

1
2
3
4 **Conducting thermal energy to the membrane/water interface for the enhanced desalination**
5 **of hypersaline brines using membrane distillation**
6
7
8

9 Jingbo Wang^{a†}, Yiming Liu^{a†}, Unnati Rao^a, Mark Dudley^b, Navid Dehdari Ebrahimi^c, Jincheng Lou^b,
10 Fei Han^d, Eric M.V. Hoek^a, Nils Tilton^b, Tzahi Y. Cath^e, Craig S. Turchi^f, Michael B. Heeley^g,
11 Y. Sungtaek Ju^c, David Jassby^{a*}
12
13
14
15

16 ^a University of California Los Angeles (UCLA), Department of Civil & Environmental Engineering,
17 California NanoSystems Institute and Institute of the Environment & Sustainability, Los Angeles, CA,
18 USA

19 ^b Colorado School of Mines, Department of Mechanical Engineering, Golden, CO, USA

20 ^c UCLA, Department of Mechanical and Aerospace Engineering, Los Angeles, CA, USA

21 ^d Hebei University of Technology, School of Civil and Transportation Engineering, Tianjin, China

22 ^e Colorado School of Mines, Department of Civil and Environmental Engineering, Golden, CO, USA

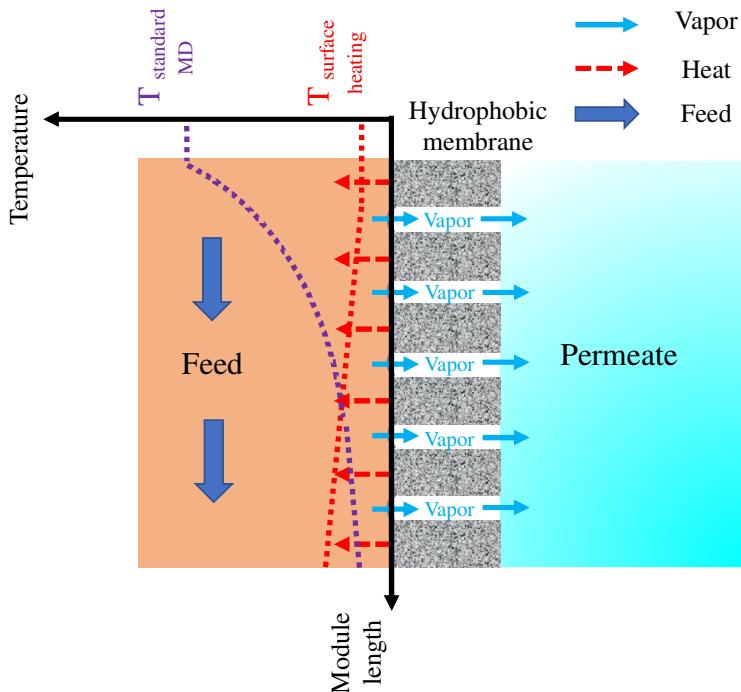
23 ^f Buildings & Thermal Science Center, National Renewable Energy Laboratory, Golden, CO, USA

24 ^g Colorado School of Mines, Division of Economics and Business, Golden, CO, USA

25 *Corresponding author [tel: (310) 825-1346; email: jassby@ucla.edu]
26 †These authors contributed equally

30 **Abstract**

31
32 Membrane distillation (MD) is a membrane-based thermal desalination process capable of
33 treating hypersaline brines. Standard MD systems rely on preheating the feed to drive the
34 desalination process. However, relying on the feed to carry thermal energy is limited by a decline
35 of the thermal driving force as the water moves across the membrane, and temperature
36 polarization. In contrast, supplying heat directly into the feed channel, either through the
37 membrane or other channel surfaces, has the potential of minimizing temperature polarization,
38 increasing single-pass water recoveries, and decreasing the number of heat exchangers in the
39 system. When solar thermal energy can be utilized, particularly if the solar heat is optimally
40 delivered to enhance water evaporation and process performance, MD processes can potentially
41 be improved in terms of energy efficiency, environmental sustainability, or operating costs. Here
42 we describe an MD process using layered composite membranes that include a high-thermal-
43 conductivity layer for supplying heat directly to the membrane-water interface and the flow
44 channel. The MD system showed stable performance with water flux up to 9 L/m²/hr, and salt
45 rejection >99.9% over hours of desalinating hypersaline feed (100 g/L NaCl). In addition to
46 bench-scale system, we developed a computational fluid dynamics model that successfully
47 described the transport phenomena in the system.


48
49 **Keywords:** membrane distillation, thermal desalination, hypersaline water treatment, gained
50 output ratio, specific energy consumption

51 **1. Introduction**

52 Membrane distillation (MD) is a membrane-based thermal desalination process that involves
53 the evaporation of water through a microporous, hydrophobic membrane. Common MD
54 membrane materials include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE),
55 and polypropylene (PP) [1]. In comparison to other membrane and thermal desalination
56 processes, MD has several advantages when treating high salinity waters, including lower
57 operating temperature and thermal energy demand than some conventional thermal distillation
58 processes, lower operating pressure and electrical energy demand than conventional reverse
59 osmosis processes, and the capability to treat water of nearly any salinity up to saturation [1–4].
60 Though pressure-driven desalination processes such as RO are less energy intensive than MD,
61 they are limited to salinity below 70 g/L [5]. In contrast, the performance of MD is comparably
62 less sensitive to feedwater salinity, making it attractive for desalinating high-salinity waste
63 streams [3,6,7].

64 In a standard MD system, saline feed water is heated before contacting the membrane that
65 separates the hot feed from the distillate. As warm feed flows over the membrane, water
66 evaporates at the water/membrane interface, diffuses through the membrane pores, and
67 condenses in the colder permeate side [8,9]. In this design, the hot feed stream serves as the
68 thermal energy carrier to drive the desalination process; however, the reliance on the feed to
69 carry thermal energy has limitations, including temperature polarization and overall feed stream
70 temperature drop, which cause the driving force for evaporation to rapidly decline along the
71 membrane (Fig. 1). Temperature polarization is caused by heat loss through the membrane,
72 which occurs due to heat advection by the vapor and heat conduction through the vapor-filled
73 pores and solid polymer phase of the membrane. Temperature polarization limits the thermal

74 efficiency of MD and connects it to feed side hydrodynamics [4]. Due to temperature
75 polarization, the temperature at the membrane surface on the feed side ($T_{m,f}$) may be
76 substantially lower than the bulk feed temperature ($T_{b,f}$) [4,7,10–15].

77
78 **Fig. 1.** Temperature profile of a standard MD and a direct heating MD system with localized
79 heating at the feed/membrane interface.
80

81 Integrating renewable energy as the heat source is important for MD to become more
82 practical and economically viable [16–19]. Several studies have successfully operated
83 conventional MD systems by preheating the feed using solar energy. However, this approach still
84 suffers from temperature polarization and feed temperature drop within the MD system [20–26].
85 In contrast, providing thermal energy directly to the membrane-water interface (where
86 evaporation occurs) and/or through another surface in the feed channel has the potential of
87 minimizing temperature polarization (Fig. 1), increasing single-pass water recovery, and
88 decreasing the number of heat exchangers in the system, thus improving the energy efficiency of

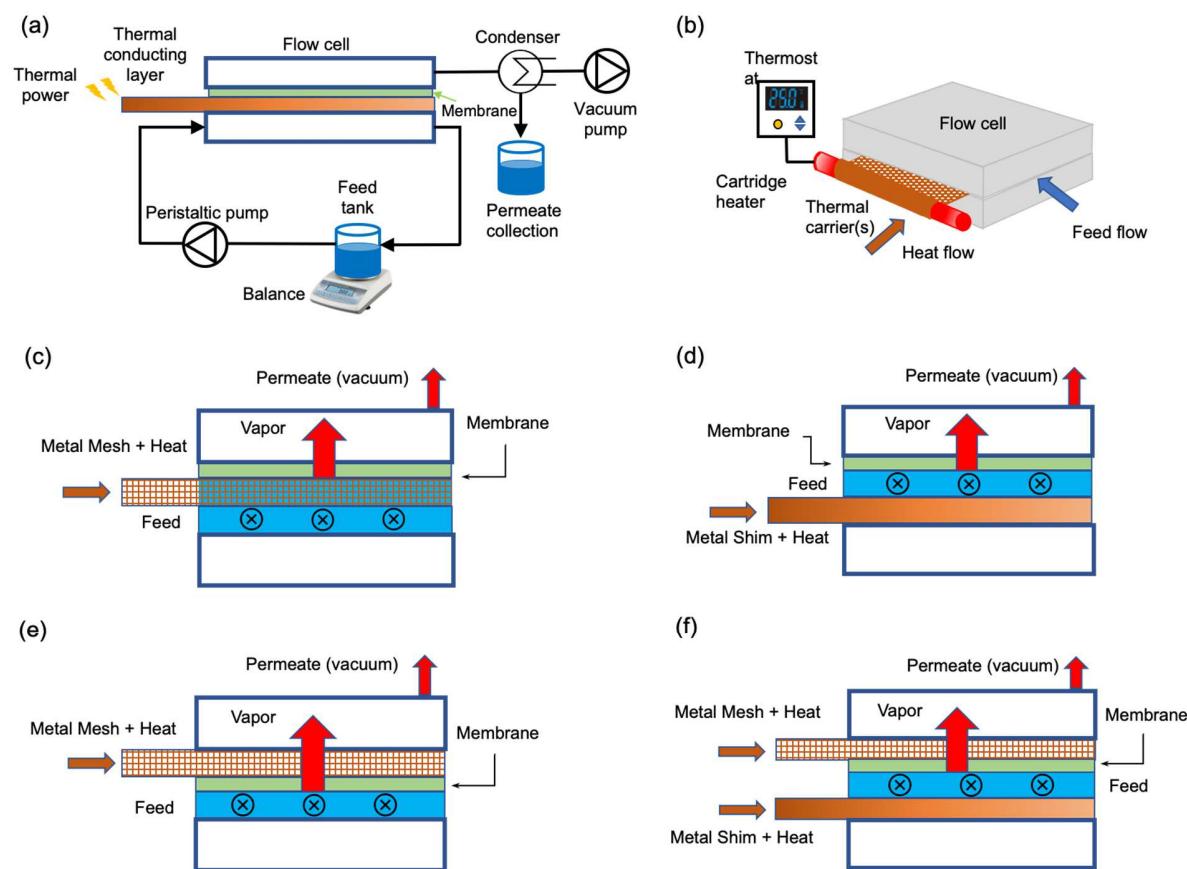
89 the lab-scale thermal process [27,28]. Several studies [4,29–36] have demonstrated the feasibility
90 and effectiveness of direct heating, either by solar-driven photothermal membranes [4,29–34] or
91 resistively-heated membranes [35,36]. However, studies implementing photothermal membranes
92 report low water fluxes (below 2 L/m²/hr (LMH)) under standard or even concentrated solar
93 illumination [4,29–34]. Therefore, producing reasonable desalination rates requires very large
94 membrane surface areas to be exposed to sunlight, complicating system design and increasing
95 capital costs.

96 In this study, we report on an MD process in which the full length of the feed channel is
97 actively heated by supplying heat to thermally conducting layers that were incorporated into the
98 system (Fig. 2). We test the performance of our novel approach by treating hypersaline feeds
99 with a bench-scale vacuum membrane distillation (VMD) system. VMD was chosen for its
100 minimal conductive heat losses, due to the low thermal conductivity of vacuum on the distillate
101 side [37]. The system showed stable performance with water flux up to 9 LMH, and salt rejection
102 >99.9% over hours of operation, with heat only provided through the thermally conducting
103 layers. Optimum system configuration, operating conditions, and specific energy consumptions
104 are discussed. To complement the experimental studies, a computational fluid dynamics model
105 was developed to describe the transport phenomena and explain how operating conditions impact
106 vapor production and temperature polarization. This VMD process can potentially provide a
107 solution to desalinating highly concentrated brines at a lower cost.

108

109 **2. Materials and methods**

110 **2.1. Materials**


111 The polymeric membrane materials used in this study are hydrophobic PP membranes (3M,
112 Charlotte, NC) with a 100 μm thickness, 0.2 μm pore size, and 70% porosity. The thermally
113 conducting layers were aluminum shims (flat aluminum sheets placed in the feed channel, not in
114 direct contact with membrane) with a thickness of 250 μm (McMaster-Carr, Los Angeles, CA),
115 and aluminum meshes (mesh size 120 \times 120) with a thickness of 203 μm , an opening size of 109
116 μm , and an open area of 27%, that were in direct contact with the membrane either in the
117 permeate channel or in the feed channel (Fig. 2). Here, the permeate does not imply any physical
118 permeation of liquid water through the membrane; instead, it refers to the permeation of water
119 vapor. The membrane coupon, aluminum shim piece, and aluminum mesh piece were cut from
120 flat sheets provided by the manufacturers and used directly without further modification. The
121 synthetic hypersaline feed contained 100 g/L NaCl (~3 times seawater salinity) at room
122 temperature. The sodium chloride was ACS grade with 99% or greater purity (Fisher Scientific,
123 Pittsburgh, PA) and was used as received.

