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Abstract: 
Understanding the mobility of twining dislocation is important for multiscale modelling of crystal 
plasticity, especially at high strain rates, where such dislocations may reach transonic or supersonic 
speeds. We used molecular dynamics simulations to investigate the relationship between disloca-
tion velocity and the applied resolved shear stress of an edge twinning dislocation in copper up to 
supersonic speeds. The twinning-dislocation mobility relation is composed of two branches sepa-
rated by a band of forbidden velocities. The lower velocity branch is limited by the first transverse 
sound speed ~2000 m/s while the upper branch stretches from ~3500 m/s in the transonic regime 
to supersonic velocities. Twinning dislocations cannot undergo uniform steady-state motion at ve-
locities within the forbidden band. Our simulation results also reveal that edge twinning-disloca-
tion motion in copper is kink-mediated. We discuss the implications of our findings for the motion 
of twins, twinning dislocations, and twinning-dislocation kinks in copper.  
 
1. Introduction 

 
Several studies suggested that twins in crystalline solids may move at velocities compara-

ble to the speeds of sound. In high strain rate loading of an aluminum alloy (Al-4.8 wt% Mg), Gray 
estimated that twins move at ~3000 m/s, which is close to the lower transverse sound speed in Al 
(3160 m/s) [1]. Similarly, Faran and Shilo investigated twin growth driven by electric fields in 
barium titanate (BaTiO3) [2] and reported a twin velocity of ~5200 m/s, or 1.16 times the transverse 
sound speed. Since deformation twinning usually proceeds through the propagation of twinning 
dislocations (TDs) on coherent twin boundaries [3], the foregoing studies imply that TDs may also 
move at sonic speeds or above.  

The relationship between dislocation glide velocity 𝑣 and the applied resolved shear stress 
𝜏 in the Burgers vector direction is known as the mobility relation [4]. For 𝑣 < ~10! m/s, dislo-
cation mobility may be investigated by the etch pit method of Johnston and Gilman [5]. It has been 
applied to pure copper (Cu) [6-9] and to Cu alloys [10, 11]. However, higher dislocation speeds 
remain difficult to probe experimentally. The highest velocity observed by the etch pit method is 
half the lower transverse sound speed in lithium fluoride (LiF) [12]. Nosenko et al. performed 
optical observations of supersonic dislocations in an ordered suspension of charged dust particles 
[13], which was considered as a surrogate for a crystalline solid. Recent developments in x-ray 
radiography have led to reports that partial dislocations in diamond reach speeds in excess of 18 
km/s [14]. However, these experiments are not yet able to determine the full mobility relation for 
individual dislocations. 

In the absence of experiments, numerical simulations such as molecular dynamics (MD) 
and dislocation dynamics (DD) have been used to investigate dislocation mobility and its effect on 
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crystal plasticity. While numerous MD studies have been dedicated to sonic, transonic, and super-
sonic dislocations in single crystals [15-22] with maximum velocities near and above 3000m/s, the 
motion of TDs at such velocities has received comparatively little attention. Daphalapurkar et al. 
[23] investigated TD motion in Ni and found that it shares features in common with the mobility 
of dislocations in single crystal Ni [15]. However, they observed that, unlike dislocations in single 
crystals, TDs may move at supersonic speeds, i.e., faster than the longitudinal sound speed. Nev-
ertheless, Daphalapurkar et al. did not obtain the full mobility relation for TDs. Wei and Peng [24] 
studied the stress-velocity relationship of TDs in Cu and observed two limiting speeds in the tran-
sonic and supersonic regimes. However, due to the short time of their simulations (<100 ps), they 
did not obtain the full mobility relation, either. Other research groups modeled the glide of multiple 
TDs [25, 26] with a view to understanding the motion of incoherent twin boundaries, rather than 
individual TDs. Obtaining the twin mobility relation and comparing it to that of dislocations in 
single crystals is one of the main goals of the present study. 

DD studies have also been carried out to investigate the interaction of dislocations traveling 
at transonic and supersonic velocities [27-29], with a focus on understanding how dislocation mo-
bility changes the deformation response of a representative volume element. For instance, Cho and 
coworkers [30] showed that dislocation mobility laws that distinguish two velocity regimes play 
an important role in the evolution of a dislocation network in Al. Similarly, Gurrutxaga-Lerma 
[31] showed the influence that different inertial dislocation mobility laws have on the velocity of 
dislocations in Al crystals and their associated effects on plastic relaxation. Cui and coworkers 
[29] used DD simulations to study stress interactions between subsonic and supersonic disloca-
tions. However, a unique mapping between the response of a representative volume and the form 
of the mobility relation is not available, necessitating investigation of individual dislocation be-
havior. Conversely, improved understanding of the mobility of individual dislocations stands to 
advance predictive modeling of crystal plasticity at high strain rates. 

