes in terms of a dimensionally-regulated box integral is given in
section 5.

3.2 Including Matter in 8F @ 8F ® A2F @ N°F

According to ref. [49], including matter in the representation (1.1) should nullify the one-loop
all-plus amplitude. This vanishing implies linear relations among the subamplitudes, which
we wish to elucidate. To do so, we need to compute traces over the antisymmetric tensor
representation in terms of traces over fundamental representation generators.

For this computation, we can simply replace the fermion loops in the fundamental repre-
sentation that appear in the one-loop color graphs with loops in the representation (1.1). This



replacement is permitted for the following reason. Every Feynman diagram can be written
as the product of a color factor and a kinematic factor. The Jacobi identity on the color
factors can be used to remove color graphs with nontrivial trees attached to the loop [56],
and thereby rewrite the matter contribution as a sum of permutations of the “ring” color
diagram in fig. 2. Because the Jacobi identity is independent of the choice of representation
of the fermion loop, we arrive at the same sum over color diagrams, with the same choice
of fermion representation with which we began, without affecting the final kinematic factors.
That is to say, AL{} depends solely on the spin of the particle propagating in the loop, not the
representation of the Lie algebra in which it resides.

R

Figure 2: The one-loop color diagram for matter in an arbitrary representation R of SU(N).

In other words, the contribution from matter in the representation (1.1) to the one-loop
amplitude is

9" Y trry(or--on) Ao, o). (3.11)
0ESn /T

The color diagram trg,(oq - - - 0p,) associated to ALl /2 for this specific choice of representation
is shown in fig. 3. The rectangle covering the lines appearing in the diagrams denotes anti-
symmetrization of those lines, as depicted in fig. 4. The trace over Ry in terms of traces over
the fundamental is worked out in Appendix A, and is

trg, (t* - t) = 8tr(l---n) + 8trp(l---n) +trpep(l---n) +trpep(l---n)
=8tr(1---n)+ (—=1)"8tr(n---1) + Ntr(1---n) + (=1)"Ntr(n---1)

D D S S R E R (I S L) (3.12)

Ic(1,...,n)

+% Yoo ) + (-1 Du(9)7)],

0£IC(1,...,n)

where [ - I¢ means to concatenate the lists I and I¢.

Combining the decomposition (3.8) of the adjoint pure-gluon contribution with the Ry

,10,



Figure 3: The one-loop color diagram for matter in the representation Ry = 8F @ F ® A2F &
A2F.

\

\

()

Figure 4: Graphical representation of the antisymmetric tensor product of the fundamental
representation in terms of two fundamental lines.

matter contribution (3.12) yields

tra(1---n) AN, on) +trg, (1---n)AA (1, n)
= —8tr(1---n)Al, ... n) = 8tr(n--- AN (0, ... 1)
+% S [ 1)ANA, ) + (T 19T A, L 1)
Ic(1,...,n)
+% S (19T — te(Der(I%) — te(I)te((1))] AL, .. n),
P£IC(1,...,n)
(3.13)

where we have used the SWI (3.10) and the reflection identity (3.7) obeyed by the subampli-
tude. The full amplitude is then given by the sum over all permutations on n letters, modulo
permutations related by cycles and reflections.

We define the subamplitude Afo(1,...,n) to be the kinematic factor multiplying the
single-trace color factor tr(1,...,n) in eq. (3.13). It is given by

Afo1,.on)y==8Al1,...on) 4> Y Al o), (3.14)

k=10 € aplWfg

where ap = (2,...,k) and B = (k+1,...,n). The first term comes from the trace over eight
copies of the fundamental. The remaining terms come from the exchange term in the trace

— 11 —



over the antisymmetric tensor representation,

%trF@)F(l- ; r(I-I°), (3.15)
where P is the permutation operator that exchanges the two F' representations. In particular,
the sum over k appears since the list (1,...,%k) = (1, ax) appears in the sum in eq. (3.15)
for all 1 < k < n. In Appendix C, we show that the subamplitude AZ0(1,...,n) is given by
eq. (3.14).

Since the full amplitude vanishes for the fermion representation Ry and the traces over
the generators are linearly independent in SU(N) (up to dihedral symmetries), eq. (3.14)
must also vanish:

0=—-s84ll(1 +Z > Al ) (3.16)

k=10 € apWPy

Remarkably, these relations are exactly the same all-plus relations conjectured in ref. [50].
Ref. [50] based their formula® on a decomposition into kinematic diagrams containing a single
totally symmetric quartic vertex, and the remaining vertices are all cubic and totally anti-
symmetric. If one accepts that the twistor-space anomaly cancellation implies the vanishing
of the one-loop all-plus amplitude, then one obtains a proof of this conjecture. In a forth-
coming paper [57], we analyze these all-plus relations, relations among one-loop one-minus
amplitudes, as well as their connections to the twistor-space anomaly cancellation mechanism
that uses a fourth-order pseudoscalar [48, 52, 53].
We can verify eq. (3.16) for the case n = 4. The n = 4 all-plus partial amplitude is
i [23][41] p

1 _ —
A (1,2,3,4) = 4872 (23)(41) 4872 (8.17)

This expression is totally symmetric, as shown in eq. (2.7). For general n, the number of
terms appearing in the sum over k in eq. (3.16) is

i (Z: _}) =1, (3.18)

k=1

counting multiplicities. So, for n = 4, there are 23 = 8 terms, all of which are equal, thanks
to the total symmetry of the four-point subamplitude. These eight copies come with the
opposite sign of the 8 terms not in the sum over k, resulting in a total of zero.

Because of the total kinematic symmetry of eq. (3.17), the above verification of eq. (3.16)
for n = 4 is equivalent to checking the anomaly cancellation condition (1.2); both involve the
same symmetrized trace over four generators in the appropriate representations.

3Note that the boundary terms k = 1 and k = n have an empty set for ay and for i, respectively, so they
each just give Ag](l, ...,n). Removing them from the sum over k puts the formula into the precise form in
ref. [50].
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For n > 4, eq. (3.16) is not so easily verified from the explicit formula (3.9). We have
checked [57] that it holds for n < 11 by replacing all spinor brackets with 3n — 10 independent
momentum-invariants, using a momentum-twistor-based parametrization [28, 58].

So far we have discussed the consequence of the all-plus vanishing for Ry via the coeflicient
of the single trace tr(1---n). However, eq. (3.13) also has a double-trace contribution, which
must vanish as well. The relations among color-ordered amplitudes that follow from this
vanishing imply the the vanishing of amplitudes with three photons and (n—3) gluons observed
previously [15]. We will discuss these double-trace relations in a forthcoming paper [57].

The vanishing of the one-loop amplitude in the Ry theory suggests that the two-loop
amplitude should be finite and rational; indeed, such behavior is found via the CCA boot-
strap [49]. However, we will see that eq. (3.16) only holds at order ¢” in dimensional regular-
ization; it fails at higher orders in €, for the case n = 4 (see section 5). Consequently, the IR
structure of the dimensionally-regulated two-loop result is more intricate, and not even finite
as € — 0.

4 The 2-loop 4-gluon amplitude

We now turn to the computation of the two-loop all-plus four-gluon amplitude for fermions
in the representation Ry.
Our starting point is the two-loop four-gluon amplitude in QCD, which is given in ref. [59]
as
AT = A+ AR, (4.1)
where Agjj is the adjoint gluon contribution and A%‘nd is the fundamental matter contribution.
Fach particle contribution above can be decomposed into a sum of “parent” diagrams,

AR =¢° Z [(Crep)%MA%ﬁM + (Crep)3sz21A§§421] +C(234), (4.2)
D;

where each D; corresponds to a parent diagram. The subscript X € {G, F'} denotes either
the pure-gluon contribution G, or a fermion F' propagating in at least one of the two loops
in the diagrams. The quantities Ciep, denote the color factors associated to the kinematic
factors Ax, with “rep” signifying the gauge group representation in which particle X resides.
The F parent diagrams span the space of all independent four-gluon color-factors with a
fermion-loop contribution and a non-vanishing kinematic factor. This result can be shown by
applying the Jacobi identity suitably to color diagrams containing triangle subdiagrams.
We want to compute the two-loop four-gluon amplitude with matter in the representation
Ry,
AP — i g pRo (4.3)

4.1 Pure gauge contribution

The color decomposition of the pure Yang-Mills two-loop four-point amplitude is [26, 59]

@
Ag =¢° (C’g34A51234 + i1 AGsa01 + Clo5a Al 230 + CéX2P1A](\;[£L21) +C(234), (4.4)
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Figure 5: The planar (P) and non-planar (N P) parent color diagrams for the pure-gauge
two-loop amplitude.

where 0534 and C’{\QI3P4 are color factors given by the planar and non-planar parent diagrams in
fig. 5. They are computed by dressing each vertex and each propagator with the diagrammatic
rules given in eq. (A.3).
The color factors evaluate to
Cloga = (N? +2)[tr(1234) + tr(1432)] + 2[tr(1243) + tr(1342)]
— 4[tr(1324) + tr(1423)] + 6Ntr(12)tr(34),
Clogy = 2[tr(1234) + tr(1432) + tr(1243) + tr(1342)] — 4[tr(1324) + tr(1423)]
+ 2N [2tr(12)tr(34) — tr(13)tr(24) — tr(14)tr(23)] .