124

125 **2.2. Direct heating VMD experiments**

126 The experiments were performed using a fully instrumented and automated laboratory-scale
127 cross-flow VMD system with an Acetal membrane flow cell (Fig. 2a). The membrane cell
128 housed a flat sheet membrane with an effective area of 40 cm^2 (4 cm \times 10 cm). The height of the
129 feed and distillate flow channels were 4 mm. No spacers were used in the feed channel. A piece
130 of aluminum (Al) mesh and/or a piece of Al shim were used as the thermal conducting layer,
131 both with a size of 15 cm \times 12 cm, with the shim placed in the feed channel (not in contact with
132 the membrane) and the mesh placed in contact with the membrane either in the feed channel or
133 in the permeate channel (Fig. 2). These Al thermal conductors were connected to a heat source

134 and used to deliver heat into the flow channel (more on this below). A peristaltic pump (Cole
 135 Parmer, Pump Drive Model 7553-70, Pump Head Model 77200-50, Vernon Hills, IL) with
 136 temperature resistant tubing circulated the feed solution, with the flow rates (0.4-1.6 L/min)
 137 controlled by the pump controller. A vacuum pump (JB Industries, Model Number DV-85N,
 138 Aurora, IL) generated a vacuum in the range of 0.90-0.99 bar (vacuum gauge reading) on the
 139 distillate side of the membrane. The absolute pressure on the distillate side was determined by
 140 subtracting the pressure from the vacuum pump gauge from the atmospheric pressure (for
 141 example, 0.99 bar vacuum pump gauge reading corresponds to an absolute pressure of $1 - 0.99 =$
 142 0.01 bar).

143 ⊗ Water flows into the page

144 **Fig. 2.** (a) Schematic of a fully instrumented and automated laboratory-scale direct heating MD
 145 system operating in vacuum-assisted mode. The acetal membrane flow cell houses a flat sheet

146 membrane, and thermal conducting layers that are coupled with thermal power. (b) Schematic of
147 direct heating MD cell and heat source coupling system. Thermal carrier(s) were wrapped around
148 a cartridge heater to mimic the coupling with solar power. The thermostat was used to control
149 heat input to the system. (c) – (f) demonstrate the schematic of the direct heating MD cell
150 configurations: (c) mesh is placed in the feed stream as the only thermal carrier, (d) shim is
151 placed in the feed stream as the only thermal carrier, (e) mesh is on top of membrane in the
152 permeate stream as the only thermal carrier, and (f) both shim and mesh are used as thermal
153 carriers with shim being placed in the feed stream and mesh being placed in permeate stream.
154 Water vapor forms at the water/membrane interface. The heat flow and feed flow directions are
155 perpendicular.

156 Temperature sensors (Vkttech, Model Number DS18b20, Shenzhen, China) monitored the
157 feed temperature at the feed channel entrance and outlet. Salt concentrations in the distillate (C_p ,
158 M) and feed (C_F , M) were measured using a conductivity meter (Thermo Fisher Scientific, Orion
159 Star A322, Waltham, MA), and used to calculate observed salt rejection, R , using Eq. 2:

$$160 \quad R = 1 - \frac{C_p}{C_F} \quad (2)$$

161 The distillate flux was determined by measuring the mass change of the feed tank in real time
162 using a scale (Ohaus, Model Number PX2202, Parsippany, NJ) set to automatically log mass
163 data every 5 s. The feed tank was insulated with foam to minimize heat losses.

164 Heat was delivered to the membrane/water interface and/or the flow channel by heat
165 conduction through the metallic thermal carriers (Al shim and mesh). Al shim and mesh were
166 chosen to serve as the thermal conducting layer because of their good thermal conductivity,
167 excellent mechanical strength, and low cost. When the aluminum mesh was installed in the
168 system, the mesh was always placed in close contact with the membrane (either in the feed or the
169 permeate) to provide surface heating. When placing the mesh on the permeate side, the mesh can be
170 kept corrosion free and the heat is not anticipated to be lost to the environment because of the low thermal
171 conductivity of a vacuum. Instead, the heat is expected to conduct across the membrane to the
172 membrane/water interface. The shim was placed close to, but not in direct contact with, the

173 membrane (it was placed on the feed wall opposite the membrane – the stiffness of the shim
174 allowed it to keep its position away from the membrane surface without the need for a spacer).
175 Several configurations with different thermal conducting layers were tested (Fig. 2c-2f).
176 Simulated concentrated solar heat was provided by a cartridge heater with an internal
177 temperature sensor (McMaster-Carr, Los Angeles, CA); heat output from the heater was
178 controlled by a thermal stat (Inkbird, Shenzhen, China). To couple the heater to the thermal
179 carriers (mesh and shim), the thermal carriers were wrapped around the heater, with fiberglass
180 insulation packaged around the entire assembly to minimize heat losses (Fig. 2b).

181 Experiments were performed to evaluate the variation of system behavior when treating high
182 salinity feed (100 g/L NaCl) within the following range of operating conditions:

- 183 - System configuration (mesh only on the feed side, shim only on the feed side, mesh only
184 on the permeate side, shim on the feed side and mesh on the permeate side)
- 185 - Heat source temperature (20 °C, 140 °C, 240 °C, 350 °C, 420 °C)
- 186 - Permeate absolute pressure (0.01 bar, 0.04 bar, 0.1 bar)
- 187 - Feed crossflow velocity (4 cm/s, 10 cm/s, 16 cm/s)

188 For each set of experiments, the permeate flux was calculated using the slope of the linear
189 regression of the feed mass change over time, divided by the effective membrane area. Under
190 each set of conditions, flux data were collected for at least 2 h after the system stabilized.

191

192 **2.3. Characterization of Al shim and mesh**

193 The thermally conducting metallic layers were characterized to evaluate potential corrosion
194 after long-term use in high salinity solutions at elevated temperature. Their surface morphologies
195 were analyzed using scanning electron microscopy (SEM) (Zeiss Supra 40 VP, Carl Zeiss

196 Microscopy LLC, NY). For that purpose, samples were secured on SEM stubs using double-
197 sided carbon tape before imaging. Quantitative analysis and surface elemental mapping were
198 also carried out using energy-dispersive X-ray spectroscopy (EDAX), which is a module
199 included with the Zeiss Supra SEM.

200

201 **2.4. Energy performance**

202 In a typical VMD system, the energy requirements include [26]: (i) the thermal energy
203 needed to vaporize feed water; (ii) the electrical energy required to create vacuum; and (iii) the
204 electrical energy needed to circulate the feed. In a well-insulated VMD system, thermal energy is
205 the largest energy component, increasing sharply with increasing feed temperature [26]. The
206 evaluation of the energy consumption of an MD system is based on the quantities of energy
207 consumed and the quantity of treated water. We chose specific energy consumption (SEC), a
208 commonly used parameter, to evaluate process performance [38]. Another performance indicator,
209 gained output ratio (GOR), of this system is defined, and investigated based on the impact of
210 operating conditions (see Section S4 in SI).

211 To quantify the heat flux delivered to the membrane module by the thermal carriers, the
212 thermal conductivity of the thermally conducting layer, k_{eff} (W/m·K), was measured (see Section
213 S1 in SI), with \dot{Q}_{heat} estimated by

$$214 \quad \dot{Q}_{heat} = -k_{eff} A \frac{\Delta T}{\Delta x} \quad (3)$$

215 where A (m^2) is the cross-sectional area of the thermally conducting layer, ΔT (K) and Δx (m)
216 are the temperature difference and the distance between two specified points on the thermally
217 conducting layer along the direction of heat transfer, respectively. In this study, type K
218 thermocouples (AWG 24 with Kapton insulation, Minnesota Measurement Instruments LLC,

219 Minnetrista, MN) were taped to the Al shim and Al mesh surface to monitor temperature and
 220 obtain temperature gradient $\frac{\Delta T}{\Delta x}$ (K/m).

221 SEC (kJ/kg) is defined as the amount of total energy supplied (heat and electrical energy
 222 in this case) to produce a unit mass of pure water, which can be calculated as: [39]

$$223 \quad \text{SEC} = \text{STEC} + \text{SEEC} \quad (4)$$

224 where STEC (kJ/kg) is the specific thermal energy consumption, or the specific heat
 225 consumption, which can be calculated as [40],

$$226 \quad \text{STEC} = \frac{\dot{Q}_{heat}}{\dot{m}_{per}} \quad (5)$$

227 and SEEC (kJ/kg) is the specific electrical energy consumption defined as the amount of
 228 electrical energy consumed (\dot{E} , kJ/s) to produce a unit mass of pure water [41]:

$$229 \quad \text{SEEC} = \frac{\dot{E}}{\dot{m}_{per}} \quad (6)$$

230 The electrical energy consumption is composed of the energy needed to induce vacuum on
 231 the permeate side and to circulate the feed. Thus, the rate of electrical energy input \dot{E} (kJ/s) is
 232 calculated as [42],

$$233 \quad \dot{E} = \dot{E}_{vac} + \dot{E}_{cir} \quad (7)$$

$$234 \quad \dot{E}_{vac} = \frac{3.35 \times 10^{-3}}{\eta_{vac}} T_p q_0 \ln\left(\frac{P_{atm}}{P_{vac}}\right) \quad (8)$$

$$235 \quad \dot{E}_{cir} = \frac{\dot{V}_f \Delta P}{\eta_{cir}} \quad (9)$$

236 where, \dot{E}_{cir} (kJ/s) and \dot{E}_{vac} (kJ/s) are the rate of electrical energy consumption of the feed flow
 237 pump and the vacuum pump, respectively; η_{cir} and η_{vac} are the efficiency of feed and vacuum
 238 pump, respectively; \dot{V}_f (m^3/s) is the volumetric flow rate of the feed solution; ΔP (Pa) is the feed
 239 bulk pressure difference between the inlet and outlet; T_p is the permeate temperature (K), and q_0

240 (L/min) is the flow rate of the gas (e.g., water vapor, leaking air) to be evacuated from the
241 permeate line. P_{atm} (Pa) and P_{vac} (Pa) are the atmospheric and vacuum pressures, respectively
242 [42].

