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Article Impact Statement: Streams have finite capacity to store water and undergo transient 

drawdown and depletion when a hydraulically connected aquifer is pumped. 

 

Abstract 

Analytical and semi-analytical models for stream depletion with transient stream stage 

drawdown induced by groundwater pumping are developed to address a deficiency in 

existing models, namely, the use of a fixed stream stage condition at the stream-

aquifer interface. Field data are presented to demonstrate that stream stage drawdown 

does indeed occur in response to groundwater pumping near aquifer connected 

streams. A model that predicts stream depletion with transient stream drawdown is 

developed, based on stream channel mass conservation and finite stream channel 

storage. The resulting models are shown to reduce to existing fixed-stage models in 

the limit as stream channel storage becomes infinitely large, and to the confined 

aquifer flow with a no-flow boundary at the streambed in the limit as stream storage 

becomes vanishingly small. The model is applied to field measurements of aquifer and 

stream drawdown, giving estimates of aquifer hydraulic parameters, streambed 

conductance and a measure of stream channel storage. The results of the modeling and 

data analysis presented herein have implications for sustainable groundwater 

management.  

Introduction 

Understanding and quantitatively predicting stream-aquifer interactions is critical to manage both 

these systems, while demand for water is increasing. In 2014, the state of California passed the 
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Sustainable Groundwater Management Act (SGMA) in which stream depletion is listed among 

the six metrics for determining the sustainability of its groundwater basins (Owen et al., 2019). 

This is in recognition that groundwater pumping from aquifers overlain or bounded by streams 

often leads to reduced stream flows, with undesirable impacts on both human use and ecosystem 

function (Winter et al., 1998; Bowen et al., 2007; Yu and Chu, 2010; Foglia et al., 2013; Zipper 

et al., 2018; Tolley et al., 2019; Kwon et al., 2020) ultimately leading to dry streambeds or 

disconnected stream-groundwater systems. Theis (1941) was among the first to develop a model 

for stream depletion arising from groundwater pumping from a confined aquifer, with depletion 

defined as the decrease in stream discharge. Theis (1941) used the earlier model of Theis (1935) 

developed for a laterally infinite aquifer, together with the principle of linear superposition, to 

simulate a constant-head boundary condition at the stream-aquifer interface. Glover and Balmer 

(1954) extended upon this work with a closed-form function of the model, later tabulated by 

Jenkins (1968) who also introduced the Stream Depletion Factor concept.  

Hantush (1965) made the next notable advancement by introducing a semi-pervious 

streambed with a general (Robin) boundary condition at the stream-aquifer interface, where the 

flux across the streambed was treated as proportional to the differential head across the 

streambed of known thickness, with stream stage held constant. Intaraprasong and Zhan (2009) 

expanded upon this work, solving the transient groundwater flow equation throughout the 

streambed with stream stage prescribed as a time-dependent function. Chan (1976) and Asadi-

Aghbolaghi and Seyyedian (2010) generalized application of the superposition principle to 

confined aquifer flow domains bounded laterally by intersecting streams. According to Zlotnik et 

al. (1999), Grigoryev (1957) and Bochever (1966) were the first to consider a partially 

penetrating stream under steady state (Thiem-type) flow conditions in an infinite domain. Others 
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have extended these analytical stream depletion models to cases of partially penetrating streams 

(Zlotnik and Huang, 1999; Zlotnik et al., 1999; Butler et al., 2001; Fox et al., 2002; Zlotnik, 

2004; Butler et al., 2007; Zlotnik and Tartakovsky, 2008). 

All the analytical and semi-analytical models referenced above predict confined aquifer 

drawdown as monotonically increasing with time before attaining a steady state. Hunt (2009), 

however, noted that numerous field observations (Hunt et al., 2001; Fox et al., 2002; Nyholm et 

al., 2002; Kollet and Zlotnik, 2003; Lough and Hunt, 2006) have shown that confined aquifer 

drawdown curves near a stream undergoing depletion mimic unconfined aquifer drawdown 

curves of delayed yield and without a permanent steady-state regime. Hunt (2009) attributed this 

behavior to leakage into a confined aquifer from an overlying unconfined aquifer. Stream 

depletion models for cases where the aquifer is unconfined have thus been developed by Hunt, et 

al. (2001) and Hunt (2003, 2008, 2009), who also used a fixed-stage condition with a Robin 

boundary condition or sink/source function in the governing flow equation for stream-aquifer 

fluid exchange. None of the confined aquifer fixed-stage stream depletion models reviewed 

above can predict the “delayed yield” behavior alluded to by Hunt (2009) hence the adoption of 

unconfined aquifer flow. A detailed review of the literature on different configurations of 

pumping-induced stream depletion problems has been provided by Huang et al. (2018), where 

the Dirichlet and Robin boundary conditions are identified as the only ones used for such 

problems. 

Numerical models, such as MODFLOW (Harbaugh, 2005) and MIKE SHE (Refsgaard et al., 

2010), through their respective stream packages (e.g., SFR1 and SFR2 in MODFLOW), treat 

stream-aquifer mass exchange in a similar manner to the analytical and semi-analytical models 

discussed above by treating flow across the streambed as directly proportional to the difference 
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between stream and aquifer head (Prudic, 1989; Prudic, et al., 2004). However, MODFLOW’s 

current stream package, SFR2, allows for the specification of spatially and temporally variable 

stream stage as dependent of stream discharge through stream hydrographs (Prudic et al., 2004; 

Harbaugh, 2005; Niswonger and Prudic, 2005) or nonlinear empirical formulas such as the Manning 

equation (Prudic et al., 2004), allowing for the effect of time-dependent stream stage to be 

considered. The use of the Manning equation, which relates stream stage to stream discharge and 

is nonlinear, requires iterative methods at every time step during computations to determine stream 

discharge and stage response to pumping. Current versions of MODFLOW (Panday et al. 2013; 

Langevin et al. 2017) include an approximation to the Richards equation to simulate unsaturated 

flow beneath streams when stream drawdown exceeds stream depth. The numerical approach, 

because of the nonlinearity of the flow problem, can be computationally demanding. 

Given the limitations of the semi-analytical stream depletion models and the computational 

demands of numerical models, an alternative modeling approach is proposed here where a new 

boundary condition is introduced and imposed at the stream-aquifer interface by invoking the 

mass-balance principle and introducing the concept of finite stream channel storage. Two semi-

analytical models are developed for the cases of non- or minimally-penetrating streams (NPS) and 

fully-penetrating streams (FPS) in a confined aquifer, taking into account the effect of finite stream 

channel storage. The solutions are validated by comparing them with a numerical model based on 

the finite-element method (FEM) and with field observations of aquifer and stream drawdown. 

The details of the validation exercise are included in the Supporting Information. While the 

approach used here does not currently include stream routing, it is a significant improvement over 

existing analytical and semi-analytical models and predicts the delayed yield behavior discussed 

in Hunt (2009). The NPS model is applied to field observations of stream and aquifer drawdown 
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in a parameter estimation exercise by fitting the models to both aquifer and stream drawdown data 

to demonstrate the practical application of the approach. 

Methods 

In the following, we describe the mathematical formulation of the new stream-aquifer interaction 

term, develop semi-analytical solutions for the two cases already mentioned above, and apply the 

model to field observations of stream and aquifer drawdown. We consider the case of groundwater 

flow to a fully penetrating pumping well completed in a homogeneous confined aquifer near a 

hydraulically connected stream. For the stream, we consider two cases, namely (a) a non-

penetrating stream (NPS), where the stream flows atop the aquifer and (b) a fully penetrating 

stream (FPS), where the stream cuts across the entire thickness of the aquifer. For the FPS case, 

we distinguish between the case in which flow in the aquifer occurs on both sides of the stream, 

which we term FPS case 1 (FPS-1), and one in which flow in the aquifer occurs only in the half-

space containing the pumping well, which we term FPS case 2 (FPS-2). The conceptual models of 

the problem described here are shown schematically in Figure 1. To solve the flow problem 

described below, we make the following assumptions: 
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Figure 1. Conceptual model of the stream-aquifer system used for the (a) non-penetrating stream 

(NPS) and (b) fully penetrating stream (FPS) models derived herein.  

For the NPS case, the depicted stream stage is the averaged value across the stream channel width. 

1. The aquifer is fully confined and homogeneous but anisotropic with horizontal hydraulic 

conductivities 𝐾!  and 𝐾"  [L/T] in the x- and y-directions, respectively, has uniform 

thickness b [L], and is of infinite lateral extent away from the stream. 

2. Groundwater is pumped at a constant volumetric flow rate, Q [L#/T], from a line sink 

located at a distance R [L] from the stream bank. 

3. The aquifer interacts with the stream across a streambed with uniform hydraulic 

conductivity 𝐾$  [L/T], thickness 𝑏$  [L], and conductance β = 𝐾$/𝑏$  [1/T] , as in 

Hantush (1965).  

4. The effects of streambed storage are neglected, with the focus being only on the effects of 

stream channel storage (Huang et al., 2020; Xiong et al., 2021). 

5. Stream stage, ℎ%(𝑦, 𝑡) [L], responds to groundwater pumping and experiences a transient 

drawdown response. It is measured relative to the bottom of the aquifer with stream 

drawdown defined as 𝑠%(𝑦, 𝑡) = 𝐻& − ℎ%(𝑦, 𝑡) [L], where 𝐻& [L] is the initial stream 

stage, which is set equal to the initial aquifer hydraulic head; the stream-aquifer system is 

assumed to be initially at equilibrium. 

These assumptions are adopted to simplify a complex reality and improve the tractability of the 

mathematical problem. In the following, we describe the flow equation and the associated initial 

and boundary conditions required to solve the flow problem. 
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Governing Equations of Flow 

The governing equation of the two-dimensional confined aquifer flow problem considered in 

this work is (Fox et al., 2002) 

 

𝑆'
∂𝑠
∂𝑡 = 𝐾!