(4.5)

(4.6)

These color factors have the following symmetries, which will prove useful in section 5:

P _ ~P _ ~P _ AP
01234 - C13412 - C’2143 - 04321 )

(4.7)
Ofia = Cotgy = Ol = Colis -
The planar and non-planar primitive amplitudes are given by
Al2ss = P{S(Ds -2)Iy [)‘127)‘;27+q + AZ/\]QH-q} (s,t)
Dy — 2)? .
+ ( B - ) Illoow—tle |:)\127>\2((p+q)2 + S)i| (S,t)}, (48)

AJC\:[1P234 = ps(Ds — 2)IiVP {)‘127)‘2 + >‘127)‘;§+q + )‘3)‘12%4 ’

where we have only included non-vanishing terms at O(€) in the integral. The three two-loop
momentum integrals that appear above are the planar double box integral If , the non-planar
double box integral Iiv P and the bow-tie integral I}fOW'tie. They are shown in fig. 6 and are
defined by,

If[P()\lap7q7 kl)](sat)
[ dPp dPq P(Ni,p, q, ki)

- / @)D 2m)P 22+ 20— k2 — b — k2(q — R — s — k) )
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IYPIP (N ps 4, k)] (s, 1)

) mP 0P P2+ )2 (p— k)2 (q - k) (p+q+ k)20 + g+ k3 + ka)?T
and
Ifow_tie [P(szpv q, kl)] (Sa t)
_ / de qu ,P(Aivp7Q7 kz) (4 11)
(2m)P (2m)P p2q?(p — k1)%(p — k1 — k2)%(q — ka)?(q — k3 — kg)?"

where the k; are the external momenta. The numerator factor P(\;, p, q, k;) is a polynomial
in the external and loop momenta. The vectors A\, and A, represent the (—2¢)-dimensional
components of the loop momenta p and ¢g. We use the notation /\Z2 = XA > 0 and
)\12, = A+ ) = )\12, + )\g +2), - Ag. The explicit values of these integrals, as a series in €
and expressed in terms of polylogarithms, are given in appendix A of ref. [26]. We provide the
bow-tie integrals in eq. (4.23) and the remaining ones in appendix D of this manuscript. The
symmetries obeyed by the color factors (4.7) carry over to the primitive amplitudes (4.8).

4.2 Matter Contribution

In order to compute the color factors for the fermionic matter contribution in the represen-
tation Rp, one can simply replace the fundamental loops appearing in the parent diagrams
with a loop in Ry. This replacement is allowed, because one can rewrite any color diagram in
terms of parent diagrams using only Jacobi identities, which are independent of the fermion
representation. We denote the color factor given by a diagram D; with matter representation
Ry by R%34. The color decomposition for the amplitude is then

R, D; D; D; D;
AR’ = g° Z (R1234AF1234 + R3421AF3421) +C(234), (4.12)
D,

where the seven parent diagrams D; are given in fig. 7. The full color factor RP: also has
the addition of the same diagram but with the matter representation arrows pointing in the

Figure 6: The three scalar integral topologies appearing in the two-loop all-plus amplitude,
with the loop-momentum routings displayed: (a) the planar double box; (b) the non-planar
double box; (¢) the bow-tie.
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A v A v A E v
1 P, 41 Py 41 P, 4
2 3 2 {€g€ 3 2 [éG 3
;%i \ i 5 \
! Py 41 NP, i NP, !
2 3
1 NPy 4

Figure 7: Parent diagrams for the fermion loop Ry contributions.

2 3 2 3
P
Flosy = M + 3>4mw<i
1 4 1 4

Figure 8: The total contribution to Fizb,. Notice that the terms trp(12¢)trz(c34) and
trz(12¢)trp(c34) with partially-reversed arrows do not contribute to its value.

opposite direction. The color factors are then evaluated in terms of traces in the fundamental
with no contracted indices, using the rules given in eq. (A.3).

There is an exception to the evaluation procedure for R%M, since we follow the con-
ventions of ref. [59]. In that reference, the color factors were evaluated by adding to the
diagram P4 the contribution of the anti-fundamental representation only, i.e. they reverse the
direction of the two arrows simultaneously. In particular, the full diagrammatic color factor
for FS%ZL is in fig. 8. Notice that the F x F and F x F cross terms are not to be included;



their contributions are already included in the definition of the kinematic factor A4 Flosa- We
must account for this convention by not including any terms of the form F x F, F x A%F,
A?F x A2F, and their conjugates in R1234. Thus, R1234 is given by

R4, = 8%trp(120)trp(c34) 4 8trp(12¢)trpe p(c34)
+ 8trp2p(12¢)trp(e34) + trpep(12¢)tr a2 p(c34) (4.13)

+ conjugate.
With some help from trace identities provided in Appendix A, the results are

R{3sy = (N? + 4N + 2)[tr(1234) + tr(1432)]

+ (=2N +2)[tr(1243) + tr(1342)] — 4[tr(1324) + tr(1423)] (4.14)
+ (6N + 4)tr(12)tr(34) + 4[tr(13)tr(24) + tr(14)tr(23)],
Rf2234 = Rf2134> (4.15)

Ri3 = (N? — 6N + 6+ 8N 1) [tr(1234) + tr(1432)]
+ (—2N + 6 + 8N 1) [tr(1243) + tr(1342)] + 8N ' [tr(1324) + tr(1423)]  (4.16)

+ (6N — 8N~ 1)tr(12)tr(34) — 8N~ [tr(13)tr(24) + tr(14)tr(23)]
Rity = (N? + 10N + 26) [tr(1234) + tr(1432)] + (2N — 10) [tr(1243) + tr(1342)]

. (4.17)
+ (=2N — 16 — 32N~ Htr(12)tr(34),
Rioht = 2[tr(1234) + tr(1432) + tr(1243) + tr(1342)]
+ (2N — 4) [tr(1324) + tr(1423)] (4.18)
+ (AN + 4)tr(12)tr(34) + (—2N + 4) [tr(13)tr(24) + tr(14)tr(23)]
Ri%s = Ribsh (4.19)
RGEY = (—2N + 2)[tr(1234) + tr(1432) + tr(1243) + tr(1342)]
— 4[tr(1324) + tr(1423)] (4.20)
+ (4N — 8)tr(12)tr(34) + (—2N — 8) [tr(13)tr(24) + tr(14)tr(23)] .
The color factors R = RP2 and RNV also have the same symmetries as C and CNFP,
respectively, in eq. (4.7):
szl34 = R:filz = R§1143 = Rfﬁzl ) (4.21)

RN&__RN%__RN&__RN&

1234 2134 1243 2143 -

Again, this is evident directly from the diagrams by applying rotations and reflections to
them, as well as using R"" = R,

The primitive amplitudes associated to each diagram D; are given in ref. [59]; however
many of the integrals that compose them vanish. Removing the integrals that vanish at O(°),
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the primitive amplitudes are

A§11234 = p{sIf[ - 2)‘127)‘120+q] (s,1)

Dy —2

- QTI}E(’W‘“Q [/\,%/\?1 (p+9°+ 8)} (s, t)}»

Azljz)l234 = p{slf[ - 2)‘3)‘127+q] (s, 1)

D

s = 2 phow-tie D20+ )%+ 5) | (s t)}y (4.22)

S

-2

ARy = p(Ds — 2)TV e N2NZ] (s, t),
4 _ti
A§41234 = P;I}fow ne [)‘1%)‘3((17 + Q)2 + %5)] (s,1),
NP,
Apiozy = PSIA{VP[ - 2)‘]2?/\1%+q] (s,1),
Aglpfm = pinVP[— 2)\§>\12)+q] (s,t),
NP
Afisha = psIY P [ = 20202 (s, t).

The bow-tie integrals are quite simple, as they are products of one-loop triangle integrals,
and are given by [26]

. 1 1
IEOW_tIe[)‘i)‘Z](Sa t) i 4
4 (4m) (4.23)
-tie 1 1 '
IOV UL (p + )] (s, t) = 736 (@) (t —4s).

We provide the results for the remaining integrals from ref. [26] in appendix D. The primitive
amplitudes A™, A2 and AN obey the same relations as their corresponding color factors
in eq. (4.21). For later use, notice that these amplitudes are the only ones out of the matter
contribution that contain 1/€ poles.

