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Executive Summary

Existing grid data sources and monitoring methods are generally stovepiped into
operational data (e.g., SCADA), customer or billing data (metering), and 3" party data
(forecasting) repositories. Further, the value of this data is limited by gaps, errors, and a
lack of data fusion. This segmentation reduces the value of the data by limiting real-
time, market, and planning analyses for solar PV.

Camus Energy has created a cloud-based situational awareness software platform for
understanding grid behavior in dynamic environments with high levels of distributed
energy resources (DERs). Working with researchers at Pacific Northwest National
Laboratory (PNNL), we empirically tested, downselected, and incorporated advanced
machine learning (ML) and data analytics (DA) methods into our collection and analysis
pipelines with the aim to apply ML/DA methods to two primary data sources:
loads/injections at the network endpoints and flows and voltages over the network.

Using ML/DA methods integrated into the Camus pipeline, we were able to create
unified network endpoint time series data across data inputs by detecting and correcting
gaps, estimating time series data at unmetered network endpoints, and providing
intraday and day-ahead forecasts for all network endpoints.

The activities/research tasks were organized into five major areas: 1) Use case and
data management, 2) Endpoint Data Processing and Analysis, 3) Network Models and
Situational Awareness, 4) Software integration, and 5) Integrated Software Performance
Verification. The technical scope also included:

e Developing high-quality, unified historical, real-time, and forecast time series data
for all metered and unmetered network endpoints (customer load and PV
generation and larger solar PV generation sites) and exogenous environmental
variables (i.e., solar insolation) that drive the behavior of network endpoints.

e Developing a physics-informed methodology for network data correlation which is
robust to inaccurate and incomplete data sources, even in the absence of a
power system model.

Through this project, Camus Energy was able to generate state-of-the-art grid analytics
tools by improving upon existing open source tooling already available, and adding our
own open source code for available public use.

This report describes findings from three endeavors: (1) End-Point Data Analysis; (2)
Intra-day Solar Forecasts; and (3) Reduced Order Network Models (ROM).
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1 Background

Gap filling time series data typically depends on linear interpolation [1]. More recently
gap filling advancements include machine learning techniques [2]. However, none
leverage advanced learning approach that uses cohort training [3] or a neighborhood
informed approach, which is described in this report.

The report also describes a physics informed approach using Reduced Order Models
(ROM). There are several methods to capture the nature of the detailed system in
aggregated models, however there is a trade-off for these methods developed for
multiple applications [4]- [5]. These methods have specific requirements and
applications that includes consideration of dynamics or covering a larger range of
operating conditions, etc. The various methods of aggregation are:

1) Thevenin equivalents for downstream networks [4], [6]

2) Equivalent feeder representation to capture downstream network losses

accurately [7]
3) Structured reduced order models for dynamics [8]
4) System identification-based ROM (abstract dynamical model) [5]

Methods described in items 1 and 2 above are ideal for steady-state models and useful
for this application. Of these two methods, based on the data availability, the targeted
application, the reduced order model that is proposed to be developed is the equivalent
feeder model representation. This includes a structure of the reduced order model
whose parameters can be determined by the system load and losses with the meter
measurements.
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2 Project Objectives

Clean energy goals are threatened by a lack of understanding of the true impacts of
distributed energy resources (DERs) and their real-time impact on grid operations. Solar
developers in particular have identified delays in the interconnection process as a key
barrier to both utility-scale and behind the meter DERs. Secretary Granholm has
repeatedly identified hosting capacity and impacts analysis as a key challenge in
deploying sufficient renewable energy to meet our clean energy deployment and climate
targets. For both small rural cooperative utilities and large investor-owned utilities, gaps
and lags in real-time data, stovepiping of data, and high penetration of unmetered PV all
make quickly and accurately performing DER interconnection analysis nearly
impossible.

Unfortunately, data reliability is a significant issue. In some cases, data might be
missing from a particular meter for large periods of time. In other cases, the data may
be sparse and have missing data scattered throughout the data set. This report
addresses these issues by exploring both model- and machine learning (ML)-based
methods for filling in missing data.

Through this grant, we were able to increase the availability and value of the situational
awareness on the distribution grid through real-time gap filling, back casting,
nowcasting, near casting, and forecasting throughout the system from net system load
to feeder heads, to individual meter endpoints and photovoltaic (PV) production meters.
We leveraged two techniques for applying machine learning algorithm (XGBoost) to fill
in missing data:

1. A nowcasting approach that trains using cohort data sets and estimates missing
metered data without training on the meter itself. The outputs from this model
produced mean square error results that were comparable to common ARIMA
and persistence-based approaches.

