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ABSTRACT

This report documents our experience constructing a numerical method for the collisional
Boltzmann equation that is capable of accurately capturing the collisionless through strongly
collisional limits. We explore three different functional representations and present a detailed
account of a numerical method based on a spatially dependent Gaussian mixture model (GMM).
The Kullback-Leibler divergence is used as a closeness measure and various expectation
maximization (EM) solution algorithms are implemented to find a compact representation in
velocity space for distribution functions that exhibit significant non-Maxwellian character. We
discuss issues that appear with this representation over a range of Knudsen numbers for a
prototypical test problem and demonstrate that the strongly collisional limit recovers a solution to
Euler’s equations. Looking forward, this approach is broadly applicable to the non-relativistic and
relativistic collisional Vlasov equations.
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1. INTRODUCTION

The Boltzmann equation provides a kinetic modeling representation of physical systems across a
range of collisionality. The equations are very powerful and are only limited by the assumption of
binary interactions, choice of effective collision operators and the large 7 dimensional (space,
velocity and time) equations to be solved. The ratio of the mean free path of atomic collision
relative to the physical length scale of interest is called the Knudsen number, Kn. For highly
collisional systems when Kn� 1, five moment fluid (density, momentum, energy) equations
derived from the Boltzmann equation are generally sufficient. However, across the large dynamic
range of densities in plasma physics modeling, a more complicated view of the distribution
function should be considered and supported. Additional moments beyond 5 may be constructed
but even these do not give full access to arbitrary distribution functions. There is continuing
interest in finding effective and efficient numerical methods for the Boltzmann equation that can
effectively deal with the large dimension added by the additional velocity independent variables.
For example, recent work has investigated compression of velocity space by low-rank tensor
decomposition approaches [1, 11]. Adaptive discontinuous Petrov-Galerkin methods also show
promise for reducing cost in the velocity dimension [28]. Machine learning techniques have been
applied to approximate collision operators effectively while improving evaluation efficiency
[22].

Given that physical collisions should smooth high frequencies in the velocity domain, it appears
useful to investigate parameterized representations of the distribution function that are general,
compact, and reduce to a Maxwellian distribution at low Knudsen numbers. We use Maxwellian
distribution, fluid model and Gaussian distribution interchangeably. In this report we examine our
experience investigating Gaussian mixture model (GMM) representations in velocity space.
These compressed representations at the outset appear potentially useful since they may be highly
effective at representing both the fluid regimes as well as smooth distributions with multiple
features in velocity space.

In Section 2 we discuss our equations of interest and the representations to be examined. For
simplicity we will assume a simple Bhatnagar-Gross-Krook (BGK) collision operator. In Section
3 we discuss the GMM mixture model and the classical expectation maximization (EM)
algorithm for estimating GMM parameters from data and the Kullback-Leibler divergence as a
means for determining the closeness of fit between two different distribution functions. In Section
3.3 we discuss an algorithm for solving the Boltzmann equation numerically given the GMM
representation in velocity space. In Section 3.4 we present a prototypical problem and show how
the representation can be effective but can also begin to illustrate limitations in the GMM
representation that affect the distribution function evolution over a range of Knudsen numbers.
We discuss our insights into the importance of the initial parameters assumed for the Gaussian
when entering the Expectation Maximization (EM) algorithm compression step. We also discuss
our experience with the effectiveness of the EM algorithm and a few acceleration schemes.
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2. EQUATIONS AND REPRESENTATIONS

We are ultimately interested in a set of equations for the species plasma distribution function,
fα(x,u, t),

∂ fα

∂ t
+u ·∇x fα +

qα

mα

(E+u×B) ·∇u fα = ∑
β

Cαβ ( fα , fβ ) (1)

where E(x, t) and B(x, t) are the macroscopic electric field and magnetic flux density; qα and mα

are species charge and mass respectively; Cαβ is the inter-species collision operator, and
fα(x,u, t) is a seven-dimensional phase space of spatial coordinates, velocity, and time. These
equations couple to Maxwell’s equations

∂B
∂ t

+∇×E = 0 (2)

∂εE
∂ t

+J = ∇× (B/µ) (3)

∇ ·B = 0 (4)
∇ · εE = q (5)

where
q = ∑

α

qα

∫
fαdu (6)

and
J = ∑

α

qα

∫
u fαdu. (7)

We see that the Boltzmann equation is connected to Maxwell’s equations through the charge
density, q, and the current density, J. This coupled set of equations is termed a Vlasov-Boltzmann
model. The equations can also be written in a divergence form

∂ fα

∂ t
+∇x · (u fα)+∇u · (

qα

mα

(E+u×B) fα) = ∑
β

Cαβ ( fα , fβ ) (8)

However, for simplicity in this report we discuss only a Boltzmann model associated with a
force-free, single species reduced equation in one spatial dimension and one velocity dimension

∂ f
∂ t

+u
∂ f
∂x

=C( f ) (9)

as this equation exemplifies the fundamental issues of concern. The left hand side says that the
distribution function, f , is transported on dx/dt = u characteristics. This transport is modified by
the collision source term, C( f ). We will describe how a specific representation for f behaves
across a range of response conditions where the effect of C is dominant to very small. We chose
the simple Bhatnagar-Gross-Krook (BGK) operator,

C =−1
τ
( f − fM) (10)

11



where τ is the mean time between collisions and 1/τ is the collision frequency [6]. We are
interested in the numerical behavior of this equation for arbitrary τ > 0. Here

fM =
n

σ
√

2π
e−

1
2 (u−µ)2/σ2

= nN (u; µ,σ2) (11)

where fM is the Maxwellian that matches the mass, momentum and energy moments of f , and
N (u; µ,σ2) is the unit normal distribution with mean, µ , and variance, σ2. In particular,

n = 〈 f 〉 (12)
µ = 〈u f 〉/n (13)

σ
2 =
〈(u−µ)2 f 〉

n
(14)

where 〈·〉 denotes integration over velocity space. One can then show that

〈C( f )〉= 0 (15)
〈uC( f ) = 0 (16)

〈(u−µ)2C( f )〉= 0 (17)

and thus the collision term does not modify the first three moments.

If we non-dimensionalize equation 9 using a velocity scale, U , and a length scale, L, a
non-dimensional τ̂ = τU/L appears inversely in front of the collision term. This is the Knudsen
number

Kn = τ̂ =
τU
L

=
l
L

(18)

where l = τU is the mean free path.

The last step is to choose a representation for the distribution function f . In the course of this
project we explored a number of different representations, each with its own set of strengths and
weaknesses. In what follows, we describe some of these representations and present examples of
their behavior.

2.1. Asymmetric Hermite Expansion

The first representation explored was based on the asymmetric Hermite polynomial basis
functions introduced in [16]. This basis has been applied successfully, e.g. [30, 12], to modeling
of plasma dynamics. In a (1x,1u) domain, the distribution can be approximated as

f̄ (t,x,u) =
1
a

N

∑
j=0

c j(t,x)φ j(s) (19)

where w is a velocity shift, analogous to the fluid velocity, a is a velocity scale, analogous to the
thermal speed, and the dimensionless velocity

s =
u−w

a
. (20)
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Here, one has a choice to either make (w,a) constant, piecewise constant over say a zone or
time-step, or to allow it to vary locally.

