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Abstract

Recent progress in data-driven turbulence modeling has shown its potential to enhance or

replace traditional equation-based Reynolds-averaged Navier-Stokes (RANS) turbulence models.

This work utilizes invariant neural network architectures to model Reynolds stresses and turbulent

heat fluxes in forced convection flows (when the models can be decoupled). As the considered

flow is statistically 1D, the invariant NN architecture for the Reynolds stress model reduces to

the linear eddy viscosity model. To develop the data-driven models, direct numerical and RANS

simulations in vertical planar channel geometry mimicking a part of the reactor downcomer are

performed. Different conditions and fluids relevant to advanced reactors (sodium, lead, unitary

Prandtl number fluid, and molten salt) constitute the training database. The models enabled

accurate predictions of velocity and temperature and, compared to the baseline k − τ turbulence

model with the simple gradient diffusion hypothesis, do not require tuning of the turbulent Prandtl

number. The data-driven framework is implemented in the open source GPU-accelerated spectral

element solver nekRS and has shown potential for future developments and consideration of more

complex mixed convection flows.

Keywords — Machine learning, Turbulence modeling, Forced convection, Low and high Prandtl

fluids, Data-driven modeling
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I. INTRODUCTION

The traditional mechanistic modeling framework has allowed considerable progress in com-

putational fluid dynamics (CFD) in the past century. However, despite the continuous growth

of computational power and advances in numerical methods, solution of the Navier-Stokes equa-

tions (known as DNS, direct numerical simulations) remains overly computationally expensive for

modern engineering scale problems. One of the most popular approaches to reduce modeling cost

is to perform Reynolds-averaged Navier-Stokes (RANS) simulations. Although numerically effi-

cient, RANS equations require closure models for Reynolds stresses (RS) and turbulent heat fluxes

(THF). Furthermore, widely employed traditional two-equation models such as the well-known

k − ε [1], k − τ [2], etc. turbulence models exhibit large model form / coefficient uncertainties [3]

especially for non-adiabatic flows with buoyancy effects.

As a result of these bottlenecks, there is a continuous interest in data-driven (DD) modeling

approaches. There are several strategies that can be adopted for DD modeling of dynamical

systems [4], including, but not limited to:

• DD discovery when ML methods are used to discover unknown governing equations. An

example of such framework is SINDy (sparse identification of nonlinear dynamics) [5]. The

strategy is useful when the observed physical phenomenon does not have an adequate math-

ematical description in the form of differential equations.

• DD solution that uses ML to approximate a solution map (the Koopman operator) that

predicts the evolution of a dynamical system over time. This avoids a costly solution of the

governing equations. For instance, neural operators are gradually gaining attention in this

area, e.g., FNO [6] and DeepONet [7].

• Error correction, when ML is used to address inadequacy in the governing equations, closures,

or quantities of interest [8, 9]. The strategy directly focuses on inadequate term(s) in the

mathematical description in an attempt to reduce the uncertainties in the modeling process.

• DD closure modeling [10], which is the focus of this work. Recent progress in DD turbulence

modeling techniques has shown their potential to improve the predictive capability of RANS

simulations.
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A recently initiated Integrated Research Project of the U.S. Department of Energy’s Nuclear

Energy Advanced Modeling and Simulation program (IRP-NEAMS-1.1) seeks to deliver improved,

fast-running models for complex physical phenomena involving turbulent mixing, thermal strati-

fication, and thermal striping in complex geometries relevant to advanced reactors by addressing

several challenge problems. In particular, one of the objectives of Challenge Problem 1 [11] is to

develop DD RANS turbulence models for conditions pertinent to advanced nuclear reactors, includ-

ing laminar-to-turbulent and forced-to-mixed convection transitions in different coolants (sodium

(Na), lead (Pb) and molten salt (FliBe)). This paper serves as a first step towards the outlined goal

and reports on the development of the DD RS and THF models for forced convection conditions.

Several different methodologies are available for the development of DD turbulence closures,

and we refrain from an extensive review, which can be found elsewhere, e.g., [4, 10, 12]. As the

literature survey shows, a particular implementation depends on the following:

• Problem of interest (e.g., modeling of near-wall turbulence [13], adiabatic [14] or buoyant [15]

flows, etc.);

• Chosen ML algorithm (feedforward neural network (NN) [14], convolutional NN [16], gene

expression programming [15], etc.);

• A number of physical constraints and knowledge introduced (invariance [14], realizability [17],

etc.);

• Quality and quantity of data and available information on the system; generalizability, com-

putational efficiency, intepretability, explainability, consistency, and other requirements.