The goal of the present study is to investigate the motion of sonic, transonic, and supersonic 
TDs with a view to improving understanding of twinning during high strain rate deformation. We 
choose Cu as a model material for the present work because a reliable embedded atom method 
(EAM) [32] potential is available for it and because the mobility of dislocations in face-centered 
cubic (FCC) Cu, as modeled using this potential, is well understood [33]. Indeed, it has already 
been established that the mobility relation of straight glide dislocations in Cu is composed of mul-
tiple ranges of stable uniform motion separated by bands of forbidden velocity [33]. Moreover, 
edge and screw dislocations have different mobility relations. These findings further motivate in-
vestigations of TD mobility, as TDs have different structure than glide dislocations in grain inte-
riors. The TD in our study is a pure edge Shockley partial propagating on a Σ3 coherent twin 
boundary (CTB). Deformation twinning through TD propagation along Σ3 CTBs is common in 
Cu [34] and Cu-base alloys [35, 36]. Thus, our findings relate directly to high-speed twin propa-
gation in these materials: if the density and velocities of TDs on a twin boundary are known, the 
velocity of the twin boundary may be calculated. 

Section 2 describes the atomistic models of a pure edge TD and methods for simulating its 
glide at different velocities. In Section 3, we present the mobility relation of a TD. Homogeneous 
dislocation nucleation in the CTB is also discussed. Section 4 reports on kink-mediated TD motion, 
revealed by our MD simulations. Finally, Section 5 presents the relationship between kink, TD, 
and CTB motion, compares mobility relations of edge, screw, and twinning dislocations in Cu, 
and discusses prospects for experimental measurements on high-speed TDs. We summarize our 
main conclusions in Section 6. 
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2. Modeling methods 
 
We used the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code [37] 
to perform our MD simulations of a twinning dislocation gliding along a coherent twin boundary  
in copper. Interatomic forces were represented with the EAM [38] potential by Mishin et al. [32]. 
This potential is well tested in prior dislocation mobility simulations [33, 39]. Visualizations were 
performed using OVITO [40]. We investigated the three models shown in Fig. 1: a perfect CTB, 
a straight TD, and a TD with a pre-existing kink. The models are provided as supplementary files 
with this publication. All models are relaxed to zero pressure at a temperature of 10 K. Analysis 
of local atomic structures is performed by common neighbor analysis (CNA) [41].  
 

 
Figure 1: Models of a) perfect Σ3 CTBs, b) a straight edge TD, and c) an edge TD with a kink. Based on CNA, perfect 
FCC atoms are in green, CTB in red, TD in cyan. All FCC atoms in the upper grain in b) and c) are suppressed to 
show the CTB plane. d) Close-up view of a kink with atoms colored by their potential energy. The loading layers in 
blue and thermostatting layers in magenta imposed on the bottom surface are shown in b) and c), respectively. Loading 
and thermostatting layers are also imposed on the top surface, but, for clarity, they are not marked. 

 
2.1.  Coherent twin boundary 
Figure 1.a) presents a perfect CTB consisting of two FCC Cu crystals joined along the (111) plane, 
whose normal direction is aligned with the y-axis of the simulation cell. The *112, and *110, 
crystallographic directions within the CTB plane are parallel to the x- and z-axes, respectively. 
Periodic boundaries are applied in all three directions, so the model contains two parallel CTBs, 
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as shown in Fig. 1.a). The CTB energy, 𝛾"#$, is computed as the excess energy in the Gibbsian 
sense, 

 

𝛾"#$ =
%&'(&!"#

!)
= 22.4	mJ/m!, (1) 

 
where A is the area of one CTB, PE is the total potential energy of the model, N is the number of 
atoms in the model, and 𝐸*+, = −3.54 eV is the cohesive energy per atom of a FCC Cu single 
crystal. The 𝛾"#$ value we obtained is consistent with that measured in experiments (~20mJ/m2) 
[42] and prior atomistic calculations (22.2 mJ/m2) [43] using the same interatomic potential. 
 
2.2. Straight twinning dislocation 
Figure 1.b) shows a model of a straight edge TD on a CTB. To construct this model, we began 
with the perfect CTB in Fig. 1.a) and removed the periodic boundary along the y-axis. Conse-
quently, the TD model terminates with free surfaces perpendicular to the y-axis. Boundary condi-
tions remain periodic in the z- and x-directions. To introduce a TD, a net closure failure equal to 
that of a single edge Shockley partial dislocation must be created by removing (1128) planes from 
the model.  
To that effect, we reduced the length of the crystal above the CTB in the x-direction by removing 
four (1128) atomic planes, i.e., double the length of a Shockley partial Burgers vector (2𝑎 √6⁄ , 
where 𝑎 is the cubic lattice parameter). We also reduced the length of the crystal below the CTB 
plane along the x-direction by removing two (1128) atomic planes, i.e., one length of a Shockley 
partial Burgers vector (𝑎 √6⁄ ). The resulting net closure failure is that of one Shockley partial 
Burgers vector (𝑎 √6⁄ ). The reason why constructing a TD model requires removal of (1128) 
planes from both the crystals above and below the CTB is explained in Appendix A. In short, a 
perfect stacking sequence below and above the CTB plane may only be recovered for certain com-
binations of (1128) planes removed from the crystals above and below the CTB. This constraint 
arises from the nature of the (1128) stacking sequence in FCC crystals. 
After these operations, the crystal above the CTB plane is shorter than that below the CTB plane 
by one Shockley partial Burgers vector magnitude along the x-direction. However, merely reduc-
ing the length of the model in the x-direction results in incorrect stacking of (1128) atomic planes 
under periodic boundary conditions. As explained in Appendix A, to recover the correct stacking, 
we must change the simulation cell from orthorhombic to triclinic by tilting the x-direction con-
tinuation vector in the y-direction by 𝑎/√3 (one atomic plane distance in the y-direction). This 
operation recovers the perfect FCC crystal structure in both the upper and lower parts of the model 
while forming a step at the CTB. A single terrace step is created on each free surface in the model, 
as well. We also adjust the model dimensions to relax the normal stress in the x-direction. 
We used the Burgers circuit construction to verify the character of the TD. A closed circuit is 
drawn around the TD and compared with the corresponding circuit drawn in the perfect CTB 
model, following the FS/RH convention [4]. The closure failure in the CTB model is -