If one chooses (w,a) as constants, then as shown in [16], substituting the expansion above into the
Boltzmann equation one finds a linear system that can be diagonalized with real, distinct
eigenvalues given by the zeros of Hermite polynomial HN+1(s). With this in hand, a variety of
numerical methods can be readily constructed including high order, upwind Finite Volume (FV)
or Discontinuous Galerkin (DG) methods with exact conservation properties.

Choosing (w,a) as piecewise constant one can still make use of many of these properties, develop
exactly conservative, high order FV or DG methods, and one might expect the expansion to better
represent the distribution locally, while adding the expense of additional projection operations
relating the basis in one domain to that in another. This is the approach we sought to explore.

The final details to consider pertain to the ability of this representation to match a known
distribution function. Qualitatively speaking, given a typical distribution function, what
polynomial degree N should one expect to keep to match it with an Hermite expansion to say eye
norm? To address this question, we consider a known, distribution function of two well separated
Gaussians, characteristic of an asymmetric two-stream configuration.

f =
1
b

φ0(r0)+
2
b

φ0(r1) (21)

where

r0 =
u+1

b
(22)

r1 =
u−1

b
(23)

b = 0.25 (24)

and expand this in an asymmetric Hermite basis in the form of equation 19 where (w,a) are
chosen to be the fluid velocity and thermal speed such that the lowest order term is the
equilibrium Maxwell-Boltzmann. Truncating the expansion at degree N, the approximate
distribution function f̄ is plotted in figure 2-1.

There are a number of observations one can readily make from this figure. Most importantly, the
distribution function is slow to converge, it converges in an oscillatory fashion with significant
excursions to negative values and appears (in the eye norm) to match the input distribution at
N = 256. The slow convergence of Hermite expansions is well documented in the literature and
one suggestion [34] to improve this is to scale the velocity scale a by

√
N. Qualitatively, this has

the behavior of keeping the zeros, and hence the high frequency behavior, of the Hermite
polynomials within a range of velocities approximately given by the thermal velocity. Practically
speaking, choosing the scaling of a is a delicate matter. Choose it too large and little improvement
is observed. Choose it too small and the solution becomes increasingly oscillatory. In fact,
scanning a range of velocity scale for this problem and one finds that the L2 error is oscillatory
with multiple minima making an algorithmic search for the optimal decomposition numerically
challenging.

13
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Figure 2-1 The known distribution function of two well separated, asymmet-
ric Gaussians is approximated by an expansion in asymmetric Hermite poly-
nomial basis functions and truncated at degree N.

2.2. Gaussian Positive Polynomial Expansion

A second representation explored in this project is one that we will refer to as a Gaussian Positive
Polynomial (GPP) expansion. The goals here are to construct a representation that is essentially
of the same form as an asymmetric Hermite expansion, i.e. a Gaussian times a polynomial, that is
positive definite and has an optimal value for the velocity shift and scale parameters (w,a)
introduced in §2.1. That is, we seek to approximate the distribution function as

f̄ =
q
a

φ0(s)P(s) (25)

where q is an scale coefficient and P(s) is a univariate polynomial of degree N.

A univariate polynomial p(x) ∈ R[x] of degree n has the form

p(x) = pnxn + pn−1xn−1 + · · ·+ p1x+ p0, (26)

where the coefficients pk are real. From the Fundamental Theorem of Algebra, every nonzero
univariate polynomial of degree n has exactly n complex roots and as a result has the unique
factorization

p(x) = pn

n

∏
k=1

(x− xk) , (27)

where xk ∈ C are the roots of p(x). If all pk are real and xk is a root, then the complex conjugate
x∗k is also a root, so that complex roots appear in pairs. As a result, it follows that a univariate
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polynomial is non-negative if and only if it has the form

p(x) = pn

n j

∏
j=1

(x− r j)
2

nk

∏
k=1

(x−ak + ibk)(x−ak− ibk) , (28)

where r j and ak± ibk are real and complex roots respectively. This observation forms the basis of
the GPP representation.

In order to capture the form of a general positive definite polynomial, yet not assume that the
highest order coefficient is non-zero, we choose

P(s) =
N−1

∏
i=0

[
x2

i (s− yi)
2 + z2

i
]

(29)

with real (xi,yi,zi) for P(s) in equation 25. To determine the coefficients (q,w,a,xi,yi,zi), we
follow the general procedure of minimizing the Kullback-Leibler (KL) divergence, as discussed
in §3, subject to a number density conservation constraint. The resulting system of equations is

∫ ( f f̄, j
f̄

)
sndu =

∫
f̄, jsndu for n = (0,1,2) (30)

where

f̄, j =
f̄

x2
j(s− y j)2 + z2

j
(31)

and ∫
f undu =

∫
f̄ undu for n = (0,1,2). (32)

Hence, the KL divergence minimizing solution f̄ exactly conserves the first three moments of the
distribution function f .

A numerical method to solve this system can be constructed. It is, unfortunately, not as simple
and robust as a fixed-point method, yet a Newton method can be constructed. As an example of
the behavior of this approximation, consider the test problem introduced in §2.1 of two well
separated Gaussians, characteristic of an asymmetric two-stream configuration.

The KL divergence minimizing GPP approximation to this distribution is shown in figure 2-2 for
a range of N, polynomial degree 2N. By design, the GPP approximation is positive definite and
converges to the known distribution function with increasing N. Note also that to the eye norm,
this approximation recovers the input distribution at N = 8, a polynomial of degree 16.
Comparing this to the asymmetric Hermite expansion presented in §2.1 one gets a feel for the
relative impact of an optimal choice of the velocity shift and scale parameters (w,a) which are
generated as part of the KL divergence minimizing GPP solution.
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Figure 2-2 The known distribution function of two well separated, asymmet-
ric Gaussians is approximated by a GPP for a range of N.