This work uses a linear eddy viscosity model (invariant tensor basis neural network (TBNN)

in statistically 1D flow) and vector basis neural network (VBNN) architectures for pointwise pre-

diction of RS and THF [14, 18]. Ling et al. [14, 19] firstly proposed TBNN architecture to predict

RS in several canonical adiabatic flows. Notable improvements are observed compared to the

traditional RANS modeling approaches; moreover, the invariant architecture has demonstrated

superiority over an ordinary NN implementation. Geneva et al. [20] used a Bayesian formulation

for TBNN to perform an uncertainty analysis of the developed DD turbulence model for a variety

of canonical flows. Prof. Sandberg’s research group (e.g., [21]) has shown that the invariant for-

mulation can also be adopted for different ML algorithms, such as gene expression programming,
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and has made significant progress in the area [10]. The similar invariant strategy (VBNN) can be

adopted for modeling of THF [17, 18, 22] in incompressible flows. It should be noted that modeling

of mixed and natural convection is much more complicated due to the involved coupling of RS and

THF (see, e.g., [15, 23]) and will be considered in future endeavors.

Although numerous papers focus on separate DD modeling of RS or THF, we demonstrate

their simultaneous work to reduce errors in the simulation results. Another novelty is the attempt

to develop a joint THF model for low- and high-Prandtl fluids (liquid metals and molten salt).

To train NNs, the direct numerical simulation (DNS) [24, 25] and RANS databases for forced

convection flows in a geometry that mimics part of the reactor downcomer are established. The

built models are implemented in the spectral element solver nekRS [26] and have shown potential

for future development and consideration of more complex mixed convection flows [11].

The rest of the paper is organized as follows. Sec. II details the methodology and training

database used for the development of DD models. Sec. III provides results of the models’ tests.

Sec. IV concludes the paper and briefly discusses directions for future work.

II. METHODOLOGY

II.A. Problem Formulation

Consider the non-dimensional RANS equations with the Boussinesq approximation:

∂ui

∂xi
= 0

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
−

∂u′
iu

′
j

∂xj
+Ri Tgi

∂T

∂t
+ uj

∂T

∂xj
=

1

RePr

∂2T

∂xj∂xj
−

∂u′
jT

′

∂xj

(1)

where xi is the coordinate vector, t is time; ui is the velocity vector, p is pressure, T is temperature,

u′
iu

′
j is the RS tensor, u′

jT
′ is the THF vector, gi is a unit vector in vertical z direction; Re, Pr,

and Ri are Reynolds, Prandtl, and Richardson numbers; · and ·′ denote Reynolds-averaged and

fluctuating components, respectively. More details on the non-dimensionalization procedure and

reference scales can be found in [11]. The Boussinesq term Ri Tgi takes into account buoyancy

effects; however, in this work full incompressibility is assumed: Ri = 0. As a result, temperature

can be treated as a passive scalar (no feedback to velocity from temperature) and RS are decoupled
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from THF.

The goal of this work is to develop DD closure models for RS u′
iu

′
j and THF u′

jT
′ to facilitate

the modeling of forced convection flows for different coolants (Pr) and conditions (Re) relevant

to advanced nuclear reactors. The results reported in this article also serve as a basis for further

consideration of mixed convection flows (Ri ̸= 0) [11].

II.B. Training Database

II.B.1. DNS setup

The geometry of interest is section of a nuclear reactor downcomer. Due to the relatively large

internal radius, this is well approximated as a pair of parallel plates, shown in Figure 1. Table I

describes the geometrical parameters of the downcomer in dimensional and non-dimensional units.

The overall length (Lz = 60) is divided into three parts: an adiabatic inlet (z < 5), an active

region with applied constant heat flux (5 ≤ z ≤ 55), and an adiabatic outlet (z ≥ 55) [11, 24, 27].

The channel parameters are chosen according to the recommendations of the industrial

project collaborators [11] and reflect the characteristics of the advanced reactor designs [11]. Non-

dimensionalization of the problem makes the results applicable to different designs since one can

rescale them to particular parameters. This also makes the solution more numerically efficient.