243

244

245

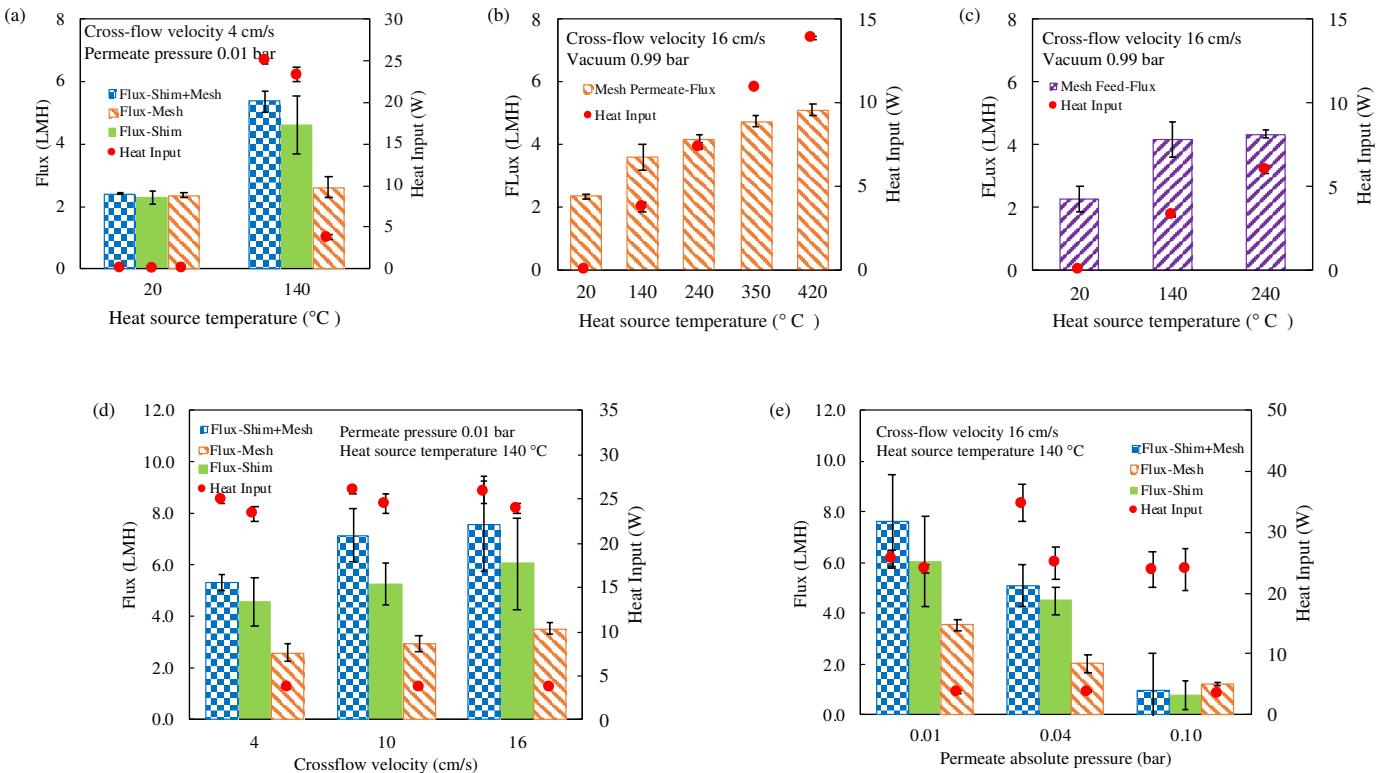
246 **3. Results and discussion**

247 **3.1. Thermal carrier and heat input**

248 Unlike conventional VMD processes, where the feed stream is heated before entering the
249 cell, feed solution was pumped directly to our heated VMD system at ambient temperature.
250 Therefore, the only thermal energy input (i.e., driving force) to the system was the heat
251 conducted by the thermal carriers. As the heat transfer efficiency between heat source and
252 thermal conducting layer could vary depending on the form of the heat source and coupling
253 techniques, both of which were beyond the scope of this study, we chose to calculate the heat
254 flux that was directly delivered into the system (Fig. S1), which provides a more precise analysis
255 of system performance given a certain heat input, regardless of heat source. Based on Eq. 3, a
256 higher thermal conductivity of the thermal carrier, a larger cross-sectional area, or a higher
257 temperature gradient would all contribute to a larger thermal energy input to the system, which
258 would potentially provide a higher driving force and yield higher permeate flux. The two thermal
259 carriers tested in this study were evaluated for their heat conducting performance. In terms of the
260 dimensions, both Al shim and mesh had the same width, with the Al shim being 51 μm thicker
261 than the Al mesh. The thermal conductivity of the Al shim and Al mesh were determined to be
262 $203.4 \pm 2.2 \text{ W/m}\cdot\text{K}$ and $20.0 \pm 5.0 \text{ W/m}\cdot\text{K}$, respectively. The difference in the geometries of Al

263 shim and mesh explains the difference in their thermal conductivity – as a thin and porous
264 material, the effective thermal conductivity of the Al mesh is only a fraction of a piece of solid
265 Al shim. The temperature gradient on the thermal carrier is related to both the thermal conductor
266 and the heat source temperature (for details on the specific temperatures measured on the shim
267 and mesh, see temperature profiles in the SI (Fig. S2)). For example, when the heat source
268 temperature was set to 140 °C, the temperature gradient on the Al shim and mesh were
269 determined to be 25.6 ± 3.6 K/cm and 57.9 ± 13.0 K/cm, respectively.

270 Although the temperature gradient on the Al mesh is twice that on the Al shim, the thermal
271 conductivity of the Al mesh is only ~10% that of the Al shim. Therefore, the overall thermal
272 energy delivered by the Al mesh is smaller than that delivered by the Al shim. In the case of a
273 heat source temperature of 140 °C and 240 °C, the temperature gradient on the Al mesh was 57.9
274 ± 13.0 K/cm and 98.1 ± 22.3 K/cm, respectively. For the configurations including shim as the
275 thermal carrier, 140 °C was determined to be the highest possible temperature at the heat source,
276 as higher temperatures melted the acetal flow cell. However, the lower thermal conductivity of
277 the mesh allowed far higher temperatures to be applied to it, with temperatures as high as 420 °C
278 being tolerated. The temperature range studied here is higher than typical MD systems because
279 this VMD system is intended to couple with a solar collection system and conduct solar thermal
280 heat to drive the MD process. These temperatures are well within the temperature levels that can
281 be achieved by solar thermal collectors [43,44].


282 Based on the measured temperature profiles (Fig. S2), the thermal input applied in all the
283 scenarios were calculated (Fig. 3 and Fig. S7). The results indicated that the Al shim, which has
284 the higher thermal conductivity, delivered more heat into the system than the Al mesh, given the

285 same heat source temperature. In addition, higher heat source temperatures helped to deliver
286 more heat with the same thermal carrier.

287

288 **3.2. Water flux**

289 The driving force for the desalination process is a partial vapor pressure difference across the
290 membrane, which is affected by both heat and vacuum. The effect of heat and vacuum on the
291 overall system performance were tested, and the results are shown in Fig. 3a. In these
292 experiments, the permeate pressure was fixed at 0.01 bar and the crossflow velocity was kept at 4
293 cm/s. When heat was applied to the system by connecting the thermal carrier(s) to a cartridge
294 heater operating at 140 °C, the system showed the highest flux (5.33 ± 0.32 LMH) with the
295 shim+mesh configuration, followed by the shim-only configuration (4.6 ± 0.94 LMH), and then
296 mesh-only on the permeate stream configuration (2.6 ± 0.35 LMH). When the heater was turned
297 off (represented by the 20 °C bars in Fig. 3a), the flux declined to approximately 2 LMH,
298 regardless of the thermal carrier configuration. The differences in water vapor flux between the
299 heated and non-heated sets indicate effective heat delivery into the system through the thermal
300 carriers, under certain conditions.

301

302 **Fig. 3.** Heat input and corresponding vapor flux and in 2 h long tests with different system
303 configurations as indicated in the figures: only shim in the feed stream, only mesh in the feed
304 stream, only mesh on the permeate side, or only shim in the feed stream and only mesh on the
305 permeate side as the thermal carrier(s). All tests were performed with feed water contains 100
306 g/L NaCl. Measured water flux values are shown in bars (values correspond to the y-axis on the
307 left) as a function of (a)-(c) temperature, (d) crossflow velocity, and (e) permeate pressure, at the
308 conditions specified. The heat input values are shown in red dots (values correspond to the y-axis
309 on the right).

310 The results from the heated set suggest that higher heat input increases the flux, which is
311 expected. When the heat source temperature is constant, the shim+mesh configuration was able
312 to deliver the highest amount of heat among all the configurations (Fig. 3a), likely due to the
313 extra thermal carrier compared to a single thermal carrier configuration. In the scenarios where
314 only one thermal carrier was used, the shim delivered more heat (24.3 ± 0.8 W) than the mesh
315 (3.7 ± 0.3 W) because of its higher thermal conductivity.

316 To further evaluate the change of vapor flux as a function of heat input, additional sets of
317 experiments were conducted for the case when only the mesh was used as the thermal carrier. As
318 shown in Fig. 3b (mesh on the permeate side), as the heat source temperature increased from 20
319 °C to 420 °C (corresponding to an increase of the heat input from 0 to 13.9 ± 0.1 W), the
320 distillate flux increased from 2.3 ± 0.1 LMH to 5.1 ± 0.2 LMH. Similarly, in Fig. 3c (mesh on
321 the feed side), the distillate flux increased from 2.3 ± 0.4 LMH to 4.3 ± 0.1 LMH as the heat
322 source temperature increased from 20 °C to 240 °C (corresponding to an increase of heat input
323 from 0 to 6.0 ± 0.2 W). Between these two surface heating configurations where mesh was the
324 only thermal carrier, the flux showed no significant difference between placing the mesh on the
325 feed or distillate side (Fig. 3b-3c), which indicates that surface heating can be achieved with
326 mesh on the permeate as effectively as placing the mesh in the feed stream. The reason for this is
327 likely that while the PP membrane has poor thermal conductivity (0.11 – 0.2 W/m K) [45], the
328 membrane's small thickness still allows ample heat to reach the membrane/water interface when
329 it is applied to the mesh in the distillate stream. When heat is added to the mesh while it is
330 immersed in the feed stream, it is also possible that the heat rapidly dissipates (i.e., it is carried
331 away by the water), leading to uneven heat distribution across the membrane surface; this
332 phenomenon is captured in our modeling effort, and described below. Considering that placing
333 the mesh in the warm saline feed can lead to corrosion (see SI Section S3), the configuration of
334 mesh in the feed stream was not investigated further and the rest of the discussion will focus on
335 the results from other configurations (Fig. 2d-2f).

336 In the series of experiments conducted to determine the impact of the crossflow velocity on
337 the membrane flux, we observed that the flux increases as crossflow velocity increased for all
338 system configurations (Fig. 3d). Some conventional MD systems showed similar behavior, and

339 this phenomenon was attributed to the decrease in temperature polarization as crossflow velocity
340 increases [3,7]. Our numerical analysis (Section 3.4) also supported that; in these tested
341 conditions higher feed velocity helped to reduce the impact of temperature polarization, thus
342 increasing vapor flux. This result is highly beneficial because it allows the system to operate at
343 crossflow velocities that can minimize membrane fouling while still taking advantage of surface
344 and feed-stream heating with enhanced flux. It is likely that in a longer membrane module the
345 flow velocity would further strengthen the impact on flux, as any heat not used for flux
346 generation would be carried further down the module, increasing the bulk fluid temperature, and
347 increasing water flux. Therefore, the results in Fig. 3d represent a lower bound on flux, with
348 longer modules likely leading to higher fluxes, given a certain level of heat input (see section 3.4
349 for more data and discussion).

350 In the set of experiments used to determine the impact of permeate vacuum pressure on
351 membrane flux, the heat source temperature and cross-flow velocity were fixed while different
352 vacuums were applied (Fig. 3e). Regardless of the configuration, lower permeate pressure (i.e.,
353 higher vacuum level) lead to higher flux, with the vapor flux being highly sensitive to vacuum
354 pressure, and flux dropping substantially (from ~8 LMH to ~1 LMH) when the permeate
355 pressure increased from 0.01 bar to 0.10 bar. These trends can be explained by the fact that flux
356 is proportional to the vapor pressure difference between feed side and permeate side, shown as

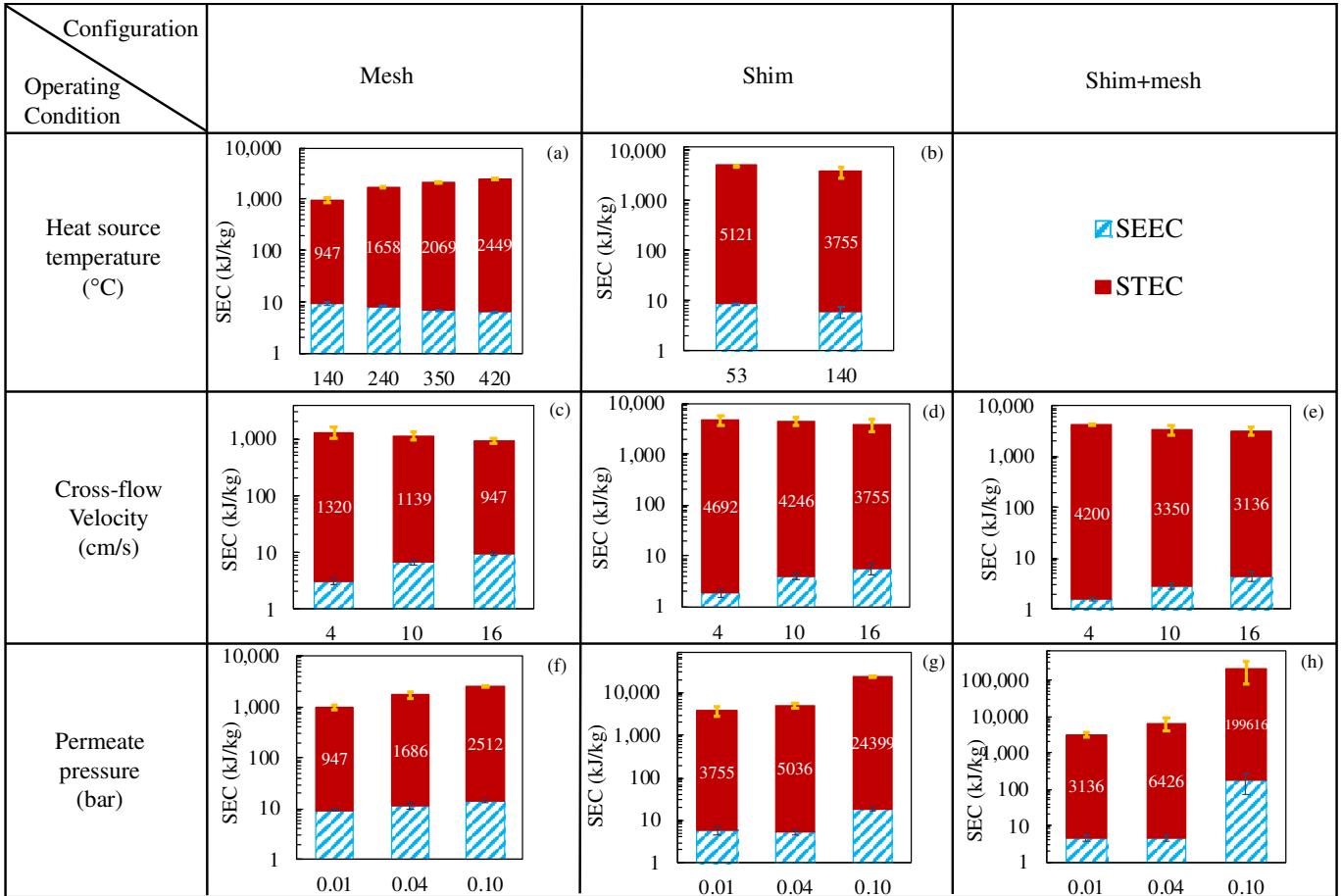
357
$$J = A_m(P_{m,f} - P_v) \quad (10)$$