2.3. Gauss Mixture Model

The third, and most successful, representation explored is a Gauss Mixture Model (GMM). We
propose to represent the distribution function f at each x position by a sum of M Gaussians, with
positive weights πk(x). That is,

f ≈ f̄ (u;π(x, t),µ(x, t),σ(x, t)) =
M

∑
k=1

πk(x, t)N (u; µk(x, t),σ2
k (x, t)) (33)

where N is a unit normal distribution with mean µk and variance σ2
k . The πk “mixing”

coefficients are required to sum to the number density, n(x, t),

〈 f̄ (u;π(x, t),µ(x, t),σ(x, t))〉=
M

∑
k=1

πk(x, t)〈N (u; µk(x, t),σ2
k (x, t))〉=

M

∑
k=1

πk(x, t) = n(x, t). (34)

If Kn� 1 then collisions will dominate and f should be well approximated by a small number,
M, of Gaussians. If Kn� 1 then collisions will be very infrequent and an arbitrary initial
distribution function will tend to become highly complicated in phase space. We expect that at
some point in the evolution of such a collisionless distribution function that any compressed
representation will degrade. In this case any potential advantage of a compressed representation
will then be lost. We intend to examine these questions in this report. For simplicity of notation
we generally choose to drop explicit parametric dependence on x and t. This will be implicitly
assumed in the mixture coefficients as well as each Gaussian mean and variance.
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3. THE GMM REPRESENTATION, EXPECTATION
MAXIMIZATION ALGORITHMS AND SOLUTIONS

We propose to represent the distribution function at each spatial position by a GMM along with
constraints on the mixture coefficients to ensure mass conservation. The means and variances of
each Gaussian are to be varied and chosen to match the actual distribution as closely as possible.
The GMM is used in many fields of data science and in particular for cluster analysis. The
standard popular algorithm for accomplishing this analysis is called Expectation Maximization
(EM) and computes the mixture weights, means and distribution variances from statistical
samples [21]. The Gaussian mixture concept has recently been used in the plasma physics context
to compute a compressed representation of a particle-in-cell defined distribution function for the
purposes of restarting very large computations [10]. This work demonstrates that such a
compressed representation can be quite effective. In our work we examine the possibility that the
GMM representation itself may be used as a basic internal representation and attempt to
understand the ramifications of such an approach. We explore the Expectation Maximization
(EM) algorithm in order to accomplish this goal. Instead of discussing the algorithm in terms of a
sample set as is usually done, we will present the algorithm in terms of an assumed known
distribution function, f . This is the “population” limit in the data science literature. We are not
primarily concerned with statistical accuracy (sample complexity) but with the computational
complexity of finding the best estimator for a given distribution.

We start with the need to approximate a distribution function with a sum of Gaussians. To do this
we need some idea of how to "discriminate" between two different distributions. A standard way
to do this is with the Kullback-Leibler (KL) divergence

DKL( f || f̄ ) = 〈log( f/ f̄ ) f/n〉 (35)

Here f is the known distribution and f̄ is the GMM approximation to f . The KL divergence
always has a zero lower bound. This is seen using the probabilistic version of Jensen’s inequality
for the concave down function

log(〈Y f/n〉)≥ 〈log(Y ) f/n〉 (36)

or
− log(〈Y f/n〉)≤−〈log(Y ) f/n〉 (37)

and thus

DKL( f || f̄ ) = 〈log( f/ f̄ ) f/n〉=−〈log( f̄/ f ) f/n〉 ≥ − log(〈( f̄/ f ) f/n〉) =− log(n/n) = 0. (38)

Our desired approximation minimizes the KL divergence with respect to the vector of parameters
Θ = (π,µ,σ) and a Lagrange multiplier λ . We need to solve

argmin
Θ,λ

(
DKL( f || f̄ )+λ (

M

∑
k=1

πk−n)

)
(39)

17



Necessary conditions for a minimizer can be found by differentiating with respect to Θ. Local
minima should satisfy

πk = 〈γk f 〉 (40)
µk = 〈uγk〉/πk (41)

σ
2
k = 〈(u−µk)

2
γk〉/πk (42)

λ = 1 (43)

where

γk(u) =
πkN (u; µk,σ

2
k )

∑
M
j=1 π jN (u; µ j,σ2

j )
(44)

The Expectation Maximization algorithm is a fixed point iterative approach to find a solution to
this system of equations:

• Step 0: Set M,ε , and an initial guess for the set Θ of parameters.

• Step 1: The first (Expectation) part of the EM algorithm computes an approximation, γk(u),
to the probability of a point in the sample space arising from the k-th Gaussian in the
mixture.

γk(u) =
πkN (u; µk,σ

2
k )

∑
M
j=1 π jN (u; µ j,σ2

j )
(45)

• Step 2: The second (Maximization) part of the algorithm computes a new estimate for the
parameters in the model based on the proposed γk functions. Thus

π̂k =
∫

γk(u) f (u)du (46)

µ̂k =

∫
γk(u)u f (u)du∫
γk(u) f (u)du

=

∫
γk(u)u f (u)du

π̂k
(47)

σ̂
2
k =

∫
γk(u)(u− µ̂k)

2 f (u)du∫
γk(u) f (u)du

=

∫
γk(u)(u− µ̂k)

2 f (u)du
π̂k

(48)

• Step 3: If |DKL|< ε or |δDKL|< ε or the maximum number of iterations is reached then
Terminate otherwise Step 4.

• Step 4: Set πk,µk,σ
2
k to π̂k, µ̂k, σ̂

2
k respectively and go to Step 1.

We also require a minimum number of iterations (default one (1) is used for the results in Section
3.4). The |δDKL|< ε check avoids additional iterations when no progress is being made. The
distributional information in f comes from integral computations in Step 2. This algorithm has a
significant advantage in that each iterate results in a state which exactly matches the first three
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moments of the distribution function as computed by the chosen numerical quadrature rule.

M

∑
k=1

π̂k =
∫ M

∑
k=1

γk f du = n (49)

M

∑
k=1

π̂kµ̂k =
∫ M

∑
k=1

γku f du =
∫

u f du = µ (50)

M

∑
k=1

π̂k(σ̂
2
k + µ̂

2
k ) =

∫ M

∑
k=1

γku2 f du =
∫

u2 f du = σ
2 +µ

2 (51)

shows that the GMM retains the moments of the input distribution f . The moments are defined by
the specific numerical quadrature scheme chosen for the integrals computed in Step 2. One must
integrate over a sufficiently large domain in order to obtain robust results. This algorithm will
eventually find a parameter that is a local minimum. There is no guarantee that the algorithm will
find a global minimum. We can, however, track the quality of the approximation using the KL
divergence.

3.1. Initial Value Algorithm

The standard EM algorithm is a simple, robust fixed point iteration. Although the literature
contains numerous efforts to find ways to speed up the EM algorithm with limited success,
simple, fast, robust, globally-minimizing algorithms remain elusive. The EM algorithm is well
known to suffer from very slow rates of convergence especially for closely overlapping
distributions. As an example, we found that using an initial starting mixture such that each
Gaussian contains 1/M of the initial number density and equal velocities and variances set to the
global mean and variance respectively – resulted in a complete failure. Recent theoretical work
has attempted to understand the details of the observed rates of stochastic and algorithmic
convergence [13, 3, 24]. In our case, we are interested in algorithmic convergence since we
assume that we know the distribution function at each x position and desire to efficiently find a
good parametrized representation of the function with a relatively small number of parameters.
Generally one might assume that the most efficient results will depend on the closeness of the
initial guess for the parameters and that an approach to solve the time stepping Boltzmann
equation that uses a previously computed set of parameters will be the best starting point
assumption. This is also incorrect. The EM algorithm is not efficient or effective in discovering
the relatively wide ranging new changes to the distribution function generated by the Boltzmann
equation when starting from a compact set of initial Gaussian states.