TABLE I
Geometrical parameters of the channel.

Parameter Dimensional, m Non-dimensional
Distance between walls Ly 0.034 0.5
Spanwise length Lx 0.034π 0.5π
Adiabatic inlet 0.34 5
Heated / cooled 3.4 50
Adiabatic outlet 0.34 5
Total length Lz 4.08 60

The following boundary conditions (BCs) are enforced. To obtain a fully developed turbu-

lence in the channel, the inlet velocity is recycled from plane z ≲ 5. To avoid backflow, a stabilized

outflow condition is set at the outlet (Dong et al. [28]). The walls (planes y = ±0.25) are no-slip

and the sides (planes x = ±0.25π) are periodic. The inlet temperature is Tin = 0. A constant

heat flux is applied beginning at z = 5 and ending at z = 55. Two cases for the heat flux BCs are

considered:
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Fig. 1. Reactor downcomer (part) geometry.

• Case 1: The inner wall is heated and the outter wall is cooled with fluxes:

q′′ = ± 2

RePr
(2)

• Case 2: Both walls are cooled with fluxes:

q′′ = − 1

200
(3)

Constant heat flux BC Eq. (2) aims to establish a database for fundamental phenomena (modeling

of the separate effects); non-uniform power shape and other heating phenomena are not considered.

The simultaneous cooling case Eq. (3) is of interest for lead-cooled fast reactors: there is a possible

scenario in which the reactor vessel has a lower temperature from both sides of the coolant [11].

For the other fluids, it is also important to study case 2 for the generalizability of the data and

models.

Table II provides the dataset parameters used for training and testing of the models under
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development. Overall, there are 20 datasets, 2 of which are used for testing purposes – datasets 5

and 15 as denoted in the table. Datasets 1 – 17 use the wall heating configuration described by

Eq. 2 (case 1), while datasets 18 – 20 use the configuration described by Eq. 3 (case 2). Note that

for the RS model, there is no difference between the fluids as the momentum equation is decoupled

from the energy equation. Thus, there are only 9 different Re conditions. A detailed analysis of

the DNS results can be found in [24, 25].

TABLE II
Parameters of the datasets.

No. Re Pr Purpose
1 5000
2 6000
3 7500 0.0048 (Na) Training
4 10000 Case 1
5 15000 Test
6 3500
7 5000 0.0169 (Pb) Training
8 7500 Case 1
9 5000
10 7500 1.0 Training
11 8500 Case 1
12 10000
13 4000 Test
14 5000
15 7500 12.0 (FliBe) Training
16 10000 Case 1
17 12000
18 5000
19 7500 12.0 (FliBe) Training
20 10000 Case 2

II.B.2. RANS setup

The developed framework requires matching RANS simulations (for more details, see Sec-

tion II.E), which are performed for the same conditions as DNS (Table II) and using the same

mesh to avoid uncertainties associated with the interpolation from one mesh to another. This is

particularly important near the walls. To reduce the computational cost, the spanwise x direction

is reduced to have only 4 spectral elements. This is the minimum number required in NekRS to set

periodic BCs for a “pseudo” 2D setup. The simulations are performed using the k − τ turbulence

model [2], while for THF the simple gradient diffusion hypothesis [29] is used with a constant
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turbulent Prandtl number (Prt = 1). Instead of recycling the inlet velocity, the inlet profiles for

uz, k, and τ are applied from the precursor RANS simulations. The main goal is to have fully

developed profiles at z = 5 where heating / cooling begins. The simulations are performed until

reaching steady-state regimes for each flow to extract the necessary quantities.

II.B.3. Data preprocessing

Figure 2 illustrates the data preprocessing procedure. Having performed DNS, which pro-

duces temporal statistical data for RS, THF, and other quantities [24, 25], the 3D fields obtained

are spatially averaged in the spanwise direction x. Then values on the walls were removed because

they do not contain meaningful information. These “reduced” 2D fields are used to train the RS

model. Since the velocity is statistically 1D, the reduced 2D fields can also be spatially collapsed

in the streamwise z direction to train the RS model. However, it was found that the RS model

can be trained more efficiently if averaging of 10 consecutive profiles is performed. The resulting

“compressed” 2D fields are used to train the RS model. To train the THF model, the unheated

inlet / outlet regions are additionally removed. A similar procedure is adopted for the RANS

datasets.