∂(𝑠
∂𝑥( + 𝐾"

∂(𝑠
∂𝑦( + 𝑓'

(𝑥, 𝑦, 𝑡)						(1) 

 

where 𝑠 = 𝐻& − ℎ(𝑥, 𝑦, 𝑡) [L] is aquifer drawdown, (𝑥, 𝑦) [L] are spatial coordinates in the 

horizontal plane, t [T] is the elapsed time from the onset of pumping, 𝑆' [1/L] is aquifer specific 

storage, and 𝑓'(𝑥, 𝑦, 𝑡) is a sink/source function [1/T]. The x coordinate axis is perpendicular to 

the axis of the stream channel with the origin set on the stream bank closest to the pumping well. 

The y axis origin is located at the point where the line perpendicular to the pumping well and the 

stream intersects the closest stream bank and extends from 𝑦	 → ∞ to 𝑦	 → −∞. 

The aquifer flow problem is solved subject to the usual homogeneous initial condition and 

far-field boundary conditions. For simplicity, the stream-aquifer flow system is assumed to be 

initially at equilibrium. For cases where a background uniform flow field exists, the principle of 

superposition may be invoked to apply the solution developed herein. 

 

Table 1. Nomenclature 
 Variable Definitions Variable Definitions 

𝑏 Aquifer thickness [L] 𝑠obs Observed drawdown [L] 

𝑏$ Thickness of streambed [L] 𝑠% Stream drawdown [L] 
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𝐶% Stream channel storage coefficient [-] 𝑡 Elapsed time from start of pumping [T] 

𝑓& Sink/source function [1/T] 𝑡' Time at n-th observation [T] 

𝐹 Objective function (sum of squared residuals) 𝑊 Width of the stream [L] 

𝐻( Initial stream and aquifer hydraulic head [L] (𝑥, 𝑦) Spatial coordinates [L] in horizontal plane 

ℎ% Stream stage [L] 𝑌 Set of model parameters 

𝐾) , 𝐾* Directional hydraulic conductivity [L/T] 𝑌opt Set of estimated model parameters 

𝐾$ Streambed hydraulic conductivity [L/T] α = 𝐾)/𝑆& Hydraulic diffusivity [L2/T] 

𝑁 Number of temporal drawdown observations β = 𝐾$/𝑏$ Streambed conductance [1/T] 

𝑞% Point-wise depletion flux [L/T] γ Euler’s constant ≃0.577216 

𝑄Q Aquifer well pumping rate [L3/T] Γ Stream-aquifer mass transfer function [L/T] 

𝑄% 

𝑸𝒔 

Stream depletion rate [L3/T] 

Stream discharge [L3/T] 

κ = 𝐾*/𝐾) Horizontal anisotropy ratio [-] 

𝑅 Pumping well [L] distance from stream bank Δ𝐴% Unit area of streambed [L2] 

𝑆& Specific (elastic) aquifer storage [1/L] Δℎ% Unit change in stream stage [L] 

s Aquifer drawdown [L] Δ𝑉0 Unit volume of stream water [L3] 

  Δy Unit distance [L] in y-direction 

  

Non-Penetrating Stream 

We first consider the case of a non-penetrating stream (NPS), where the stream flows atop the 

aquifer to simulate the case where the stream has incised through the upper confining unit and 

minimally penetrates the aquifer. The schematic of the conceptual model of this case is shown in 

Figure 1(a). To solve the flow problem, aquifer drawdown is defined in a piecewise manner (see 

supplemental materials) with the sink/source function, 𝑓'(𝑥, 𝑦, 𝑡), defined as 
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𝑓'(𝑥, 𝑦, 𝑡) = <

1
𝑏 𝑄𝛿

(𝑥 − 𝑅)𝛿(𝑦)

Γ/𝑏
0

𝑥 > 0
−𝑊 ≤ 	𝑥	 ≤ 	0
𝑥	 < 	−𝑊

				(5) 

 

where δ(. ) is the Dirac delta function [1/L], W is stream width [L], and Γ [L/T] is the stream-

aquifer mass-transfer function through the base of the stream. The term 𝑄δ(𝑥 − 𝑅)δ(𝑦) 

represents the pumping well line sink function at (𝑅, 0). 

The stream-aquifer mass-transfer function, Γ, at the streambed is  

 

Γ = β[𝑠(𝑥, 𝑦, 𝑡) − 𝑠%(𝑦, 𝑡)] 			− 𝑊	 ≤ 𝑥	 ≤ 0.					(6) 

 

Additionally, continuity conditions for drawdown and flux at 𝑥 = 0 and 𝑥 = −𝑊 are enforced 

at the two stream banks (see supplemental materials for details).  

It should be noted that for the NPS case vertical flow across the streambed is treated as a 

sink/source term in equation (5) defined by the mass-transfer function in equation (6), where 

stream stage and the associated drawdown, 𝑠%(𝑦, 𝑡), are functions of both y and time t. This 

dependence on time is what distinguishes the present work from fixed-stage models where stage 

is held constant at ℎ% = 𝐻& and stream drawdown vanishes identically (𝑠% ≡ 0). To allow for a 

temporally variable stream stage and drawdown, an additional condition is required in the stream 

as discussed subsequently. 

Fully Penetrating Stream 

In the second case the stream has fully incised through both the thicknesses of the upper confining 

unit and the aquifer, commonly referred to as a fully penetrating stream (FPS). A schematic of the 
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conceptual model for this case is shown in Figure 1(b). Aquifer drawdown again is defined in a 

piecewise manner with 𝑠)(𝑥, 𝑦, 𝑡) being the drawdown of the aquifer in the half-space with the 

pumping well, and 𝑠((𝑥, 𝑦, 𝑡) is the drawdown in the far side half-space. We refer to the FPS case 

where aquifer flow occurs on both sides of the stream as FPS case 1 (or FPS-1). For the case where 

the flow on the far-side (𝑥 < −𝑊) half-space is neglected, only the drawdown on the pumped 

half-space is considered. Such a case may occur when the stream flows along a fault line where 

the far-side bank comprises an impermeable formation. We refer to this as FPS case 2 (or FPS-2). 

The boundary condition imposed at the stream-aquifer interface is specified as 

 

−𝐾!
𝜕𝑠)
𝜕𝑥 L!*&

= Γ)									(12) 

 

for the pumped half-space, and 

 

−𝐾!
𝜕𝑠(
𝜕𝑥 L!*+,

= Γ(						(13) 

 

on the far side, where the mass-transfer functions Γ) and Γ( are defined as 

 

Γ) = −𝛽[𝑠%(𝑦, 𝑡) − 𝑠)(𝑥, 𝑦, 𝑡)|!*&]																			(14) 

 

and 

 

Γ( = −𝛽[𝑠%(𝑦, 𝑡) − 𝑠((𝑥, 𝑦, 𝑡)|!*+,]															(15) 
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for the pumped-side and far-side stream-aquifer interfaces, respectively. Here, we assume that the 

two interfaces have the same conductance, β. For the FPS-2 case, Γ( ≡ 0. Stream drawdown, 

𝑠%(𝑦, 𝑡), is again treated as an unknown time-dependent function, which necessitates an additional 

condition discussed in the following section. 

 

Accounting for Stream Drawdown and Channel Storage 

The flow problem is incomplete without specifying an additional condition at the stream-aquifer 

interface, namely a mass-balance condition applied to the stream channel. This mass balance 

condition states that the rate of change of mass within the stream channel equals the rate of mass 

transfer across the streambed induced by pumping. For simplicity, in the following development 

of the semi-analytical solutions, we neglect stream flow velocity effects. 

For the NPS model, the mass conservation condition can be mathematically stated as 

 

Γ = 𝐶%
∂𝑠%
∂𝑡 																			(16) 

 

whereas for the FPS model 

 

Γ) + Γ( = 𝐶%
𝜕𝑠%
𝜕𝑡 									(17) 

 

where 𝐶% [-] is a stream channel storage coefficient. It is defined here as a dimensionless measure 

of the volume of water, Δ𝑉-, which flows through a unit area of the streambed, Δ𝐴%, per unit 
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change in stream stage, Δℎ%  (i.e., 𝐶% = Δ𝑉-/(Δ𝐴%Δℎ%) ). It is a measure of the volume 

contribution of water stored in the stream channel to aquifer flow, and is distinguished here from 

streambed elastic storage, which is neglected in the present study (Huang et al., 2020; Xiong et 

al., 2021). According to Huang et al. (2020) and Xiong et al. (2021) the effect of streambed specific 

storage, 𝑆'$, may be neglected when the condition 𝑆'$ < (0.1𝑅/𝑏$)𝑆' is satisfied (Huang et al., 

2020; Xiong, et al., 2021), where 𝑆' is aquifer specific storage, 𝑅 is the distance from the stream 

to the pumping well and 𝑏$ is streambed thickness. In typical physical systems, 𝑅 ≫ 𝑏$, and if 

streambed sediment of similar composition as the aquifer material such that 𝑆'$ is of the same 

order of magnitude as 𝑆' , the above inequality is expected to hold. We limit the present 

development to cases where this condition is satisfied. 

For a stream channel with an idealized uniform geometric cross-sectional structure, it is 

possible to provide simple expressions for this parameter. For example, in the FPS case, the stream 

channel has a rectangular cross section, with stream width 𝑊 and aquifer thickness 𝑏, Δ𝑉- =

𝑊Δ𝑦Δℎ%, Δ𝐴% = 2𝑏Δ𝑦, leading to 𝐶% = 𝑊/(2𝑏) if mass exchange is limited to the stream bank. 

For the NPS case, where a similar simple geometric profile may be adopted for the cross section 

of the stream channel, it can be shown that 𝐶% = 1.0. Hence, for real systems where the uniform 

geometric profile assumption may be adopted, the stream channel storage coefficient is expected 

to be of the order of unity. For more complex stream channel cross-sectional geometries that vary 

spatially with 𝑦 , the parameter 𝐶%  can be empirically estimated by inversion of stream and 

aquifer drawdown data, as is demonstrate in this work. It is also possible, in principle, to develop 

empirical functions relating 𝐶% to the dimensionless ratio ⟨𝑊⟩/𝑏$ of the form 𝐶% = 𝑓(⟨𝑊⟩/𝑏$), 

where ⟨𝑊⟩ is a spatial average of stream width along the length of the stream. For mathematical 

tractability, we restrict the development of the semi-analytical solutions to cases where the stream 
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channel storage coefficient, 𝐶%, is a constant. This simplification linearizes the boundary condition 

at the stream-aquifer interface. 