The best initialization algorithm we have found so far sets the first Gaussian of M Gaussians to a
position and width associated with the actual mean and width of the distribution function. The
remaining M−1 Gaussians then receive initial mixture positions and widths that are
equidistributed across velocity space. The initial mixture coefficient values are set to the number
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density divided by the number of Gaussians, M. In particular, for the first Gaussian we set

π0 = n/M (52)
µ0 = µ (53)
σ0 = σ (54)

and for the remaining M−1 Gaussians (k = 1, · · ·,M−1) we set

πk = n/M (55)

µk =
umax−umin

M−1
(k−1)+(umin +

umax−umin

2(M−1)
) (56)

σk = (umax−umin)/(M−1) (57)

This initial guess for the EM algorithm has been found to be quite beneficial and is significantly
better at finding a quality solution than using the "last parameter set" as an initial condition for the
EM algorithm. This is illustrated in the following pictures which show a distribution function plot
of a Boltzmann equation simulation for a nearly collisionless case. Comparing Figures 3-1 and
3-2 we see that this initialization methodology (Figure 3-2) demonstrates significantly greater
uniformity.

Figure 3-1 Solution for τ = 105 and cycle 64 for M = 20 case using the "last
parameter set" to start the EM algorithm for each compression step.

In general, the best solution to be found within given computational constraints depends heavily
on the initial values of the parameters. As such, many different algorithms have been proposed
and compared and sophisticated EM initialization strategies might indeed provide some
additional benefit [7, 31]. Although the initial guess appears to be a key choice to develop an

20



Figure 3-2 Solution for τ = 105 and cycle 64 for M = 20 case using the initial
mixture rule of Equations 54 and 57 to start the EM algorithm for each com-
pression step.

effective Boltzmann equation algorithm, it is also of great importance to find ways to accelerate
the algorithmic convergence of the EM algorithm as the algorithm tends to slow down as it gets
closer to a viable solution. This will be examined next.

3.2. Acceleration Algorithms

A foundational requirement of our approach is the need to robustly represent the distribution
functions uniformly at a specified level as measured by the KL divergence. It is clear that
efficiently finding these quality representations as the distribution function evolves is a key issue.
The literature on EM related algorithms is vast due to the importance of this model in the data
analysis community. We have implemented several algorithms in our investigation of the GMM
representation that showed promise to provide utility for our purposes.

We have implemented two algorithms proposed by Varadhan and Roland [35]. The first is a
Steffensen type method for EM (STEM or S3) which is based on computing an estimate of the
derivative from two sequential iterates. The second is a particular "squared" iterative method
(SQUAREM or SqS3) which provides a new estimate that is quadratic in the derivative estimate.
Both methods need limiting to achieve robustness. One possible algorithm implementation in the
notation of Varadhan and Roland is as follows:

1. Θ1=EM(Θ0)

2. Θ2=EM(Θ1)
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3. r0 = Θ1−Θ0

4. r1 = Θ2−Θ1

5. v0 = r1− r0

6. α = min(−‖r0‖/‖v0‖,−1)

7. S3: Θ = Θ0−αr0

8. SqS3: Θ = Θ0−2αr0 +α2v0

9. Θ=EM(Θ);

10. Check that all results are finite floating point numbers. If not then set α = (−1+α)/2. and
go to 7.

11. Feasible Parameter Limiting: if any πk < 0 or any σk < 0, then set α = (−1+α)/2. and go
to 7.

12. Compute KL divergence

13. if |DKL|< ε or |∆DKL|< ε then stop else Θ0 = Θ go to 1.

A better implementation that avoids roundoff issues in the extrapolated parameters is to use

1. Θ1=EM(Θ0)

2. Θ2=EM(Θ1)

3. r0 = Θ1−Θ0

4. r1 = Θ2−Θ1

5. v0 = r1− r0

6. α = min(−‖r0‖/‖v0‖,−1)

7. β =−1−α

8. S3: Θ = Θ1 +β r0

9. SqS3: Θ = Θ2 +2β r1 +β 2v0

10. Θ=EM(Θ);

11. Check that all results are finite floating point numbers. If not then set β = β/2 and go to 8.

12. Feasible Parameter Limiting: if any πk < 0 or any σk < 0, then set β = β/2 and go to 8.

13. Compute KL divergence

14. if |DKL|< ε or |∆DKL|< ε then stop else Θ0 = Θ go to 1.
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We also implemented a “vector ε” algorithm that has been suggested as a useful approach for
improving convergence of the EM algorithm [19, 36, 20, 8, 14]. Our algorithm takes two EM
iterations and then uses the three available iterate vector values to compute a new estimate with a
single acceleration step. The accelerated values are only accepted if all of the estimated mixture
fractions are positive and all estimated standard deviations are positive. The vector inverse is
defined by

[Θ]−1 =
Θ

||Θ||2
(58)

and we have

1. Θ1=EM(Θ0)

2. Θ2=EM(Θ1)

3. r0 = Θ1−Θ0

4. r1 = Θ2−Θ1

5. EPSILON: Θ = Θ1 +[[r1]
−1− [r0]

−1]−1

6. Set Θ=EM(Θ)

7. Check results are finite floating point numbers with πk >= 0 and σk > 0. If not, set Θ = Θ2
and go to 8.

8. Compute KL divergence

9. if |DKL|< ε or |∆DKL|< ε then stop else Θ0 = Θ go to 1.

Other acceleration algorithms are certainly possible. For example, since the exact gradients of the
KL divergence are available, a gradient line search algorithm is suggested [29]. Algorithms that
include some sort of a global search might also be possible. The speed and efficacy of the
algorithm is our primary concern with the need to balance a subtle interplay between initial
parameter placement, the quality of the GMM representation achieved and the solution
acceleration strategy.

As this project came to an end, we were excited to discover the existence of the parabolic EM
algorithm proposed by Berlinet and Roland [4, 5]. They show geometrically how the squared
algorithms of Varadhan and Roland and the “vector ε” are in fact related and demonstrate how
these algorithms can be extended to include a line search using information found via point
evaluations of the KL divergence. This algorithm appears extremely promising due to its
simplicity, efficiency and robustness. Numerical experiments using the line search extension
claim approximately a 20 fold speedup. This magnitude of solution acceleration would be highly
significant for our Boltzmann equation application.
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3.3. Numerical Method

We will now discuss details of numerical methods associated with the Boltzmann equation solver.
Considering the advection portion of Equation 9 as an operator L( f ), we can formally write the
equation as

∂ f
∂ t

= L( f )+C( f ) (59)

This equation has a hyperbolic part, L, and a potentially stiff source term, C. We need numerical
methods that can handle this equation appropriately across the range of feasible parameters.
Robust methods have been proposed in the Implicit-Explicit (IMEX) Runge-Kutta numerical
integration literature [27, 23]. We have

f (i) = f n +∆t
i−1

∑
j=1

Ãi jL( f ( j))+∆t
i

∑
j=1

Ai jC( f ( j)) (60)

f n+1 = f n +∆t
s

∑
i=1

w̃iL( f (i))+∆t
s

∑
i=1

wiC( f (i)) (61)

for stages i = 1, ...,s where s is order of the scheme. For the scheme to be IMEX we must have
Ãi j = 0 for j ≥ i. To ensure a simple implicit representation, one assumes a diagonally implicit
Runge-Kutta schemes (DIRK) where Ai j = 0 for j > i. The coefficients of such schemes can be
displayed in a double Butcher tableau:

c̃ Ã
w̃T

c A
wT (62)

The c̃ and c matrices provide the ∆t time factors evaluated in the respective L and C terms if they
are non-autonomous.