Fig. 2. Data preprocessing schematic.

II.C. Reynolds Stress Model Description

To develop the RS model we begin with the weak equilibrium assumption [29]:
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u′
iu

′
j ≡ k

u′
iu

′
j

k
= k

(
2bij +

2

3
δij

)
(4)

where k is the turbulent kinetic energy (TKE) obtained by solving the k− τ turbulence model, bij

is the scaled anisotropic RS tensor. Eq. (4) implies that spatial and temporal variations in bij are

neglected, but the variations in k are retained [29]. Using the locality assumption for bij allows it

to be predicted point-wise using a feedforward NN, which potentially makes the model applicable

to a different geometry.

Furthermore, based on the dimensionality analysis [30], it is assumed:

bij = bij

(
∂ui

∂xj
, k, ε

)
= bij (sij , wij)

where ε is the TKE dissipation rate, sij is scaled by turbulent time scale
(
τ = k

ε

)
symmetric tensor:

sij =
1

2
τ

(
∂ui

∂xj
+

∂uj

∂xi

)
(5)

wij is the scaled antisymmetric tensor:

wij =
1

2
τ

(
∂ui

∂xj
− ∂uj

∂xi

)
(6)

To enforce the Galilean invariance, the tensor basis representation is employed [31]:

bij (sij , wij) =

Nt∑
n=1

gn (I) t(n)ij (7)

where Nt is the number of tensor bases t
(n)
ij (Table III), gn are tensor basis functions of invariants

I = {I1, I2, ..., Im} (Table IV) [31].

TABLE III
Tensor bases for the RS model.

T(1) = S T(2) = S2 − −
T(3) = W2 − − −

T(4) = SW −WS T(5) = SW2 −W2S T(6) = WSW2 −W2SW T(7) = S2W −WS2

Note that Pope [30] proposed a slightly different integrity basis. The tensor basis representation

suggested in Ref. [31] is more compact and, therefore, adopted in this work. Also, note that, for
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TABLE IV
Invariants for the RS model.

I0 = tr(S) I1 = tr(S2) I2 = tr(S3)
I3 = tr(W2) − −
I4 = tr(SW2) I5 = tr(S2W2) I6 = tr(S2W2SW)

convenience, the tensor notation is replaced by matrix one (t
(n)
ij = T(n), sij = S, wij = W).

One can implement the tensor basis representation Eq. (7) in a NN architecture: a TBNN

is shown in Figure 3, Ref. [14]. Using input invariants I (a set of scalars), the NN learns to

predict tensor basis functions gn, which are then multiplied by the corresponding tensor bases

(precomputed) t
(n)
ij and summed. The obtained using Eq. (7) scaled anisotropic tensor bij is used

to calculate the loss L and to backpropagate the error to update the NN’s weights and biases. We

also supply the distance to the nearest wall yw and Re as input features, as they help to improve

the generalizability of the model. The NN’s architecture and hyperparameters are described in

Table V.

TABLE V
Hyperparameters and architecture of the NN for the RS model.

Parameter Value / Method
Number of layers and neurons 8 – 20 – 20 – 20 – 20 – 7

Activation SELU
Optimizer Adam

Loss function Mean squared error
Regularization Dropout 5%
Learning rate 0.01 with decay on plateau

Number of epochs 500
Mini-batch size 32

Fig. 3. A tensor basis neural network architecture.

11



Remark. In the case of incompressible statistically 1D velocity, Eq. (7) shrinks to the the

linear eddy viscosity model:

bij = g1 (I1) t(1)ij = g1 (I1) sij (8)

where the only required RS component is:

u′
yu

′
z = 2kbyz = g1 (I1)

k2

ε

∂uz

∂y
(9)

Note that comparing to equation-based models, g1 is non-constant since it is predicted by the NN.

However, since this work aims to establish a basis for more complex flows, the full representa-

tion Eq. (7) is kept.

II.D. Turbulent Heat Flux Model Description

To model THF, based on the dimensionality analysis [32], it is first assumed:

u′
jT

′ = u′
jT

′
(
∂ui

∂xj
,
∂T

∂xj
, k, ε, kT , εT

)
where kT is the temperature variance, εT is the thermal dissipation rate. Note that the dependence

of THF on RS is implicitly taken into account through the dependency on ∂ui

∂xj
, k, and τ .