 

Table 2. Definitions of dimensionless variables and parameters based on a characteristic length 

𝐿. = 𝑅, time 𝑇. = 𝑅(/α! with α! = 𝐾!/𝑆', head 𝐻. = 𝑄/(2𝑏𝐾!), and flux 𝑞. = 𝐻.𝐾!/𝑅. 

 Symbols Definitions Symbols Definitions 

 𝑠/,1 𝑠1/𝐻. κ$ 𝐾$/𝐾! 

𝑠/,% 𝑠%/𝐻. β/ β𝑅/𝐾! 

𝑥/ 𝑥/𝑅 β/∗  β//𝐶/,% 

𝑦/ 𝑦/𝑅 𝐶/,% 𝑏/𝐶%/𝑆 

𝑡/ 𝑡/𝑇. 𝑊/ 𝑊/𝑅 

𝑏/ 𝑏/𝑅 𝑞/ 𝑞/𝑞. 

𝑏/$  𝑏$/𝑅 𝑄/,% 𝑄%/𝑄 

κ 𝐾"/𝐾!   

 

Analytical Solutions of the Flow Problem 

To solve the flow problem described above, the governing equation is first transformed into 

dimensionless form. The dimensionless variables and parameters that appear in the solution are 

defined in Table 2. In the development of the dimensionless forms, we set the characteristic length, 

𝐿., as equal to the distance, 𝑅, of the pumping well from the nearest stream bank, 𝐿. = 𝑅, which 

is the controlling distance for pumping induced hydraulic stress on the stream. The characteristic 

time is set to 𝑇. = 𝑅(/α!, where α! = 𝐾!/𝑆' is x-direction aquifer hydraulic diffusivity. The 
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characteristic head and flux are then 𝐻. = 𝑄/(2𝑏𝐾!) and 𝑞. = 𝐻.𝐾!/𝑅, respectively, to limit 

the number of free parameters in the resulting flow equations. Laplace and Fourier-cosine 

transforms are applied to the dimensionless governing equations, which are then solved by 

standard methods for ordinary differential equations. The respective inversion formulae of the 

transforms are finally used to numerically obtain the applicable flow solutions in space-time. The 

transform and inversion formulae can be found in standard textbooks of Engineering Mathematics, 

and interested readers may refer to reference texts (Haberman, 2012). Similar solution approaches 

have been used in hydrogeology literature (Butler et al., 2001). 

  

Case of a Non-Penetrating Stream 

The exact solution for aquifer drawdown, in transform space, for the NPS is (see Supporting 

Information for details of derivation)  

 

𝑠̀̅/,345 =
2𝑒+6

𝑝Δ)
⎩
⎪
⎨

⎪
⎧ e6()+!1)𝑔̅i)(𝑝, ξ, 1.0) 𝑥/ > 1

𝑔̅i)(𝑝, ξ, 𝑥/) 0 ≤ 𝑥/ ≤ 1
ηl cosh[ηl(𝑥/ +𝑊9)] + η sinh[ηl(𝑥9 +𝑊9)] −𝑊/ < 𝑥/ < 0

ηl𝑒6(,1:!1) 𝑥/ ≤ −𝑊/

													(18) 

 

where s̅i9,345 is the Laplace (overbar) and Fourier cosine (tilde) transform of 𝑠/ for the NPS 

case, 𝑝 is the dimensionless Laplace transform variable, ξ is the dimensionless Fourier cosine 

transform variable, and with 

 

η = t𝑝 + κξ(																						(18𝑎) 
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ηl = tη( + ζ																									(18𝑏) 

ζ =
𝑝β/
𝑝 + β/∗

																											(18𝑐) 

β/∗ = β//𝐶/,% 																							(18𝑑) 

Δ) = 2ηlη cosh(ηl𝑊/) + (η( + ηl() sinh(ηl𝑊/)																													(18𝑒) 

𝑔li)(𝑝, ξ, 𝑥/) = ηl𝑒6!1 cosh(ηl𝑊/) + 𝑔̅i((𝑝, ξ, 𝑥/) sinh(ηl𝑊/)						(18𝑓) 

𝑔̅i((𝑝, ξ, 𝑥/) = η cosh(𝜂𝑥/) + (ηl(/η) sinh(η𝑥/)																									(18𝑔) 

 

Here, β9 = 𝑅β/𝐾! = κ$/𝑏/$  is the dimensionless stream conductance, 𝑊/ = 𝑊/𝑅  is the 

dimensionless stream channel width, and 𝐶/,% = 𝑏9(𝐶%/𝑆)  is the dimensionless ratio of the 

stream channel storage coefficient to aquifer storativity, 𝑆 = 𝑏𝑆' , scaled by the normalized 

aquifer thickness. 

The corresponding solution for stream drawdown in transform space is given by 

 

𝑠̀̅/,% =
𝑠̀̅/(𝑝, ξ, 𝑥/)
1 + 𝑝/β/∗

,  		 − 𝑊/ < 𝑥/ < 0,									(19) 

 

where 𝑠̀̅9,% is the Laplace and Fourier cosine transform of dimensionless stream drawdown 𝑠/,%. 

Upon inversion from transform space, Equation (19) may be used to compute stream drawdown 

induced by pumping from a well completed in a confined aquifer. Space-time stream and aquifer 

drawdown are obtained by numerical inversion of the Fourier cosine and Laplace transforms using 

numerical quadrature and the Stehfest (1970) algorithm implemented using Mathematica and 
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MATLAB. Mathematica and MATLAB algorithms of numerical integral and inversion are used 

to evaluate the semi-analytical solutions presented above. The Mathematica and MATLAB scripts 

developed by the authors for this purpose can be found in the hyperlinks provided with the 

Supplemental Information. 

 

Case of a Fully Penetrating Stream 

As detailed in the Supporting Information, the aquifer drawdown solution for the FPS-1 model, 

allowing for flow on both sides of the stream, is given by 

 

𝑠̀̅/,;45)(𝑝, ξ, 𝑥9) =
2𝑒+6

𝑝Δ(
|
e+6(!1+))𝑔̅i#(𝑝, ξ, 1.0) 𝑥/ > 1

𝑔̅i#(𝑝, ξ, 𝑥/) 0 ≤ 𝑥/ < 1
𝑝β9β9∗ e6(,1:!1) 𝑥/ ≤ −𝑊/

					(20) 

 

where 𝑠̀̅/,;45) is the Laplace and Fourier cosine transform of aquifer drawdown, 𝑠/, for the FPS 

case with flow on both sides of the stream and 

 

𝑔li#(𝑝, ξ, 𝑥/) = χ) cosh(η𝑥/) + χ( sinh(η𝑥/)									(20𝑎) 

𝜒) =
Δ(

𝛽/ + 𝜂
+ 𝑝𝛽/𝛽/∗ 										(20𝑏) 

χ( =
β/Δ(

η(β/ + η)
− 𝑝β/β/∗ 								(20𝑐) 

Δ( = 𝑝(β/ + η)[𝑝(β/ + η) + 2ηβ/∗ ].						(20𝑑) 
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The corresponding stream drawdown solution in transform space is 

 

𝑠̀̅/,%,;45)(𝑝, 𝜉) =
2
Δ(
(𝜂 + β/)β/∗ 𝑒+< .						(21) 

 

The space-time form of the solution is obtained by numerical inversion of the transforms as stated 

previously. 

For the case where there is no flow across the far-side stream-aquifer interface, with Γ( ≡ 0, 

the solution reduces to 

 

𝑠̀̅/,;45((𝑝, ξ, 𝑥9) =
2

𝑝ηΔ#
�𝑔=

(𝑝, ξ, 1.0)𝑒+6!1
𝑔=(𝑝, ξ, 𝑥/)𝑒+6

𝑥/ ≥ 1
0 ≤ 𝑥/ < 1				(22) 

 

where 𝑠̀̅/,;45( is the Laplace and Fourier-cosine transform of 𝑠/ for the FPS case with flow 

only on the well side of the stream, Δ# = η(𝑝 + β/∗ ) + 𝑝β/, and 

 
𝑔=(𝑝, ξ, 𝑥/) = η(𝑝 + β/∗ ) cosh(η𝑥/) + 𝑝β/ sinh(η𝑥/)					(23) 

 

The full derivation of this solution is included in the Supporting Information for completeness. 

The corresponding solution for dimensionless stream drawdown is 

 

𝑠̀̅/,%,;45((𝑝, ξ) =
2
𝑝Δ#

β/∗ 𝑒+6								(24) 
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which upon inversion gives dimensionless stream drawdown, 𝑠/,%(𝑦, 𝑡/) as a function of time, 

𝑡/, and position along the stream channel, 𝑦/. 