.
[1128], 

confirming that the TD has the Burgers vector of a pure edge Shockley partial. We identified atoms 
in the TD core as those with potential energy greater than -3.53 eV which is just in excess of the 
cohesive energy of a bulk Cu atom. By this criterion, the TD core is four atom rows wide, as 
illustrated in Fig. 1.d). To compute the TD energy per unit length, 𝛿#/, we selected a layer of 
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atoms from the middle of the model that contains the entire CTB and TD, but no surface atoms. 
From the total potential energy PE and number of atoms NTD of the layer, we compute 
 

𝛿#/ =
%&'($%&!"#'0&$')

1
= 0.33 23

Å
,  (2) 

 
where L is the TD length. 
 
2.3. Twinning dislocation with a pre-existing kink 
Finally, Fig. 1.c) shows a model of an edge TD with a kink on it. To construct this configuration, 
we began with the model of a straight edge TD shown in Fig. 1.b). We then tilted the z-axis con-
tinuation vector by 𝑎 √6⁄ 	in the x-direction. Under periodic boundary conditions, this tilt changes 
the line direction of the TD by one atom row spacing: just enough to create one kink. The kink 
may be viewed as a point defect on the TD line. To compute its formation energy, 𝜀5675, we con-
sidered a layer containing the entire TD (including the kink) and CTB. Then, 
 

𝜀5675 = 𝑃𝐸 − 𝑁5675𝐸*+, − 𝛾"#$𝐴 − 𝛿#/𝐿 = 1.13 23
5675

,  (3) 

 
where PE is the total potential energy of the layer and Nkink is the number of atoms in the layer. 
 
As will be shown in section 3, glide of the TD causes the CTB to migrate. The models in Fig. 1 
have dimensions ~ 26.3´25´8 nm3. However, to maximize the distance that the CTB can move 
within a single simulation, we also constructed models with larger length along the y-direction: 
113 nm (rather than 25 nm). The CTB in these models is constructed at an initial location close to 
the bottom surface (within 20 nm of the bottom surface) and allowed to approach the upper surface 
(within 20 nm of the top surface) in loading simulations. 
 
2.4. Loading and velocity calculations 
Simulations of dislocation motion were carried out within the microcanonical (NVE) ensemble at 
an initial temperature of 10 K. To force the TD to move, we sheared the model at a constant strain 
rate by imposing a constant velocity 𝑣8+-967: in the x-direction on a pre-selected layer of atoms (a 
“loading layer”) located on the top surface and an equal and opposite velocity -𝑣8+-967: on another 
layer of atoms located on the bottom surface, as illustrated in Fig. 1.b). Only the center of mass 
velocities of these loading layers were constrained, allowing the surfaces to remain flexible. Im-
mediately adjacent to the loading layers, we defined thermostatting layers, illustrated in Fig. 1.c), 
whose temperature was kept fixed at 10 K by rescaling the velocity every 0.1 ps. These layers 
served as sinks for heat generated at the dislocation core by the dissipation of external plastic work 
done on the model. A detailed description of the implementation of loading and thermostatting 
layers is given in Ref. [33]. 
 
Given a fixed dislocation density, the average TD velocity may be computed using the Orowan 
relation [44]: 𝑣̅#/ =

!1(
;
𝑣8+-967:, where 𝐿< is the length of simulation cell in the x-direction and 

𝑏 is the magnitude of the Burgers vector. In our models, this relation predicts that the TD moves 
at an average speed ~180 times greater than 𝑣8+-967:. We determine the instantaneous velocity 
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𝑣67=> of the TD as 𝑣67=> ≈
∆<
∆>

, where ∆𝑥 is TD displacement during time interval ∆𝑡, with typical 
∆𝑡 = 2 ps. The displacement ∆𝑥 is obtained by tracking the position of the TD as a function of 
time. TD position is the average of the positions of all atoms in the TD core, as identified by CNA 
[41]. The instantaneous shear stress σ<@ on a loading layer is the total force in x-direction acting 
on all atoms from the loading layer divided by the area (along the x-z plane) of the layer. This 
shear stress is equal to the resolved stress acting on the TD in our simulations. 
 
To aid in the analysis of TD mobility, we used continuum anisotropic linear elasticity theory to 
compute different characteristic velocities of Cu, in the direction of TD motion, i.e., [1128]. These 
velocities include the Rayleigh wave speed (1975 m/s); the lower transverse sound speed (2012 
m/s); the higher transverse sound speed (2650 m/s); and the longitudinal sound speed (5028 m/s). 
Methods for calculating these velocities are described in Refs. [33, 45, 46]. 
 