The first order scheme is a simple operator split starting with an implicit backward Euler step:

0 0
1

1 1
1

(63)

The second order scheme is an IMEX-SSP(2,2,2) L-stable scheme

0 0 0
1 1 0

1/2 1/2

γ γ 0
1− γ 1−2γ γ

1/2 1/2
(64)

where γ = 1−1/
√

2. All the coefficients can be shown to be positive. The time step, ∆t, is
chosen as some fraction of the fastest characteristic speed of the explicit hyperbolic operator.

The IMEX algorithm is shown in pseudocode in Algorithm 1:
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for i = 1, ...,s do
f̂ ← f n +∆t ∑

i−1
j=1 Ãi jL j +∆t ∑

i−1
j=1 Ai jC j

Evaluate f̂ moments to form Ĉ
Implicitly solve f (i) = f̂ +∆tAiiĈ( f (i)) for f (i)

Ci← ( f (i)− f̂ )/(Aii∆t)
Li← L( f (i))

end
f n+1← f n +∆t ∑

s
j=1 w̃ jL j +∆t ∑

s
j=1 w jC j

Algorithm 1: IMEX Algorithm Pseudocode Summary

The implicit solve step for f (i) and the explicit Li step are now described in more detail.

We first consider how the BGK operator interacts with the computation of the moments in the
numerical scheme. We evaluate n̂, µ̂, σ̂ from f̂ to form fM̂ and thus obtain the Ĉ operator. We then
solve

f (i) = f̂ +∆tAiiĈ( f (i)) (65)

or

f (i) = f̂ −∆tAii
1
τ
( f (i)− fM̂) (66)

and thus for each u

f (i) =
f̂ +∆tAii

1
τ

fM̂

1+∆tAii
1
τ

(67)

From this last equation we see immediately that the moments of f (i) must be equal to the
moments of f̂ . The discrete implicit step is thus an invariant moment operator and there is no
discrepancy or inconsistency introduced via the computation of the moments as a first step before
the implicit solve.

The discrete hyperbolic advection operator algorithm, L, must now be given a specific form. We
evaluate the distribution function at any required x position, solve for the distribution function
changes via a numerical transport method and then reparameterize the GMM to match the new
distribution. Below a subscript to the distribution function represents the x index position. We
implemented the first and second order Lax-Wendroff algorithms with p = 1 and p = 2
respectively:

f n+1
j = f n

j −
1
2
(∆tu/∆x)( f n

j+1− f n
j−1)+

1
2
(∆t|u|/∆x)p( f n

j+1−2 f n
j + f n

j−1) (68)

Although the p = 2 algorithm is high order for smooth solutions, it is not monotone and may
contain significant dispersive wiggles for sharp discontinuities. The method can be improved by
adding a non-linear flux limiter. First define the flux form of these equations

f n+1
j = f n

j − (Fj+1/2−Fj−1/2) (69)
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where

F p
j+1/2 =

1
2

∆t
∆x

u( f n
j+1 + f n

j )−
1
2

∣∣∣∣∆t
∆x

u
∣∣∣∣p ( f n

j+1− f n
j ) (70)

Combining the two to obtain a limited flux gives

Fj+1/2 = F1
j+1/2 +φ(r j+1/2)(F

2
j+1/2−F1

j+1/2) (71)

with the Van Leer flux limiter function

φ(r) =
2r

1+ r
, r ≥ 0 (72)

= 0, r < 0 (73)

and the upwind slope ratio defined as

r j+1/2 =
f j− f j−1

f j+1− f j
( f j− f j−1)( f j+1− f j)> 0 (74)

= 0 ( f j− f j−1)( f j+1− f j)≤ 0 (75)

for a > 0 and

r j+1/2 =
f j+2− f j+1

f j+1− f j
( f j+2− f j+1)( f j+1− f j)> 0 (76)

= 0 ( f j+2− f j+1)( f j+1− f j)≤ 0 (77)

for a < 0. For numerical stability it is necessary that max(|u|) ∆t
∆x ≤ 1.

Unfortunately, even this algorithm does not ensure positivity, and a second order method that
maintains positivity is desirable. To satisfy these requirements we implemented the MPDATA
(multidimensional positive definite advection transport algorithm) scheme by Smolarkiewicz
[32, 33]. This algorithm starts out with a first order linear upwind flux followed by a non-linear
antidiffusive flux update. First define the flux function

F1
j+1/2( f j, f j+1,u) = ((u+ |u|) fi +(u−|u|) f j+1)

∆t
2∆x

(78)

In the first step compute

f ∗j = f n
j − (F1

j+1/2( f j, f j+1,u j+1/2)−F1
j−1/2( f j−1, f j,u j−1/2)) (79)

followed by the update

f n+1
j = f ∗j − (F1

j+1/2( f ∗i , f ∗i+1, ũ j+1/2)−F1
j−1/2( f ∗i−1, f ∗i , ũ j−1/2)) (80)

where

ũ j+1/2 =
(|u j+1/2|∆x−∆tu2

j+1/2)( f ∗j+1− f ∗j )

( f ∗j+1 + f ∗j +δ )∆x
(81)

where δ = 10−15 is a very small floating point number added solely to avoid division by zero. In
our case, u j+1/2 does not actually depend on the spatial index, j, but clearly the antidiffusive
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velocity, ũ j+1/2, does. If the Courant stability condition |u|∆t/∆x≤ 1 is satisfied then f ∗ is
positive if f n is. The use of ũ in the second upwind step affects neither stability or positivity [32,
Equation 18]. Thus the MPDATA scheme satisfies all our requirements for a high order advection
scheme.

The MPDATA advection operator and the collision operator are both positive schemes
individually. We would like to show that the combined IMEX scheme is also positive if L and C
are positive when applied separately. For the first order (s = 1) IMEX case we have

f̂ = f n (82)

f (1) = f̂ +∆tĈ( f (1)) (83)

f n+1 = f n +∆tL( f (1))+∆tĈ( f (1)) (84)

= f n +∆tL( f (1))+ f (1)− f n (85)

= f (1)+∆tL( f (1)) (86)

which implies that the first order IMEX scheme is positive under these assumptions.