Unfortunately, nekRS does not yet have any four equation models [33] implemented and,

following [34], equal turbulent time scales k
ε ≈ kT

εT
are assumed, yielding:

u′
jT

′ ≈ u′
jT

′
(
∂ui

∂xj
,
∂T

∂xj
, k, ε

)
= u′

jT
′ (sij , wij , ϑj)

where temperature gradient is scaled by the turbulent length scale τ
√
k:

ϑj = τ
√
k
∂T

∂xj
(10)

The above assumption of equal time scales is significantly violated near the walls since temperature

fluctuations are possible on the walls with the flux BC, whereas the non-slip BC for the velocity

does not allow it. An example of a more appropriate scaling using the four-equation model can be

found in [17].
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Furthermore, to enforce invariant properties, a vector basis representation is employed [31]:

hi (sij , wij , ϑj) =

Nv∑
n=1

fn (I,J ) v
(n)
i (11)

where THF is scaled by turbulent velocity scale
√
k:

hi =
1√
k
u′
iT

′ (12)

Nv is the number of vector bases v
(n)
i (Table VI), fn are vector basis functions, J = {J1,J2, ...,Jr}

are additional invariants due to dependence on ∂T
∂xj

[31] (Table VII).

TABLE VI
Vector bases for the THF model.

v(1) = ϑ −
v(2) = Sϑ v(3) = S2ϑ

v(4) = Wϑ v(5) = W2ϑ

v(6) = (SW+WS)ϑ −

TABLE VII
Additional invariants for the THF model.

J1 = ϑϑ − −
J2 = ϑSϑ J3 = ϑS2ϑ −
J4 = ϑW2ϑ − −
J5 = ϑSWϑ J6 = ϑS2Wϑ J7 = ϑWSW2ϑ

Note that in the case of incompressible statistically 1D velocity and 2D temperature, Eq. (11)

shrinks to:

hi =

3∑
n=1

fn (I1,J1,J2,J3,J7) v
(n)
i (13)

where hi and vi are 2D vectors (with wall-normal y and streamwise z components). However, since

this work aims to establish the basis for more complex flows, the full representation Eq. (11) is

adopted.

Furthermore, the scaled THF hi is predicted using the diffusivity tensor dij [18]:

hi =

(
Nv∑
n=1

fnv
(n)
ij

)
ϑj = dijϑj (14)
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where v
(n)
ij are tensors. Note that such a representation does not mean that we seek to predict

dij = dij (sij , wij , ϑj) as it has a different integrity basis [31]. In the representation considered,

multiplication by ϑj is just an additional (postponed) step in the VBNN architecture.

Prediction of THF through the diffusivity matrix allows enforcement of realizability using

the following (alternative) approaches:

• By hardcoding the realizability into the VBNN architecture by decomposing the diffusivity

matrix into symmetric and antisymmetric parts [17]:

D = Ds +Da

where Ds =
1
2 (A + A⊺) (A + A⊺), Da = 1

2 (B−B⊺), while the matrices A and B are predicted

through separate tensor basis functions fA
n and fB

n :

aij =

Nv∑
n=1

fA
n v

(n)
ij

bij =

Nv∑
n=1

fB
n v

(n)
ij

Note that the symmetric part Ds is positive semidefinite (PSD), which ensures that D is also

PSD.

• By a posteriori nullifying negative eigenvalues of the symmetric part of D [18]:

D = D′
s +Da

where D′
s is the symmetric part with nullified negative eigenvalues after prediction.

• By adding a regularization term to the loss function L that penalizes negative eigenvalues

(physics-informed NN [35]):

LPINN = MSE
(
ĥi, hi

)
+ β

∑
k

ReLU(−λk)

where λk are the eigenvalues of D, β is the weight of regularization, ReLU is the rectified

linear unit function, ĥi and hi denote predicted and true quantities, respectively.
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The first approach markedly deteriorated the predictive capability of VBNN. The last two strategies

have similar performance, but computing eigenvalues during training is an expensive procedure.

Therefore, the diffusivity matrix was a posteriori corrected (usually, only a few % of the predicted

values have negative eigenvalues).

A VBNN is depicted in Figure 4, Ref. [18]. We also supply yw, Re, and Pr (where different

fluids are used for training) as input features. A VBNN predicts the vector basis functions fn

with their subsequent multiplication to bases v
(n)
ij according to Eq. (14); its architecture and

hyperparameters are described in Table VIII.