Stream Depletion Solution 

Stream depletion, 𝑄% [𝐿#/𝑇], defined as the volume rate of flow captured from the stream by a 

pumping well, is obtained by integrating the streambed flux along the length of the stream. The 

depletion flux, 𝑞% [𝐿/𝑇], in dimensionless form, is 

 

𝑞/,% = 𝐶/,%
𝜕𝑠/,%
𝜕𝑡/

						(25) 

 

where 𝑞/,% = 𝑞%/(2𝑏𝑅/𝑄). In the Laplace and Fourier cosine transform domain, equation (25) 

becomes 𝑞�i/,% = 𝑝𝐶/,% 𝑠̀̅/,% , which upon inverting the Fourier cosine transform becomes 

(Povstenko, 2015) 

 

𝑞�/,% = 𝑝𝐶/,%� 𝑠̅`/,% cos(ξ𝑥/) 𝑑ξ
>

&
.						(26) 

 

Therefore, it follows that 

 

𝑄�/,% =

⎩
⎪
⎨

⎪
⎧𝐶/,%� 𝑝𝑠̅/,%𝑑𝑦/

>

+>
																									FPS − 1,2

𝐶/,%
𝑏/

� � 𝑝𝑠̅/,%𝑑𝑥/
&

+,1

𝑑𝑦/
>

+>
						NPS

													(27) 
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where 𝑄/,% = 𝑄%/𝑄  is the normalized stream depletion rate (SDR), which expresses the 

depletion rate, 𝑄%, as a fraction of the pumping rate, 𝑄. Equation (27) includes improper integrals, 

which can be time consuming to evaluate numerically. For practical purposes we estimate it as a 

definite integral over the interval 𝑦/ ∈ [−𝐿/ , 𝐿/], where 𝐿/ ≈ 𝑅/,>, the radius of influence of 

the pumping well. Additional information on the radius of influence for different aquifer and 

pumping well configurations can be found in Bresciani et al. (2020). 

Application to Field Observations 

To test the assumption of fixed stage during groundwater pumping, we monitored the response of 

a stream to groundwater pumping for irrigation. The null hypothesis in this case is that streams act 

as constant-head boundaries or as sources of the fixed-stage mass-transfer type, supplying recharge 

to an aquifer indefinitely during groundwater pumping. In the following, we provide evidence 

from field observations that a stream in hydraulic contact with an aquifer can experience a 

measurable transient drawdown response to groundwater pumping. 

 

Study Site Description 

The study site for this work is situated in the agricultural fields of the California Polytechnic State 

University (Cal Poly), San Luis Obispo, California. A map of the study site is shown in Figure 2. 

The site is in an alluvial basin underlain with a shallow confined aquifer of gravel and sand, which 

is underlain with low permeability metavolcanic bedrock. It is bounded above by a thin near-

surface layer of variably saturated clay or clay-rich sediment of very low permeability, which 

constitutes the upper confining unit with an average thickness of 13 m. The aquifer has an average 

thickness of 11 m locally, as determined from drilling logs. A stream, namely Stenner Creek, flows 
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across the study site atop the aquifer in a nearly northwest-to-southeast direction, incising through 

the entire thickness of the confining layer that overlies the aquifer. The stream is in direct hydraulic 

contact with the aquifer, with a streambed made up of the same sand and gravel formation as the 

aquifer. The stream only minimally penetrates the aquifer. During the summer low flows, the 

discharge rate of the stream is on the order of 𝑄' ∼ 5 × 10+?	m3/s. The groundwater basin in 

which the aquifer is situated has been designated as having medium priority in the implementation 

of the Sustainable Groundwater Management Act (SGMA) enacted in 2014 in California. In 

SGMA, depletion of surface waters is specifically identified as one of the metrics by which the 

state establishes whether a groundwater basin is managed sustainably (Owen et al., 2019). 

 

  

 
Figure 2. The map of the study site at California Polytechnic State University, San Luis Obispo, 

showing the observation locations along the stream and the observation well and the aquifer 

piezometer. A schematic of aquifer-stream flow domain at the site is included with the map. 
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Monitoring of Aquifer Pumping 

The pumping well in this study has a diameter of 0.2 m and is located about 60 m southwest of the 

stream, as depicted in the site map in Figure 2. It is completed across the entire thickness of the 

aquifer and is used to pump groundwater fortnightly at a constant rate of 𝑄 = 8.58 × 10+#	m3/s. 

Aquifer water levels were continuously monitored with pressure transducers in the pumping well 

and a nearby abandoned well located across the stream about 15 m from the far-side bank as shown 

on the map. Stream stage was monitored at 15-minute intervals with pressure transducers in stream 

channel stilling wells at the locations labeled Stenner-P1 to Stenner-P5 on the site map in Figure 

2. Water-level data were collected at all these monitoring locations shown on the site map except 

Stenner-P4 where there was an instrument malfunction, and no data were collected. The raw water 

level time series data from monitoring locations are shown in Figure 3. They were collected over 

a period including the spring season characterized by high stream flows, and the summer when 

stream flows are at their lowest. Stream flow discharge rate and stage change significantly over 

the seasons, from the high flows associated with the end of the winter rain season to the low flows 

of the dry spring-summer irrigation season. This has implications for the channel storage 

coefficient values over the study period. 
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Figure 3. Time series of groundwater and stream stage fluctuations observed in the stream-

aquifer system. The six pumping events are indicated in gray and marked 1-6. The scale on the 

left is for stream and aquifer observation wells and on the right is for pumping well water levels. 

 

Drawdown Analysis and Parameter Estimation 

To demonstrate the applicability of the model to field observations of aquifer and stream 

drawdown, a model fitting and parameter estimation exercise was conducted using observed 

drawdown. Drawdown data were computed by denoising and detrending the raw stream stage time 

series data using singular spectrum analysis and ensemble empirical mode decomposition (Faouzi 

and Janati, 2020; Laszuk, 2017) to remove noise from diurnal fluctuations due to riparian corridor 

evapotranspiration and the trend due to rainfall events (highlighted in blue in the figure) and natural 

discharge. Six pumping events recorded during the spring and summer irrigation season of 2022 

are highlighted gray in Figure 3. The six pumping events analyzed in this work are marked in grey 

in Figure 3. 

The stream minimally penetrates the aquifer at the study site, so the NPS solution was used to 

estimate aquifer hydraulic parameters, namely, hydraulic conductivity 𝐾!, anisotropy ratio κ, and 
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specific storage 𝑆' , as well as the streambed conductance, β, and the stream channel storage 

coefficient, 𝐶% . The NPS solution was coupled with the Marquardt-Levenberg optimization 

algorithm as implemented in MATLAB to identify parameter values that minimize the sum of 

squared residuals between observed and model predicted drawdown, viz., 

 

𝐹(𝑌) = �[𝑠obs(𝑡D) − 𝑠cal(𝑡D; 𝑌)](
H

D*)

										(28) 

 

where N is the total number of temporal drawdown observation time series, 𝑠obs(𝑡D), at times 

𝑡D, with 𝑛	 = 	1, 2, … , 𝑁 and 𝑠cal(𝑡D; 𝑌) are the corresponding model computed values given 

the set of parameters 𝑌 = {𝐾! , SI, κ, β, 𝐶%}. The convergence criterion for the optimization 

process was set to 𝐹�𝑌opt� < 10+?, where 𝑌opt is the set of parameters that minimizes the 

objective function defined above. The hydraulic parameters were log-transformed to constrain 

the optimization procedure to the positive space of the parameter values. 

To provide a measure of parameter estimation uncertainty, the standard errors were computed 

from the diagonal elements of the covariance matrix, V, of parameter estimates, which is computed 

as 

V = (𝐽L𝐽)+)σM(													(29) 

 

where 𝐽 is the relative sensitivity (Jacobian) matrix, and σM(  is the variance of measurement 

errors, which is approximated in this work by the variance of model-observation residuals at 

parameter estimation optimality. 
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In this work, only drawdown data from the aquifer observation well and the stream stilling 

well Stenner-P1 were used in the analysis presented here. The pumping well coordinates were set 

at (𝑥, 𝑦) = (62,0.0)  m. Stenner-P1 was in the middle of the stream channel at (𝑥, 𝑦) =

−0.75,183)  m, and the aquifer observation well on the far-side of the stream at (𝑥, 𝑦) =

(−15.0, 194) m. The stream channel width averaged 𝑊 = 1.5 m during the period when the 

data were collected. In all the tests analyzed here, groundwater was pumped at a constant rate of 

𝑄 = 8.58 × 10+#	m3/s to irrigate a lemon orchard for a total of 48 hours. The pumping rate 

increased slightly at the start of the second 24-hour irrigation period, which affected the drawdown 

response beyond 24-hours. Hence, only data from the first 24 hours of pumping were analyzed. 

Recovery phase data were not considered to simplify the analysis. 

Results 

The results presented here are separated into three parts, namely (1) model predicted behavior, (2) 

the observed stream-aquifer drawdown at the study site, and (3) estimation of aquifer and stream 

hydraulic parameters from aquifer and stream drawdown. 

Model Predicted Behavior 

The transient aquifer and stream drawdown behavior predicted by the model developed herein are 

shown in Figure 4. The Figure shows the behavior predicted by (a) the NPS model, and (b) the 

FPS model with the solutions FPS case 1 and 2 are marked as FPS-1 and FPS-2 on the graph.  
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Figure 4. Transient aquifer (𝑠/) and stream (𝑠/,%) drawdown response predicted at (𝑥/ , 𝑦/) =

(0.5,0) and (𝑥/ , 𝑦/) = (−0.5𝑊/ , 0), respectively by the (a) NPS and (b) FPS solutions for a 

fixed value of β/ = 10. The FPS case 1 and 2 solutions are marked as FPS-1 and F

PS-2 on the graph in (b). The limiting cases of 

Theis (1935) and Fox et al. (2002) for the NPS solution and, of Ferris et al. (1962) (impermeable 

barrier), and Hantush (1965) for the two FPS solutions, are included for comparison. 

 

The graphs show dimensionless aquifer and stream drawdown, 𝑠/ or 𝑠/,%, on the vertical axis, 

versus dimensionless time, 𝑡/ , on the horizontal axis. The aquifer drawdown curves were 

computed at (𝑥/ , 𝑦/) = (0.5,0) and the stream drawdown curves at (𝑥/ , 𝑦/) = (−0.5𝑊/ , 0) 

with a dimensionless conductance of β/ = 10. The limiting cases are included for comparison. 
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The models of Hantush (1965) and Fox et al. (2002) used a constant head boundary condition and 

correspond to the limiting case of 𝐶/,% → ∞ for the NPS and FPS models, respectively. The 

model of Theis (1935) is shown in Figure 4(a) as the limiting case of 𝐶/,% → 0 for the NPS 

solution for an impermeable barrier at the stream-aquifer interface when there is no water in the 

stream, while that of Ferris et al. (1962) is included in (b) as the limiting case of the FPS solutions 

when the stream runs dry and becomes an impermeable barrier. 