3. Twinning dislocation mobility relation 
 
Similar to dislocations in single crystal FCC Cu [33], TDs exhibit three types of motion, depending 
on the predicted average velocity, 𝑣AB296*>: uniform steady-state motion, cyclic steady-state mo-
tion, and homogeneous nucleation. Uniform motion occurs whenever 𝑣AB296*> lies below 1990m/s 
as well as in the range ~3500 m/s <𝑣AB296*>< ~ 5600 m/s. Figure 2.a) shows velocity and shear 
stress as a function of time for uniform motion at 𝑣AB296*>= 1430 m/s. After a transient period of 
~300 ps, the TD moves with instantaneous velocity that oscillates around a steady state value of 
1428 ± 4 m/s, consistent with the predicted velocity. Shear stress also oscillates about a steady 
state value. Uniform motion at other values of 𝑣AB296*> exhibit velocities and stresses qualitatively 
similar to those in Fig. 2.a). 
 

 
Figure 2: a) Uniform motion at 𝑣)*+,-./=1430m/s. Here the TD velocity oscillates about the predicted velocity while 
the shear stress oscillates about 12MPa. b) Cyclic motion at 𝑣)*+,-./=2503m/s. Here, the TD undergoes discrete jumps 
between low and high velocity branches. The shear stress increases while the dislocation is in the lower velocity 
branch and decreases while the dislocation is higher velocity branch. Both velocity and stress vary cyclically with the 
same approximate period. 
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Each time a TD traverses the length 𝐿< of the simulation cell, the CTB moves by one interatomic 
plane spacing 𝑎/√3 in the positive y-direction. Thus, the CTB continually migrates in our simu-
lations. For example, Fig. 3 shows snapshots of the CTB at 𝑡 = 0	ns, 𝑡 = 3	ns and 𝑡 = 6	ns in a 
simulation with 𝑣AB296*>=1430 m/s. In this simulation, the CTB moves in the y-direction at an 
average speed of ~11 nm/ns. 

 
Figure 3: CTB migration in a simulation with the TD moving at predicted velocity =1430 m/s: a) 𝑡 = 0𝑛𝑠 (initial 
position), b) 𝑡 = 3𝑛𝑠, and c) 𝑡 = 6𝑛𝑠. 
 
Cyclic motion occurs whenever ~2000 m/s < 𝑣AB296*> <	~3500 m/s. Figure 2.b) shows an illus-
trative example of TD velocity and shear stress variation as a function of time for 𝑣AB296*>=2503 
m/s. At the beginning of the simulation, the TD accelerates rapidly and approaches asymptotically 
to ~2000 m/s. After ~1.8 ns, the dislocation jumps to supersonic speed, with 𝑣67=> ≈5600 m/s. 
Over the next ~2.2 ns, TD velocity gradually decreases to ~3500 m/s, whereupon it drops suddenly 
to just below ~2000 m/s. Thereafter, these velocity variations repeat cyclically. While the 𝑣67=> 
never equals 𝑣AB296*>, the average of 𝑣67=> over one cycle is 2499 ± 25 m/s, consistent with pre-
dicted velocity. 
The resolved shear stress also undergoes cyclic variations, correlated with variations in TD veloc-
ity. While 𝑣67=> < 𝑣AB296*>, the rate of plastic strain accumulated due to dislocation motion is lower 
than the total externally imposed strain rate. Thus, the net elastic strain rate is positive and shear 
stress increases monotonically. Conversely, when 𝑣67=> > 𝑣AB296*>, the plastic strain rate is greater 
than the total strain rate. Consequently, the net elastic strain rate is negative and shear stress de-
creases monotonically. Cyclic motion has also been reported in simulations of dislocation mobility 
in Cu [33] and Ag [47]. 
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Whenever 𝑣AB296*> >5600 m/s, we observe homogeneous nucleation of dislocation loops along 
the CTB plane, as illustrated in Fig. 4. As these loops expand, they interact with their periodic 
images and coalesce into new TDs spanning the width of the model. These simulations involve 
multiple dislocations moving along the CTB at different velocities, so they are not conducive to 
determining the TD mobility relation. Since homogeneous nucleation is not the focus of our study, 
we do not investigate cases with 𝑣AB296*> >5600 m/s further. 

 
Figure 4: Dislocation loops and TD dipoles nucleated homogeneously within the CTB plane for TD moving at 
𝑣)*+,-./=5800m/s. 

 
To obtain the mobility relation for the TD, we plotted the dislocation velocity against resolved 
shear stress for data sets from multiple simulations with predicted velocities ranging from 100 m/s 
to 5600 m/s. The outcome is shown in Fig. 5.a). The TD mobility relation is composed of two 
distinct velocity branches separated by a band of forbidden velocities. The low velocity branch 
asymptotically approaches a limit between the Rayleigh velocity and the first transverse sound 
speed. The high velocity branch has velocities ranging from 3500 m/s up to supersonic velocity of 
~5700m/s, i.e., greater than the longitudinal sound speed. Dislocation velocity is not a linear func-
tion of stress in either branch. The forbidden band corresponds to the range of predicted velocities 
where no steady-state motion occurs. Instead, cyclic motion is observed for these velocities. 
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Figure 5: Mobility relations for a) a straight edge TD and b) an edge dislocation in pure FCC Cu (based on data from 
Ref. [33]). Regions shaded gray represent forbidden velocity bands. 