TABLE VIII
Hyperparameters and architecture of the NN for the THF model.

Parameter Value / Method
Number of layers and neurons 16 – 200 – 200 – 200 – 200 – 6

Activation SELU
Optimizer Adam

Loss function Mean squared error
Regularization Dropout 5%
Learning rate 0.02 with decay on plateau

Number of epochs 1000
Mini-batch size 20000

Fig. 4. A vector basis neural network architecture.

II.E. Training and Prediction Workflows

Figure 5 shows the different coupling strategies that can be employed for the DD RANS

turbulence models. Figure 5(a) is the “frozen” coupling (adopted throughout this paper): where

steady-state RANS quantities are used as inputs to predict RS and THF from DNS only once.

Then the RANS Eqs. (1) are relaxed around constant (frozen) RS and THF values to obtain
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“improved” RANS results.

Figure 5(b) shows the “mutual” coupling strategy, when DD closures are invoked at each

time step / iteration during a simulation. Such a framework requires using DNS inputs, which,

on the one hand, makes the training easier (no matching RANS database is needed), but, on the

other hand, convergence and numerical stability are difficult to achieve.

Mutual coupling is a more general approach, as the relationship between baseline RANS

inputs and DNS targets in frozen coupling is not guaranteed. Although mutual coupling worked

successfully for modeling of eddy viscosity [36], the prediction of RS was numerically unstable.

There are probably two reasons of the failure that are explained in [37]: (1) explicit representation

of RS and (2) statistical convergence error in the data. While strategy of Banko et al. [37] to

mitigate these issues (semi-implicit treatment and filtering of RS) was successful, it did not work

in our case. We also notice that frozen coupling is more numerically efficient as it requires only a

single propagation through the NNs.

(a) (b)

Fig. 5. Coupling strategies: (a) frozen; (b) mutual.

The adopted training workflow schematic is shown in Figure 6. It requires a high-fidelity

DNS database for its targets (RS u′
iT

′ and THF u′
iu

′
j) and a corresponding RANS database for

inputs (spatial velocity derivatives ∂ui

∂xj
and temperature derivatives ∂T

∂xj
) and scaling quantities

(TKE k and turbulent timescale τ). “Global” inputs (yw, Re, and Pr) must also be provided.

The targets are subject to scaling according to Eqs. (4) and (12). The inputs are scaled using

Eqs. (5), (6) and (10) with subsequent calculation of the invariants and bases. To equalize the

importance of input features (e.g., Re ∼ 103 − 104, while yw ∼ 0 − 100), they are normalized in

the ranges [0, 1] (for non-negative quantities) and [−1, 1] for other quantities.

The NNs are separately trained (RS is decoupled from THF in forced convection flows) using

the Pytorch library [38] for Python and then saved as serializable torchscrpit models to be
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efficiently invoked in a C++ user defined functiona.

Fig. 6. Training workflow.

The prediction workflow is shown in Figure 7. Since NNs are trained to predict DNS quanti-

ties based on RANS input features, one first needs to converge a RANS simulation to steady state.

After the extraction of the inputs and scaling parameters, invariants and bases are to be computed.

Note that the RANS simulations can be performed on any mesh; though a mesh convergence study

might be useful to estimate necessary mesh refinement.

After prediction, bij and hi are subjects to rescaling by the RANS quantities k and τ . Finally,

one needs to compute the spatial derivatives of RS (
∂aij

∂xj
) and THF (

∂u′
jT

′

∂xj
) and add them as an

explicit body force and heat source terns in the RANS Eqs. (1). Here aij = 2kbij is the anisotropic

tensor, as the isotropic part 2
3kδij does not influence the mean flow quantities (can be absorbed in

the modified pressure).

asee an example on GitHub
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Fig. 7. Prediction workflow.

III. RESULTS

III.A. Reynolds Stress Model Test

A priori test results for the RS model are shown in Figure 8 (for FliBe, Re=4000) and

Figure 9 (for Na, Re = 15000). One can see the accuracy is good for both cases. It is interesting

to note how function g1 changes near the walls: recall that traditional RANS models (including

the k − τ) assume g1 = const.