4.3 The full amplitude

The two-loop four-gluon amplitude with fermionic matter in the representation Ry is the sum
of egs. (4.12) and (4.4). Using the values of the color factors given above, we have

AZ-loop :gﬁ Z Aiglloop(U(L2’3,4))tr(a(1,2,3,4))

0€S4/Za
. (4.24)
L8 S AT (a(1,2,3,4) (o (1, 2))tr(0(3, 4)),
0’654/5'4;3

where the Aiiiwp, ¢ = 1,3 are the two-loop color-ordered subamplitudes. The Ay, contain
various powers of IV, so we separate them into these different powers as

Ai;ioop — A4;C;2N2 + AgeaN + Agee0 + A4;C;_1N71. (4.25)
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Of course, the Ay.; are linear combinations of the primitive amplitudes Agi% 4 and Agbs 40
which are given by

Ag1:2(1,2,3,4) = Afg3s + AGozar + Z (AF934 + Arosar)s (4.26)
=1

z Z NP NP
Ag151(1,2,3,4) = 2A% 934 + 240347 — AF12334 2Ap05m

NP NP P,
— 2Ap305 — 2Ap 1453 — 2 Z Apzgon T AF1423) (4.27)
=1
NP, NP NP NP
+ 2451300 T 2A% 300 + 2Ap031 + 2454551
Ag10(1,2,3,4) = 2A?12134 + 214%11121 - 414%142 - 414212131 + 21421%1123 + 214%%41
+ 4(A11;31234 + perms)

b (4.28)

+ 24AF1234 12A%5401 + 4AF1342

+ 4AF4231 12A§1423 + 24AF23417
Ag;-1(1,2,3,4) = 8(‘451234 + perms), (4.29)
Ay32(1,2,3,4) = 0, (4.30)

Au31(1,2,3,4) = 645, + 614%11121 — 6ALY 55y — 6ALY
Al + Z AF1234 + perms), sy
Au30(1,2,3,4) = 4(A1];11234 + AF1234 + Ag1132134 + Ag&u - 2Ag1%34 + perms) (4.32)
16‘415,41234 16‘41534217 '

Ass-1(1,2,3,4) = — 8(A}3 5, + perms) — 32474, — 32474 (4.33)

where A3,y = AL o0, + ANE., + >op, A F1234, the sum of all 9 primitive amplitudes, and
Afrg3a = 247 950 + 24703y — 3AT 534 + 5AF 55 (4.34)
The term “+perms” means to add all non-trivial permutations
(3,4,2,1), (1,3,4,2), (4,2,3,1), (1,4,2,3), (2,3,4,1), (4.35)
of the preceding terms inside the parentheses.

4.4 Dimensional regularization scheme

The primitive amplitudes are evaluated in refs. [26, 59] using dimensional regularization with
the loop momentum being in D = 4 — 2¢ > 4 dimensions. The dimension of the “unobserved”
internal gluonic states D is left explicit in their results, with Dg > D in intermediate steps
of their calculation. The unobserved states include virtual states in loops and virtual inter-
mediate states in trees. Setting Ds = D corresponds to the standard 't Hooft-Veltman (HV)
scheme. In the four-dimensional helicity (FDH) scheme, one would set Ds = 4.
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The choice of Dy affects the compliance of the amplitudes with supersymmetry Ward
identities (SWI) [11-13]. In particular, preserving the number of bosonic states relative to
the fermionic states is necessary for preserving the SWI, and the choice Dy = 4 achieves
this [59]. The SWI manifest themselves in terms of the primitive amplitudes as

Abgss + Z AF1234 0,
=1

Al + Z AF1234 =0

(4.36)

in the ¢ — 0 limit. These identities do not hold in the HV scheme. Applying the constraints
in eq. (4.36) simplifies the Ay..; considerably, and we get agreement with eq. (1.3) at order
N?2. Moreover, the choice Dy = 4 forces the one-loop partial amplitudes Ag] and Ag A 4o
be equal with opposite signs to all orders in e. For these reasons, we take Dy = 4 when
evaluating the linear combinations of primitive amplitudes.

When eq. (4.36) is applied, the expressions for the Ay...; in terms of the primitive ampli-

tudes simplify to

A4;l;2(]—727374) = 07 (437)
A4;1;1(17 27 37 4) = 2A21234 + 2A}Z72341 - 2Ag1132334 - 2Ag2];>341

NP: NP P;
2AF34321 2AF14323 2 Z AF3421 + AF1423) (4.38)
=1
NPy NP, NP, NP,

+ 2‘4F1342 + 2AFl342 + 2/1F4231 + 2"4F42317

Ag10(1,2,3,4) = 4(AR3 ., + perms) + 3644, + 36475, (4.39)
Ag11(1,2,3,4) = 8(A§1234 + perms), (4.40)
Ay3:0(1,2,3,4) = (4.41)
Ay30(1,2,3,4) = (4.42)
Ag3:0(1,2,3,4) = 4(A11;11234 + AF1234 + Ag1];134 + Agfz%z; - 2Ag11;334 + perms), (4.43)
Ays.1(1,2,3,4) = ( Flose T+ perms) (4.44)
where we also made use of the fact that A?“l234 = —A?‘g 121> Which follows from the reflection

identity of the associated color factor, F1];434 = _F:§1421-

4.5 Evaluating the A4

The vanishing of A4.1.2, As.3.2, and Ay3. agrees with eq. (1.3). Using the expressions given
in egs. (4.22) and (4.23), we see that A4.1.0, A4;1,—1, and Ay.3.—; are finite and rational. They
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evaluate to

4p s? + 4st + t*

A4§1§0(1727374) - _(471')4 st ) (445)
24
A4§1;—1(1727374) = _(47_‘_/))4 ) (446)
24
A4;3;,1(1,2,3,4) = P (447)

(4m)*’

agreeing with eq. (1.3) at the corresponding powers of N.

The two remaining linear combinations of the primitive amplitudes, A4.1,1 and Ay.3.9, do
not simplify further using the SWI, and they explicitly contain non-finite and non-rational
primitive amplitudes (see appendix D). Schematically, they are of the form

12p

A4;1;1(1; 27 37 4) = (471')4

1
+ —transcendental + transcendental + O(e), (4.48)
€

d
an 24

(4m)*
where transcendental refers to terms that (after multiplying by (47)*) contain products of
In, Li, and Lis, which have as their arguments +t/s, 1 + t/s, and ¢/(s + t) and which have
rational coefficients in t/s.

Ay3.0(1,2,3,4) = + transcendental + O(e), (4.49)

These expressions clearly do not agree with eq. (1.3), because they have transcendental
terms and/or 1/e poles, along with the rational terms shown explicitly, which do appear in
eq. (1.3). This might at first seem to invalidate eq. (1.3). However, a comparison of the whole
amplitude with the expected universal IR behavior of two-loop amplitudes given by [51] sheds
light on the matter. We carry out this comparison next.

5 IR subtraction

In this section, we compare the IR behavior of eqgs. (4.48) and (4.49) to that predicted on
general principles. We follow closely the analysis in section 5 of ref. [26]. The principal issue
is that the IR behavior of a two-loop amplitude in dimensional regularization involves 1/¢?
poles multiplying the one-loop amplitude, so that higher order terms in € are required. And
while the one-loop amplitude in our case vanishes at O(e®), it does not vanish at higher orders
in €, because the box integrals that enter it do not have the same symmetry properties beyond
leading order in e.

Catani provides a universal factorization formula for dimensionally regulated, UV-renorm-
alized two-loop amplitudes [51]. In the color-space operator formalism, the renormalized
two-loop n-point amplitude is given by

IMP (1% {pD))rs. = TV (e, 1% {pHIMED (1% {p}))rs.

5.1
+ IG5 (e 12 pDIMD (12 () ks, + [MPE (02 () ks 51
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where ]M%L)(,uz; {p}))r.s. is the vector in color space that represents the renormalized L-loop
amplitude. The subscript R.S. signifies a dependence on the renormalization scheme, and p
is the renormalization mass scale. For notational simplicity, we set 4 = 1. The amplitudes
are recovered by

An<1a17 s 7nan) - <a17 cee 7an’Mn(pl7~ e 7pn)>7 (52)

where the a; is the color index of the i-th external parton.
The operators I(Y) and I(?) encode the IR divergences of A,,. For all-plus helicity external
gluons, the tree-level amplitude M (1125 {p}) vanishes, meaning that only I!) contributes

—1)\”7r 1
Vi

9 =

< Sij > + T? ¢

where \;; = 41 if ¢ and j are both incoming or outgoing partons and A;; = 0 otherwise. The

to the divergences. This operator is given by

(e: {p}) = @ZZTT

i=1 j#i

: (5-3)

factor cr is
1 T(1+4er?*(1l—e
(47)%—e (1 —2e¢)

The color charge T; = {T/} is a vector with respect to the generator label a and an SU(N)

cr = (5.4)

matrix with respect to the color indices of the outgoing parton ¢. For the adjoint representa-
tion Ty, = ifbec so T2 Cp=2TpN.

For external gluons, «; = by, where by is the one-loop S-function coefficient. For QCD
with Ng quark flavors,

11Cy — 4Tr N
pacp _ 1104 : FNE (5.5)
and for fermions in the representation Ry (see eq. (A.19)),
11Cy — 4T N — 4T 2 N
bl = Ca il NETINE = 3N — 4. (5.6)

6 Tr=1,Np=8,T 2z =N—2,N,2 =1

Note that eq. (5.3) differs slightly from Catani’s original formula. We have defined our
structure constants such that they are greater by a factor of v/2, and we have included
a factor of 2¢r instead of €7 due to a different normalization convention for the coupling
expansion parameter (g2 vs. Catani’s as/(27) = g2/(87?)).

For external gluons of positive helicity only, we can rewrite the predicted divergent part
of the renormalized two-loop amplitude in our notation as

AZloopren- (qa1 | pan) =g > AW, n), (5.7)
pred. div. —
1<i<j<n
where
A9 (1 n) = cp(if®ici) (i) i(_s..)—e + 2@1
n g ey 62 1) CAE (58)
% ./41 loop(lal ,Zb’, ,]b ’ ’nan)
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acts on the colors of legs ¢ and j. Specializing to four points, we only need to evaluate the
case (i,7) = (1,2),

1
A(LQ) 1(11’2(12’3(13’4(14 _ - raichy\(; razchba\ | T \—e +2 =
sl ) men (i) 6y L sy 200 o)

€2

x AJ100P(1b1 9b2 393 ga4),

as the other five cases are obtained by relabeling 7 and j.