358 where J is the permeate flux, A_m is the membrane permeability, $P_{f,m}$ is the partial vapor pressure
359 at feed/membrane interface, P_v is the absolute pressure on the permeate side. $P_{m,f}$ is determined
360 by the temperature at the feed/membrane interface $T_{m,f}$ (K), which can be expressed in Antoine
361 Equation [46],

362
$$P_{m,f} = \left(\frac{1}{1+m}\right) \exp\left(23.1964 - \frac{3816.44}{T_{m,f} - 46.13}\right) \quad (11)$$

363 where m is the molar fraction of salt at the feed/membrane interface. The increase of permeate
364 pressure (P_v) directly impacts the flux.

365 In all the experiments, it can be concluded that the shim+mesh configuration, which yields
366 the highest flux, achieved this elevated performance because of the shim's ability to deliver
367 larger amounts of heat to the system. However, the heat use efficiency, i.e., the efficiency at
368 which this heat is converted to vapor, was highest with the mesh-only configuration, which is
369 explored further below in Section 3.3. In all experiments and configurations, salt rejection was
370 higher than 99.9% throughout the entire experimental process.


371

372 **3.3. System energy performance**

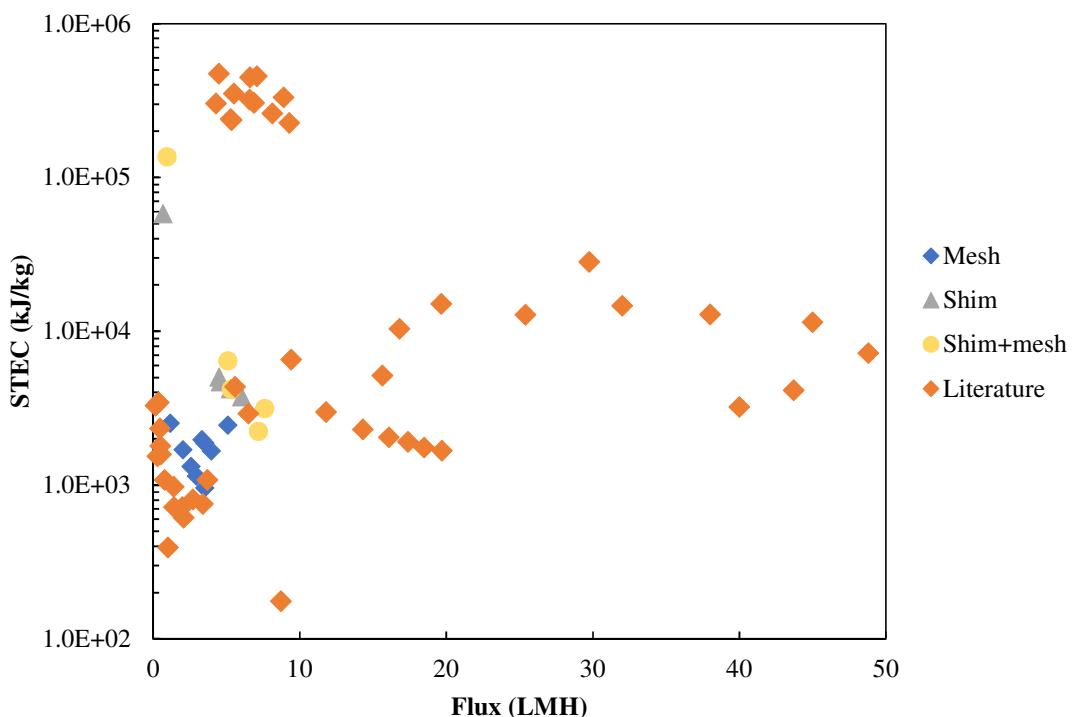
373 When evaluating the system performance of an MD process, distillate flux is an important
374 criterion (used to determine the needed membrane area, and more generally the capital costs of
375 the system), but it is also critical to consider the energy needed to drive the process (typically, a
376 major component of the operating expenses). The energy performance of the system under
377 different operating conditions in terms of GOR and SEC was investigated. SEC is determined by
378 both energy consumption and distillate flux. Among the three operating variables, thermal
379 energy consumption is strongly associated with heat source temperature and is hardly affected by
380 cross-flow velocity and permeate pressure. In contrast, the electrical energy consumption is
381 dominated by the pumping rate (i.e., the cross-flow velocity) and vacuum pressure.

382 The impact of the heat source temperature (i.e., thermal energy input) on the system's SEC is
383 shown in Figs. 4a-4b. Specifically, in Fig. 4a, in the heat source temperature range of 140 °C to
384 420 °C, which corresponds to a total heat input to the system of ~3.8 W to ~13.9 W, the STEC

385 increased from 947 to 2449 kJ/kg. The results in Fig. 3b indicate that vapor flux increased with
386 increasing heat input; however, the flux increase rate was slower than the thermal energy input
387 increase rate. As a result, the cost of the elevated vapor flux with higher thermal energy input is
388 an increase in STEC. In contrast, in Fig. 4b, the flux increase rate was faster than the thermal
389 energy input increase rate, which leads to a decrease in STEC. However, at the same operating
390 temperature of 140 °C, STEC of shim-only configuration (3755 kJ/kg) is higher than that of
391 mesh-only configuration (947 kJ/kg); increasing the shim temperature beyond 140 °C was not
392 possible due to damage to the plastic membrane housing. This demonstrates that based on STEC,
393 mesh heating is more efficient than shim heating; under the given operating conditions, lower
394 thermal input is more favorable in terms of thermal energy efficiency, albeit with other costs
395 associated with lower flux operation (i.e., larger membrane surface area and capital cost to treat a
396 given volume of contaminated water). A decrease in SEEC was observed as the heat source
397 temperature increased simply because the flux (denominator) increased (Fig. 4a-4b). Electrical
398 energy consumption in the system is associated with the electricity needed to operate the vacuum
399 and circulation pumps, neither of which had changed substantially as the heat input increased.
400 Because STEC is approximately 3 orders of magnitude higher than SEEC, the net change of
401 STEC and SEEC (i.e., the overall SEC) increased as heat input to the system increased. For
402 example, the SEC value is approximately 2.5 times greater at 420 °C compared to 140 °C (heat
403 source temperature) for the mesh-only configuration.

404 **Fig. 4.** SEC of 2h long vacuum membrane distillation tests with different system configurations
405 as indicated in the figures: only shim in the feed stream, only mesh on the permeate side or both
406 shims in the feed stream and mesh on the permeate side as the thermal carrier(s). All tests were
407 performed with feed water contains 100 g/L NaCl. Regarding the operating conditions, unless
408 specified as the variable, the heater temperature was set as 140 °C, cross-flow velocity was fixed
409 at 16 cm/s and the permeate pressure was kept at 0.01 bar. The blue hatch bar represents the
410 value of SEEC and the red solid bar represents the value of STEC. The SEC value is the sum of
411 SEEC and STEC (the total bar height) as shown in the figures.

412 The effect of crossflow velocity on the system energy performance in terms of SEC are
413 shown in Figs. 4c-4e. For all tested configurations, the overall SEC decreased with increasing
414 crossflow velocity. When crossflow velocity increases, the thermal energy input to the system is
415 not affected substantially, whereas there is a slight increase in electrical energy consumption
416 from the recirculation pump. However, the addition of small amount of electrical energy input


417 (due to circulating the feed at a higher velocity) brought much higher flux as a benefit, which is
418 reflected in the SEC values. Overall, the SEC of the system was lowered by the increase in
419 crossflow velocity. Specifically, when the crossflow velocity increased from 4 to 16 cm/s, SEC
420 deceased by $26.5 \pm 8.7\%$, $20.5 \pm 6.6\%$, $25.3 \pm 14.1\%$, for the mesh, shim, and shim+mesh
421 configurations, respectively. Among the three configurations, the mesh-only configuration
422 showed the lowest SEC (947 to 1,320 kJ/kg depending on the crossflow velocity, with a flux
423 range of 2.6 to 3.5 LMH), followed by shim+mesh configuration (3,136 to 4,200 kJ/kg, with a flux
424 range of 5.3 to 7.6 LMH), and shim only configuration (3,735 to 4,692 kJ/kg, with a flux
425 range of 4.6 to 6.0 LMH). This demonstrates the advantage of providing heat directly to the
426 membrane surface in terms of minimizing specific energy consumption of the system, although
427 the most energy efficient system tends to deliver the least water flux.

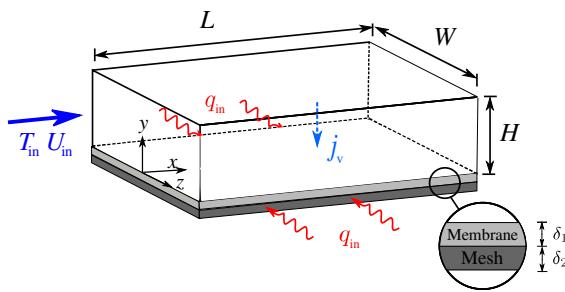
428 Figs. 4(f) to 4(h) demonstrate the effects of the vacuum pressure on system SEC. For all
429 tested configurations, SEC increased with increasing permeate absolute pressure. While the
430 thermal energy input to the system was not affected when permeate pressure increased (i.e.,
431 vacuum depth decreases), the electrical energy required to induce vacuum should be lower when
432 the vacuum pump needs to maintain a lower vacuum. While the energy consumption did not
433 change much, the vapor flux decreased substantially when the permeate pressure was higher.
434 Thus, both STEC and SEEC increased substantially as a result of increase in permeate absolute
435 pressure. To achieve the lowest SEC (both STEC and SEEC) values and highest flux, the
436 pressure on the permeate side should be maintained as low as possible. Of the three
437 configurations tested, the mesh-only configuration exhibits the smallest SEC (947 to 2,512 kJ/kg)
438 with lowest flux (1.1 to 3.5 LMH). The shim+mesh configuration that generates the highest flux
439 (0.9 to 7.6 LMH) was the least energy efficient with a high SEC range of 3,136 to 199,616 kJ/kg.

440 Again, the results demonstrate the advantage of providing heat to the membrane surface,
441 compared to heating the bulk stream in terms of energy efficiency, but with reduced water
442 productivity.