The aquifer drawdown response shown in Figure 4 has a characteristic S-shape in log-time, 

characterized by early-, intermediate-, and late-time phases, whereas that of the stream is 

monotonic and delayed in time relative to the aquifer drawdown response. The early-time response 

follows the Theis (1935) (NPS) and Ferris et al. (1962) (FPS) solutions when water is being drawn 

primarily from aquifer elastic storage, while the intermediate phase follows the Fox et al. (2002) 

(NPS) and Hantush (1965) (FPS) solutions when the stream contribution becomes significant. The 

predicted late-time aquifer drawdown exceeds levels predicted by the constant-head models of Fox 

et al. (2002) and Hantush (1965). 

The dependence of the model predicted temporal behavior of aquifer and stream drawdown on 

the dimensionless stream channel storage coefficient, 𝐶/,%, is shown in Figure 5. The limiting 

model of Fox et al. (2002) is again included for comparison. Aquifer drawdown predicted behavior 

at (𝑥/ , 𝑦/) = (0.5,0)  for the NPS solution is shown. The stream drawdown behavior was 

computed at the center of the stream. All the curves shown in the figure were computed for a fixed 

value of β/ = 10. Similar behavior is predicted for the FPS case 1 and 2 solutions, hence the 

graphs for these two cases are not included here for brevity. 
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Figure 5. Model predicted temporal behavior of aquifer and stream dimensionless drawdown at 

(𝑥/ , 𝑦/) = (0.5,0)  and (𝑥/ , 𝑦/) = (−0.5𝑊/ , 0) , respectively, for different values of the 

dimensionless storage coefficient, 𝐶/,%, with the dimensionless conductance fixed at β/ = 10. 

 

 

Figure 6. Model predicted temporal behavior of dimensionless aquifer and stream drawdown at 

(𝑥/ , 𝑦/) = (0.5,0)  and (𝑥/ , 𝑦/) = (−0.5𝑊/ , 0) , respectively for different values of β/ 

ranging from 0 to 100. 
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The effect of dimensionless streambed conductance, β/, on aquifer and stream drawdown is 

depicted in Figure 6 for the NPS solution. The curves in the graphs are for different values of β/ 

ranging from an impermeable streambed at β/ = 0 to a highly conductive one at β/ = 10, with 

the dimensionless channel storage coefficient fixed at 𝐶/,% = 100. Similar behavior is predicted 

by the two FPS solutions. 

Drawdown derivative analysis is a useful diagnostic tool because it can improve the sensitivity 

of predicted model behavior to hydraulic parameters and lead to improved parameter identifiability 

(Chow, 1952; Bourdet et al., 1983; Ferroud et al., 2018; Ferroud et al., 2019). Figure 7 shows the 

temporal behavior of aquifer and stream drawdown derivatives and their dependence on 𝐶/,% 

across the range of values indicated. The graphs show the derivative plots of the NPS solutions in 

the pumped half-space at (𝑥/ , 𝑦/) = (0.5,0.0) and in the stream at (−0.5𝑊/ , 0.0). For the 

limiting case of 𝐶/,% → ∞, the derivative behavior shown is characteristic of models with fixed-

head boundaries (Ferroud et al., 2019). For finite values of 𝐶/,%, the derivative is characterized by 

two peaks associated with transition from early- to intermediate-time behavior and intermediate- 

to late-time behavior. The second peak is subsequently followed by a late-time steady decline to a 

constant value. Stream drawdown derivatives are characterized by a single unique peak for each 

value 𝐶/,%. 
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Figure 7. Plots of the temporal behavior of the log-time derivatives of aquifer and stream 

drawdown for different values of 𝐶/,%. The plots are for the NPS solution with 𝛽/ = 100. The 

FPS solutions show a similar pattern. 

 

The temporal behavior of the stream depletion rate (SDR) is shown in Figure 8, where the 

effect of the parameter 𝐶/,% on 𝑄/,% is explored for the NPS solution, with β/ = 10. The 

limiting case of 𝐶/,% → ∞ is again included for comparison. For finite values of 𝐶/,%, the 

stream depletion rate increases to a peak value before declining as pumping continues and 

drawdown of the stream increases. The maximum SDR decreases with decreasing values of 

𝐶/,%, and occur at earlier and earlier times. For large values of 𝐶/,% the stream can sustain 

groundwater pumping for more prolonged periods. 
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Figure 8. Temporal behavior of SDR obtained with the NPS model for different 𝐶/,% values in 

the range 𝐶/,% ∈ [10,∞] with β/ = 10. 

Observed Transient Aquifer and Stream Drawdown 

Aquifer drawdown obtained data by detrending and denoising observed water levels are shown in 

Figure 9 for the six pumping tests highlighted in Figure 3. All the aquifer drawdown data shown 

in Figure 9 are from the aquifer observation well and differ only by the time during the irrigation 

season at which the pumping occurred. They are plotted on log-log scale and for completeness, 

include the recovery period. Only drawdown data from the initial 24-hour period of each of the 

tests were analyzed with the NPS model. 
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Figure 9. Log-log plot of aquifer drawdown recorded in the observation well during the six 

pumping tests reported in this work. 

 
Observed stream stage drawdown data are shown in Figure 10 for the four monitoring 

stations along Stenner Creek for which data was available. The response of the aquifer in test 6 is 

also included in all the graphs for comparison. The data are plotted on log-log scale for (a) Stenner 

P1, (b) Stenner P2, (c) Stenner P3, and (d) Stenner P5, with elapsed time since onset of pumping 

on the horizontal axis and drawdown on the vertical axis. Recovery phase data are also included 

in the Figure for completeness. Only pumping-phase drawdown data, however, are considered in 

the analysis described in the following section. All observed stream drawdown responses are 

delayed relative to aquifer drawdown response even though the aquifer observation well is farther 

than all the stream monitoring locations. Additionally, all observed stream drawdown values are 

less in magnitude than the observed aquifer drawdown response. This is true even for location P1 

that showed the largest stream drawdown response. 
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Figure 10. Log-log plots of transient stream stage drawdown response to pumping observed in 

stream channel stilling wells (a) Stenner-P1, (b) Stenner-P2, (c) Stenner-P3, and (d) Stenner-P5, 

for the respective tests recorded. Aquifer observation well data are included for comparison. 

Analysis of Aquifer and Stream Drawdown 

The NPS model was used to analyze aquifer drawdown data shown in Figure 9. Only the 

parameters 𝐾!, 𝑆', β, and 𝐶% were estimated. To simplify the analysis, horizontal anisotropy 

was fixed at κ = 	1.0  for the results reported here. The results of the parameter estimation 

exercise are summarized in Table 3. The respective standard errors for each parameter estimate 

are included in the Table to quantify parameter estimation uncertainty. The corresponding NPS 
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model fits to the drawdown data are shown in Figure 11, where they are plotted on (a) log-log and 

(b) semi-log scales. 

 

 

Figure 11. Results of transient analysis of aquifer drawdown response from individual pumping 

tests. The results show model fits to observation well (aquifer) drawdown data in (a) log-log 

scale and (b) semi-log scale. The dots are data and the solid lines are model fits to data. 

 

Table 3. Estimated parameter values using aquifer drawdown data from the observation well, 

with fixed aquifer thickness 𝑏 = 11 m, anisotropy ratio κ = 	1.0, stream width 𝑊 = 1.5 m, 

distance to pumping well 𝑅 = 60 m, and distance to observation well 𝑥 = −15 m. 

Test 𝐾! (× 10+=	m/s) 𝑆'	(× 10+N	m-1) β	(× 10+=	s-1) 𝐶% (-) 

1 2.35	 ± 1.3 4.02 ± 1.9 2.34 ± 0.62 86.8 ± 49.4 

2 1.66	 ± 0.89 3.22 ± 1.5 1.93 ± 0.51 79.9 ± 39.5 

3 2.05	 ± 1.1 3.86 ± 1.7 2.15 ± 0.54 22.6 ± 5.66 

4 0.985	 ± 0.18 2.42 ± 0.39 1.43 ± 0.14 8.32 ± 0.64 

5 2.02	 ± 1.3 29.1 ± 1.2 4.01 ± 0.01 6.43 ± 0.15 
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6 63.6 ± 5.5 55.2 ± 3.1 1.15 ± 0.35 0.70 ± 0.36 

  
The parameter values in Table 3 obtained from analysis of aquifer drawdown were used to predict 

the expected stream drawdown behavior at Stenner-P1 and the results are shown in Figure 12. 

Given the model-data misfit, the NPS model was used to separately analyze stream drawdown data 

collected at Stenner-P1, giving estimates of system hydraulic parameters. Transient stream 

drawdown data were available for tests 4, 5 and 6. For this analysis, the aquifer anisotropy ratio 

and streambed conductance fixed at κ = 1.0 and β = 10+=	s-1 , respectively, to limit model 

over-parametrization. The value of β used here was from the analysis of aquifer drawdown data 

from test 6. The resulting model fits to stream drawdown data are shown in Figure 13. The 

estimated parameter values for 𝐾!, 𝑆', and 𝐶% are summarized in Table 4. 

 

 

Figure 12. Transient stream drawdown predicted by the model using parameter values estimated 

from aquifer drawdown data for test 6. The corresponding model fit to aquifer data are included. 
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Table 4. Estimated parameter values using the NPS solution for the three tests for which data 

were collected at the Stenner-P1 stream stage monitoring location. Parameters κ = 	1.0 and 

β = 1.15 × 10+=	s-1 were fixed to values estimated with aquifer drawdown data from test 6. 

The standard error, ±σM, for each parameter estimate is included to provide a measure of 

parameter estimation uncertainty. 