It should be noted that there are two conventions for the placement of (e~ ™/ 545)€ in
eq. (5.3). The other convention is to have it multiplying both powers of e rather than just
the €72 as in eq. (5.3). With our choice of the matter representation, the two choices are
equivalent up to and including O(€”), since the one-loop amplitude vanishes identically at €,
i.e.

1 —€ bU 1 1-loop 1 bO 1 —e g1-loop
The one-loop amplitude with matter in the representation Ry decomposes as

A}l_IOOp(l, 2’ 3’ 4) — g4 [Cé—iggiAE](l, 2, 37 4) + Cé—i(;nggl](l’ 2’ 4’ 3) + Céiz;gAE} (1, 43 27 3)

+ CrishAVA(1,2,8,4) + OB Al P(1,2,4,3) + CRiR Al (1,4,2,3)]
(5.11)

Here, the 0)1('1102%12 with X € {G, R} are given by ring graphs with the loop being in the
representation X. They are depicted in the left-hand side of fig. 1 for X = G and in fig. 3 for
X =R.

The kinematic factors AE] are the familiar one-loop color-ordered all-plus amplitudes for
a particle of spin j propagating in the loop. However, unlike in eq. (3.9), here we will need
the result to higher orders in e:

AM(1,2,3,4) = —(Dy — 2)ipTI 1P M4 (s, 1), (5.12)
AV (1,2,3,4) = 2ipT [N (s, 1), (5.13)
with

Il-loop[)\ﬂ( t)_/ dDe )‘2}
4 AU = OmD 2 — k)20 — k1 — ka)2(0 + ka)2

(5.14)

and )\ represents the (—2¢)-dimensional components of the loop momentum ¢. The box
integral Z, °P[\4] is finite as ¢ — 0 so that
Al 1,23 4y = —all(1,2,3,4), (5.15)

in this limit, or when D; = 4. We will keep AE} and AE/ 2 distinct for now.
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After inserting eq. (5.11) into eq. (5.9), the two structure constants from the operator
I will be contracted with the different one-loop color coefficients, and these contractions

give rise to two-loop color diagrams,

1 loop

(@29 (i £272)Cprsy = Clagas

(i 19) (i f2P) Cienbys = Ciags,

() ) Cny s = Citta: (5.16)
(ifblalc)(lfc@bg) }%éfgfm = Rf2134, ‘
(ifblalc)(zfca2b2) }%éfgfzts = Rf2143a

(1711 (01 2) Oyt = Riins-

1,2)

These relations allow us to write «451 7 as
Ro
2b 1
Cy e
x |ClhaAl(1,2,3,4) + Chipall(1,2,4,3) + AV (1,3,2,9)

1
&mﬂ&&QZWﬂJ O+

+ Rl A7(1,2,3,9) + R4 70,2,4,3) + RETAY(1,3,2,9)].
(5.17)

Now we insert eq. (5.17) into eq. (5.7) and perform the sum over i and j by first adding the
term with (7,7) = (3,4). We arrive at

A2—100p ren (1 2.3 4) 6 1 ( ) n 2bR0 1
b} . — _ C
" T pred. div. ger €2 CA €
X [20{334142] (L 2,3, 4) + 2C(1243‘4£Ll} (13 2,4, 3)
+ (Citz + 01234)14[ '(1,3,2,4) (5.18)
+ 2R{D2134A£11/2] (17 27 37 4) + 2R{D2143A£11/2] (17 27 47 3)
+ (RIS + R AL (1,3,2,9)
+ C(234).
Let us compare the predicted two-loop divergences for matter in the representation Ry

eq. (5.18) to those appearing in the actual two-loop amplitude. There are two divergent

integrals contributing to the this amplitude, namely Zf [A2A2, ] = Zf'[A2A2, ] and T P[A2AZ]

[26]. The divergent parts of these integrals are proportional to the one-loop box integral,

1

. —1—¢ -loo
TENZ ) (5,0)| . = —ier (=) T (s, 1),
iv. | (5.19)
Iivp[kﬁ/\g](sat) div. = —icr :2(—3)_1_6 Ii_loop[)‘;}](%t)a
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as expected if eq. (5.18) is to be recovered. A heuristic reason for this factorization is given in
ref. [26], but we briefly summarize it here. When loop momenta are simultaneously soft and
collinear with two adjacent external legs, three consecutive propagators can go on shell. When
they go on shell, the remaining propagators become exactly that of the finite box integral
with external momenta k1, ko, k3, k4 in the planar case and k1, k4, k2, k3 in the nonplanar case.
The (—2¢)-dimensional numerator in both cases becomes the numerator Aj in eq. (5.14). The
spacetime picture is then a small finite box times an enlarged divergent triangle.

The divergences of the primitive amplitudes in terms of the one-loop amplitudes are given
by

AG1934 G —QCF;Q(—S)_EAE](L273,4)a
A = —er () Al(1,3,2,),
Al = APy| = ey (sl P,2,3,0), (5.20)
AM| = el P3,0,),
Agi234 div. =0,

where D; € {Ps, Py, NP,, NP,} for the last equality. Plugging these formulae into the sum
of (4.12) and (4.4) yields

AZIeoP(1 9 3 4)

_ 6[AP 4P P 4P NP (NP NP (NP
a9 [01234146‘1234 + C3401AGa21 + Cra34AGi23s + C3i01 AGaan
Py Py Py Py Py P Py Py
+ Ri934AF1934 + Ryio1 Apsaon T Ri33aArioss + Raio1 Arim

NP3 4NP NP3 4NP
+ Ri931Arioss + R342%AF34321} ‘ . +C(234)

di
- _gﬁqé(—s)—e 2053448 (1,2,3,4) + 20f,541(1,2,4,3)
+(ChT + olR) AV (,3,2,9)
+2RrD,, A3 (1,23 4) + 2R, AP (1,2, 4, 3)
+ (RNDs + Rﬁgj)AE/Q}(l,i’),Q,zl)] + C(234),
(5.21)

where we used the fact that Rll,, = RI2,. This matches eq. (5.18) at the level of the
(—s)~¢/€? term, i.e. except for the term proportional to bho.

Now the expression (5.21) is for the unrenormalized two-loop amplitude, whereas the
2-loop,ren.

Catani formula (5.18) predicts the UV renormalized one. The renormalized amplitude Aj
is given by adding the MS counterterm

1
—4g2ch§OEA}g1°°p(1,2,3,4). (5.22)

,25,



No other terms are needed due to the vanishing of the all-plus helicity amplitude at tree level.
To arrive at the term proportional to bgo in eq. (5.18), we use the color conservation

identity
> Ti=0 (5.23)
=1
to write .
nCalMy) => THMy) =2 > T Tj|M,). (5.24)
i=1 1<i<j<n

This identity allows us to write the counterterm (5.22) in our notation as

1 bl 1
—4g2erbfo = AT (1,2,3,4) = —gPer 2~ (4C4A;7°P(1,2,3,4))
€ Cy e
blo 1
_ _292CF007* Z (Z-fbiaw)(ifcajbj) (5.25)
A€ i<
x AFOP(1e it gL 409,

Now it matches precisely the bé%o—containing term of eq. (5.18), in the form of egs. (5.7) and
(5.8).

Thus, once the UV counterterm is included, we have exact agreement between the infrared
divergences of the renormalized two-loop amplitude and the ones predicted by eq. (5.18). In
other words, the non—bg‘o, 1/€% term of eq. (5.18) precisely matches the divergences of the
unrenormalized two-loop amplitude.

Next we evaluate eq. (5.18), but including also the O(e") terms. We subtract the result
from the UV renormalized two-loop amplitude, in order to obtain the Catani finite remainder,
./\/lf)’ﬁn. This result exactly yields the CCA bootstrap formula (1.3). In other words, eq. (1.3)
gives the IR-subtracted two-loop amplitude. In the next section, we explore how to avoid an
explicit IR divergence and subtraction.

6 Mass regularization

The requirement to subtract the IR divergences is unsatisfactory for the following reasons.
Firstly, the CCA bootstrap requires no such subtraction; it is a completely finite procedure.
Secondly, there is no dimensional regularization prescription for sdYM, since its definition
requires the four-dimensional Levi-Civita tensor. In some sense, the IR subtraction remedies
a problem that is introduced by our lack of understanding of how to regulate Feynman
integrals in sdYM. We remedy this by regulating the internal propagators that give rise to
IR divergences of the loop momenta with a particle mass. Then we can take ¢ — 0 without
encountering any poles in e.

There is a fundamental difference between mass regularization and dimensional regular-
ization in when small terms can be neglected. In dimensional regularization, divergences are
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powers of 1/¢, whose degree rises with the loop order. Therefore terms suppressed by powers
of € in lower-loop amplitudes generally have to be retained. On the other hand, when reg-
ulating with a particle mass m, divergences are logarithmic in m. Hence power-suppressed
contributions can always be dropped, because any positive power of m vanishes much faster
than (any power of) Inm increases, in the limit m — 0.

Mass regularization has previously been used in planar N' = 4 supersymmetric YM [60—
64]. Our method for assigning a mass to the propagators differs from these examples. Indeed,
planar A/ = 4 supersymmetric YM has dual conformal symmetry, which is closely related to
these regularization schemes. It is not clear whether one can find a fully consistent massive
regulator of nonplanar YM theory, given that the number of helicity states for massive vector
bosons does not match the massless case. Hence, we do not claim that our method can
consistently reproduce the correct IR divergences in the massless limit for more complicated
amplitudes or integrals. We are merely regulating the few divergent integrals that appear in
the all-plus four-point case.