 
For comparison, Fig. 5.b) shows the mobility relation for an edge dislocation in FCC Cu, based on 
data reported in Ref. [33]. Both the edge and TD mobility consist of distinct branches, meaning 
that dislocation velocity is not single-valued in stress for either of them. The subsonic part of both 
mobility relations in Fig. 5 is similar, with stress diverging at velocities near the Rayleigh velocities 
or first transverse sound speed. Both relations possess a high velocity branch, starting at around 
3500-3600 m/s. However, for the TD, this branch extends over a wide range of stresses and up to 
supersonic speeds. Meanwhile, for the edge dislocation in FCC Cu, the high velocity branch ex-
tends over a narrower range of stresses and terminates well below the longitudinal sound speed. 
Finally, the mobility relation for an edge dislocation in FCC Cu possesses an intermediate velocity 
branch while the TD mobility relation does not.  
 
We also assessed the effect of choosing different seed values when assigning initial velocities in 
our simulations. Three seeds were randomly selected in the range between 1 and 1,000,000,000. 
We used each seed to generate an ensemble of velocities at 10K. These velocities were used in 
simulations for TD motion with predicted velocity = 1430m/s. The simulation time was set to 
2000ps. We computed the means and standard deviation of velocities and stresses for these three 
simulations. The outcomes are shown in Table 1 below. All the mean values were identical to 
within the standard error. We therefore conclude that our findings are robust with respect to dif-
ferent seed selections. 
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Table 1: Average instantaneous dislocation velocities and stresses for TD motion with predicted velocity = 1430 
m/s given initial velocities assigned using different seed values. 

Seed value Velocity 
mean (m/s) 

Stress mean 
(MPa) 

Velocity stand-
ard deviation 
(m/s) 

Stress standard 
deviation (MPa) 

156954799 1430.12±3.28 9.13±1.24  103.79  39.48 
780459496 1430.32±3.26 9.08±1.25 103.30 39.65 
635657737 1430.71±3.25 9.05±1.26 103.10 39.78 

 
4. Kink-mediated TD motion 
 
Figure 6 compares the displacement as a function of time for TDs with and without a pre-existing 
kink at a predicted velocity of 1430 m/s. The TD without a kink exhibits cyclic stick-slip behavior: 
it alternates between ~0.1ps-long periods of motionlessness and ~0.05 ps bursts of high velocity, 
whereupon the TD translates by one Burgers vector magnitude, i.e., ~2 Å. By contrast, a TD with 
a pre-existing kink appears to translate continuously without any stick-slip behavior. 

 
Figure 6: Position as a function of time for a TD with (blue dots) and without (solid red line) a pre-existing kink. Both 
dislocations move at an average predicted velocity of 1430 m/s. 

 
The origin of this stick-slip behavior is apparent in Fig. 7, which shows snapshots of TD cores 
throughout one stick-slip cycle. Figure 7.a) presents a TD without a pre-existing kink at the begin-
ning of the stick stage, defined as t=0 fs. The beginning of the slip stage, t=113 fs, is shown in Fig. 
7.b). The TD core does not advance uniformly along its entire length. Rather, a kink pair forms 
and translates a small segment of the dislocation by one Burgers vector while the remainder of the 
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TD line remains static. Subsequently, the two kinks move in opposite directions, advancing the 
core position as shown in Fig. 7.c), while additional kink pairs are nucleated at other locations. 
Eventually, each kink meets and annihilates with an opposite sign kink, recovering a straight edge 
TD, as shown in Fig. 7.d), ending the stick-slip cycle. All other stick-slip cycles proceed through 
a similar sequence of events. 

 
Figure 7: Core motion at predicted velocity of 1430 m/s for a TD a)-d) without and e)-h) with a pre-existing kink. 
Atoms are colored by potential energy. 
 
By contrast, there is no double kink nucleation in the case of a TD with a pre-existing kink. As 
shown in Figs. 7.e)-h), the pre-existing kink simply translates at a uniform velocity. Thus, TD 
motion in Cu is kink mediated. An initially kink-free TD exhibits stick-slip behavior due to suc-
cessive nucleation and annihilation of kink pairs. 
However, kinks do not appear to have a major influence on the mobility relation of high-speed 
TDs. By way of illustration, Fig. 8 compares instantaneous TD velocities as a function of time for 
models with and without pre-existing kink for predicted velocity of 2503 m/s. Both models have 
the same cyclic behavior, two identical velocity branches, and similar variation in shear stress. The 
main difference between them is the duration of a single cycle: to complete the first cycle, a TD 
with no pre-existing kink needs 2337 ± 1 ps while a TD with a pre-existing kink requires only 
2226 ±1 ps. Thus, it appears that kinks may make it easier for dislocations to transition between 
distinct branches of the mobility relation. 
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Figure 8: Instantaneous velocities and stresses of TDs with and without pre-existing kinks for predicted velocity of 
2503 m/s. 