443 The flux and energy performance of different MD systems, including data from this study
444 (blue squares, grey triangles, and yellow circles) and others [17,23,39,47–65] (orange diamonds)
445 are summarized in Fig. 5. As shown in Fig. 5, the 48 STEC values from cited references
446 fluctuate substantially over 3 orders of magnitude. The broad range of STEC from different
447 systems indicates that STEC is sensitive to system characteristics and operating parameters,
448 which also implies a great potential for STEC improvement in most MD processes. In general,
449 systems that include a surface heating element demonstrated the lower STEC values, which
450 shows the important role that surface heating plays in increasing system energy efficiency
451 [27,28]. It further stresses the importance of identifying the right location for incorporating the
452 heat conducting element into a VMD system. Compared to other studies, the STEC values from
453 this study are on the lower side. However, this low STEC is achieved at the cost of low flux.
454 Note that the lowest STEC values in Fig. 5 have been recorded in surface heating (mesh only
455 configuration) VMD settings with the water flux performance at the lower end (less than 5
456 LMH). When heat conducted through mesh is the only means of heat input, the thermal energy
457 delivered to the system is limited and vacuum makes an important contribution to the generated
458 flux. In these scenarios, a low thermal energy input could deliver reasonable flux with the
459 assistance from the vacuum (i.e., increased electrical energy consumption), and the STEC values
460 appear to be lower. When membrane heating was combined with bulk feed heating (the
461 shim+mesh configuration), the flux is higher, but the SEC of the system increased. Flux is
462 related to the membrane area needed to achieve a certain water treatment rate. Low flux systems,

463 by definition, require larger surface areas, which translates into higher capital costs. In contrast,
 464 the SEC (STEC as the major component) determines the operational cost of the system.
 465 Therefore, it is important to evaluate both flux performance and energy performance of a system
 466 and balance the tradeoff between membrane flux and SEC, to minimize the overall cost.

467
 468 **Fig. 5.** Comparison of performance of different membrane distillation systems, including STEC
 469 (thermal energy performance) and flux (water productivity). Feed temperature data are available
 470 in Table S3 in SI. The orange diamonds represent the data from literature [17,23,54–
 471 63,39,64,65,47–53]. The blue squares, grey triangles and yellow circles represent the data from
 472 the direct heating MD experiments with mesh only configuration, shim only configuration, and
 473 shim+mesh configuration from this study, respectively. Higher flux indicates better water
 474 production and lower STEC values indicate higher thermal energy efficiency.


475 The direct heating MD system presented here is different from conventional MD systems
 476 where the driving force for desalination is delivered through the feed stream. When heat is
 477 delivered to where it is needed (i.e., the membrane/water interface), it only requires a minimal
 478 amount of thermal energy input because the heat at the interface can be more effectively used for
 479 evaporation, particularly with vacuum assistance. However, increased efficiency comes at a cost

480 of lower flux. Therefore, when considering the application of these systems, the efficiency of
 481 energy consumption must be balanced with increased capital expenses.

482

483 **3.4. Numerical analysis**

484 We complement our experimental measurements with a numerical model that simulates
 485 steady-state heat transport and vapor production in the VMD system sketched in Fig. 6. A feed
 486 channel of length L , height H , and width W is bounded by thermally insulated walls at $z = \pm W/2$
 487 and $y = H$. The feed channel is bounded at $y = 0$ by a hydrophobic membrane of thickness δ_1 ,
 488 overlying a metallic mesh of thickness δ_2 . We neglect concentration polarization, and assume
 489 pure water enters the channel at $x = 0$ with a uniform temperature T_{in} and mean velocity U_{in} .

490 **Fig. 6.** Illustration (not to scale) of the geometry considered by our numerical analysis.

491 Steady heat transport in the channel is governed by the thermal energy equation,

492
$$\nabla \cdot (\mathbf{u}T) = \alpha_f \nabla^2 T \quad (12)$$

493 where T , $\mathbf{u} = [u, v, w]$, and α_f are the feed temperature, velocity vector, and thermal diffusivity,
 494 respectively. We assume incompressible feed flow and neglect variations of α_f with temperature.
 495 We evaluate α_f using T_{in} . Though ongoing work in our group includes simulation of the Navier-
 496 Stokes equation in the feed channel, we present here a simpler model that approximates the feed
 497 velocity as

498
$$u(x, y, z) \approx u_d(y, z), \quad v(x, y, z) \approx v_m(y, z), \quad w = 0 \quad (13)$$

499 where the downstream velocity $u_d(y,z)$ is the analytical solution for fully-developed laminar duct
 500 flow[66] , and $v_m(y,z)$ is the feed velocity normal to the membrane, evaluated at the membrane
 501 surface, $y = 0$. This approximation reduces CPU time and leverages the fact that v is typically
 502 four orders-of-magnitude smaller than U_{in} , such that downstream variations of $u(x,y,z)$ are very
 503 small. Furthermore, the membrane-normal velocity v primarily impacts heat transport in a
 504 thermal boundary-layer at the membrane surface. Satisfaction of the no-slip and no-penetration
 505 conditions for v on the impermeable walls is consequently of secondary importance. Note that
 506 our model captures variations of the feed temperature and vapor flux over the membrane surface.

507 We apply the following temperature boundary conditions in the feed channel,

$$508 \quad T|_{x=0} = T_{in}, \quad \frac{\partial T}{\partial z} \Big|_{z=\pm W/2} = \frac{\partial T}{\partial y} \Big|_{y=h} = \frac{\partial^2 T}{\partial x^2} \Big|_{x=L} = 0 \quad (14)$$

509 We model vapor transport through the composite membrane using the Schofield model [67],
 510 which assumes the transmembrane mass flux j satisfies Eq. 10 where the vapor pressure $P_{m,f}$ at
 511 the membrane feed surface ($y = 0$) is computed using Eq. 11.

512 As detailed in Section S5 in the Supporting Information, heat transport in the membrane and
 513 mesh layers can be modeled using the volume-averaged equation,

$$514 \quad \frac{\partial}{\partial y} (T c_{p,v} j_v) = k_i \nabla^2 T, \quad k_i = \phi_i k_v + (1 - \phi_i) k_{s,i} \quad (15)$$

515 where $c_{p,v}$ is the specific heat at constant pressure of the vapor, k_i is an effective thermal
 516 conductivity, ϕ_i is the porosity, and k_v and $k_{s,i}$ are the thermal conductivities of the vapor and
 517 solid phases, respectively. The subscript $i = 1, 2$ is used to distinguish between the properties
 518 evaluated in the membrane layer ($i = 1$) or underlying mesh ($i = 2$).

519 Conservation of energy [68] requires the following conditions at the feed-membrane
 520 interface,

521 $T|_{y=0^+} = T|_{y=0^-}, \quad k_f \frac{\partial T}{\partial y} \Big|_{y=0^+} - k_1 \frac{\partial T}{\partial y} \Big|_{y=0^-} = j\lambda \quad (16)$

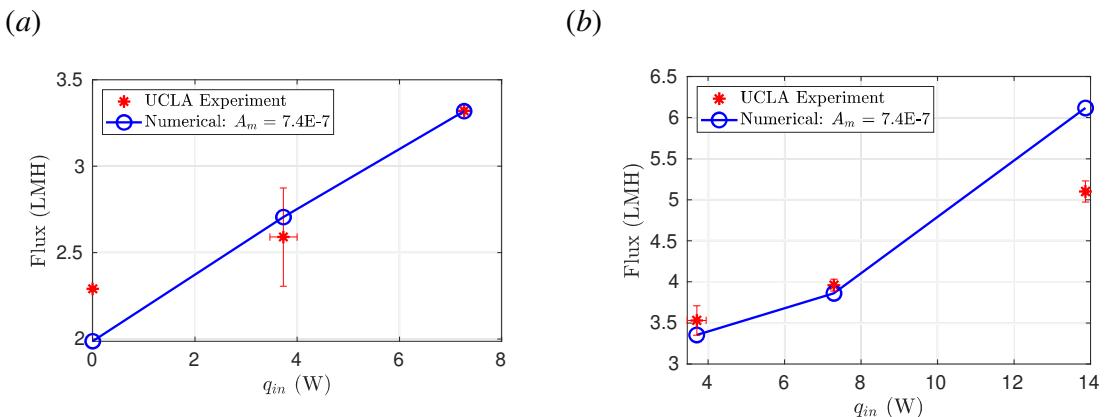
522 where $\lambda = -2,438T + 250,300$ is the latent heat of water vaporization, assuming T and λ have
 523 units $^{\circ}\text{C}$ and kJ/kg , respectively. This relation was derived using the OLI Stream Analyzer
 524 database. The superscripts + and - denote evaluation of T at the feed and membrane side of the
 525 interface, respectively. Conservation of energy at the interface between the membrane and mesh
 526 requires,

527 $T|_{y=\delta_1^+} = T|_{y=\delta_1^-}, \quad k_1 \frac{\partial T}{\partial y} \Big|_{y=\delta_1^+} = k_2 \frac{\partial T}{\partial y} \Big|_{y=\delta_1^-} \quad (17)$

528 On the inlet, outlet, and lower surface of the composite membrane, we assume negligible
 529 conductive heat transport,

530 $\frac{\partial T}{\partial x} \Big|_{x=0} = \frac{\partial T}{\partial x} \Big|_{x=L} = \frac{\partial T}{\partial y} \Big|_{y=-\delta_1-\delta_2} = 0 \quad (18)$

531 Note that thermal energy nevertheless exits the system through the membrane due to advection.
 532 On the side walls $z = \pm W/2$, we assume the membrane layer is thermally insulated,


533 $\frac{\partial T}{\partial z} \Big|_{z=\pm W/2} = 0, \quad -\delta_1 < y < 0 \quad (19)$

534 while heat enters the system through the mesh,

535 $k_2 \frac{\partial T}{\partial z} \Big|_{z=\pm W/2} = q_{in}, \quad -\delta_1 - \delta_2 < y \leq -\delta_1 \quad (20)$

536 All equations are discretized spatially using second-order finite-volume methods coded in-
 537 house with Fortran [69,70]. The code was verified against analytical solutions and validated
 538 against experimental data, as detailed in Dudley [71] and demonstrated by Lou *et al.* [70]. We
 539 also performed mesh-independence studies to ensure a relative truncation error on the order of
 540 1 %. Fig. 7 demonstrates our validation, in which we compare the vapor flux predictions of our
 541 model to those measured by our bench-scale system. For that purpose, we set the model

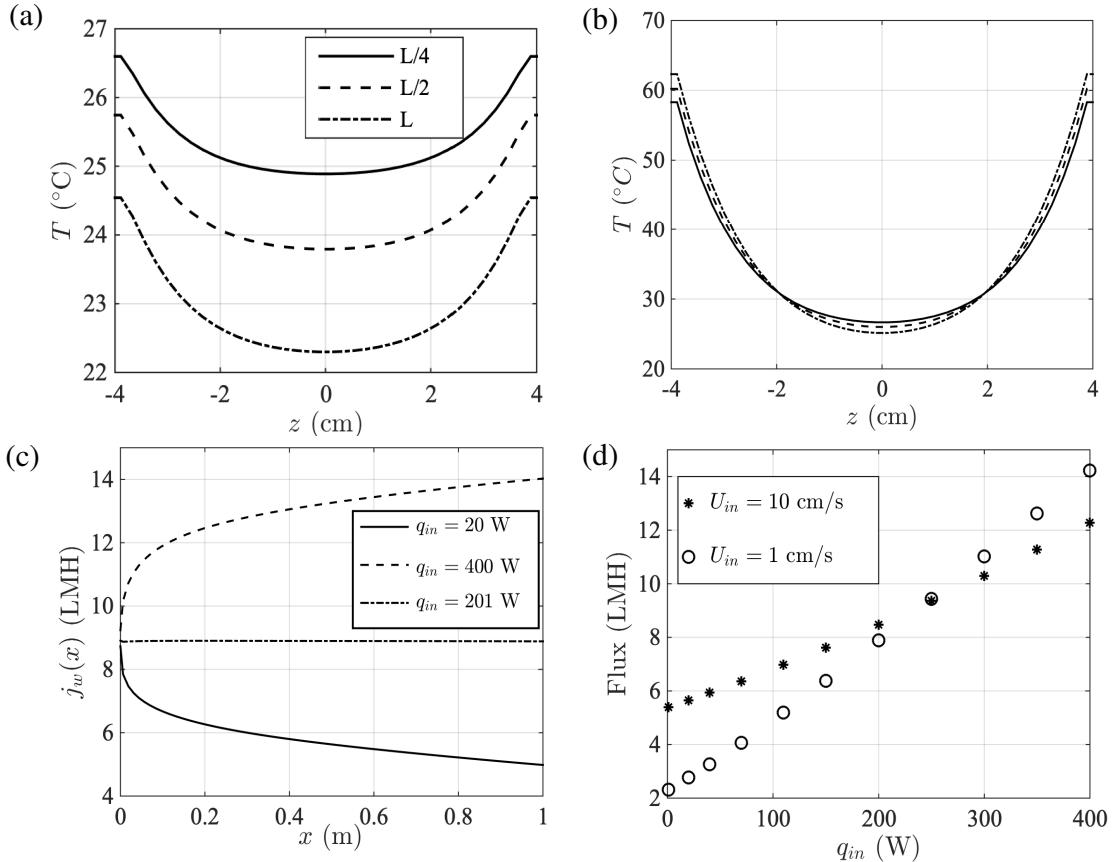
542 dimensions ($L = 10$ cm, $W = 4$ cm, and $H = 4$ mm), membrane properties ($\phi_1 = 0.85$, $\delta_1 = 100$ μm ,
 543 $k_{s,1} = 0.11$ W/m-K), and mesh properties ($\phi_2 = 0.27$, $\delta_2 = 203.2$ μm , $k_{s,2} = 200$ W/m-K) to those
 544 of the experimental system. Note that the thermal conductivities of the membrane and mesh are
 545 set to those of polypropylene and aluminum, respectively. We also modified the numerical
 546 model to apply heat to only side of the membrane, consistent with experiments. Experiments and
 547 simulations were then performed for the combinations of heat inputs q_{in} , inlet temperatures T_{in} ,
 548 and flow rates U_{in} summarized in Table 1, for the constant vacuum pressure $P_{vac} = 0.01$ bar. As
 549 heat input can vary depending on the thermal conducting layer material and dimension, the heat
 550 source type and temperature, and system configuration, the heat input q_{in} was chosen as a
 551 normalizing factor in the simulation studies. The flow was heated using only the mesh, i.e.
 552 without the heated shim.