In our scheme, a propagator is given a mass m when a limit of the loop momentum
that puts it on shell also results in one or more of its neighboring propagators going on
shell. The mass prevents the other propagators from diverging when the initial one does. For
example, in the case of diagram (a) of fig. 6, when the loop momentum p — k;, all three of
(p—k1)?%, p?, and (p— k1 — k2)? approach zero. So the mass m is added to the first propagator
(p—k1)? = (p—k1)?> —m?. Now, no two or more neighboring propagators can simultaneously
diverge. We could have achieved the same result by adding a mass m to both the p? and
(p — k1 — k2)? propagators; however, adding the mass to (p — k)2 is the minimal solution and
leads to very simple integrals.

It is unnecessary to add a mass to propagators containing loop momentum ¢ if the integral
has a numerator factor of (A%)" for some positive integer n. This purely (—2¢)-component of
£ vanishes when £ is purely four-dimensional, which in turn prevents the appearance of the
soft or collinear IR singularity associated with the divergence of a propagator. This argument
includes cases where £ is a sum (or difference) of loop momenta.

For the integrals appearing in egs. (4.8) and (4.22) and depicted in fig. 6, only the
following replacements are necessary:

(p+q+ks)®— (p+q+ks)*—m?

IV Mg (¢ — ka)® = (q — ka)® = m?®,
USEPVIRINE (p— k1) = (p— k1)* — m?,
INP[)\;%/\;QJM] : (¢ — k2)* = (q = ka)* — m?, (6.1)
AP E (p— k1) = (p—k1)* —m?,
]

IYPINAY

These new integrals can be evaluated directly using Feynman parameters, giving

Tfna W) = T2 DN = TimelT] = g L2+ /%) = o] + 006, (6.2
4 m2 [)‘2)‘p+q] 4 m2 [Ag)‘p-i—q] 0(6), (6'3)
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where (2 = ((2) = Liz(1) = 72/6. The bow-tie integrals remain unchanged and are given in
eq. (4.23). In the m — 0 limit, eq. (6.2) has the asymptotic behavior
-1 -1 2

6(‘947)4@12(1 +s/m?) — (o] ~ —6(‘17)4 B In? <m5) - 242] + O(m?). (6.4)
The divergent log term agrees with the leading-order divergent term in the dimensionally-
regulated integrals egs. (D.1) and (D.4), i.e. the coefficient of the leading-order 1/e? equals
the coeflicient of %1112(—7712 /s). Although it is necessary to take m — 0 to make apparent
the IR divergence, we will continue to work with the expression for generic m, eq. (6.2), as it
will not affect our analysis below.

These mass-regulated integrals are much simpler than their purely dimensionally-regulated
counterparts. We can understand these results heuristically by considering the IR divergences
appearing in the original integrals.

First consider eq. (6.2). When m = 0, the divergent terms in € are given by eq. (5.19),
the massless triangle times the massless box. The mass-regulated planar integral in eq. (6.2)
should factorize similarly when m — 0. The mass-regulated triangle is

i

Ty P 1)(s) = ( 47r)25_1 [Lis(1 + s/m?) — o] + O(e), (6.5)

and the box to zeroth order in € is

(4;)% +0(e). (6.6)

So, eq. (6.2) indeed agrees with the divergence statement when m — 0. Surprisingly though,

-loo
I, = -

these mass-regulated two-loop integrals are ezxactly the product of the mass-regulated triangle
and the massless box, even for generic mass m.

As a check on the results, consider the s-channel cut in four dimensions of Iﬁ 2 [)\12,)\12, R
where we cut the propagators neighboring the massive one, which corresponds to cutting the
right box vertically in fig. 6(a). Indeed, the unitarity cuts can be performed in four dimensions
since the mass-regulated double box is finite a priori. This produces a factor of the massless
box within the phase-space integral, which is constant in four dimensions. So, the massless
box can be factored out of the phase-space integral, and what remains within the integral is
nothing more than the s-channel cut of the mass-regulated triangle. In other words,

Discs0 2 [A2AZ, ] = Z;'°P[A}] Discsso Igjggpm. (6.7)
This is the only non-vanishing four-dimensional cut of the double-box, since all other cuts
vanish due to the vanishing of the A?> numerator factors in four dimensions. The discontinuity
of the mass-regulated triangle is easily computed from eq. (6.5) to be
i ; log(1 + s/m?)

Discs0 I;:i:;’p[l] = (47T)227r .

(6.8)
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Since |I§'Tl::§p[1](s)| — 0 sufficiently fast as |s] — 0o, we can use a dispersion relation to
compute the triangle integral from its discontinuity along s > 0. In other words,

= I, PN I (). (6.9)

3,m?2

_ TN e Diseazo Ty 20l
P \p+q 0 X

TP 22 )(s) = m

21 r—Ss

We can understand the vanishing of the integrals in eq. (6.3) by again understanding the
P

IR divergences when m = 0. Consider the divergences of Lm? [/\‘,(2,)\}27 +q]. The only propagators
that are not suppressed by a (—2¢)-component of the loop momenta are ¢ and (g—k2)2. When
the latter goes on shell, the former does as well. This gives a O(1/e) divergent term, since
they are neighboring propagators, multiplied by a box with a doubled propagator, denoted
by Z,°P[X/(p — k1)?], which is O(e) because it is related to an UV finite integral in six
dimensions. The result is an integral that begins at O(€?). Following our procedure for mass
regularizing, the only propagator given a mass is (¢ — ko). This replaces the O(1/€) term
by a O(e?) one, but it is still multiplied by a box of O(e). Thus, the mass-regulated integral
is O(e). Notice also that there is no four-dimensional unitarity cut of this integral, so its
vanishing is consistent with the vanishing of its cuts.

Mass regularization of the integrals renders the primitive amplitudes (4.8) and (4.22)

much simpler. Substituting eqgs. (6.2) and (6.3) into eq. (4.22) yields

AII;11234 = (4;))4{ - %[LiZ(l +s/m?) — CQ] + ! (Z — 4) + 1} + O(e),

Ol = O]

1. . t

Ay = (4%4{ - g[h?(l +s/m?) — (o] + (S - 4) + 1} + O(e),

P p 1
AFS1234 = = (471')4 57
AP p (1t 1 (6.10)

F1234 — _(47T)4 9 ;_4 "‘5 )
Apiggs = 0(e),
Agf;&l = O(e),

p 1o,

A, = - )3 [Lig(1+ s/m?) — (2] + OCe).

The above primitive amplitudes are now a sum of rational terms and terms of uniform tran-
scendental weight two, which contain the mass regulator m. In particular, Agp 1 and Agp 2
now vanish at O(e"), and A? = Al{? and Agpi” share the same transcendental terms. Inspec-
tion of eqgs. (4.38) and (4.43) shows that no transcendental terms remain in A4.;.; and Ag3.0
when eq. (6.10) is used,

12p
Ag1(1 4) = A1
4,1,1( 727 37 ) (471')4 + O(6>7 (6 )
and 94
p
Ay3.0(1,2,3,4) = 12
4,3,0( ’ >37 ) (47T)4 + O(E), (6 )
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and we now obtain complete agreement with eq. (1.3). Notice that this is true even without
taking the limit m — 0.

7 Conclusions and outlook

In this paper, we used previously-derived results [26, 59] and color algebra to perform a
check in dimensional regularization of the two-loop four-point all-plus result (1.3) from the
CCA bootstrap. The primitive amplitudes of refs. [26, 59] begin at O(1/€?) and contain
transcendental functions. By placing the matter in the representation Ry, we found that the
color-ordered two-loop amplitudes in this theory contain both 1/e poles and transcendental
terms. At first sight, this might seem to contradict eq. (1.3). However, Catani’s universal
factorization formula (5.1) exactly predicts these terms, and our computation agrees with
(1.3) after we subtract the universal IR divergences.

The discrepancy arises due to the non-vanishing of the one-loop amplitude in this theory
at O(e). We remedy this by mass-regulating the already dimensionally-regulated integrals
comprising the primitive amplitudes (4.8) and (4.22). All appearances of the dimension
regulator € are replaced by expressions involving the mass regulator m, resulting in finite
quantities when m # 0. The new mass-regulated amplitudes give exact agreement with
eq. (2.4), even for generic mass m. Removing the dependence on € is essential for comparing
the YM and sdYM results. The self-dual equations explicitly depend on the Levi-Civita
tensor, which does not have a sensible definition for non-integer dimensions. So, the CCA
bootstrap must implicitly use a different IR regularization scheme that involves keeping all
momenta in four dimensions. Mass regularization appears to be such a scheme, at least at
four points, and a suitable mass regularization for higher-point all-plus amplitudes seems
likely to lead to agreement with eq. (2.8) as well.