 
 
5. Discussion 
 
We have determined the mobility relation for a pure edge twinning dislocation (TD) in Cu. Our 
findings have direct bearing on the mobility of coherent twin boundaries (CTBs) as well as on the 
mobility of kinks on edge TDs. In our simulations, when a TD traverses a distance Lx on the glide 
plane, the CTB moves by one interatomic plane spacing, 𝑎 √3⁄ . Thus, the average velocities of the 
TD, 𝑣#/, nd the CTB, 𝑣"#$, are related by -

C&$'√E
= 1(

C$%
. Recognizing that the TD density per unit 

CTB area in our simulation is 𝜌 = 1 𝐿<⁄ , we may write 𝑣"#$ = 𝑣#/
-F
√E	

. If 𝑎𝜌 ≪ 1, it seems likely 
that propagation of twins at even modest fractions of the lower transverse sound speed involves 
sonic, transonic, or supersonic TD motion. Given that the maximum velocity a TD may sustain 
before onset of homogeneous dislocation nucleation is approximately three times the lower trans-
verse sound speed, a twin boundary moving a sonic-level velocities implies both an extremely high 
TD velocity and an elevated TD density (𝑎𝜌 approaching unity). 
Our modeling demonstrates that TDs of edge character propagate by kink motion. In our simula-
tions, a TD advances by 𝑎 √6⁄  (one Burgers vector magnitude) whenever a kink moves a distance 
𝐿H  along TD line. Thus, the kink velocity 𝑣5675 obeys -