In the second order case, we have

f̂ = f n (87)

f (1) = f̂ +∆tγĈ( f (1)) (88)

C1 = ( f (1)− f̂ )/(∆tγ) (89)

f̂ = f n +∆tL( f (1))+∆t(1−2γ)C1 (90)

f (2) = f̂ +∆tγĈ( f (2)) (91)

C2 = ( f (2)− f̂ )/(∆tγ) (92)

f n+1 = f n +
∆t
2

L( f (1))+
∆t
2

L( f (2))+
∆t
2

C1 +
∆t
2

C2 (93)

Even though the second order in time IMEX algorithm is L-stable, it is not at all clear from the
algorithmic form that each of the substeps and final step will maintain positivity. We implemented
a limiting approach such that if any f̂ or f n+1 of the IMEX algorithm gives a negative distribution
function value at Equation 90 or 93, the function value is limited to be greater than or equal to
zero. This algorithm fails for the more collisional cases and it became clear that the standard
IMEX second order L-stable method is insufficient for this purpose. The literature reveals that
there exists second order positivity preserving IMEX methods requiring three stages in the double
Butcher tableau and a correction step with an additional CFL constraint are available [17]. Due to
their computational complexity and perceived relative importance to our main concerns, we have
not attempted to implement such high order in time schemes. For the purposes of this report, we
give results with the first order in time positivity preserving IMEX scheme while testing both first
and second order positive advection operators.

Before running over the spatial grid, the previous states are all kept in a compressed
representation. In the iteration over spatial position, the required stencil values are uncompressed
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to a velocity grid, the stencil operations described above are executed and the final result for that
spatial grid point is then compressed and stored. The compression step involves first computing
initial GMM values as described in Section 3.1 and then executing one of the EM algorithms
described above in order to find a new GMM representation for the updated velocity distribution
function.

3.4. Numerical Results

The quality of the simulation depends intrinsically on whether or not the GMM provides an
effective representation of the distribution function at each spatial point. This is measured by the
KL divergence that is computed every time the distribution function is compressed to a GMM
representation. We can track the maximal divergence over all space-time points in order to get an
idea of the related error for a given collisionality.

We choose a particular sine wave initial condition that demonstrates the tradeoff between
collisionless solutions and the collisional solutions:

µ =−Uσ sinkx (94)

f = N ((u−µ)/σ)/σ (95)

where L = 2,U = 4 and σ = 1 and k = 4π/L.

For the results in this section we used a uniform velocity grid containing 801 points in the interval
[-10,10] for the uncompression step, the trapezoidal rule for all quadratures and ε = 10−6 for the
stopping tolerance value.

3.4.1. Collisionless results

The distribution function plots in the 25 Figures 3-3 to 3-27 show the exact collisionless
distribution function solution at any point in time, since this can be computed exactly by the
method of characteristics. Below the distribution function, we plot the KL divergence value
achieved using our choice of initial parameters and using the standard EM iterative algorithm.
There are 5 sets of plots utilizing M = 1,5,10,15 and 20 and each with 5 plots with linearly
increasing time. The collisionless distribution folds over on itself many times. Careful
examination of the plots will show that smaller values of M achieve only relatively large KL
divergence values. Larger values of M allow for smaller KL divergence values that hold for a
longer time. Note how the average KL divergence increases as time moves forward. For this
problem, for large enough time we will find that any fixed number of Gaussian terms will
eventually fail to provide a good representation of the exact distribution function because of the
many additional peaks that are generated as time progresses. We emphasize that the KL
divergence values shown in these collisionless plots are a snapshot of the error in the GMM
representation of the known exact solution at the given time as plotted across all x-values. The
fact that a GMM is capable of matching reasonably well such complicated distributions is very
encouraging.
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Figure 3-3 Exact collisionless solution for M = 1 at cycle 000.

Figure 3-4 Exact collisionless solution for M = 1 at cycle 032.
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Figure 3-5 Exact collisionless solution for M = 1 at cycle 064.

Figure 3-6 Exact collisionless solution for M = 1 at cycle 096.
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Figure 3-7 Exact collisionless solution for M = 1 at cycle 128.
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Figure 3-8 Exact collisionless solution for M = 5 at cycle 000.

Figure 3-9 Exact collisionless solution for M = 5 at cycle 032.
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Figure 3-10 Exact collisionless solution for M = 5 at cycle 064.

Figure 3-11 Exact collisionless solution for M = 5 at cycle 096.
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Figure 3-12 Exact collisionless solution for M = 5 at cycle 128.
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Figure 3-13 Exact collisionless solution for M = 10 at cycle 000.

Figure 3-14 Exact collisionless solution for M = 10 at cycle 032.
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Figure 3-15 Exact collisionless solution for M = 10 at cycle 064.

Figure 3-16 Exact collisionless solution for M = 10 at cycle 096.
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Figure 3-17 Exact collisionless solution for M = 10 at cycle 128.
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Figure 3-18 Exact collisionless solution for M = 15 at cycle 000.

Figure 3-19 Exact collisionless solution for M = 15 at cycle 032.

38



Figure 3-20 Exact collisionless solution for M = 15 at cycle 064.

Figure 3-21 Exact collisionless solution for M = 15 at cycle 096.
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Figure 3-22 Exact collisionless solution for M = 15 at cycle 128.
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Figure 3-23 Exact collisionless solution for M = 20 at cycle 000.

Figure 3-24 Exact collisionless solution for M = 20 at cycle 032.
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Figure 3-25 Exact collisionless solution for M = 20 at cycle 064.

Figure 3-26 Exact collisionless solution for M = 20 at cycle 096.
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Figure 3-27 Exact collisionless solution for M = 20 at cycle 128.
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3.4.2. Collisional results

The plots in the previous Section 3.4.1 demonstrate the ability of the GMM to match the exact
collisionless solution. In contrast here in Section 3.4.2, we show results in which the distribution
functions for a given spatial stencil are continually uncompressed, the distribution function moved
forward in time via the local advection and collision update algorithm, and then recompressed to
a new GMM state. With the addition of a collisional operator C( f ), we expect to eventually see
the solution pushed toward a Maxwellian which should be matched well by a single term M = 1
GMM. We will need however sufficient resolution to pass through the transition from a sine wave
distribution function attempting to evolve to a multi-peak distribution but balanced by collisions
pushing the solution toward a single Gaussian.

Figures 3-28 to 3-32 shows the velocity distribution function at five linearly varying points in time
for a strongly collisional operator with τ = 10−4 with M = 20, the EM algorithm and MPDATA
advection. One observes the strongly collisional nature of the solution pushing toward a single
Gaussian.

Figure 3-28 Collisional GMM τ = 10−4 solution at cycle 000
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Figure 3-29 Collisional GMM τ = 10−4 solution at cycle 032

Figure 3-30 Collisional GMM τ = 10−4 solution at cycle 064
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Figure 3-31 Collisional GMM τ = 10−4 solution at cycle 096

Figure 3-32 Collisional GMM τ = 10−4 solution at cycle 128
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Figures 3-33 to 3-37 shows the velocity distribution function at 5 linearly varying points in time
for τ = .01 with M = 20, the EM algorithm and MPDATA advection. This is an intermediate
collisional state.