Despite the discrepancy between the sdYM form factor and the YM amplitude in di-
mensional regularization, we are confident in the validity of eq. (2.8) when using a suitable
mass regulator. Taking all possible four-dimensional unitarity cuts of the two-loop all-plus
sdYM form factor shows that it cannot have any branch cuts in the Ry theory. Moreover,
the vanishing of the one-loop form factor forces the two-loop one to behave like a tree-level
form factor in collinear limits, suggesting that the two-loop one is finite. We believe that
eq. (2.8) predicts the finite remainder of the YM amplitude in dimensional regularization. In
particular, we predict that

2-loop __  g2-loop 2-loop
'An o A" ‘pred. div. + An,deM’ (71)

is the predicted IR divergence of Catani given by egs. (5.7) and (5.8),

2-loop
where Aj | pred. div.
2-loop

including its O(e") parts, and A ayu 18 the two-loop result computed from the CCA boot-

to O(e”)requires knowing the one-loop

strap given by eq. (2.8). Evaluating .A?[IOOP‘

pred. div.
all-plus n-point amplitude to O(e?). A closed-form formula is not known for this, but in prin-

ciple it can be computed for each n by using a basis of scalar integrals. The complete basis
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to all-orders in € includes pentagons, boxes, bubbles and triangles [65-69], the coefficients of
which can be computed using D-dimensional unitarity [70, 71].

The combination of the single-trace term computed in ref. [49] and the double-trace
term that we have computed, eq. (2.8), is a complete two-loop m-point result for a non-
supersymmetric gauge theory with matter. We have conjectured that the YM amplitude has
the form given by (7.1) with dimensional regularization as the IR regulator. Mass regulariza-
tion of the four-point integrals allows for complete agreement between the YM amplitudes and
the sdYM form factor. We further conjecture that this scheme, and perhaps other IR regular-
ization schemes which do not change the dimensions of spacetime, give complete agreement
between the two approaches at higher points. In light of the simple behavior of the two-loop
all-plus four-point amplitudes when dimensional regularization is combined with suitable mass
regularization, it may be worth investigating similar mass regularization for other types of
gauge theory amplitudes. Although the two-loop all-plus n-point amplitude was not com-
puted in QCD, where the fermions are in the representation Ny (F @ F), methods similar
to the CCA bootstrap, perhaps when combined with other bootstrap methods, may lead to
analytic progress in the computation of higher-order corrections in more realistic theories.
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A Colorful identities

In order to evaluate the color factors in terms of traces over the fundamental representation
without any contracted indices, we make use of various SU(N) identities. In this appendix,
we let R be an arbitrary irreducible representation of SU(N). The fundamental (defining)
representation is denoted by F', and G denotes the adjoint representation.

In the main text, we normalize the generators such that the Dynkin index of the funda-
mental representation Tr is unity, i.e.

tr(t%) = 6 = Tp=1. (A1)

Furthermore, we define the the SU(N) structure constants 2 to be real and normalized
such that
ifoe = tr([te, t°)t°). (A.2)
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We will make use of color diagrams to describe one- and two-loop color factors. The rules

for evaluating color diagrams are

bji‘%\mc = ife

a
awp = 0%
R0 =@

R . i
(i il :(6R)j

(A.3)

where t%, is an SU(N) generator in a representation R. If the “R” is omitted, then it is

implied that the generators are in the fundamental/anti-fundamental representation. The

graphical depiction of the antisymmetric tensor product of the fundamental A%F is given in

fig. 4.

In this appendix, we will keep the Dynkin index of the fundamental representation T

arbitrary. It is set to 1 outside this appendix.
Recall that the quadratic Casimir in R is defined by

194% = Cp - idp .

Two other contractions of generators that appear in the computations are
tititi = (Cn = )t

tathtithy = (Cr — Co)thtl + (if ) (if ")t

The SU(N) Fierz identity,
(#):()F = Trofot — TEaia,
N
when in the presence of other matrices and inside traces is given by
(XY Z) = Tote(V) (X Z) — %tr(XYZ),
tr(Wt*X)tr (Yt Z) = Tptr(ZY XW) — %tr(WX)tr(YZ),

T
tr(Wt*X)Yt°Z = TeY XW Z — WFtr(WX)YZ.
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Figure 9: Color diagram for the trace over the representation A2F in terms of traces over
the fundamental F'.

The trace over the exterior square of the fundamental A2F has a realization as traces
over F. Letting P: F ® F — F ® F be the permutation operator, the exterior square is the
image of the projector %(1 — P). Thus, the trace over A’F is given by

trpep (™ - 1) = trpgp(t™ -t (1 — P)). (A.11)
The generators of ' ® F' are related to the generators of F' by
thor =t"@14+1®t", (A.12)

which implies that there are 2" contributions to the trace over n generators t‘]?'@ > according
to the choice of first or second term in eq. (A.12). In other words,

trpgr(t™ - 1) = Y tr(tr)tr(tse), (A.13)
Ic(1,...,n)
where t; denotes the product t%1 - -t%m for I = (i1,...,%,) with the ordering inherited from
the ordered list (1,...,n), and I¢ is the complement of I, again with the inherited ordering.
Similarly,
trpep(t™ -t P) = Y tr(titre), (A.14)
IC(1,...,n)
so that
a a 1
tr 2 p (191 - - £97) = 3 Z [tr(tr)tr(tre) — tr(trtre)]. (A.15)
Ic(1,...,n)
Note that
ty =1, (A.16)
with this notation, so
tr(tg) = tr(1) = N. (A.17)

The associated color diagram for the trace over A2F is shown in fig. 9. It uses the diagramatic

rules for antisymmetrizing two lines shown in fig. 4.
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The Dynkin index of A%2F is read off from
1
trpep(194°) = 3 [2Ntr(t%%) — 4tr(t%")] = Tr(N — 2)6°, (A.18)

i.e.

Trhep =Tp(N —2). (A.19)
The quadratic Casimir is then

T/\QF dlm G

CrF = ~fm A2F

= 2Tp(N —1—2N"1). (A.20)

B Computation of the double-trace kinematic terms in eq. (2.8)

The color factors computed in ref. [49] leave out the double-trace terms. Here, we recompute
these color factors while keeping track of the double-trace structure. Afterwards, we use the
CCA bootstrap to prove eq. (2.9). In order to do this, we first introduce some notation from
ref. [49].

The momenta for massless states satisfy

Pas = >\o<>\d7 (Bl)

where A, \ are two-component Weyl spinors. We can scale A, X while keeping the momentum
p fixed such that

A=(1,2). (B.2)

The parameter z is then the coordinate on the CP! where the chiral algebra lives. A massless
state of energy w is described by a function of z and A. For a set of n outgoing momenta
{pi}, the familiar spinor brackets are defined by

(i) = 2milz: — 7). (B.3)
[i4] = —ca AN,
Positive- and negative-helicity states of a gauge theory are denoted by
JwA](z) and Jw](z), (B.5)

respectively, where a is the color index. The states can be expanded in a series in w as

T wd](z) =Y wFIo k] (2),
o S (B.6)
T wA)(2) = > whJo[k](2),

k

— 34 —



where J?[k], J%[k] are homogeneous polynomials of order k in A. These quantities are ex-
panded further as

(B.7)

The states J[r, s], J%[r, 5] generate the (extended) chiral algebra for pure sdYM living on the
z-plane. These states should be thought of as soft modes, since they result from an expansion
in w.

The OPEs in the chiral algebra correspond to collinear limits of states in sdYM. At
tree-level, the OPEs are

T TN () ~ z’fabcglj.)mi +3)(z0), (B.8)
TN TP (25) ~ i TN + X)), (B.9)

()

We have redefined the normalization of the X in order to remove the appearance of the energy
w. Notice that the structure constants used here differ from that of ref. [49] by a factor of
i. The higher loop-order OPEs (including those with matter) are found in ref. [49], but they
are not necessary for our purposes here.

As mentioned in the main body of the paper, correlation functions of the chiral algebra
in a given conformal block are form factors of sdYM with an operator insertion O at a point
in spacetime corresponding to the conformal block. We denote these correlators as

(OTA)(z1) - Tl (21) ). (B.10)

Expanding the external states as a sum of soft modes, we are left with computing correlators
of the form

(O [k1)(=21) - T[] (z) - ) (B.11)
Since correlators on twistor space must not scale with dilations of R*, the scaling dimensions
of the external states must sum to minus the scaling dimension of the operator. Positive-
helicity states J[k] contribute dimension —k, while negative-helicity states J[k] contribute
—k — 2.

The OPEs constrain the poles of the correlators. In order to compute the two-loop
amplitude eq. (2.8), only knowledge of tree-level and one-loop OPEs are needed. In particular,
poles that involve J[0] and J[1] insertions are dictated by tree-level and one-loop OPEs,
respectively.

The chiral algebra also places constraints on terms which are regular in a given limit.
The algebra can be derived directly via Koszul duality [48]. This involves coupling J[k] and

J[k] to the gauge field and the auxiliary field of sdYM on twistor space, which requires J[k]|
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to have a zero of order 2 — k at z = oo and J[k] to have a pole of order 2 4 k at z = oo in
order for the coupling to be well-defined.

Form factors of sdYM with the operator O = %tr(B A B) inserted at the origin give
YM amplitudes when the sum of the gluon momenta vanishes. However, at two loops, the
operator is chosen to be

Ltr(B A B) + h*Ctr(F A F), (B.12)

where C is some constant. The tr(F A F) term is added as a two-loop counterterm, with A2
to remind us that the term is added at two loops. This term is added in order to remove an
all-plus-helicity two-loop two-point correlator that can only be determined up to an overall
constant C'; this addition also forces the two-loop three-point correlators to vanish. The
operator tr(F A F') is a total derivative, which means that form factors with this operator
vanish when we impose that the momenta of the gluons add up to zero, which we do when we
pass to a scattering amplitude. So in practice we can neglect the second term in eq. (B.12).