Test 𝐾! (× 10+? m/s) 𝑆'	(× 10+?	m-1) 𝐶% 	(× 10+() 

4 8.81 ± 0.11 5.85 ± 0.28 2.56 ± 0.26 

5 4.86 ± 0.02 5.23 ± 0.02 4.28 ± 0.11 

6 3.93 ± 0.12 4.84 ± 0.09 2.35 ± 0.47 

  

 

Figure 13. Results of transient analysis of stream drawdown response from individual tests 

showing model fits to the data for Stenner Creek stilling well S1. The results are plotted on (a) 

log-log and (b) semi-log scales. Dots are data and solid lines are model fits. 
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Discussion 

Model Predicted Behavior 

The predicted aquifer drawdown response shown in Figure 4 is characterized by three phases that 

are commonly observed in media with two mechanisms of water storage such as unconfined 

aquifers (Boulton, 1963; Neuman, 1974; Malama, 2011; Lin et al., 2019) and dual-porosity 

fractured formations (Warren and Root, 1963; Streltsova, 1983; De Smedt, 2011; Lin and Yeh, 

2021). Hunt (2009) referred to the behavior as a type of delayed yield drawdown in a pumped 

confined aquifer near a stream. The behavior has been observed by other workers including Fox 

et al. (2002), Hunt et al. (2001), Kollet and Zlotnik (2003), Lough and Hunt (2006), and Nyholm 

et al. (2002). During early-time, aquifer response follows the limiting models of Theis (1935) and 

Ferris et al. (1962) for the NPS and FPS models, respectively, which corresponding to 𝐶/,% = 0. 

The onset of intermediate time is marked by significant departure of aquifer drawdown from 

limiting case of 𝐶/,% = 0 transitioning to closely follow the behavior predicted by the limiting 

solutions of Fox et al. (2002) and Hantush (1965) for 𝐶/,% → ∞. During this transition period, 

stream appears to initially serve as a near-infinite store of water and aquifer drawdown appears to 

approach a “steady state.” For finite values of 𝐶/,%, this “steady state” phase is only momentary 

as aquifer drawdown begins to increase again and stream stage begins to respond to pumping 

yielding measurable transient stream drawdown. If pumping were to cease during the early part of 

intermediate-time phase, the models of Fox et al. (2002) and Hantush (1965) would be sufficient 

to describe system behavior. The higher the value of 𝐶/,% , the longer this quasi-static phase 

persists as leakage from stream storage offsetting some of the drawdown attributable to aquifer 

storage depletion. As pumping continues, however, aquifer drawdown response transitions into 

late-time transient behavior characterized by increasing aquifer drawdown above the steady-state 
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values predicted by the fixed-stage models of Fox et al. (2002) and Hantush (1965), which shows 

that these models underestimate aquifer drawdown at late-time. At very late-time, aquifer 

drawdown transitions into the behavior predicted by models with a no-flow condition at the 

stream-aquifer interface. This late-time behavior is a return to water withdrawal from aquifer 

elastic storage if the stream is completely drawn down. 

Model predicted results also indicate that stream stage drawdown response is delayed relative 

to aquifer drawdown, and only appears to start during the late-time phase. However, stream stage 

responsiveness to pumping increases with increasing values of β/, leading to decreasing lag times 

between stream and aquifer drawdown responses. Stream drawdown is further shown to exceed 

the late-time steady-state aquifer drawdown predicted by the fixed-stage models of Fox et al. 

(2002) and Hantush (1965). Depending on the initial stage of the stream, stream drawdown would 

lead to drying up of streams at very late time, during prolonged periods of groundwater pumping. 

Stream drawdown is accompanied by a depletion rate that increases initially with time before 

reaching a peak rate followed by a subsequent decline. In this instance, the solution of Zlotnik 

(2004) serves as the limiting case of depletion rate. The behavior of 𝑄/,% for finite values of 𝐶/,% 

differs significantly from that predicted for 𝐶/,% → ∞ where the maximum depletion rate stays 

fixed at 𝑄/,% = 1.0 indefinitely, with all water captured by the pumping well at late time coming 

from stream recharge. 

 

Drawdown Data Analysis 

Analysis of drawdown data from the observation well shows a general shift in aquifer drawdown 

behavior over the course of the six pumping events during the summer 2022 irrigation season. The 

least overall drawdowns were recorded in the first of the pumping periods of March 16 to March 
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18, while the largest were recorded in the last reported pumping period. This behavior is reflective 

of the decrease in the amount of water stored in the stream channel (𝐶%) from the spring high flows 

to the summer lows. However, for any given test, 𝐶% may be treated as constant. The observed 

aquifer drawdown generally shows the three phases predicted by the model developed in this work 

and does not attain late-time steady state predicted by the fixed-stage models of Hantush (1965) 

and Fox et al. (2002). 

Another important observation of note is that a nonzero, coherent, and unambiguous transient 

stream drawdown response is clear in the data. For our study site, the stream clearly does not 

behave as having a fixed stage and has a finite capacity to supply recharge during pumping. 

Additionally, the observed stream drawdown response at all measuring locations is significantly 

delayed relative to aquifer drawdown. All the stream stage observation locations are located closer 

to the pumping well than the aquifer observation well but all start showing measurable drawdown 

response at much later times (over an hour later) than the aquifer observation well. This delayed 

stream response confirms a key model prediction shown in Figure 4. 

Results of the parameter estimation exercise based on aquifer drawdown data demonstrate that 

excellent model fits to data with 𝑅( ≥ 95% and estimated parameter values are reasonable for a 

sand and gravel aquifer. The exercise also shows that reasonable streambed conductance and 

stream channel storage values are estimable from data using the model developed in this work. 

The parameter estimation uncertainties decreased over the six tests as the three phase of aquifer 

drawdown response became more defined as stream channel storage decreased. 

The transient stream drawdown behavior predicted based on hydraulic parameters estimated 

from only from aquifer drawdown data deviates significantly from the observed behavior at 

Stenner-P1. This suggests the need for joint analysis of aquifer and stream drawdown data, or for 
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separate analysis of stream drawdown data. In this work, stream drawdown data were analyzed 

separately and the resulting model fits to stream drawdown data showed marked improvement. 

The results also suggest that local aquifer and streambed hydraulic properties in the vicinity of the 

observation location have a strong effect on the estimated model parameters. The results also 

highlight a deficiency in the theory developed here where stream flow velocity is neglected in the 

stream channel mass balance condition. 

Conclusions 

It is demonstrated in this work that streams can have finite and estimable channel storage and that 

they can undergo both depletion and measurable drawdown in response to groundwater pumping 

from a hydraulically connected aquifer. This is especially critical in aquifer systems subjected to 

prolonged groundwater abstraction, which can lead to the drying of streambeds, as has been 

observed in many groundwater basins with irrigated agriculture. Models with fixed stream stage 

overestimate the available groundwater supply from the stream because of their inherent 

assumption of infinite stream storage. The results of this work have implications for sustainable 

groundwater management. The model developed may be used to not only predict the stream 

depletion rate but also the decline of stream stage in response to groundwater pumping. Additional 

work is needed to incorporate routing and stream discharge (or velocity) in the model and to 

conduct longer pumping tests than reported herein to better constrain parameter estimates. This 

may resolve the discrepancy in model parameter values estimated from independent analyses of 

aquifer and stream drawdown data. Another limitation of the models developed in this work is the 

assumption that vertical flow is negligible, which may not apply to aquifers with leakage across 

the confining layers where vertical flow can play a significant role. 
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Abstract

Analytical and semi-analytical models for stream depletion with transient stream stage
drawdown induced by groundwater pumping are developed to address a deficiency in
existing models, namely, the use of a fixed stream stage condition at the stream-aquifer
interface. Field data are presented to demonstrate that stream stage drawdown does
indeed occur in response to groundwater pumping near aquifer connected streams. A
model that predicts stream depletion with transient stream drawdown is developed, based
on stream channel mass conservation and finite stream channel storage. The resulting
models are shown to reduce to existing fixed-stage models in the limit as stream channel
storage becomes infinitely large, and to the confined aquifer flow with a no-flow boundary
at the streambed in the limit as stream storage becomes vanishingly small. The model
is applied to field measurements of aquifer and stream drawdown, giving estimates of
aquifer hydraulic parameters, streambed conductance and a measure of stream channel
storage. The results of the modeling and data analysis presented herein have implications
for sustainable groundwater management.

A Non-dimesionalization of NPS Flow Problem

On the basis of dimensionless variables defined in Table 2, the governing equation, in dimen-
sionless form, for the case of NPS, is as follows.

∂sD
∂tD

=
∂2sD
∂x2

D

+ κ
∂2sD
∂y2D

+ fs,D, (A.1)

where sD,i = sD,i(xD, yD, tD) is dimensionless aquifer drawdown, si/Hc, in the ith sub-domain,
with i = 1, 2, 3, Hc = Q/(2bKx) is a system characteristic head, xD = x/R and yD = y/R are
dimensionless distances in the x and y directions, tD = t/Tc is dimensionless time, Tc = R2/αx

1



is a characteristic system time, αx = Kx/Ss is aquifer horizontal hydraulic diffusivity in the x-
direction, κ = Ky/Kx is the anisotropy ratio in the horizontal plane, and fs,D = fs,D(xD, yD, tD)
is the piecewise dimensionless sink/source term defined by

fs,D =


−2δ(xD − 1)δ(yD) xD > 0,

ΓD −WD < xD < 0,

0 xD ≤ −WD.