Figure 3-33 Collisional GMM τ = .01 solution at cycle 000

Figure 3-34 Collisional GMM τ = .01 solution at cycle 032
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Figure 3-35 Collisional GMM τ = .01 solution at cycle 064

Figure 3-36 Collisional GMM τ = .01 solution at cycle 096
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Figure 3-37 Collisional GMM τ = .01 solution at cycle 128
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Figures 3-38 to 3-42 shows the velocity distribution function at 5 linearly varying points in time
for τ = 1 with M = 20, the EM algorithm and MPDATA advection. This is a weakly collisional
state.

Figure 3-38 Collisional GMM τ = 1 solution at cycle 000

Figure 3-39 Collisional GMM τ = 1 solution at cycle 032
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Figure 3-40 Collisional GMM τ = 1 solution at cycle 064

Figure 3-41 Collisional GMM τ = 1 solution at cycle 096
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Figure 3-42 Collisional GMM τ = 1 solution at cycle 128
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Figures 3-43 to 3-47 shows the velocity distribution function at 5 linearly varying points in time
for τ = 104 problem with M = 20, the EM algorithm and the MPDATA advection. This is a
nearly collisionless problem and one should observe the favorable comparison with Figures 3-23
through 3-27.

Figure 3-43 Collisional GMM τ = 104 solution at cycle 000

Figure 3-44 Collisional GMM τ = 104 solution at cycle 032
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Figure 3-45 Collisional GMM τ = 104 solution at cycle 064

Figure 3-46 Collisional GMM τ = 104 solution at cycle 096
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Figure 3-47 Collisional GMM τ = 104 solution at cycle 128
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We now attempt to gain a better picture of features of these computations that may give insight
into efficacy and efficiency. In Figure 3-48 the maximal value of the KL divergence over all
space-time points is plotted as a function of the number of available Gaussians and the collision
time in the BGK model using a first order positive upwind advection scheme and the standard EM
algorithm. The contours are derived from a [ log10 τ] by [M] = [-4 2 0 2 4] by [1 5 10 15 20] grid
of simulation runs. A large maximal KL divergence implies that the solution at some point in
space or time became excessively complicated and the GMM solution quality suffered either
because there were not enough degrees of freedom available or because the algorithm terminated
and moved on using the current best available solution. Figure 3-48 shows that for high
collisionality fewer Gaussians are needed to achieve a given KL divergence value. As collisions
become less dominant we see that one quickly transitions into a state where many Gaussians are
needed. Figure 3-49 shows the corresponding contours of maximum iterations.

Figure 3-48 Maximum of KL divergence (over space and time) for low order upwind advection.
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Figure 3-49 Maximum iterations (over space and time) for low order upwind advection.
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For a comparison with high order advection, in Figure 3-50 the maximal value of the KL
divergence over all space-time points is plotted as a function of the number of available Gaussians
and the collision time in the BGK model using the MPDATA second order positive advection
scheme and the standard EM iteration scheme. Figure 3-51 shows the corresponding maximal
EM iterations. Again we see from Figure 3-50 that for high collisionality fewer Gaussian are

Figure 3-50 Maximum of KL divergence (over space and time) for high order MPDATA advection.

Figure 3-51 Maximum iterations (over space and time) for high order MPDATA advection.
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needed. As collisions become less dominant we see that one quickly transitions into a state where
many more Gaussians are required.

The above maps for the Upwind and MPDATA algorithm cases are very similar. Large numbers
of iterations are generally required with cases of smaller collision times and larger values of M
being slightly better. Very small values of M can converge relatively quickly but with very poor
values of KL divergence.
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We now show the same plots for the S3 algorithms for the MPDATA case. In Figure 3-52 the
maximal value of the KL divergence is plotted as a function of the number of available Gaussians
and the collision time for the MPDATA second order positive advection scheme. Figure 3-53
shows maximum space-time EM iterations.

Figure 3-52 Maximum of KL divergence (over space and time) for MPDATA/S3 algorithm.

Next we show the plots for the SqS3 algorithm for the MPDATA case. In Figure 3-54 the
maximal value of the KL divergence over all space-time points is plotted as a function of the
number of available Gaussians and the collision time for the MPDATA second order positive
advection scheme. Figure 3-55 shows maximum space-time EM iterations.

Finally we show the plots for the EPSILON algorithm for the MPDATA case. In Figure 3-56 the
maximal value of the KL divergence is plotted as a function of the number of available Gaussians
and the collision time in the BGK model for the MPDATA second order positive advection
scheme. Figure 3-57 shows maximum space-time iterations.
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Figure 3-53 Maximum iterations (over space and time) for MPDATA/S3 algorithm.

Figure 3-54 Maximum of KL divergence (over space and time) for MPDATA/SqS3 algorithm.
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Figure 3-55 Maximum iterations (over space and time) for MPDATA/SqS3 algorithm.

Figure 3-56 Maximum of KL divergence (over space and time) for MPDATA/EPSILON algorithm.
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Figure 3-57 Maximum iterations (over space and time) for MPDATA/EPSILON algorithm.
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In general all these results are consistent with our intuition. We observe lower values of the KL
divergence for smaller collision times and higher numbers of Gaussians. We generally observe a
large number of maximal iterations (order several hundred) in order to satisfy the stopping
criterion at ε = 10−6. In many cases the particular stopping criterion that is satisfied is the change
in the KL divergence and not the KL divergence itself. However, it is clear that – given enough
Gaussians in the GMM – a relatively small and reasonably uniform value of the KL divergence
can often be obtained. The number of iterations shown is only indicative of cost since this number
represents the outer iteration loop count and not the number of internal expectation maximum
calls internal to each EM acceleration step. It is also the maximum value and thus gives no
indication of the average cost. Table 3-1 provides one snapshot of a set of computing times
displayed relative to the EM-MPDATA times. The computing time ratios shown include 25 runs
that scan across the collisionality and number of M values ([ log10 τ] by [M] = [-4 2 0 2 4] by [1 5
10 15 20]).

EM S3 SqS3 EPSILON
MPDATA 1.0 2.2 1.5 .67
Upwind 1.13 2.53 1.73 .68

Table 3-1 A single snapshot comparison of compute times scaled by the EM-
MPDATA case for various algorithmic options.

It is interesting that the EPSILON algorithm seems to be slightly more efficient on average than
the standard EM algorithm and that our implementation of the S3 and SqS3 algorithm are less
efficient than the standard EM algorithm. The more dissipative Upwind algorithm also results in
slightly higher computing times on average.

We believe that we have given sufficient evidence to show that a GMM model can be effective as
a fundamental compressed form representation for arbitrary distributional states as part of a
Boltzmann equation solver. Additional research toward an implementation of an EM algorithm
containing both sufficient initialization coverage and an effective algorithmic speedup while
reliably computing representations with sufficiently low KL divergence values is also seen as
necessary.