Since O has dimension four, and J[1] dimension —1, we consider the scale-invariant four-
point correlator

(O[T 1) (z1) J*2[1] (22) J* [1] (23) J* [1] (24)), (B.13)

where O means eq. (B.12) from now on. Eq. (B.13) is determined by one-loop OPEs between
any two J[1]’s; hence we get a two-loop result. It evaluates to (see ref. [49] for how this is
computed)

(OJ* [1)(21) J*[1] (22) J*[1] (23) J** [1] (24))
i [12][34] Rmeatacs
(4m)* (12)(34) 4
2i [12][34] (13)(24) + (14
- (4m)t (12)(34) (12)(34)
+ (1324) + (1423), (B.14)

)(23) (tr(1234) + tr(1432) — tr(1243) — tr(1342))

where the last line adds two more permutations, and the color factor R*1%2%3% ig given by

RMazazas _ 4<t(Glté2))blb2 (t(G('IStaG4)>b3b4( — 2tr((b1l)2)(b3b4)) + tr(b1b3b2b4) + tr(b1b4bzb3)>
+ 4(t(glt(g)>blb2tr}go ((a3a4)(b1b2)) -+ 4<tégta4))b1b2tl‘30 ((alag)(blbz))

— 4trg, (c(araz)c(asay)).
(B.15)

The parentheses around color indices means to symmetrize on said indices. Recall that t¢,
are the generators of SU(N) in the adjoint representation defined by

(t&)pe = —if2. (B.16)
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Writing eq. (B.15) as traces over the fundamental without contracted indices requires the use
of the identities in Appendix A. Doing so results in

R™M9203%4 — (24N — 16 — 32N 1) (tr(1234) + tr(1243) + tr(1342) + tr(1432))
— (16 + 32N 1) (tr(1324) + tr(1423)) (B.17)
+ (32 4 32N 1) (tr(12)tr(34) + tr(13)tr(24) + tr(14)tr(23)) .

With this formula, eq. (B.14) can now be expressed as a sum over permutations of different
trace structures, resulting in eqs. (2.4)—(2.6).

We now prove the formula (2.9) for the n-point double-trace term by induction. Eq. (2.9)
clearly reproduces the n = 4 case. For the n > 4 case, the correlator giving rise to
A2 IOOP(Zl, i2,13,14) 18

<O’ A [1](Z11) A [1](322) A [1](223) A [1](zi4) T >7 (B'18)

where ellipses indicate J[0] insertions. Assume the n-th insertion is a J[0]. Viewing eq. (B.18)
as a function of z,, the poles with respect to z, are dictated by the OPEs of J%[0](z,) with
the other insertions. The OPEs are

7 ) ) 7 ) ~ i

I )0l n) 00

JP10](zm), (B.19)
T[] (2m)- (B.20)

The OPEs dictate that the residues at the simple poles (mn) will be (n— 1)-point correlators.
The double-trace structures in eq. (B.18) for (n—1) points with the ordering 1,2,...,n—1
are

ZAilolog i1, ig, i3, 04)tr(1- - c — Dtr(c---n —1). (B-21)

Since we are only concerned with the ordering 1,2,...,n in the trace structures for n points,
to determine the dependence on z, we only need to consider two OPEs, where the point z,
is near z. and where it is near z,_1, for a given ¢ € {3,...,n — 2}. Then the double-trace
structure of eq. (B.18) at a given ¢ has the form

1 00 . . .
mAil Lelit,d2,43,i4)tr(1---c — Dtr(c- -~ (n — 2)b)

b 1 2-loop

ifa"_la”b

+ g fonae < >An Le (i1, 92,43,34)tr(1- - c = D)tr(b(c + 1) - n — 1)
ne
06 1 1
Ail 15(21, io,13, 14)<<n 1) + <nc>>tr(1 cerc—1)tr(c---n) (B.22)
<n — 1,C>

’I’L_ 10(217127Z3;Z4)< tr(l--'c—1>tr(c...n)

n —1,n)(nc)
= A271°0p(21, i9,13,04)tr(L---c— 1)tr(c---n).
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In the first equality, we performed the contractions between the structure constants and the
generators within the traces and kept only the double-trace terms with the ordering 1,2, ..., n.
In the second equality, we used the definition of the angle spinor brackets in terms of the z;
variables, eq. (B.3). The last equality follows by induction from the definition (2.9).

Summing over ¢ then yields
Z A2 l°°p (11,49,13,04)tr(1---c — D)tr(c---n)
= Z A2 l0op (41 g, i, ig)tr(1- - - c — Dtr(c- - - n), (B.23)

where we added 0 = Ai foﬁ (41,1992,13,14) in the second line, which agrees with eq. (2.9), since
the condition ¢ = n — 1 < i3 < iy < n is incompatible with 74 < n, which holds because a
J[0] is inserted at the n-th position.

In the above, we ignored the terms regular in (n—1,n) and (nc); however, these terms are
null since they would not allow J%*[0](z,) to have a second-order zero at z, = co. Eq. (B.23)
shows that the dependence on z, is compatible inductively with eq. (2.9).

Next we consider the dependence on z,,, when there is a J[0] inserted into eq. (B.18) at z,
for m < n. The computation goes very similarly for the three cases: 1 < m < iy, i1 < m < ig,
and i3 < m < ig. The vanishing conditions for eq. (2.9) mean that the J*[0] contributes to
only one of the two traces in the double-trace structure when only considering the ordering
1,2,...,n. The case iy < m < i3 differs slightly. Taking m = iz + 1, the OPEs involving
J%2+1[0](2iy41) dictate that there are simple poles at zj,41 = z;j for j € {1,...n}\ {i2 + 1},
and their residues are (n — 1)-point correlators with J%2+1[0](z;,+1) removed.

The double-trace structure in the ordering 1,2, ..., n of the (n — 1)-point correlator with
this operator removed is

Z ATeRP(in, iz, i, da)tr(cr - cj)te(c; -+ ent), (B.24)

where c¢; is the j-th element of the ordered list (1,...,42,i2 +2,...,n). We can ignore terms
with j < 49 + 1, since An Lic; (11,12,23,14) Vanlshes Wlth this Condltlon For j > io 4+ 1, the
insertion J%2+1[0](2iy+1) only contributes to the right trace in the double-trace structure. So
the computation is very similar to the z, case described above.

For j =is + 1, J%2+1[0](2i,41) must contribute to both traces in the double-trace struc-
ture, since the generator ¢*2+! can be inserted in either of the traces in

tr(1- - ip)tr(ip + 2 -n) (B.25)

while preserving the ordering 1,...,n. Correspondingly, there are four poles instead of two,
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at zi,+1 € {21, Ziy), Ziy+2, 2n }, With residues dictated by the OPEs:

1
j fin0in+1b T 1>Ai‘l°1‘jg2+l(z‘1, ig, iz, ig)tr(L-- - (iy — 1)b)tr(ia + 2+ - n)

1 2-loop

s raio+101b
+ Zf 2 4<Z2 T 1’ 1> n—1;ci541

(il, 19,13, i4)t1“(b2 oo iQ)tr(’iQ +2--- n)

1
. pay i b 2-1 L . .
it AT (L )tr(b(is ) on)

1
o fontigttb__ Z_ AZlooP g o e i) te(1 e dg)tr(ig + 2+ - (n — 1)b)

(n,ig + 1) " hicia 4 (B.26)

_ 42-loop L <221> L . o
= n—l;ci2+1(Z17227137Z4) o F a1 1, 1>tr(1 ig + Dtr(ia+2---n)
<n7 7:2 + 2>

tr(l---dig)tr(ia+1---n)

2-1 L
+ An—oﬁlcji2+1 (Z17 227 137 Z4) <

10+ 1,10 +2)(n,i2 + 1>

= AT (i, iz, i3, da)tr(1 - i + 1)tr(iz + 2+ )

+ AZOP (i, iz, i3, ia)tr(1 - - dg)te(iz + 1+ n).
The first equality follows from taking only the double-traces with the ordering 1,...,n after
removing the index contraction. The second equality follows from the definition (2.9). This
exhausts all cases, and the result follows by induction.

C Proof of eq. (3.14)

In this section, we prove that the single-trace color-ordered one-loop subamplitude when
matter lives in the representation (1.1) is given by eq. (3.14), which we repeat here for
convenience:

—8A£}1(1,...,n)+zn: > Ao, (C.1)

k=10 € aylWfy

where oy, = (2,...,k) and S, = (k+ 1,...,n). The first term immediately follows from the
eight copies of the fundamental representation for the fermions, together with the sign flip
associated with the SWI (3.10). The second term must then come from the single copy of the
antisymmetric tensor representation, in particular from the exchange graph shown in figure
9. (The gluon loop only generates double traces, and single traces with a factor of N which
cancel against non-exchange contributions from A2F.) Figure 10 provides an example, for
n = 6, of how a particular shuffle of a4 and B4, i.e. an element of aj W G for kK = 4, can
contribute to the trace ordering tr(1---n).