C$%√.
= 10

C1231
. Writing 𝑙 = 1 𝐿H⁄  for the 

density of kinks per unit dislocation line, we conclude 𝑣5675 = 𝑣#/
√.	
-8

. If 𝑎𝑙 ≪ 1, then kinks prop-

agate significantly faster than TDs. Moreover, 𝑣5675 = 𝑣"#$
E√!	
-4F8

, suggesting that TD kinks 
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propagate at sonic-level velocities even when CTB velocities are well below the transverse sound 
speed. 
The mobility relation of a TD possesses two distinct branches separated by a velocity gap. As we 
explained in a previous publication [33], such structure in the mobility relation may be understood 
in terms of the velocity dependence of the drag force acting on a moving dislocation. Whenever 
the derivative of the drag force with respect to velocity is positive, uniform motion is stable. This 
condition holds within the two branches of the TD mobility shown in Fig. 5.a). Conversely, when-
ever the derivative is negative, uniform motion is not stable. Such is the case within the gap be-
tween the two branches in Fig. 5.a). The dislocation undergoes cyclic motion in that range of ve-
locities. The foregoing implies that the slope of the drag force changes sign from positive to neg-
ative as TD velocity increases across the lower transverse sound speed. We therefore conclude that 
the drag force reaches a local maximum around the lower transverse sound speed. Similar to pure 
edge and screw dislocations in Cu [33], we attribute this behavior to a mechanical resonance of 
the moving dislocations with sound waves (at the lower transverse speed) as well as with Rayleigh 
surface waves (whose velocity is near the lower transverse sound speed in our model). We expect 
that such resonance leads to increased energy dissipation, e.g., through enhanced phonon scattering 
[48]. Our simulations do not permit us to conclude whether there is another peak in the drag force 
at supersonic velocities or if the drag force continues to increase monotonically with velocity be-
yond the longitudinal sound speed. 
By contrast to TD, the mobility relation of a full edge dislocation in FCC Cu has three distinct 
branches. The middle velocity branch of a full edge dislocation, which lies just below the second 
transverse sound speed, is missing in the TD case. Previously, we explain that the middle branch 
of the edge dislocation mobility relation originates from a resonance between the dislocation and 
shear-horizontal (SH) waves [33]. SH waves [51, 52] involve atom displacements parallel to the 
free surfaces and perpendicular to the propagation direction, i.e., parallel to the dislocation line. 
We believe this middle branch is absent from the TD mobility relation because the elastic field of 
a pure edge TD has no component parallel to its line direction and therefore cannot interact with 
SH waves. By contrast, a full edge dislocation dissociates into Shockley partials, each of which 
has a screw component and is therefore capable of exciting a SH displacement field. Therefore, 
the absence of middle branch in the TD mobility relation is consistent with our interpretation of 
the role of SH waves in dislocation mobility. 
In our simulations, cyclic motion arises from the constant strain rate loading condition. If an aver-
age velocity within the forbidden band is applied, this velocity cannot be accommodated by uni-
form dislocation motion. Instead, the dislocation achieves the average velocity by jumping be-
tween two steady state velocities: one in low velocity branch with 𝑣 < 𝑣AB296*>29 and another in 
high velocity branch with 𝑣 > 𝑣AB296*>29. While the dislocation is in the low velocity branch, the 
plastic strain rate (due to dislocation motion) is lower than the total applied strain rate. Thus, there 
is a residual elastic strain rate leading to a gradual increase in stress. The time spent by the dislo-
cation in the lower velocity branch is determined by the time required for the stress to reach the 
threshold ~2.5 GPa at which the lower branch terminates. The dislocation then jumps to the higher 
velocity branch. Here, the plastic strain rate is greater than the total applied strain rate. Thus, the 
residual elastic strain rate leads to a gradual decrease in stress. The time spent by the dislocation 
in the higher velocity is determined by the time required to reach the lower stress limit of the higher 
branch, i.e., ~0.2 GPa. At this point, the TD jumps to the lower velocity branch. Cyclic behavior 
is not expected under constant stress [15, 16]. 
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In contrast to full edge dislocations, the mobility relation of a TD extends into the supersonic 
regime. This observation is consistent with the previous work of Daphalapurkar et al., who inves-
tigated TDs in Ni (FCC) [23]. Supersonic motion has also been reported for edge dislocations in 
tungsten (BCC) [18, 21] and silicon (diamond cubic) [53]. However, all these previous reports 
suggest that there is a gap of forbidden velocities separating the transonic and supersonic regimes 
[18, 21, 23]. Thus, to reach supersonic speed, dislocations must either accelerate rapidly across 
this gap or nucleate already possessing supersonic velocity. Instead, we find that the upper mobility 
branch of a TD in Cu extends continuously from the transonic to the supersonic regime, meaning 
that a TD may cross the longitudinal sound speed while undergoing uniform motion. 
Compared to pure edge and pure screw dislocations in Cu, TDs are the most mobile: they achieve 
the highest speeds at lowest resolved shear stress. The highest shear stress and velocity of a TD 
are ~2.5GPa and 5800m/s, respectively. By contrast, those values are ~2.6GPa and 3600m/s for a 
pure edge and 3.2GPa and 2500m/s for a pure screw dislocation in Cu [33]. 
We find that motion of pure edge TDs in Cu is mediated by kinks. A stick-slip cycle of a TD with 
no pre-existing kinks requires ~160 fs to complete. It resembles the motion of dislocations with 
compact cores moving in the 2-D models of Koizumi et al. [54]. In their simulations, a screw 
dislocation undergoes cyclic stick-slip motion, with travel distance of one Burgers vector during 
each slip increment, as in our simulations. However, due to the 2-D geometry used by Koizumi et 
al., their model does not involve kink motion or double kink nucleation. Stick-slip motion has been 
reported for twin boundary migration, but its origins also are not from double-kink nucleation. For 
example, Verma et al. [55] found that stick-slip motion of an incoherent Σ3 grain boundary in a 
Cu alloy is due to thermally assisted interactions with solutes. Hu et al. [56] investigated the mi-
gration of a CTB in copper and found stick-slip cycles lasting in the order of 20-50 ps due to 
nucleation of twinning dislocations from free surfaces. 
While the kink-mediated character of TD motion does not have a major effect on TD mobility at 
the high velocities investigated here, we anticipate that it may be relevant for the motion of TDs 
at resolved stresses below the Peierls threshold. In particular, it may impart to TDs a temperature 
dependence similar to that of screw dislocations in BCC metals, whose motion is also kink-medi-
ated [57-59]. 
We investigated the mobility of a single edge TD. However, translation of some twin boundaries 
involves the concurrent motion of several TDs. For example, Wang et al. [60] showed that S3 
symmetric incoherent twin boundaries (SITBs) in Cu consist of triplets of Shockley partial twin-
ning dislocations, including one pure edge and two of mixed edge/screw character. The mobility 
of such groupings may differ from that of a single TD, both because of the variety of dislocation 
characters involved as well as due to interactions among the moving TDs. Future investigations 
could consider such effects, both for SITBs as well as other twin boundary types. 
Experimental investigations of sonic-level twin motion remain challenging and nearly always in-
volve numerous assumptions. For example, Gray did not measure instantaneous velocities of twin 
boundaries [1], but rather calculated average velocities based on twin displacements. This calcu-
lation assumes uniform, unidirectional motion of the twin plane as well as no nucleation or coa-
lescence of twin segments. Due to low time resolution (0.96 µs), the experiment of Faran and Shilo 
results in a large uncertainty of the twin velocity [2]. Time resolved measurements using x-ray 
free-electron lasers (XFEL) may provide a means of observing instantaneous velocities of sonic, 
transonic, and supersonic twins and TDs. Katagiri et al. report transonic dislocation motion in 
diamond using this technique [14]. However, the range of materials that may currently be investi-
gated by the XFEL is limited by the energy and flux of available light sources [61]. 
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6. Conclusion 
We have investigated the mobility of a high-speed edge twinning dislocation (TD) in Cu using 
molecular dynamics. We find that the mobility relation consists of two discrete branches. One is 
subsonic: it begins at zero velocity and terminates below the first transverse sound speed of ~2000 
m/s. The other spans from a transonic velocity 3500 m/s to a supersonic velocity 5700 m/s. 
For a velocity within either these two branches, the TD undergoes uniform motion, where velocity 
and stress oscillate about constant values. By contrast, if an average velocity is imposed that falls 
within the gap between the two branches, 2000 m/s< 𝑣 < 3500 m/s, the dislocation jumps cycli-
cally between the lower and upper velocity branches while the stress alternates between continu-
ously increasing (while the TD velocity is in the lower branch) to continuously decreasing (TD 
velocity in the upper branch). 
Our simulations show that the motion of an edge TD in Cu is kink mediated. Kink-pair nucleation 
is required to move a TD that does not contain any pre-existing kinks. There is no apparent differ-
ence in the mobility relation for TDs with and without kinks at the high velocities investigated 
here. 
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Appendix A: Recovery of perfect stacking during TD construction 
 