3.5. Fluid Limit

One of the key aspects of this work is the ability for these methods to accurately and efficiently
capture the strongly collisional limit of fluid dynamics. In Figures 3-58, 3-59 and 3-60 we present
the mass density, velocity and pressure at a simulation time = 0.08. The line labeled as fluid is
obtained from a high order Finite Volume solution of Euler’s equations with a ratio of specific
heats γ = 3, appropriate for a (1x,1u) kinetic system. As Euler’s equations are consistent with the
Boltzmann equation in the limit of vanishingly small collision time, or collisional mean free path,
the expectation is that the kinetic solution should recover the solution for Euler’s equations at
sufficiently small τ . The other two lines plotted in these figures are obtained from the GMM
method using M = 9, a BGK collision time τ = 10−4 and a collisionless result.
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Figure 3-58 This plot shows the mass density obtained from a solution of
Euler’s equations and the GMM collisional kinetic solver for a collisionless
case and BGK collision time τ = 10−4.

Comparing the three figures, it is immediately apparent that the GMM solution with τ = 10−4

captures the development of shock waves, the jumps in the velocity and pressure, the position of
the shock waves, etc. This critical aspect of shock hydrodynamics is clearly apparent and the
good agreement is likely dependent on the fact that both the fluid and kinetic solvers are
conservative. It is also clearly apparent just how important collisions are in recovering fluid
dynamics based on the comparison of the collisionless and collisional kinetic solutions. Perhaps
the most surprising detail in these plots is the relatively close solutions for the density.

A detailed numerical study could (and should) repeat these calculations and quantitatively
measure the convergence to the fluid solution with mesh resolution, number of Gaussians M, and
collision time τ . Looking toward the future, these results are extremely encouraging. Extending
this work to the Vlasov system and including collisions, one could, in principle, study a host of
plasma physics that spans the limits from the weakly collisional kinetic limit through to
single-fluid magnetohydrodynamics.
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Figure 3-59 This plot shows the velocity obtained from a solution of Euler’s
equations and the GMM collisional kinetic solver for a collisionless case and
BGK collision time τ = 10−4.
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Figure 3-60 This plot shows the pressure obtained from a solution of Euler’s
equations and the GMM collisional kinetic solver for a collisionless case and
BGK collision time τ = 10−4.
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3.6. Dimensional Extensions, Memory Requirements and Boltzmann
Equation Algorithms

We have provided results for the case of one spatial and one velocity dimension. The approach
can be extended to the multi-variate D-dimensional case with

N (u; µ,C) =
1

(2π)D/2
√
|C|

exp
(
−1

2
(u−µ)T C−1(u−µ)

)
. (96)

The EM algorithm proceeds in exactly the same way except that now there is a vector parameter
µ of dimension D and a covariance matrix C with D(D+1)/2 independent parameters for a total
of M(D(D+1)/2+D+1) parameters. The advection operators must also be extended to the
multidimensional case. We anticipate that similar results will be obtained in this multivariate
setting.

Our current implementation of the EM algorithms described in Section 3 is in Python. The coding
approach has an outer loop over spatial position that expands the Gaussian mixture model at each
spatial stencil point to a relatively fine uniform velocity grid in order to implement the advection
algorithms for all velocities and to apply NumPy vector operations. After the spatial point is
updated, the EM compression algorithm is then applied to the updated distribution function. In
this implementation we have additional memory requirements on the order of the velocity grid
size. In this work we arbitrarily choose a fixed M value under the assumption that it will be
sufficient to represent adequately the evolving distribution function.

However, the ideal and ultimate goal is to build a compressed velocity space representation that
can grow or shrink M depending on the solution requirements. Also, utilizing a local velocity grid
may not be practical or desirable. This suggests that what may be ultimately needed is a real-time,
incremental GMM algorithm where the GMM parameters are continuously updated based on new
distribution information as it is computed numerically while moving through velocity space.
There is a base of promising literature to draw on in order to expand our research in this direction.
Since in our application we are effectively replacing data as we walk through velocity space, this
is equivalent to the problem of dynamic “concept drift” in the field of streaming machine learning.
The work of Oliviera et. al. propose an approach for modeling large amounts of incoming data
while distinguishing between “virtual” and “real” concept drift [25, 26]. In our application, we
are not particularly concerned with the number of Gaussians in the mixture (“real concept drift”)
other than our desire to minimize this number under the constraint of maintaining a chosen level
of distribution fidelity. Id and colleagues have proposed an algorithm for detecting and adapting a
GMM model to concept drift [18]. The work of Arandjelovic and Cipollas indicates that an
incremental GMM approach that locally updates parameters and can also build in splitting and
merging (i.e. changes in M) is possible in the case of “temporally coherent” or "temporally
correlated" data [2]. Such “temporal coherence” is to be expected when walking through velocity
space updates. Chen, et. al. used a GPU-accelerated based incremental learning algorithm for
GMM modeling [9]. Computer hardware and algorithms optimized for real-time GMM machine
learning such as for real-time video analysis may be very effective [37, 15]. A GPU algorithm
parallelized over space with robust GMM updating while traversing velocity space updates is
potentially feasible. The memory required for such an algorithm would scale with the number of
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grid points times twice the number of required GMM parameters. Advances in the streaming
GMM machine learning community either in the algorithmic or computer science arena will
directly impact the viability of our proposed GMM approach. It thus appears possible that a truly
effective GMM approach for Boltzmann equation modeling may most likely be achieved through
a close collaboration with the real-time, streaming-data machine learning community.
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4. CONCLUSION

In this report we explored a set of mathematical representations for the single particle distribution
function including asymmetric Hermite basis, Gaussian Positive Polynomial (GPP) and Gaussian
Mixture Model (GMM). We have shown that a GMM provides a useful and compact
representation of the velocity distribution function for a one-space and one-velocity dimension
Boltzmann equation. This was shown by computing the KL divergence of the GMM
representation from the exact solution for a complicated collisionless test case. We also utilized
the GMM representation for collisional cases with a first order IMEX numerical scheme with
positivity preserving numerical advection operators and examined the quality of the solution
approach by computing the maximal KL divergence computed at the end of each compression
step. For best results, we found that a reinitialized initial guess is best for mapping the distribution
function to the Gaussian mixture model. This allows for a better capture of variations in the
distribution function as they arise from the advection operator acting on different points in
velocity space. We achieved promising results across a range of collisionality that give evidence
to the feasibility of using this classical approach from the machine learning community in a
fundamental physics modeling role. One element of this approach that should be emphasized is
the general applicability to both the non-relativistic and relativistic collisional Vlasov system.
This stems from the fact that the GMM, and GPP, representation relies on non-negative, linearly
independent basis functions rather than orthogonality. Hence for relativistic systems, the
Maxwell-Boltzmann (Gaussian) basis can be replaced with a Maxwell-Jüttner (modified Bessel
function of the second kind) basis.

Looking forward, one open question is whether a mixture model based on the GPP might offer a
competitive advantage by capturing well separated peaks in the distribution function with a
Gaussian and locally shaping the Gaussian with the polynomial. The major issue of concern
needing future research is how to improve the computational speed and memory usage of the
GMM compression step while at the same time maintaining a flexible and minimal GMM
representation that provides robust uniform accuracy. We speculate that mutually benefiting
progress may be most rapidly achieved by partnering with the real-time, streaming-data machine
learning community.
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