(A.2)

Here ΓD = Γ/[Q/(2R2)] = βD(sD,2 − sD,r) is the dimensionless mass-transfer function at the
stream-aquifer interface. A more complete list of dimensionless variables and relevant parame-
ters is provided in Table 2. Equation (A.1) is solved subject to the initial condition

sD|tD=0 = 0, (A.3)

and the far-field boundary conditions

lim
xD→±∞
yD→±∞

sD = 0. (A.4)

The dimensionless continuity conditions at xD = 0 and xD = −WD are specified as

sD,1|xD=0 = sD,2|xD=0 , (A.5)

sD,2|xD=−WD
= sD,3|xD=−WD

, (A.6)

for drawdown, and

∂sD,1

∂xD

∣∣∣∣
xD=0

=
∂sD,2

∂xD

∣∣∣∣
xD=0

(A.7)

∂sD,2

∂xD

∣∣∣∣
xD=−WD

=
∂sD,3

∂xD

∣∣∣∣
xD=−WD

(A.8)

for flux. In dimensionless form the stream-mass-balance condition becomes

CD,r
∂sD,r

∂tD
= βD(sD,2 − sD,r), (A.9)

where CD,r = bDCr/S is the dimensionless stream storage coefficient, sD,r = sr/Hc, βD =
βR/Kx is the dimensionless mass transfer coefficient across the streambed, S = bSs is aquifer
storativity, and bD = b/R is dimensionless aquifer thickness. Cr/S is the ratio of the stream
storage coefficient to aquifer storativity. The dimensionless initial condition associated with
this mass balance condition is

sD,r(tD = 0) = 0. (A.10)

B Derivation of the NPS Solution

Using the Laplace transform to eliminate tD and the Fourier cosine transform to eliminate yD,
the partial differential equations A.1 and A.2 become the ordinary differential equation in xD

η2 ˜̄sD =
d2s̄D
dx2

D

+


−2

p
δ(xD − 1) xD > 0

±χ˜̄sD,2 −WD < xD < 0

0 xD ≤ −W

, (B.1)
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where η =
√
p+ κξ2, χ = βDp/(p + β∗

D), p is the dimensionless Laplace transform parameter,
and ξ is the dimensionless Fourier cosine transform parameter. Symmetry allows the problem
domain −∞ < yD < ∞ to be reduced to 0 ≤ yD < ∞). Therefore, the symmetric bound-
ary conditions for sD can be described by no-flow Neumann-type boundary conditions, i.e.,
∂sD/∂yD = 0 at yD = 0. The transformed governing equations for the NPS solution are

η2 ˜̄sD,1 =
d2 ˜̄sD,1

dx2
D

− 2

p
δ(xD − 1), 0 ≤ xD < ∞, 0 ≤ yD < ∞ (B.2)

η̂2 ˜̄sD,2 =
d2 ˜̄sD,2

dx2
D

, −WD < xD < 0, 0 ≤ yD < ∞ (B.3)

η2 ˜̄sD,3 =
d2 ˜̄sD,3

dx2
D

, −∞ < xD < −WD, 0 ≤ yD < ∞ (B.4)

where η̂2 = η2 + χ.
The transformed dimensionless stream mass-balance condition from equation (A.9) is

p˜̄sD,r = β∗
D(˜̄sD,2 − ˜̄sD,r), (B.5)

where β∗
D = βD/CD,r. Equation B.5 can be rearranged as

˜̄sD,r =

(
β∗
D

p+ β∗
D

)
˜̄sD,2. (B.6)

The far-field conditions are
lim

xD→±∞
˜̄sD,1 = 0. (B.7)

The transformed continuity conditions from equations (A.5) – (A.7), respectively, are

˜̄sD,1|xD=0 = ˜̄sD,2|xD=0 , (B.8)

˜̄sD,2|xD=−WD
= ˜̄sD,3|xD=−WD

, (B.9)

d˜̄sD,1

dxD

∣∣∣∣
xD=0

=
d˜̄sD,2

dxD

∣∣∣∣
xD=0

, (B.10)

d˜̄sD,2

dxD

∣∣∣∣
xD=−WD

=
d˜̄sD,3

dxD

∣∣∣∣
xD=−WD

. (B.11)

Given the jump discontinuity introduced by the Dirac delta source at xD = 1, the solution for
˜̄sD,1 is piecewise, having the form

˜̄sD,1 =

{
A1e

ηxD + A2e
−ηxD 1 < xD < ∞

A3 cosh (ηxD) + A4 sinh (ηxD) 0 ≤ xD < 1
(B.12)

where A1 to A4 are undetermined coefficients. From the farfield homogeneous boundary condi-
tion, it follows that A1 = 0. The general solutions of equations (B.3) and (B.4) can be readily
obtained and respectively give

˜̄sD,2 = A5 cosh (η̂xD) + A6 sinh (η̂xD), (B.13)

˜̄sD,3 = A7e
ηxD + A8e

−ηxD , (B.14)

where A5 to A8 are coefficients to be determined by applying the boundary conditions defined
above. From the farfield boundary conditions stated in equation (B.7), the coefficient A8 ≡ 0.
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In addition to the boundary conditions already specified above, jump conditions across the
Dirac Delta source at xD = 1 are required to determine these coefficients. The jump conditions
are

˜̄sD,1|xD→1+ = ˜̄sD,1|xD→1− , (B.15)

d˜̄sD,1

dxD

∣∣∣∣
xD→1+

=
d˜̄sD,1

dxD

∣∣∣∣
xD→1−

− 2

p
, (B.16)

where xD = 1± = limδ→0 1± δ, where δ is a small interval across the Dirac Delta source. These
two conditions enforce head or drawdown continuity at xD = 1 and define the flux discontinuity,
respectively. Applying these two conditions to the solution in Equation (B.12) leads to

A2e
−η = A3 cosh(η) + A4 sinh(η), (B.17)

−A2e
−η = A3 sinh(η) + A4 cosh(η)−

2

pη
. (B.18)

Also, applying continuity conditions at xD = 0 gives

A3 = A5, (B.19)

ηA4 = ϕA6 = η̂A6. (B.20)

Finally, applying continuity conditions at xD = −WD leads to

A5 cosh(η̂WD)− A6 sinh(η̂WD) = A7e
−ηWD , (B.21)

−A5 sinh(η̂WD) + A6 cosh(η̂WD) =
η

η̂
A7e

−ηWD . (B.22)

Equations (B.17)-(B.22) fully define the linear system of equations needed to determine the
coefficients A2 to A7. These coefficients are

A2 =
2

pη

(
cosh(η)− η̂

∆1

e−ηχ̂2

)
, (B.23)

A3 = A5 =
2

p∆1

e−ηχ̂1, (B.24)

A4 =
2η̂

pη∆1

e−ηχ̂2, (B.25)

A6 =
2

p∆1

e−ηχ̂2, (B.26)

A7 =
2η̂

p∆1

e−η(1−WD). (B.27)

where

∆1 = 2η̂η cosh(η̂WD) +
(
η2 + η̂2

)
sinh(η̂WD), (B.28)

χ̂1 = η̂ cosh(η̂WD) + η sinh(η̂WD), (B.29)

χ̂2 = η cosh(η̂WD) + η̂ sinh(η̂WD). (B.30)

Substituting these coefficients into Equations (B.12) – (B.14), the aquifer and stream drawdown
solutions for NPS are obtained and shown, respectively in Equations (18) and (19) of the
manuscript.
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C Non-dimensionalization of FPS Flow Problem

The dimensionless governing equations for the FPS bounded by two aquifers are

∂sD
∂tD

=
∂2sD
∂x2

D

+ κ
∂2sD
∂y2D

+ fD, (C.1)

with

fD =

{
−2δ(xD − 1)δ(yD) xD > 0,

0 xD < −WD.
(C.2)

Equation (C.1) is solved subject to the dimensionless initial condition.

sD|tD=0 = 0, (C.3)

and far-field boundary condition

lim
xD→±∞
yD→±∞

sD = 0. (C.4)

The dimensionless flux boundary conditions at the stream-aquifer interfaces 1 and 2, respec-
tively, are

∂sD,1

∂xD

∣∣∣∣
xD=0

= βD

(
sD,1|xD=0 − sD,r

)
, (C.5)

∂sD,2

∂xD

∣∣∣∣
xD=−WD

= βD

(
sD,r − sD,2|xD=−WD

)
. (C.6)

The dimensionless stream-mass-balance condition becomes

CD,r
∂sD,r

∂tD
= βD

(
sD,1|xD=0 − sD,r

)
+ βD

(
sD,r − sD,2|xD=−WD

)
. (C.7)

Equations (C.1) – (C.7) fully describe the well-posed nondimensional flow problem for a fully
penetrating stream considered herein.

D Derivation of FPS Solution with Far-side Flow

The transformed flow equation for the pumped aquifer (j = 1) is (following the same set of
integral transforms)

η2 ˜̄sD,1 + 2δD(xD − 1) =
d2 ˜̄sD,1

dx2
D

, (D.1)

for xD ∈ [0,∞), yD ∈ [0,∞), and for the aquifer on the other side (j = 2) is

η2 ˜̄sD,2 =
d2 ˜̄sD,2

dx2
D

, (D.2)

for xD ∈ [−WD,−∞), yD ∈ [0,∞), where η =
√

p+ κξ2 with the Laplace parameter p and
Fourier parameter ξ; the over-bar and tilde represent the function of the Laplace and Fourier
domains, respectively.

Similarly, the dimensionless Laplace-Fourier-domain boundary conditions in xD-direction
are obtained as

lim
xD→∞

˜̄sD,1 = lim
xD→−∞

˜̄sD,2 ≡ 0. (D.3)
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The dimensionless inner boundary conditions at xD = 0 and −WD, respectively, give the
following.

d˜̄sD,1

dxD

∣∣∣∣
xD=0

= βD(˜̄sD,1 − ˜̄sD,r)|xD=0, (D.4)

d˜̄sD,2

dxD

∣∣∣∣
xD=−WD

= βD(˜̄sD,r − ˜̄sD,2)|xD=−WD
. (D.5)

The dimensionless stream mass-balance condition, equation (C.7), in the Laplace-Fourier do-
main is

p˜̄sD,r = β∗
D(˜̄sD,1|xD=0 − ˜̄sD,r)− β∗

D(˜̄sD,r − ˜̄sD,2|xD=−WD
). (D.6)

Rearranging equation (D.6), one obtains

˜̄sD,r =
β∗
D

p+ 2β∗
D

( ˜̄sD,1|xD=0 + ˜̄sD,2|xD=−WD
). (D.7)

The jump conditions at xD = 1 are same as equations (D.8) and (E.8),

˜̄sD,1|xD→1+ = ˜̄sD,1|xD→1− , (D.8)

d˜̄sD,1

dxD

∣∣∣∣
xD→1+

=
d˜̄sD,1

dxD

∣∣∣∣
xD→1−

− 2

p
. (D.9)

After applying the far-field boundary conditions, the solutions are

˜̄sD,1 =

{
B2e

−ηxD x ≥ 1,

B3 cosh(ηxD) +B4 sinh(ηxD) 0 ≤ x ≤ 1
(D.10)

˜̄sD,2 = B5e
ηxD xD < −WD (D.11)

˜̄sD,r =
β∗
D

p+ 2β∗
D

(B3 +B5e
−ηWD) −WD ≤ xD ≤ 0. (D.12)

where B2 to B5 are undetermined coefficients.
Applying the jump conditions at xD = 1

B2e
−η = B3 cosh(η) +B4 sinh(η) (D.13)

−B2e
−η = B3 sinh(η) +B4 cosh(η)−

2

pη
(D.14)

which, upon adding and simplifying gives

B3 +B4 =
2

pη
e−η. (D.15)

(D.16)

Applying the boundary condition at xD = 0 gives

βD

[
(1− β̂∗

D)B3 − β̂∗
DB5e

−ηWD

]
= ηB4, (D.17)

which upon combining with Equation (D.15) and simplifying, gives

ωB3 − βDβ̂
∗
DB5e

−ηWD =
2

p
e−η, (D.18)
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where β̂∗
D = β∗

D/(p+ 2β∗
D) and ω = η + βD − βDβ̂

∗
D.