A posteriori test results for the RS model are shown in Figure 10 (for FliBe, Re = 4000) and

Figure 11 (for Na, Re = 15000). In Figure 10(a) one can see that the results of the k−τ model for the

anisotropic component ayz are significantly different from the DNS data, while the DD predictions

are accurate. At the same time, one of the issues with DD point-wise predictions is the smoothness

requirement: in Figure 10(b) one can see that the computed derivative (added as a body force)

has some spikes compared to the relatively smooth DNS data. Fortunately, this does not cause

any convergence issues and the resulting velocity is smooth (Figures 10(c) and 10(d)). To reduce

the non-smoothness, Fiore et al. [17] introduced a regularization term in the loss function that

penalizes non-smoothness of finite-difference derivatives of the predicted quantities. This strategy

requires keeping track of spatial location during the training (to compute the finite difference

approximation) and might be adopted in future work. In Figures 10(c) and 10(d) it can be seen

that the resulting velocity of the DD RANS simulation is closer to the DNS data than the results

obtained with the k−τ model. Similar conclusions apply to the Na, Re = 15000 dataset, Figure 11
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(a) (b)

(c) (d)

Fig. 8. A priori test of the RS model for FliBe, Re = 4000 dataset: (a) byz (predictions vs. DNS
data); (b) profile of g1; (c) profile of byz; (d) profile of ayz = 2kbyz.

(note that the k − τ model is more accurate for this dataset with higher Re).

III.B. Turbulent Heat Flux Model Test

A posteriori test results for the THF model are shown in Figures 12 and 13 (for FliBe,

Re=4000) and Figures 14 and 15 (for Na, Re = 15000). The upper figures show DNS data; the

middle ones are predictions, and the bottom ones are errors in the predictions. The black curves

are the local profiles. Note that the channel is stretched vertically for better visualization. The

difference in THF for these high- and low-Pr fluids is significant: the developing region for FliBe

is much longer (z ≈ 45) compared to Na (z ≈ 15) and the THF values for FliBe are an order of

magnitude lower. The wall-normal component of THF u′
yT

′ has a qualitatively similar behavior

with the k − τ eddy viscosity νt (not shown); at the same time, the derivative of the stream

component
u′
zT

′

∂z vanishes there. This suggests that flow in the developed region can be accurately

modeled using the simple gradient diffusion hypothesis given an appropriate turbulent Prandtl

number Prt. The error is expected to be higher in the developing region.
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(a) (b)

(c) (d)

Fig. 9. A priori test of the RS model for Na, Re = 15000 dataset: (a) byz (predictions versus DNS
data); (b) profile of g1; (c) profile of byz; (d) profile of ayz = 2kbyz.

(a) (b)

(c) (d)

Fig. 10. A posteriori test of the RS model for FliBe, Re = 4000 dataset. Profiles of: (a) ayz; (b)
∂ayz

∂y ; (c) uz; (d) uz (near wall).
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(a) (b)

(c) (d)

Fig. 11. A posteriori test of the RS model for Na, Re = 15000 dataset. Profiles of: (a) ayz; (b)
∂ayz

∂y ; (c) uz; (d) uz (near wall).

One can see that the THF predictions are accurate enough to obtain a temperature closer

to the DNS data than the k − τ model with Prt = 1, Figures 16 and 17. By tuning Prt one can

get accurate temperature predictions (RANS simulations were also performed for Prt = 0.85 and

Prt = 1.2). One can see that a higher Prt allows for more accurate predictions to be obtained:

a higher Prt = νt

αt
means a smaller turbulent diffusivity αt (given a fixed turbulent viscosity

νt obtained using the k − τ turbulence model). This increases the resistance to heat transfer;

i.e. the temperature gradients increase and the difference between the wall temperature and the

bulk temperature increases. Therefore, one will observe an increase in temperature near the wall

(currently, it is underpredicted). This discussion demonstrates the difficulty one faces when models

such flows using the gradient diffusion hypothesis: Prt is not known a priori.

The lack of information on the values of Prt was one of the motivations to set Prt = 1 in the

baseline RANS simulations: having a complete Reynolds analogy to relate turbulent momentum

and heat transfer for fluids such as Na, Pb, unitary-Pr, and FliBe.

21



Fig. 12. A posteriori test results for the THF model for FliBe, Re = 4000 dataset (u′
yT

′).

Fig. 13. A posteriori test results for the THF model for FliBe, Re = 4000 dataset (u′
zT

′).
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Fig. 14. A posteriori test results for the THF model for Na, Re = 15000 dataset (u′
yT

′).