We now provide a rigorous argument for the validity of eq. (3.14). That is, we will show
that the contributing color-orderings for the exchange terms are in bijection with the shuffles
ap, LW By for some k. Recall that the single-trace terms of the one-loop amplitude with matter
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Figure 10: An example for n = 6 which illustrates how the color-ordered sub-amplitude
A[GH (1,5,2,3,6,4) can contribute to the color factor tr(123456) via the exchange term P. The
ordering (1,5,2,3,6,4) corresponds to a shuffle of oy = (2,3,4) and 84 = (5,6).

in the representation (1.1) is given by

Z —8tr(o1---on) AN (01, ... on)
0ESn ) In (©2)
+% S teo (- 19) AN (o1, . 0)
Ic(1,...,n)
The sum is over the group S, /Z, = S,_1, allowing us to choose an element from 1,...,n

which can be fixed by all o € S,,_1. We choose 1 to be this fixed element. After summing over
Sn—1 and collecting on the traces, the color-ordered term multiplying tr(1---n) is generically

—8A£11](1,...,n)+%ZAL”(1,J), (C.3)
o€eS
where S C S,,_1 is
S={oceS,_1|lo(l-I°)€](,...,n)] for some I C (1,...,n)}, (C4)
where is [(1,...,n)] is an equivalence class containing all cycles of (1,...,n). Here S is written

as a set, but we are counting multiplicities, meaning that ¢ is included in the sum the same
number of times there is an instance of a sublist I C (1,...,n) with (I - I¢) € [(1,...,n)].

The set S can be written as a disjoint union over subsets S which require the sublist 1
to be of size k, allowing for the sum over S to be written as a sum over k,

%ZALH(LU) = ;Z > Al 0), (C.5)

O'GS k=0 0€§k
where the collection of permutations Sy is

Sy ={o €S, 1|o(I-I°e|Q1,...,n)] for some I C (1,...,n) with |I| = k}. (C.6)
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Notice that if o € Sy then o € S,,_, which follows from the fact that if o(I-I¢) € [(1,...,n)]
then o(I¢-1I) € [(1,...,n)], since I¢- I is related to I - I¢ by a cyclic transformation. We can
use this pairing between I and I¢ to require that 1 € I C (1,...,n). This restriction removes
the overall factor of 1/2 and the sum becomes

;Zn: > AH(LU)ZZ%ZAE}(LO), (C.7)

k=0 oe8,cSn-1 k=1oes),
where the new subset S’k is
Sp={0€ 8, 1|lo(I-I° €[(1,...,n)] for some I C (1,...,n) with [I| =k and 1 € I} (C.8)

forall 1 <k <n.

We will show that S, = ay W By, which will complete the proof of eq. (3.14). As a
reminder, ap = (2,...,k) and S = (k+1,...,n). Consider an element 7 € ay, LW S, and set
J = (1,77 Y(as)). The permutation 7 is generically of the form

T = (51172)/812737"'7/81k,17k7/61k)7 (Cg)

where 3, represents some sublist of 8y such that gy, - Br, --- 81, = Bg. Since T € S,—1, we
can identify 7 with (1,7) € S,. So the j-th element of 7 is in the (j + 1)-th position in (1, 7).
Letting j; be the position of i in 7 for 2 < i < n, we then have that

J=1do+ 143+ 1,...,5k+1). (C.10)

Also, j; < ji for i < I, since (ag); =i+ 1 <1+ 1= (ag); and the shuffle product preserves
the ordering of «y. This means that J is ordered with respect to (1,...,n). It follows that
the complement of J¢ is

JO= (ki + 1+ 1) =771 (Br). (C.11)
Thus,
T(J-J) =10, Br) = (1,2,...,n), (C.12)
which implies that 7 € S, i.e. oy W B C Sp.
The shuffle product ay, LU ), has size
|| + | B n—1
awwa = (7 o (©13)

The size of Sy, is at most the number of size-k sublists of (1,...,n) containing 1, i.e.

15| < (Z:D (C.14)

It cannot be larger, because o € Sy if and only if there exists I C (1,... ,m) containing 1
such that o(I - I¢) € [(1,...,n)]. Since o € S,—1 has 1 as a fixed point, it must be that
o(I-I°) = (1,...,n). By uniqueness, this means there is only one such o for a given I. So
the size of Sy is bounded by eq. (C.14). Given that ay W By C Sk, and eq. (C.13), the bound
must be saturated, and then S, = ay, L B, follows. This proves the equality.
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D Integrals

In this section, we reproduce the evaluated integrals from ref. [26] that enter the two-loop
primitive amplitudes in egs. (4.8) and (4.22). The results for the two-loop integrals are given
in the Euclidean region s,¢ < 0 and u > 0, for which x = ¢/s > 0. They can be analytically
continued to other regions by substituting (—s)~¢ + s %™ and Inx + In|x| + ir. The
planar double-box integral, expressed in terms of the one-loop box integral, is

Iy A2, ] (s t) = T4 [A2A2, ] (s, 1)

A a”\p+q
— 1 —1—e 1-loopry4 FRII;_i_q’q (Dl)
= —zCF:Q(_S) 7, [)\p](s,t) + m + O(e).

The one-loop box integral to O(€?) is

e 2 (1+yx)? T+x 3

TP [N2] (s, t) = der(—s) (=€) (1 — €)~

1{1 Ix(In®x+72) xlny 11
6

1 1
+e| X [Li3(—X) — (3 — InxLig(—x) + 5 In® x — 3 In* x In(1 + x)

(1+x)? 3

2 X 1

Tly) el ront )

+ 5 In Ty +5 (20 x+7

11( lx(1n2x+7r2) x Inx 11) 4

3 2 (1+yx)? 1+x 3

} +0(%). (D.2)

The planar finite remainder F Rf tq,q 18
FRP = 1 x —Inx(In?x + 72) + X—l 2. (D.3)
P+4,9 18 (1 + X)Q %
The divergent non-planar integral in terms of the one-loop box integral is
1 FRNP
NPy2y2 . —1—e 1-loopry4 P,
Iy A(s t) = _ZCF:Q(_S) 1, Apl(u,t) + M7 (D.4)

where the finite remainder is

FR;]XqP—é{—2X<1+X)[Li3(1_>:X>—Cg—ln(lix)(Li2<1ix>+7;2>_éln3<lix>]

_} 2 _l 2 _1 2 L 2
+3x(1 4+ x)In(1+ x)Inx 2(1+x) < X+3>ln (1+x) 2)( <1+X+3>ln X

1 1 5
+7T2<X—21+X+6> —l—(l—l—x)ln(l—l—x)—xlnx

2

+m<2X(1+X) [LiQ(H’fX) —Z—glnx] F(1+x) {(1+x)(—>1<+3) ln(l—l—x)—l])}.

(D.5)
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The finite non-planar integral INP[)\CQI)\I%M] INP[)\IQD)\ZM] i

a”\p+q (4m)4(—s) 6 ] (1 + x)?
7[.2
1;X[L3(1_|1_X)—C3+ln(1+x)<Li2<1iX)+6>

3 1 1 3
+ Z(l +x) In?(1 + x) + §1n3(1 —I—X)] + ( + 2> In(1+ x)Iny

NP (1) = 7oy 1{ X -Gt (L0 -5 ) - Sx i )|

x(1+x)
1 4 3 x 3 In(1+ x) In x
+ + = -+ -
”( 3(1+x)  2(1+x) 4) 2y 2(1+x)

. L+x|;. X 1.5 3
+Z7T<— 2z [L12<1+X)—ln(1+x)lnx+2ln <1+X)—2(1+X)1n(1+)()]

I x 1 3 1
2(1+X)2(1H2X+7T2)_<X(1—|-X>+2>1HX_2X) . (D6)

Finally, we provide parts of the explicit expressions for eqs. (4.48) and (4.49). They are

4 —s)72% 1
Ag11(1,2,3,4) = 37 2((11)()26

XX> + a3 ln(1+X)ln< X )

3 2 3 2
343+ 32+ 01
b X +3x ><)1ﬂ(1Jr T x

+ (143 + 32+ 33 In2(1 + x) + 2723

201G+ 0 () = 20000+ 3+ )

+ 2im(1 + x)3{x3 In (11}() —In(1+x)+x(1+ x)} +0(%) (D7)
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and

4 p 1
A4;3;0(17 2,3,4) = 3 (4m)4 x2(1 + x)2
X {;{*(3 +3x +xH) 1In? <1ix> —(143x+3xH) 1+ x)

3 2 3 X 2 X
1 2 In(1 1 In (2~
+x° (14 6x + 6x~ + x)<n( +X)n<1+x>+ﬂ) n<1+x)

— (2+6X+6x2+x3)<ln(1+x)ln <1ij) +7r2> In(1 + x)

X

+2x*(1 + x) In® <1+x> + 2x(1 4 x) In*(1 + x)

2024 v+ 2¢2)(1 + )% In(1 + 1<X>
X(2+ x +2x7) (1 4 x)*“ In( x)n1+x

+ 22y (1 4 x)* + 18x%(1 + x)?

+ i [4(1 +3x 3+ 3+ 3 3 + xS In(1 + x) In (14’:)()

X

3 2 3 2
+ 3 (=1 + 3y + 32+ ) In? [ —2—
X°( X +3x°+x°) <1+x

) + (14 3x +3x% — x> In?(1 + x)

—2x(14+x)(2+3x+3x?) In <1jfx> +22(14+x) (B3 +3x+2x?) In(1+x) —2n2x3} }+O(e).

(D.8)

We only give the lowest order in € term for A4.1.1 due to the complexity of the O(e°) term. Tt is
already evident at this order that the dimensionally-regulated YM amplitude does not agree
with eq. (2.4), the sdYM form-factor result. The predicted answer from the CCA bootstrap
for Ay3.0 is merely the 18x%(1 + x?) term in eq. (D.8).
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