553
 554 **Fig. 7.** Comparison of experimental (red asterisks) and numerical (blue circles) measurements of
 555 vapor flux as a function of q_{in} for (a) experiments labeled 1-3 in Table 1, (b) experiments labeled
 556 4-6 in Table 1.

557 **Table 1.** Operating conditions used for experiments and simulations presented in Fig. 7.

Exp #	1	2	3	4	5	6
q_{in} (W)	0	3.73	7.26	3.70	7.29	13.9
T_{in} (°C)	16.8	18.4	19.5	20.2	21.0	25.7
U_{in} (cm/s)	4.06	4.06	4.06	16.3	16.3	16.3

558


559 Fig. 7(a) compares our experimental (red asterisks) and numerical (blue circles) results for
560 the average transmembrane vapor flux as a function of q_{in} for the experiments labeled 1-3 in
561 Table 1. These were conducted for the relatively slow feed velocity $U_{in} = 4.06$ cm/s. Note the
562 reported value of T_{in} from Table 1 represents the average feed temperature throughout the entire
563 experiment; the increase in T_{in} with q_{in} is explained by the recycling of the concentrate in the
564 experimental system. The only model parameter not known *a-priori* is the membrane vapor
565 permeability A_m . For that purpose, we performed a large suite of simulations for different values
566 of A_m , and found that $A_m = 7.4 \times 10^{-7}$ kg/m s Pa provided the best fit to the experimental data in
567 Fig. 7(a), producing a mean percentage error of 5.9%. This permeability is roughly 25% lower
568 than those reported by Vanneste *et al.* [72] and Lou *et al.* [70], who report $A_m = 10^{-6}$ and $1.87 \times$
569 10^{-6} kg/m·s·Pa, respectively, for the same membrane material in a direct contact MD system.
570 The difference likely arises because our permeability is an effective value for both the membrane
571 and underlying mesh material. Having determined A_m , we then compared experimental and
572 numerical results for the experiments labeled 4-6 in Table 1, which were performed for the larger
573 feed velocity $U_{in} = 16.3$ cm/s. Fig. 7(b) shows that in this case, our model agrees with the
574 experiments to within 9.2 % mean percentage error. An additional validation of our numerical
575 model for cases with a heated shim are provided in Supporting Information (Section S6). With
576 the successful model validation using experimental results from different operational conditions,
577 parametric studies were performed to predict system performance in a larger-scale flow cell.
578 These simulation results serve as guidance of the optimization of operational conditions in a
579 scaled-up system with minimal experiments.

580 To explore heat transport and vapor production in a larger VMD system, we perform a
581 parametric study for a system of dimensions $L = 1$ m, $W = 8$ cm, and $h = 2$ mm and a constant

582 inlet feed temperature of $T_{in} = 30$ °C. We assume that vacuum evacuates all the vapor and
583 maintains a constant driving force on the permeate side. All properties of the composite
584 membrane were set to those of the experimental system, with the exception of the mesh thickness,
585 which was rounded down to $\delta_2 = 200$ µm. We then varied the heat input between $0 \leq q_{in} \leq 400$ W,
586 considering a larger system might require higher heat input compared to the bench-scale system.
587 We studied the feed velocity between $1 \leq U_{in} \leq 10$ cm/s, which is a practical velocity range
588 during membrane operations – high enough to contribute to membrane fouling control, but not
589 too high so as to substantially increase operational costs. Heat was applied to both lateral edges
590 of the mesh, i.e. at $z = \pm W/2$.

591 To investigate the impact of mesh heating (q_{in}), we begin by setting $U_{in} = 10$ cm/s and $q_{in} =$
592 20 W. Fig. 8(a) shows the resulting cross-sectional temperature profiles on the membrane
593 surface ($y = 0$) at the downstream locations $x = L/4$ (solid line), $L/2$ (dashed line), and L (dash-
594 dotted line). The highest temperatures occur near the lateral walls, where the heating is applied.
595 For this small value of q_{in} , we see that the maximum temperature is always below the inlet value,
596 $T_{in} = 30$ °C, and also decreases with downstream distance. This occurs because the low heat
597 input does not match that lost to evaporation. Fig. 8(b) shows the corresponding results when the
598 heating is increased to $q_{in} = 400$ W. The maximum temperature is now always above the inlet
599 value, reaching $T = 55$ °C at the outlet. The maximum temperature also increases with
600 downstream distance. Meanwhile, the lowest membrane temperatures occur in the middle of the
601 membrane, and remain near the inlet value $T_{in} = 30$ °C. We conclude that for this high heating
602 value, q_{in} exceeds the heat lost to evaporation, such that temperature polarization is not only
603 removed, but actually reversed. We also observe that the temperature profiles suddenly flatten

604 near the lateral walls at $z = \pm W/2$. This is an artifact of our discretization of the thermally
 605 insulated boundary conditions.

606
 607 **Fig. 8.** (a) Temperature profiles on the membrane surface ($y = 0$) at the downstream locations x
 608 = $L/4$ (solid line), $L/2$ (dashed line), and L (dash-dotted line) when $q_{in} = 20$ W and $U_{in} = 10$ cm/s.
 609 (b) Corresponding temperature profiles when $q_{in} = 400$ W and $U_{in} = 10$ cm/s. (c) Downstream
 610 variation of the width-averaged flux $j_w(x)$ when $U_{in} = 10$ cm/s and $q_{in} = 20$ W (solid line), $q_{in} =$
 611 400 W (dashed line), and $q_{in} = 201$ W (dashed-dotted line). (d) Net flux as a function of q_{in} when
 612 $U_{in} = 10$ cm/s (asterisk symbols) and $U_{in} = 1$ cm/s (circles).

613 To explore the impact of heating on local vapor production, we define the width-averaged
 614 flux

$$615 \quad j_w(x) = \frac{1}{W} \int_{-W/2}^{W/2} j_v(x, z) dz \quad (22)$$

616 Fig. 8(c) shows the downstream variation of $j_w(x)$ when $U_{in} = 10$ cm/s and $q_{in} = 20$ W (solid line)
 617 and $q_{in} = 400$ W (dashed line). We see that for $q_{in} = 20$ W, the vapor flux decreases with

618 downstream distance due to temperature polarization. In contrast, when $q_{in} = 400$ W, we see $j_w(x)$
619 increases with downstream distance. An additional series of simulations found that when $q_{in} =$
620 201 W, the width-averaged flux $j_w(x)$ is constant, as demonstrated by the dash-dotted line in Fig.
621 8(c). For active heating above this threshold value, the single-pass recovery of the heated VMD
622 system can be increased by simply increasing the system length, without suffering from
623 downstream heat loss due to temperature polarization.

624 Fig. 8(d) shows the net vapor flux as a function of q_{in} when $U_{in} = 10$ cm/s (asterisks) and U_{in}
625 = 1 cm/s (circles). We see that for heating values below around $q_{in} = 250$ W, the higher feed
626 velocity produces more net flux. That occurs because the heating is not sufficient to completely
627 reverse the effects of temperature polarization. In that case, a higher feed velocity is preferred,
628 because it reduces the impact of temperature polarization, and increases the net flux. This likely
629 explains our experimental observations that distillate flux increased with feed velocity. In
630 contrast, for heating values above $q_{in} = 250$ W, the lower feed velocity produces more flux. In
631 this case, a lower feed velocity increases the residence time of the feed passing through the
632 channel, and allows it to heat to higher values, thereby increasing flux. When treating feed
633 waters for which mineral scaling is not a concern, we conclude that systems can benefit from
634 operating at a high q_{in} and a low U_{in} . For the case of high-concentration brines, one must also
635 consider that lower feed velocities tend to exacerbate concentration polarization and mineral
636 scaling.

637 We have demonstrated experimentally and numerically that the direct heating approach is
638 capable of mitigating or even reversing temperature polarization. It is important to note that
639 temperature and concentration polarization are coupled phenomena because they both depend on,
640 and influence the water vapor flux through the membrane. On the one hand, the elevated

641 membrane surface temperature helps to maximize vapor flux by maintaining the driving force
642 and reduce some scaling by increasing the solubility of alkali metal salts (e.g., NaCl). On the
643 other hand, high temperatures at the membrane/water interface increases vapor flux, which
644 increases concentration polarization and reduces the solubility of certain common mineral
645 species (e.g., CaCO₃ and CaSO₄), which increases scaling. Therefore, temperature polarization
646 needs to be optimized to an appropriate level where flux is maximized while scaling is
647 minimized (or at the very least kept at a tolerable level).

648

649 **4. Conclusions**

650 We developed a VMD process using layered composite membranes that include a high-
651 thermal-conductivity layer for supplying heat directly to the membrane-water interface and
652 throughout the flow channel. The VMD system showed stable performance over hours of
653 desalinating hypersaline feed and exhibited water fluxes as high as 9 LMH and salt
654 rejection >99.9%. We also investigated the impact of operational conditions on system
655 performance. Flux was shown to be affected by heat input, feed crossflow velocity, and vacuum
656 level, while salt rejection remained to be higher than 99.9% under all the tested conditions. Our
657 CFD simulations were in agreement with experimental results. The numerical models developed
658 here were able to successfully describe the transport phenomena in the system and predict the
659 ability to use this VMD process for larger scale systems. Compared to conventional VMD
660 systems, direct heating VMD systems demonstrated higher energy efficiency, which stresses the
661 importance of identifying the right location for incorporating the heat conducting element into a
662 VMD system. This process has the potential of solving several problems associated with MD-

663 based desalination and brine concentration processes, such as minimizing heat losses, increasing
664 thermal efficiency, and limiting the number of heat exchangers.

665

666 **Credit authorship contribution statement**

667 **Jingbo Wang:** Investigation, Data curation, Methodology, Visualization, Writing - original draft.

668 **Yiming Liu:** Investigation, Data curation, Writing - review & editing.

669 **Unnati Rao:** Investigation.

670 **Mark Dudley:** Investigation, Data curation, Methodology, Visualization, Writing - original draft.

671 **Navid Dehdari Ebrahimb:** Investigation, Methodology.

672 **Jincheng Lou:** Investigation.

673 **Fei Han:** Investigation.

674 **Eric M.V. Hoek:** Supervision, Writing - review & editing.

675 **Nils Tilton:** Supervision, Writing - review & editing.

676 **Tzahi Y. Cath:** Supervision, Writing - review & editing.

677 **Craig S. Turchi:** Supervision, Writing - review & editing.

678 **Michael B. Heeley:** Supervision, Writing - review & editing.

679 **Y. Sungtaek Ju:** Methodology.

680 **David Jassby:** Funding acquisition, Methodology, Supervision, Conceptualization, Writing -
681 review & editing

682

683 **Acknowledgements**

684 The SEM and EDAX analyses were conducted at the California NanoSystems Institute, Los
685 Angeles, California, 90095, USA. This work was supported by the Department of Energy (DOE)
686 (Award No. DE-EE0008391) and the Sustainable LA Grand Challenge (EMVH).

