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Abstract—Quantum Natural Language Processing (QNLP) de-
velops natural language processing (NLP) models for deployment
on quantum computers. We explore feature and data prototype
selection techniques to address challenges posed by encoding
high dimensional features. Our study builds quantum circuit
classifiers that includes classical feature pre-processing, quantum
embedding and quantum model training. The quantum models
are built on 4 or 6 qubits and the quantum neural network
(QNN) uses the established bricklayer design. We compare the
dependence of model performance (in terms of accuracy and F1
scores) on feature length, embedding gates and parameterized
unitary design. We compare the performance of quantum ma-
chine learning models to classical convolution neural network
model (CNN) on binary and multi-class classification tasks using
two datasets of synthetic features and labels. The first is the
ECP-CANDLE P3B3 dataset a corpus of synthetically generated
cancer pathology reports. The second dataset is extracted from
well-known benchmark dataset (MADELON) — features are
generated with a combination of informative, repeated and unin-
formative features. Both datasets are used for binary classification
and multi-class classification with 3 classes. We observe robust,
accurate performance from all models on the binary classification
tasks, but multiclass classification is a challenge for the quantum
models—there is a notable decrease in accuracy when using 3
classes. Overall the performance is comparable in terms of recall
and accuracy between QNNs and CNNs, even with large datasets.
These results provide a point of comparison between quantum
and classical models on real-world datasets.

Index Terms—quantum natural language processing, quantum
neural networks, quantum machine learning

Introduction QNLP aims to develop models that can tackle
complex linguistic problems on quantum computers [1]]. Quan-
tum models can explore exponentially larger solution spaces,
which can potentially lead to more accurate results in a shorter
amount of time [2], [3[]. High-dimensional features require
models that can use the increased number of qubits that can be
utilized, and the complexity of a quantum circuit to efficiently
encode and classify data. In this work we incorporate data-
reuploading, dense angle encodings into the bricklayer circuit
ansatz.

Datasets In this work we use binary and multi-class classifi-
cation of synthetic datasets to evaluate the utility of quantum
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classifiers. If a dataset contains unbalanced classes, then
individual training samples z; can have an associated weight
c; that gives the relative importance of correctly labeling the
sample — this addresses the effects of class imbalance by
making the minority class have a larger impact on the overall
loss function using relative weights determined using heuristic
weighting in scikit-learn [4].

The first dataset utilized for this project is the MADELON
dataset, which serves as a valuable benchmark for evaluat-
ing the efficacy of quantum machine learning algorithms in
handling multi-dimensional and highly non-linear datasets. It
consists of data points clustered on the vertices of an n-
dimensional hypercube. Each data point has 20 total features
of which n are informative, 2 are linear combinations of the
informative features, and the remaining are uninformative. The
data does not have attribute information to avoid biasing fea-
ture selection and 10% of the samples are randomly labeledp_-]

The second dataset employed for this study consists of
a corpus of synthetically generated cancer pathology reports
(CPRs) El These clinical text documents describe the analysis
of a tumor biopsy and are labeled for four cancer phenotyping
tasks. Automating CPR classification with deep learning is
important for achieving near-real-time cancer surveillance [[7].
The P3B3 dataset includes four information extraction tasks
namely site, laterality, histology and grade and we use “site”
as the task for this study.

Both datasets use classical mutual information to reduce the
number of features passed to a QNN. The MADELON data
used Mutual Information (MI) feature selection to extract the
top 2 and 4 features from the original 20-feature dataset. This
is a non-parametric method based on entropy estimation from
k-nearest neighbors (k-NN) distances. QNNs were trained
using these extracted features and compared with the full 20-
feature dataset to understand the impact of non-informative

'Dataset generated using functionality available in scikit-learn
adapted from methods in [5].

2Data  set details are provided in [6] and is
https://ftp.mcs.anl.gov/pub/candle/public/benchmarks/Pilot3.

available at


https://ftp.mcs.anl.gov/pub/candle/public/benchmarks/Pilot3/

features on QNN performance. The P3B3 dataset includes an
enumerated and padded token list of sequence length 1500
for every CPRs. The dataset is pre-processed to reduce the
sequence length using normalized pointwise MI calculated
between a token and a sife label. This is used to rank the
tokens based on the probability of occurrence of the given
token by the total number of training documents [8]], [9], and
is used to filter the important tokens in each pathology report
based on any given document length, reducing the documents
to one-dimensional vectors.

Quantum Neural Networks QNNs are parameterized quan-
tum circuits that can be trained for tasks such as pattern
recognition, optimization, and classification. Our QNNs are
constructed using parameterized two-qubit unitaries which
incorporates the data encoding through data re-uploading [10].
The label prediction is obtained by projecting m qubits of the
final quantum state onto a fixed basis. With m = 1 qubits we
can assign binary labels from the probability of observing the
0 or 1 bitstring. We predict multi-class labels using m > 1
qubits and one-hot encoding — from the 2" unique bitstrings,
we down-select on the weight-1 bitstrings and renormalize the
extracted amplitudes.

