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Background: Tars
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➢ Blockage

➢ Corrosion in downstream filters, fuel lines, engine nozzle, and turbines

➢ Bad odor

➢ Poison catalyst

➢ Decrease in conversion efficiency

Horvat, A., 2016. (Doctoral dissertation, University of Limerick).



Biomass Tar Classification
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➢ Class 1: GC undetectable

➢ Class 2: Heterocyclic aromatics

➢ Class 3: Light Aromatic

➢ Class 4: Light PAH compounds

➢ Class 5: Heavy PAH compounds

Renewable and Sustainable Energy Reviews, 2016, 58, 450-461



Tar from Different Plastics 
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High density polyethylene (HDPE)

Low density polyethylene (LDPE)

Polypropylene (PP)

Polyethylene terephthalate (PET)

Polystyrene (PS)



GC-MS Analysis of Plastic Tar 
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GC-MS Analysis of Plastic and Biomass Tar 
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Toluene as Tar model Compound
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Tar Mitigation Techniques

Physical methods

➢ Cyclone separators

➢ Cooling/Wet scrubbing

➢ Granular Filters

➢ Electrostatic precipitation

➢ Oil Gas scrubbing

Thermal decomposition

Catalytic conversion

➢ Use milder conditions

➢ Operates at same temperature as exit product gas temperature

➢ Trap particulate matter 

➢ Tar is heated to high temperature/addition of air 

or oxygen

➢  heavy aromatics cracked down to lighter once



Thermal Conversation of Tar to Syngas
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Tar or 

model Tar 

compound

Thermal 

conversion 

> 800 °C
Syngas   

Fischer-Tropsch Fuels

Electricity

Chemicals

Challenges:

➢ Bulky

➢ High cost of heating

➢ Long preparation time

➢ Energy intensive



Microwave-Assisted Tar Reforming 
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Advantage of microwaves in chemical reactions 

as a heating source:

➢ Compact, modular design

➢ Enhanced reaction rates

➢ Increased energy efficiency

➢ Rapid start/stop operation

➢ Selective volume-based heating

https://netl.doe.gov/sites/default/files/rdfactsheet/R-D215_4.pdf



CO2 Dry Reforming of Toluene Using Microwaves

Objectives
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➢ Enables low-tar solid fuel gasification

➢ Acts as after-process syngas cleanup

➢ Utilizes CO2 for the production of value-added chemicals

Toluene Dry Reforming

Ni/La/Ce-Fe-Al2O3



Microwave Reactor Setup
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➢ Catalyst: 10 wt.% Fe and 5wt% of 

(Ni/La/Ce over Al2O3 )

➢ Microwave absorber: SiC

➢ Temperatures: 500 °C 

➢ MW power: 200-350 W 

X. Bai, et al., Fuel, 2024, 370, 131843



NiFe510 CeFe510 LaFe510 Fe010
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Effect of Catalyst on Toluene and CO2 Conversion

CO2 Conversion

➢ Toluene conversion rates were similar both under microwave and 

conventional conditions

➢ CO2 conversion rates were higher for MW reactions
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Toluene Conversion
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NiFe510 CeFe510 LaFe510 Fe010
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Effect of Catalyst on Syngas Production

H2 Production CO Production

➢ Nickel doped catalyst produced higher syngas

➢ MW reactions produced higher gases compared to thermal reactions
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Time on Stream Data for H2 Production-Catalytic Stability
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Instantaneous H2 Production Rate 

➢ In Microwave, H2 conversion was higher at the beginning

➢ In Conventional, H2 conversion rate was lower at the beginning and stayed consistent 



Catalyst Characterization

X. Bai, et al., Fuel, 2024, 370, 131843 18
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➢ Weight loss between 400-650 °C

➢ Weight loss was higher for Microwave reaction

➢ Carbon was accumulating at higher temperature -

catalyst deactivation

TGA Analysis XRD Analysis

Microwave reaction promoted both 

amorphous and graphitic carbon formation



Energy Consumption Comparison
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Results: Energy Efficiency Analysis

Catalyst/Heating mode
At 500 °C

H2 Energy 

efficiency 

(mmol/kWh)

CO Energy 

efficiency 

(mmol/kWh)

NiFe510-Microwave 844 367

NiFe510-Conventional

CeFe510-Microwave 465 166

CeFe510-Conventional

LaFe510-Microwave 518 299

LaFe510-Conventional



GC-MS Data of Condensates
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➢ Formation of one-ring aromatics

➢ Formation of two-ring aromatics

➢ Formation of three-ring aromatics



Proposed Reaction Mechanism
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Fuel, 2024, 370, 131843; Chem Eng J 2022; 433:134445; J Phys Chem C 2013;117:26871–80.  

HDM = Hydrodemethylation
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Conclusion
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Ni/La/Ce-Fe-Al2O3

➢Low-cost Fe-Al2O3 catalyst with a 

promoters Ni/Ce/La is a promising 

catalyst for microwave-assisted CO2 

dry reforming of Toluene.

➢ The CO2 dry reforming of Toluene can proceeds through  hydrodemethylation, aromatics 

hydrogenolysis, Boudouard reaction and Methane dry reforming

➢ Microwave irradiation not only provides selective heating, but also initiates electron polarization 

which triggers certain reactions under mild conditions
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