687

688 **Supporting information**

689 Additional experimental details are provided including:

690 • Section S1. Thermal conductivity measurement of thermal carriers
691 • Section S2. Temperature profile on the surface of thermal carriers
692 • Section S3. Characterization of metal components of the direct heating VMD system
693 • Section S4. System energy performance - GOR
694 • Section S5. Heat transport model derivation
695 • Section S6. Additional model validation with experimental results
696 • Section S7. Additional details of the VMD experiments
697 • Section S8. Feed temperature summary from literature and this study

698 **References cited**

699

700 [1] M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding
701 membrane distillation separation process, *J. Membr. Sci.* (2006).
702 <https://doi.org/10.1016/j.memsci.2006.08.002>.

703 [2] K.W. Lawson, D.R. Lloyd, Membrane distillation, *J. Membr. Sci.* (1997).
704 [https://doi.org/10.1016/S0376-7388\(96\)00236-0](https://doi.org/10.1016/S0376-7388(96)00236-0).

705 [3] A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review,
706 *Desalination*. 287 (2012) 2–18. <https://doi.org/10.1016/j.desal.2011.08.027>.

707 [4] J. Wu, K.R. Zodrow, P.B. Szemraj, Q. Li, Photothermal nanocomposite membranes for
708 direct solar membrane distillation, *J. Mater. Chem. A*. 5 (2017) 23712–23719.
709 <https://doi.org/10.1039/c7ta04555g>.

710 [5] X. Chen, N.Y. Yip, Unlocking High-Salinity Desalination with Cascading Osmotically
711 Mediated Reverse Osmosis: Energy and Operating Pressure Analysis, *Environ. Sci.*
712 *Technol.* (2018). <https://doi.org/10.1021/acs.est.7b05774>.

713 [6] C.K. Chiam, R. Sarbatly, Vacuum membrane distillation processes for aqueous solution
714 treatment-A review, *Chem. Eng. Process. - Process Intensif.* 74 (2013) 27–54.
715 <https://doi.org/10.1016/j.cep.2013.10.002>.

716 [7] M.A.E.R. Abu-Zeid, Y. Zhang, H. Dong, L. Zhang, H.L. Chen, L. Hou, A comprehensive
717 review of vacuum membrane distillation technique, *Desalination*. 356 (2015) 1–14.
718 <https://doi.org/10.1016/j.desal.2014.10.033>.

719 [8] S. Lin, N.Y. Yip, M. Elimelech, Direct contact membrane distillation with heat recovery:
720 Thermodynamic insights from module scale modeling, *J. Membr. Sci.* (2014).
721 <https://doi.org/10.1016/j.memsci.2013.11.016>.

722 [9] M. Qtaishat, T. Matsuura, B. Kruczak, M. Khayet, Heat and mass transfer analysis in
723 direct contact membrane distillation, *Desalination*. (2008).
724 <https://doi.org/10.1016/j.desal.2007.05.019>.

725 [10] A.S. Alsaadi, L. Francis, G.L. Amy, N. Ghaffour, Experimental and theoretical analyses
726 of temperature polarization effect in vacuum membrane distillation, *J. Membr. Sci.* 471
727 (2014) 138–148. <https://doi.org/10.1016/j.memsci.2014.08.005>.

728 [11] G. Zuo, G. Guan, R. Wang, Numerical modeling and optimization of vacuum membrane
729 distillation module for low-cost water production, *Desalination*. 339 (2014) 1–9.
730 <https://doi.org/10.1016/j.desal.2014.02.005>.

731 [12] J.P. Mericq, S. Laborie, C. Cabassud, Vacuum membrane distillation of seawater reverse
732 osmosis brines, *Water Res.* 44 (2010) 5260–5273.
733 <https://doi.org/10.1016/j.watres.2010.06.052>.

734 [13] S. Bandini, C. Gostoli, G.C. Sarti, Separation efficiency in vacuum membrane distillation,
735 *J. Membr. Sci.* (1992). [https://doi.org/10.1016/0376-7388\(92\)80131-3](https://doi.org/10.1016/0376-7388(92)80131-3).

736 [14] S.G. Lovineh, M. Asghari, B. Rajaei, Numerical simulation and theoretical study on
737 simultaneous effects of operating parameters in vacuum membrane distillation,
738 *Desalination*. (2013). <https://doi.org/10.1016/j.desal.2013.01.005>.

739 [15] J. Zhang, J. De Li, M. Duke, M. Hoang, Z. Xie, A. Groth, C. Tun, S. Gray, Modelling of
740 vacuum membrane distillation, *J. Membr. Sci.* 434 (2013) 1–9.
741 <https://doi.org/10.1016/j.memsci.2013.01.048>.

742 [16] M. Khayet, Solar desalination by membrane distillation: Dispersion in energy
743 consumption analysis and water production costs (a review), *Desalination*. 308 (2013) 89–
744 101. <https://doi.org/10.1016/j.desal.2012.07.010>.

745 [17] A. Deshmukh, C. Boo, V. Karanikola, S. Lin, A.P. Straub, T. Tong, D.M. Warsinger, M.
746 Elimelech, Membrane distillation at the water-energy nexus: Limits, opportunities, and
747 challenges, *Energy Environ. Sci.* 11 (2018) 1177–1196.
748 <https://doi.org/10.1039/c8ee00291f>.

749 [18] Y. Zhou, R.S.J. Tol, Evaluating the costs of desalination and water transport, *Water
750 Resour. Res.* (2005). <https://doi.org/10.1029/2004WR003749>.

751 [19] M. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes,
752 Science and technology for water purification in the coming decades, *Nature*. 452 (2008)
753 301–310. <https://doi.org/10.1038/nature06599>.

754 [20] P.A. Hogan, Sudjito, A.G. Fane, G.L. Morrison, Desalination by solar heated membrane
755 distillation, *Desalination*. (1991). [https://doi.org/10.1016/0011-9164\(91\)85047-X](https://doi.org/10.1016/0011-9164(91)85047-X).

756 [21] F. Banat, R. Jumah, M. Garaibeh, Exploitation of solar energy collected by solar stills for
757 desalination by membrane distillation, *Renew. Energy*. (2002).
758 [https://doi.org/10.1016/S0960-1481\(01\)00058-1](https://doi.org/10.1016/S0960-1481(01)00058-1).

759 [22] J. Koschikowski, M. Wieghaus, M. Rommel, Solar thermal-driven desalination plants
760 based on membrane distillation, *Desalination*. (2003). [9164\(03\)00360-6](https://doi.org/10.1016/S0011-
761 9164(03)00360-6).

762 [23] J. Koschikowski, M. Wieghaus, M. Rommel, V.S. Ortín, B.P. Suárez, J.R. Betancort
763 Rodríguez, Experimental investigations on solar driven stand-alone membrane distillation
764 systems for remote areas, *Desalination*. (2009).
765 <https://doi.org/10.1016/j.desal.2008.05.047>.

766 [24] F. Banat, N. Jwaid, M. Rommel, J. Koschikowski, M. Wieghaus, Performance evaluation
767 of the “large SMADES” autonomous desalination solar-driven membrane distillation plant
768 in Aqaba, Jordan, *Desalination*. 217 (2007) 17–28.
769 <https://doi.org/10.1016/j.desal.2006.11.027>.

770 [25] J. Blanco Gálvez, L. García-Rodríguez, I. Martín-Mateos, Seawater desalination by an
771 innovative solar-powered membrane distillation system: the MEDESOL project,
772 *Desalination*. 246 (2009) 567–576. <https://doi.org/10.1016/j.desal.2008.12.005>.

773 [26] J.P. Mericq, S. Laborie, C. Cabassud, Evaluation of systems coupling vacuum membrane

774 distillation and solar energy for seawater desalination, *Chem. Eng. J.* (2011).
775 <https://doi.org/10.1016/j.cej.2010.11.030>.

776 [27] C. Chen, Y. Kuang, L. Hu, Challenges and Opportunities for Solar Evaporation, *Joule*.
777 (2019). <https://doi.org/10.1016/j.joule.2018.12.023>.

778 [28] L. Cui, P. Zhang, Y. Xiao, Y. Liang, H. Liang, Z. Cheng, L. Qu, High Rate Production of
779 Clean Water Based on the Combined Photo-Electro-Thermal Effect of Graphene
780 Architecture, *Adv. Mater.* (2018). <https://doi.org/10.1002/adma.201706805>.

781 [29] P.D. Dongare, A. Alabastri, S. Pedersen, K.R. Zodrow, N.J. Hogan, O. Neumann, J. Wud,
782 T. Wang, A. Deshmukh, M. Elimelech, Q. Li, P. Nordlander, N.J. Halas, Nanophotonics-
783 enabled solar membrane distillation for off-grid water purification, *Proc. Natl. Acad. Sci.*
784 U. S. A.

785 [30] L. Huang, J. Pei, H. Jiang, X. Hu, Water desalination under one sun using graphene-based
786 material modified PTFE membrane, *Desalination*. (2018).
787 <https://doi.org/10.1016/j.desal.2018.05.006>.

788 [31] X. Han, W. Wang, K. Zuo, L. Chen, L. Yuan, J. Liang, Q. Li, P.M. Ajayan, Y. Zhao, J.
789 Lou, Bio-derived ultrathin membrane for solar driven water purification, *Nano Energy*.
790 (2019). <https://doi.org/10.1016/j.nanoen.2019.03.089>.

791 [32] B. Gong, H. Yang, S. Wu, G. Xiong, J. Yan, K. Cen, Z. Bo, K. Ostrikov, Graphene Array-
792 Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy
793 Efficiency, *Nano-Micro Lett.* (2019). <https://doi.org/10.1007/s40820-019-0281-1>.

794 [33] S. Cao, X. Wu, Y. Zhu, R. Gupta, A. Tan, Z. Wang, Y.S. Jun, S. Singamaneni,
795 Polydopamine/hydroxyapatite nanowire-based bilayered membrane for photothermal-
796 driven membrane distillation, *J. Mater. Chem. A*. (2020).
797 <https://doi.org/10.1039/c9ta12703h>.

798 [34] I.A. Said, S. Wang, Q. Li, Field Demonstration of a Nanophotonics-Enabled Solar
799 Membrane Distillation Reactor for Desalination, *Ind. Eng. Chem. Res.* (2019).
800 <https://doi.org/10.1021/acs.iecr.9b03246>.

801 [35] L. Song, Q. Huang, Y. Huang, R. Bi, C. Xiao, An electro-thermal braid-reinforced PVDF
802 hollow fiber membrane for vacuum membrane distillation, *J. Membr. Sci.* 591 (2019)
803 117359. <https://doi.org/10.1016/j.memsci.2019.117359>.

804 [36] A. V. Dudchenko, C. Chen, A. Cardenas, J. Rolf, D. Jassby, Frequency-dependent
805 stability of CNT Joule heaters in ionizable media and desalination processes, *Nat.*
806 *Nanotechnol.* 12 (2017) 557–563. <https://doi.org/10.1038/nnano.2017.102>.

807 [37] O.R. Lokare, S. Tavakkoli, V. Khanna, R.D. Vidic, Importance of feed recirculation for
808 the overall energy consumption in membrane distillation systems, *Desalination*. (2018).
809 <https://doi.org/10.1016/j.desal.2017.11.037>.

810 [38] E. Deniz, S. Çınar, Energy, exergy, economic and environmental (4E) analysis of a solar
811 desalination system with humidification-dehumidification, *Energy Convers. Manag.*

812 (2016). <https://doi.org/10.1016/j.enconman.2016.07.064>.

813 [39] R. Miladi, N. Frika, A. Kheiri, S. Gabsi, Energetic performance analysis of seawater
814 desalination with a solar membrane distillation, *Energy Convers. Manag.* 185 (2019) 143–
815 154. <https://doi.org/10.1016/j.enconman.2019.02.011>.

816 [40] M.I. Soomro, W.S. Kim, Performance and economic investigations of solar power tower
817 plant integrated with direct contact membrane distillation system, *Energy Convers. Manag.*
818 (2018). <https://doi.org/10.1016/j.enconman.2018.08.056>.

819 [41] A. Luo, N. Lior, Critical review of membrane distillation performance criteria, *Desalin.*
820 *Water Treat.* 57 (2016) 20093–20140. <https://doi.org/10.1080/19443994.2016.1152637>.

821 [42] W.L. McCabe, J.C. Smith, P. Harriott, *Unit Operations of Chemical Engineering*, 4th ed.,
822 McGraw-Hill, New York, 1985.

823 [43] L. Kumar, M. Hasanuzzaman, N.A. Rahim, Global advancement of solar thermal energy
824 technologies for industrial process heat and its future prospects: A review, *Energy*
825 *Convers. Manag.* (2019). <https://doi.org/10.1016/j.enconman.2019.05.081>.