Applying the boundary condition at xD = −WD leads to

βDβ̂
∗
DB3 − ωB5e

−ηWD = 0. (D.19)

Solving for B5 gives

B5 =
βDβ̂

∗
D

ω
eηWDB3. (D.20)

Substituting for B5 in Equation (D.18) the solving for for B3 gives

B3 =
2

p∆∗
2

ωe−η, (D.21)

where ∆∗
2 = ω2 − (βDβ̂

∗
D)

2. Hence,

B2 =
2

p∆∗
2

ωe−η +
2

pη
sinh(η), (D.22)

B4 =
2

pη
e−η − 2

p∆∗
2

ωe−η, (D.23)

B5 =
2

p∆∗
2

βDβ̂
∗
De

η(WD−1). (D.24)

The solutions for drawdown in transform space can then be written as

˜̄sD,1 =
2

p


(

1

∆∗
2

ωe−η +
1

η
sinh(η)

)
e−ηxD , x ≥ 1,(

1

∆∗
2

ωe−ηxD +
1

η
sinh(ηxD)

)
e−η, 0 ≤ x ≤ 1

(D.25)

˜̄sD,2 =
2

p∆∗
2

βDβ̂
∗
De

η(WD−1)eηxD , xD < −WD (D.26)

˜̄sD,r =
2

p∆∗
2

(ω + βDβ̂
∗
D)β̂

∗
De

−η =
2

∆2

(η + βD)β
∗
De

−η, −WD ≤ xD ≤ 0. (D.27)

where ∆2 is given in Equation (20d) of the manuscript. Upon simplifying, it can be shown
that the equivalent form of the solution is as given in equations (20) and (21), for aquifer and
stream drawdown.

E Derivation of FPS Solution with no Far-side Flow

When Γ2 = 0, the FPS solution will ignore the effect of unpumped aquifer on the far side of the
river. The same integral transformations applied previously are used. For the case for Γ2 = 0,
we only have to focus on solving the pumped aquifer, giving the following.

η2 ˜̄sD + 2δD(xD − 1) =
d2 ˜̄sD
dx2

D

, (E.1)

for xD ∈ [0,∞), yD ∈ [0,∞). We drop the subscript for drawdown because there is only
the pumped aquifer. The dimensionless Laplace-Fourier-domain boundary conditions in xD-
direction, are obtained as

lim
xD→∞

˜̄sD ≡ 0. (E.2)

7



d˜̄sD
dxD

∣∣∣∣
xD=0

= βD(˜̄sD − ˜̄sD,r)|xD=0. (E.3)

The dimensionless stream mass-balance condition is transformed as

p˜̄sD,r = β∗
D(˜̄sD|xD=0 − ˜̄sD,r). (E.4)

Solving equation (E.4), one can obtain

˜̄sD,r =
β∗
D

p+ β∗
D

˜̄sD|xD=0 . (E.5)

This leads to
d˜̄sD
dxD

∣∣∣∣
xD=0

=
pβD

p+ β∗
D

˜̄sD|xD=0. (E.6)

To deal with the Dirac Delta function in equation (E.1), the jump conditions in xD = 1 are
imposed, that is,

˜̄sD|xD=1+ = ˜̄sD|xD=1− , (E.7)

d˜̄sD
dxD

∣∣∣∣
xD=1+

=
d˜̄sD
dxD

∣∣∣∣
xD=1−

− 2

p
, (E.8)

Therefore, the solution is

˜̄sD =

{
C2e

−ηxD xD > 1,

C3e
ηxD + C4e

−ηxD 0 ≤ xD < 1,
(E.9)

˜̄sD,r =
β∗
D

p+ β∗
D

(C3 + C4) (E.10)

where C2 to C4 are undetermined coefficients, with C1 ≡ 0 from the far-field boundary condition.
Imposing equations jump conditions

C2e
−η = C3e

η + C4e
−η (E.11)

−C2e
−η = C3e

η − C4e
−η − 2

pη
(E.12)

Adding and simplifying gives C3 = e−η/(pη). Applying the boundary condition at stream-
aquifer interface, it follows that

C4 =

(
η(p+ β∗

D)− pβD

η(p+ β∗
D) + pβD

)
e−η

pη
(E.13)

C2 =
1

pη

[
eη +

(
η(p+ β∗

D)− pβD

η(p+ β∗
D) + pβD

)
e−η

]
=

2

pη∆3

g5(p, ξ, 1.0) (E.14)

where ∆3 = η(p + β∗
D) + pβD and g5(p, ξ, xD) = [(p + β∗

D)η cosh(ηxD) + pβD sinh(ηxD)]. From
the coefficients obtained above, the dimensionless aquifer and stream drawdown solutions for
FPS are given in equations (22) and (24), respectively.

˜̄sD =
2

pη∆3

{
g5(p, ξ, 1.0)e

−ηxD xD > 1,

g5(p, ξ, xD)e
−η 0 ≤ xD < 1,

(E.15)

˜̄sD,r =
2

p∆3

β∗
De

−η. (E.16)
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F Model Verification

To check the correctness of the analytical solutions developed above, a verification exercise was
undertaken by comparing these solutions with a numerical solution based on the FEM. A 3D
FEM model was built for comparison with the NPS case and to evaluate the significance of
vertical flow. The stream overlying the aquifer was allowed to drain through the streambed and
generate vertical flow. The domain is set as above with zD ∈ [0, 1.5]. As mentioned above, the
conceptual model comprises three isotropic layers, namely the aquifer layer with zD ∈ [0, 1],
the streambed layer with zD ∈ (1, 1+ b′D] with xD ∈ [−WD, 0] and yD ∈ [0, 105], and the stream
layer with zD ∈ (1 + b′D, 1.5] with xD ∈ [−WD, 0] and yD ∈ [0, 105]. The drawdown computed
with the 3D FEM model is vertically averaged. Finer meshes were assigned near the stream
and pumping well, while a coarser mesh was used elsewhere. The hydraulic parameter values
used for the comparison were set to CD,r = 25, βD = 10, b′D = 0.01, and WD = 0.5. The
streambed storage was set the same as the aquifer and K ′ = 0.1Kx.

In the case of the FPS with a fully penetrating pumping well, the vertical flow is negligible
and a 2D model in the (xD, yD) plane is sufficient to describe the flow behavior. The numerical
solution was developed in a domain with xD ∈ [−105, 105] and yD ∈ [0, 105]. The flow domain
was divided into multiple zones: the pumped aquifer zone: xD ∈ [0, 105], aquifer zone on the
far side: xD ∈ [−2b′D,−105], the stream zone: xD ∈ [−b′D,−b′D −WD), and streambed zones:
xD ∈ [0,−b′D) and [−b′D−WD,−2b′D−WD), where b

′
D is the dimensionless streambed thickness

defined as b′/R. Figure 1 shows the aquifer drawdown curves predicted by the (a) NPS and (b)
FPS solutions versus the FEM solution. The observation points were established at (xD, yD) =
(0.1, 0), (0.25, 0), (0.5, 0). The results show that the semi-analytical and FEM solutions agree
well with negligible residuals. Additionally, Butler Jr et al. (2001) tested the assumptions of
the NPS model by comparing it with the seven-layer MODFLOW model. They found that
the NPS assumptions are valid when the relative penetration (ratio of stream penetration to
aquifer thickness) is less than 85%. For the Cal Poly stream-aquifer system that motivated this
study, the relative penetration is 50%.

Figure 1: Comparison of the aquifer drawdown curves predicted by the (a) NPS and (b) FPS
solutions and FEM solutions based on 3D and 2D model. The visual representations of the
meshes near the well used in the 3D and 2D FEM models are included in the bottom right
corner of the figure.

G Evaluation of the Depletion Integral

In Figure 2 the QD,r curves are compared with LD = RD,∞ given above versus the arbitrary
upper bound of LD = 105. The two curves are nearly identical with a maximum relative error
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(RE) of less than 10% at the early time. For tD > 1, the RE is less than 2%. The CPU time
shows that the setting LD = RD,∞ computes faster than the use of LD = 105.
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Figure 2: The QD,r curves showing evaluated depletion integral using upper limit of LD (solid
line) and 105 (circle symbol), as well as the relative error (RE) curve with a horizontal line
standing for 5% RE. The curves of used CPU time for these two cases are also included below.

H Code Availability

Mathematica and MATLAB scripts developed for the study are available at the hyperlinks:
http://www.hydroshare.org/resource/e82cc60145e64b54bbe64dbdadd14d1d
https://www.mathworks.com/matlabcentral/fileexchange/118155-transient-stream-drawdown-

and-depletion
The raw data analyzed in this work are available from the corresponding author upon

request.
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