The choice of gates used for
is derived from three-gate decompositions: D; =
Rx(01)Ry(02)Rx(03), Ds = Rx(61)Rz(02)Rx(03)
and D3 = Ry (01)Rz(02)Ry(03). These sequences use
Pauli rotation gates and the angles 6;, 0> embed features z;
re-scaled to [0, 27], and 35 is trainable. With a n qubit circuit
we can embed 4(n — 1) unique features.

The general QNN is built using p layers of 2-qubit unitaries
which combine the decompositions D;, either parameterized
Z7 coupling gates or using a decomposition of SU(4) op-
erations. The combination of Dy, D, and parameterized ZZ
couplings contains 3(n — 1)p trainable parameters. The com-
bination of D3 and SU(4) decomposition has 11(n — 1)p
trainable parameters. Each QNN is constructed and trained
in Pennylane [11] using batch gradient descent with cate-
gorical cross entropy loss using batch size 32.

The QNN performance is compared to a CNN that replicates
a setup used in a previous study [6], but modified to take the
angle embedding prepared for a QNN as the input. The CNN is
built and evaluated using Pyt orch [12]. The binary classifier
had around 9,900 trainable parameters and the multiclass clas-
sifer has around 10,800 trainable parameters. In comparison
the largest QNN trained on P3B3 had 108 parameters, the
largest QNN trained on MADELON had 550 parameters.
Results When both CNN and QNN models are given the same
P3B3 data we observe that the performance of a classical CNN
is comparable to the performance of the QNNs, with the caveat
that the data pre-processing is optimized for the QNNs and
there are no guarantees that this feature formatting is ideal
or optimal for the classical CNN. We observe that QNNs
have highly accurate performance for binary classification
(MADELON: 80% and P3B3: 88%). For balanced multi-
class classification QNNs have high precision (MADELON:
50%/52%/68%) but unbalanced data remains a challenge

data re-uploading

(P3B3: 71%/74%/16%). Future work will investigate the con-
verse — use the matrix expansion of state-of-the—-art
embeddings which are optimized for classical CNNs, and
convert those into quantum circuit parameters, or in general
explore the influence of longer feature vector lengths.

Acknowledgment

This manuscript has been authored by UT-Battelle, LLC,
under contract DE-AC05-000R22725 with the US Department
of Energy (DOE). The publisher acknowledges the US govern-
ment license to provide public access under the DOE Public
Access Plan (https://energy.gov/doe-public-access-plan).

This research used resources of the Oak Ridge Leadership
Computing Facility (OLCF) and the Compute and Data En-
vironment for Science (CADES) at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-ACO05-
000R22725. The research was supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

REFERENCES

[1] B. Coecke, G. de Felice, K. Meichanetzidis, and A. Toumi. Foundations
for near-term quantum natural language processing. arXiv:2012.03755,
2020.

[2] Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri
Kartsaklis, and Bob Coecke. Qnlp in practice: Running compositional
models of meaning on a quantum computer. Journal of Artificial
Intelligence Research, 76:1305-1342, 2023.

[3] R. Guarasci, G. De Pietro, and M. Esposito. Quantum natural language
processing: Challenges and opportunities. Appl. Sci., 12:5651, 2022.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

[5] Isabelle Guyon. Madelon. UCI Machine Learning Repository, 2008.
DOI: https://doi.org/10.24432/C5602H.

[6] Hong-Jun Yoon, John Gounley, M Todd Young, and Georgia Tourassi.
Information extraction from cancer pathology reports with graph convo-
lution networks for natural language texts. In 2019 IEEE International
Conference on Big Data (Big Data), pages 4561-4564. IEEE, 2019.

[7] Tanmoy Bhattacharya, Thomas Brettin, James H Doroshow, Yvonne A
Evrard, Emily J Greenspan, Amy L Gryshuk, Thuc T Hoang, Carolyn
B Vea Lauzon, Dwight Nissley, Lynne Penberthy, et al. Al meets
exascale computing: Advancing cancer research with large-scale high
performance computing. Frontiers in Oncology, 9:984, 2019.

[8] Gerlof Bouma. Normalized (pointwise) mutual information in colloca-
tion extraction. Proceedings of GSCL, 30:31-40, 2009.

[91 Andrew E Blanchard, Shang Gao, Hong-Jun Yoon, J Blair Christian,
Eric B Durbin, Xiao-Cheng Wu, Antoinette Stroup, Jennifer Doherty,
Stephen M Schwartz, Charles Wiggins, et al. A keyword-enhanced
approach to handle class imbalance in clinical text classification. IEEE
Jjournal of biomedical and health informatics, 26(6):2796-2803, 2022.

[10] Adrian Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José 1
Latorre. Data re-uploading for a universal quantum classifier. Quantum,
4:226, 2020.

[11] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shah-
nawaz Ahmed, Vishnu Ajith, M Sohaib Alam, Guillermo Alonso-
Linaje, B AkashNarayanan, Ali Asadi, et al. Pennylane: Automatic
differentiation of hybrid quantum-classical computations. arXiv preprint
arXiv:1811.04968, 2018.

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32,
2019.



	References