826 [44] A.A. Hachicha, B.A.A. Yousef, Z. Said, I. Rodríguez, A review study on the modeling of
827 high-temperature solar thermal collector systems, *Renew. Sustain. Energy Rev.* (2019).
828 <https://doi.org/10.1016/j.rser.2019.05.056>.

829 [45] M. Gryta, Effectiveness of water desalination by membrane distillation process,
830 *Membranes (Basel)*. (2012). <https://doi.org/10.3390/membranes2030415>.

831 [46] S.O. Olatunji, L.M. Camacho, Heat and mass transport in modeling membrane distillation
832 configurations: A review, *Front. Energy Res.* 6 (2018) 1–18.
833 <https://doi.org/10.3389/fenrg.2018.00130>.

834 [47] F. Banat, N. Jwaied, M. Rommel, J. Koschikowski, M. Wieghaus, Desalination by a
835 “compact SMADES” autonomous solarpowered membrane distillation unit, *Desalination*.
836 217 (2007) 29–37. <https://doi.org/10.1016/j.desal.2006.11.028>.

837 [48] H.E.S. Fath, S.M. Elsherbiny, A.A. Hassan, M. Rommel, M. Wieghaus, J. Koschikowski,
838 M. Vatansever, PV and thermally driven small-scale, stand-alone solar desalination
839 systems with very low maintenance needs, *Desalination*. 225 (2008) 58–69.
840 <https://doi.org/10.1016/j.desal.2006.11.029>.

841 [49] A. Criscuoli, M.C. Carnevale, E. Drioli, Evaluation of energy requirements in membrane
842 distillation, *Chem. Eng. Process. Process Intensif.* 47 (2008) 1098–1105.
843 <https://doi.org/10.1016/j.cep.2007.03.006>.

844 [50] X. Wang, L. Zhang, H. Yang, H. Chen, Feasibility research of potable water production
845 via solar-heated hollow fiber membrane distillation system, *Desalination*. 247 (2009) 403–
846 411. <https://doi.org/10.1016/j.desal.2008.10.008>.

847 [51] A. Ruiz-Aguirre, J.A. Andrés-Mañas, J.M. Fernández-Sevilla, G. Zaragoza, Experimental
848 characterization and optimization of multi-channel spiral wound air gap membrane

849 distillation modules for seawater desalination, *Sep. Purif. Technol.* (2018).
850 <https://doi.org/10.1016/j.seppur.2018.05.044>.

851 [52] G. Zaragoza, A. Ruiz-Aguirre, E. Guillén-Burrieza, Efficiency in the use of solar thermal
852 energy of small membrane desalination systems for decentralized water production, *Appl.*
853 *Energy*. (2014). <https://doi.org/10.1016/j.apenergy.2014.02.024>.

854 [53] H.C. Duong, A.R. Chivas, B. Nelemans, M. Duke, S. Gray, T.Y. Cath, L.D. Nghiem,
855 Treatment of RO brine from CSG produced water by spiral-wound air gap membrane
856 distillation - A pilot study, *Desalination*. (2015).
857 <https://doi.org/10.1016/j.desal.2014.10.026>.

858 [54] R. Schwantes, A. Cipollina, F. Gross, J. Koschikowski, D. Pfeifle, M. Rolletschek, V.
859 Subiela, Membrane distillation: Solar and waste heat driven demonstration plants for
860 desalination, *Desalination*. (2013). <https://doi.org/10.1016/j.desal.2013.04.011>.

861 [55] A. Ruiz-Aguirre, J.A. Andrés-Mañas, J.M. Fernández-Sevilla, G. Zaragoza, Modeling and
862 optimization of a commercial permeate gap spiral wound membrane distillation module
863 for seawater desalination, *Desalination*. (2017).
864 <https://doi.org/10.1016/j.desal.2017.06.019>.

865 [56] J.A. Andrés-Mañas, A. Ruiz-Aguirre, F.G. Acién, G. Zaragoza, Performance increase of
866 membrane distillation pilot scale modules operating in vacuum-enhanced air-gap
867 configuration, *Desalination*. (2020). <https://doi.org/10.1016/j.desal.2019.114202>.

868 [57] R.G. Raluy, R. Schwantes, V.J. Subiela, B. Peñate, G. Melián, J.R. Betancort, Operational
869 experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran
870 Canaria Island (Spain), *Desalination*. (2012). <https://doi.org/10.1016/j.desal.2012.01.003>.

871 [58] M. Li, K.J. Lu, L. Wang, X. Zhang, T.S. Chung, Janus membranes with asymmetric
872 wettability via a layer-by-layer coating strategy for robust membrane distillation, *J.*
873 *Membr. Sci.* (2020). <https://doi.org/10.1016/j.memsci.2020.118031>.

874 [59] E. Guillén-Burrieza, J. Blanco, G. Zaragoza, D.C. Alarcón, P. Palenzuela, M. Ibarra, W.
875 Gernjak, Experimental analysis of an air gap membrane distillation solar desalination pilot
876 system, *J. Membr. Sci.* 379 (2011) 386–396.
877 <https://doi.org/10.1016/j.memsci.2011.06.009>.

878 [60] R. Sarbatly, C.K. Chiam, Evaluation of geothermal energy in desalination by vacuum
879 membrane distillation, *Appl. Energy*. 112 (2013) 737–746.
880 <https://doi.org/10.1016/j.apenergy.2012.12.028>.

881 [61] C. Cabassud, D. Wirth, Membrane distillation for water desalination: How to chose an
882 appropriate membrane?, *Desalination*. 157 (2003) 307–314.
883 [https://doi.org/10.1016/S0011-9164\(03\)00410-7](https://doi.org/10.1016/S0011-9164(03)00410-7).

884 [62] W.G. Shim, K. He, S. Gray, I.S. Moon, Solar energy assisted direct contact membrane
885 distillation (DCMD) process for seawater desalination, *Sep. Purif. Technol.* 143 (2015)
886 94–104. <https://doi.org/10.1016/j.seppur.2015.01.028>.

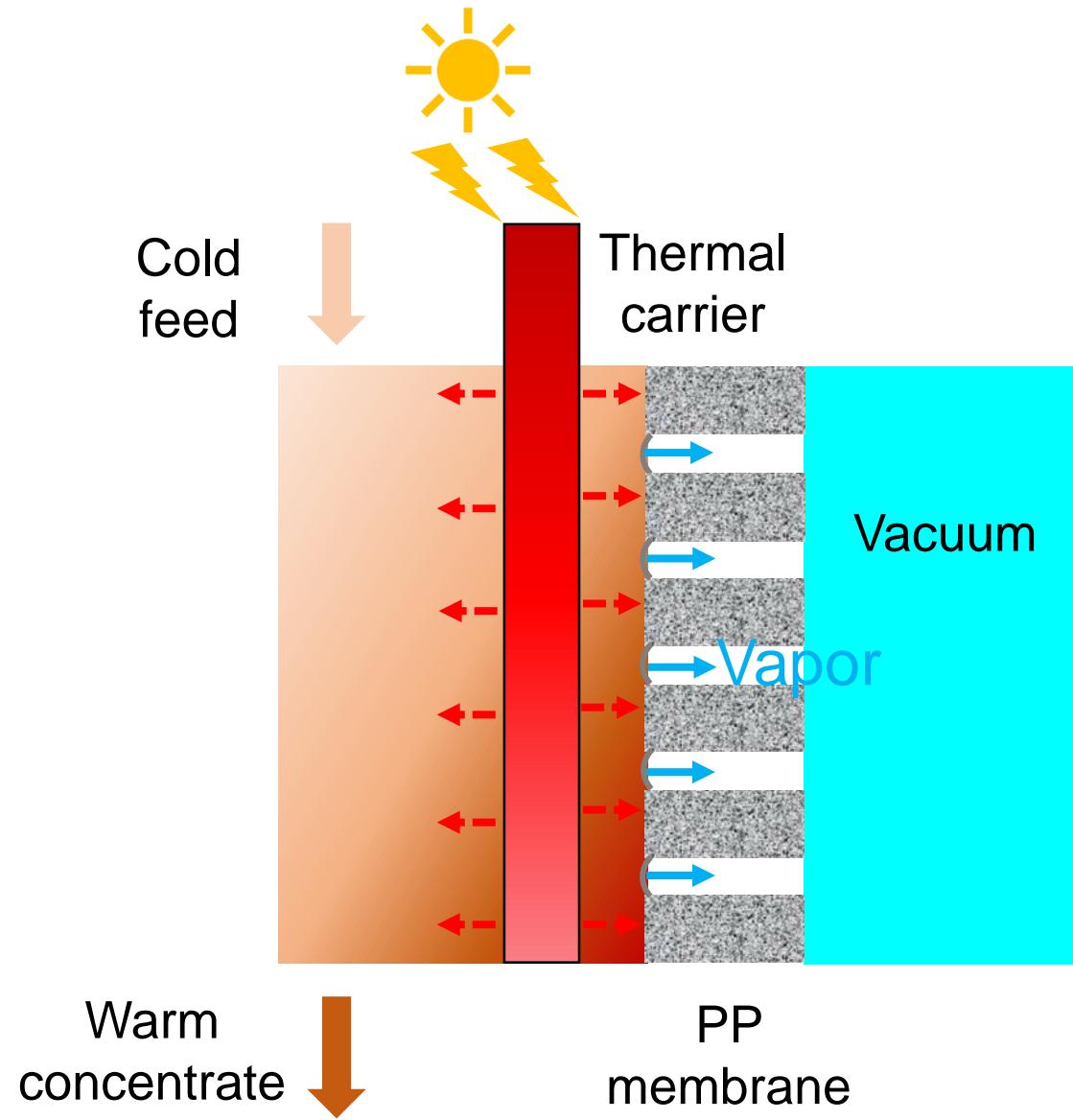
887 [63] Q. Ma, A. Ahmadi, C. Cabassud, Direct integration of a vacuum membrane distillation
888 module within a solar collector for small-scale units adapted to seawater desalination in
889 remote places: Design, modeling & evaluation of a flat-plate equipment, *J. Membr. Sci.*
890 564 (2018) 617–633. <https://doi.org/10.1016/j.memsci.2018.07.067>.

891 [64] K. Okiel, A.H.M. El-Aassar, T. Temraz, S. El-Etriby, H.A. Shawky, Vacuum enhanced
892 direct contact membrane distillation for oil field produced water desalination: specific
893 energy consumption and energy efficiency, *Desalin. Water Treat.* 57 (2016) 11945–11955.
894 <https://doi.org/10.1080/19443994.2015.1048305>.

895 [65] E.K. Summers, H.A. Arafat, J.H. Lienhard V, Energy efficiency comparison of single-
896 stage membrane distillation (MD) desalination cycles in different configurations,
897 *Desalination*. 290 (2012) 54–66. <https://doi.org/10.1016/j.desal.2012.01.004>.

898 [66] R.K. Shah, A.L. London, *Laminar Flow Forced Convection in Ducts: A Source Book for*
899 *Compact Heat Exchanger Analytical Data*, 1978. <https://doi.org/10.1016/B978-0-12-020051-1.50022-X>.

901 [67] R.W. Schofield, A.G. Fane, C.J.D. Fell, Heat and mass transfer in membrane distillation, *J.*
902 *Membr. Sci.* 33 (1987) 299–313. [https://doi.org/10.1016/S0376-7388\(00\)80287-2](https://doi.org/10.1016/S0376-7388(00)80287-2).


903 [68] L.G. Leal, *Advanced transport phenomena: Fluid mechanics and convective transport*
904 *processes*, 2007. <https://doi.org/10.1017/CBO9780511800245>.

905 [69] J.H. Ferziger, M. Peric, A. Leonard, *Computational Methods for Fluid Dynamics*, *Phys.*
906 *Today*. (1997). <https://doi.org/10.1063/1.881751>.

907 [70] J. Lou, J. Vanneste, S.C. DeCaluwe, T.Y. Cath, N. Tilton, Computational fluid dynamics
908 simulations of polarization phenomena in direct contact membrane distillation, *J. Membr.*
909 *Sci.* (2019). <https://doi.org/10.1016/j.memsci.2019.05.074>.

910 [71] M. Dudley, 3-D numerical simulations of conjugate heat transport in vacuum membrane
911 distillation systems with applied membrane heating, Colorado School of Mines, 2020.

912 [72] J. Vanneste, J.A. Bush, K.L. Hickenbottom, C.A. Marks, D. Jassby, C.S. Turchi, T.Y.
913 Cath, Novel thermal efficiency-based model for determination of thermal conductivity of
914 membrane distillation membranes, *J. Membr. Sci.* (2018).
915 <https://doi.org/10.1016/j.memsci.2017.11.028>.