Fig. 15. A posteriori test results for the THF model for Na, Re = 15000 dataset (u′
zT

′).
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Fig. 16. Temperature profiles at different z for FliBe, Re = 4000 dataset.

Fig. 17. Temperature profiles at different z for Na, Re = 15000 dataset.

III.C. On the development of a multi-fluid THF model

In the previous subsection, the THF models were trained separately using only FliBe or

Na datasets. This section briefly describes the results when the datasets of different fluids were

combined for training. From Section III.B it is obvious that the thermal behavior of high- and

low-Pr fluids is quite different, which is a challenge for the development of multi-fluid models.

A priori test results for the THF models are shown in Figure 18. Although the accuracy
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of the wall-normal THF u′
yT

′ does not deteriorate (not shown), the accuracy of the streamwise

THF u′
zT

′ deteriorates significantly if different fluids are used for training. Figure 18(a) shows the

accuracy for Na, Re = 15000 dataset if only Na datasets are used for training; Figure 18(b) shows

the accuracy if the Na and Pb datasets are used; Figure 18(c) shows the accuracy if the Na, Pb,

and Un datasets are used; Figure 18(d) shows the accuracy if the Na, Pb, Un and FliBe datasets

are used for training. Therefore, we conclude that development of a multi-fluid model is currently

possible only at the cost of accuracy for the streamwise THF component. Fiore et al. [17] reported

good accuracy for different fluids (Pr = 0.01-0.71); however, a four-equation model was used for

scaling purposes.

(a) (b)

(c) (d)

Fig. 18. A priori THF model test for Na, Re = 15000 dataset (using different fluids for training):
(a) only Na datasets; (b) Na and Pb datasets; (c) Na, Pb, and Un datasets; (d) Na, Pb, Un, and
FliBe.
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IV. CONCLUSION

In this paper, the DD RS and THF turbulence closures were developed. DNS and RANS data

for forced convection flows in a vertical planar channel mimicking a reactor downcomer geometry

are used for training and testing purposes. Different coolants relevant to advanced nuclear reactors

are considered: sodium, lead, unitary Pr number fluid, and molten salt. Both the RS and THF

models are based on invariant NN architectures (though, in the considered statistically 1D flow the

RS model shrinks to a linear eddy viscosity formulation). It is shown that the models yield more

accurate temperature predictions without a priori knowledge of the turbulent Prandtl number.

The models are compared with the reference DNS data; more extensive VV&UQ activities will

follow.

The possibility of developing a multi-fluid THF model is also analyzed; it is shown that the

use of different fluids for training of a single model deteriorates the accuracy of the streamwise

THF. Perhaps a more appropriate scaling using a four-equation model can improve this. Future

work will focus on mixed convection flow conditions more directly relevant to nuclear reactor

geometries.
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NOMENCLATURE

Latin symbols
aij anisotropic tensor
bij scaled anisotropic tensor
dij = D diffusivity tensor
fn vector basis functions
gn tensor basis functions
hi scaled turbulent heat flux
I invariants for TBNN
J additional invariants for VBNN
k turbulent kinetic energy
kT temperature variance
Li = {Lx, Ly, Lz} channel dimensions
L loss
Nt number of tensor bases
Nv number of vector bases
p pressure
q′′ wall heat flux
sij = S scaled symmetric tensor
t time

t
(n)
ij = T(n) tensor bases
T temperature
ui = {ux, uy, uz} velocity vector

u′
jT

′ turbulent heat flux vector

u′
iu

′
j Reynolds stress tensor

v
(n)
i vector bases

v
(n)
ij vector bases (with postponed multiplication by ϑj)
wij = W scaled antisymmetric tensor
xi = {x, y, z} coordinate vector
yw distance to the wall
Greek symbols
δij Kronecker delta
ε rate of dissipation of TKE
εT thermal dissipation rate
ϑj = ϑ scaled temperature gradient
τ turbulent time scale
Non-dimensional criteria
Re Reynolds number
Pr Prandtl number
Ri Richardson number
Subscripts
a antisymmetric
in inlet
s symmetric
t turbulent
Other notations
tr( · ) trace of matrix
· ⊺ transposed matrix
· Reynolds-averaged component
·′ fluctuating components
·̂ predicted quantity
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