Figure A1.a) shows a single (1128) plane of atoms. The length of the periodic translations within 
the plane in [111] and [1180] are 𝑎√3 and 𝑎√2/2, respectively, where 𝑎 is the cubic lattice pa-
rameter. In FCC solids, (1128) planes are stacked in a six-fold sequence, as shown in Fig. A1.b). 
Each successive plane is translated relative to the previous one by 𝑑! = 𝑎 √E

E
𝚥̂ in the [111] direc-

tion and by 𝑑E = 𝑎 √!
I
𝑘X in [1180]. The distance between successive planes in the [1128] direction 

is 𝑑J = 𝑎 √.
J!
𝚤̂

Z
. Here, 𝚤,̂ 𝚥̂, and 𝑘X  are unit vectors in a Cartesian coordinate system aligned with the 

aforementioned crystallographic directions. Note that the periodic repeat distances within a single 
plane (Fig. A1.a)) are 3𝑑! in the [111] direction and 2𝑑E in the [1180] direction. 
 
 

 
Fig. A1: Plan view of a) a single (112,) plane and b) a complete, six-fold stacking of (112,) planes. Atoms with the 
same color are from a single (112,) plane, e.g., black atoms from the top-most (112,) plane and white atoms from the 
bottom-most plane. 

 
Consider the operation of removing a certain number, N, of (1128) planes from a perfect FCC 
crystal followed by closing the resulting gap, as illustrated in Fig. A2.a). If N=6 (or any multiple 
thereof), this operation recovers perfect FCC stacking. For other values of N, simply closing the 
gap results in a stacking fault, as illustrated in Fig. A2.b) for N= 2. Perfect stacking may neverthe-
less be recovered if one side of the crystal is translated parallel to the [111] and [1180] directions 
by an appropriate multiple of 𝑑! and 𝑑E, respectively. For example, Fig. A2.c) shows a perfect 
FCC crystal recovered after removing two (1128) planes (N=2) and applying a displacement of 𝑑! 
to the half crystal on the right of the gap. In a model under periodic boundary conditions, closing 
this gap and applying a relative translation between periodic images to restore perfect stacking 
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may be accomplished by adjusting the length and direction of the simulation cell continuation 
vector 𝐴, as illustrated in Fig. A2.d), while the positions of atoms in the model remain fixed. 
 
 

 
Fig. A2: Stacking sequence recovery after removing two (112,) planes. a) Edge-on view of two (112,) planes to be 
removed (highlighted in purple). b) A stacking fault along the cutting line after closing the gap created by the removal 
of two planes. c) Correct stacking recovered by imposing a shift of	𝑑5 in the [111] direction on the right block. In a), 
b), and c), atoms with the same color are from the same (11,0) plane. d) Under periodic boundary conditions, closing 
the gap created by removal of two (112,) planes and imposing a relative shift to restore perfect stacking may be 
accomplished by altering the simulation cell shape while keeping atomic coordinates fixed. If the initial cell is 
orthorhombic (black dashed lines), the final one is triclinic (red solid lines). 

 
To introduce an edge twinning dislocation into our CTB model, we must remove two more (1128) 
planes from the crystal above the CTB than from the crystal below the CTB (so that the net closure 
failure is that of a single Shockley partial dislocation). Moreover, we wish to restore perfect FCC 
stacking in both crystals under periodic boundary conditions with a single set of shift vectors par-
allel to the (1128) plane. This objective can only be accomplished for certain specific numbers of 
(1128) planes removed from the top crystal. 
Table A1 lists the shift vectors required to restore the stacking sequence for any value of N of 
planes removed from the bottom crystal as well for N+2 planes removed from the top crystal. Not 
all values of N allow for the stacking sequence to be recovered both above and below the CTB. 
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For example, when N=0, no shift is needed in the bottom crystal while a shift of −𝑑! is needed in 
the top crystal. Table A1 shows that the stacking sequence can be recovered for N=2 (which is the 
choice we used to construct our model) or N=5. 
 
Table A1: Shifts that must be applied to the crystal above and below the CTB to restore the FCC stacking sequence. 
Rows shaded blue correspond to combinations of (112,) plane removals that permit the correct stacking sequence to 
be recovered simultaneously in both top and bottom crystals with the same shift vectors. 
N for the crystal 
below the CTB 

Shift needed to restore 
stacking in the crystal 
below the CTB  

N+2 for the crys-
tal above the CTB 

Shift needed to restore 
stacking in the crystal 
above the CTB 

0 0 2 −𝑑! 
1 −𝑑! − 𝑑E 3 −𝑑E 
2 𝑑! 4 𝑑! 
3 −𝑑E 5 −𝑑! − 𝑑E 
4 −𝑑! 6 0  
5 𝑑! − 𝑑E 7  𝑑! − 𝑑E 
6 0 8 −𝑑! 

 