2. Using a meter's neighbors to estimate missing data values. In this case, the
algorithm also used and produced results that generated high r-squared values.

In each of these approaches the net metering of PV creates unique challenges for the
analysis. Therefore, the report explores and defines a PV forecasting approach. The
outputs from the forecasting are useful for improving the two gap filling approaches. The
PV forecasting implementation used HRRR to forecast the solar irradiance at defined
locations. The irradiance was then provided to a PV model and estimated the power
output during clear and cloudy conditions.

In some cases, the data could be so sparse that data-driven methods will not work and
therefore require a physical model to represent the system well. In past literature,
models were shown to represent systems with accuracy, but require significant time and
effort to create, calibrate and maintain. With that in mind, this work implemented a
reduced order model (ROM) that would require less work to operate. The simulation
results of the model used to represent a single feeder in Northern New Mexico were
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promising and could potentially provide utilities with the necessary information to make
important decisions.

10



DocuSign Envelope ID: 8E2D385

3 Project

1-6F5D-44D3-9004-415465A1C2BF

Results & Discussion

The work conducted under this award was broken out into 5 subtasks as described in
the Statement of Project Objectives (SOPO). Task 1 (data, use-cases management,
and advisory board) consisted of convening a technical advisory board to provide input
on data and use cases; the results of this task are described in Section 3.1. Task 2
(customer load and short-term PV data) consisted of gathering, processing, and
cleaning end point data, including gap filling; the outcome of this task is described in
Section 3.2. Task 3 (Network models and situational awareness) consisted of
developing a parameter estimation algorithm and comparing that to a power flow model;
this work is described in Section 3.3. Task 4 (Software integration) focused on
integrated parts of the modules from Task 2 and 3 into the Camus software platform
and is described in Section 3.4. Finally, Task 5 (Integrated software performance
verification) aimed to test the performance of the integrated software, as described in

Section 3.5.

In addition to the outcome of the tasks described in section 3, Table 1 shows whether,
when, and how the milestones described in the SOPO were achieved.

Table 1: Summary of Milestones Achieved

Milestone

Description

Achieved

How

1

The power flow model and the
GridAPPS-D / GridLAB-D solver will
yield a converged power flow model for
> 95% of typical cases

Yes (July 2021)

Subtasks 3.1 and 3.2

Adaptation and assessment of
quantitative measures of accuracy of
the ML/DA methods used for network
endpoint analysis

Yes (November 2021)

Subtasks 2.1

Availability of 6 months of historical PV
reforecast data in the Camus software
environment

Yes (March 2022)

Subtask 4.3

Prototype of advanced Ritta software
completes an end-to-end analysis of
endpoint and network data in < 10 sec
for the selected subsection of the utility
network with:

4.1

Synchronized data with granularity of <
1 minutes for all data sources, including
lower-frequency sources which rely on
model-based estimates to enhance
time resolution

Yes (July 2022)

Task 4 (machine
learning model-based
methods for fill, but at
60-minute intervals)

4.2

Model-based network-level situational
awareness available at < 5-minute
resolution

Yes (July 2022)

Task 4 (machine
learning model-based
methods for fill, but at
60-minute intervals)

The Camus software system achieves
the following performance targets: End-
to-end collection and processing

11
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latency of < 10 sec for high-fidelity data
sources
5.1 Synchronized data (including un- Task 4 (machine
metered PV) with hourly granularity learning model-based
available across the distribution Yes (November 2022) methoc?s for fill, but at
system. 60 minute intervals)
5.2 Intra-hour forecasts for the network Task 4 (machine
endpoints available at < 5 minute learning model-based
resolution Yes (January 2023) methoc?s for fill, but at
60 minute intervals)
5.3 Model-based network-level situational Task 4 (machine
awareness available at < 5 minutes Yes (January 2023) learning model-based
resolution methods for fill, but at
60 minute intervals)
5.4 Composite system model that Did not run physics
integrates measured and interpolated model of the system
datain <1 sec No that integrates
measured and
interpolated data.
5.5 < 10% error in inferred load /
generation for missing, dropped, or
unmetered endpoints; < 1% error in Yes (January 2023) Task 5
voltage and aggregate power flows in
the medium-voltage network
3.1 Task 1: Data, Use-cases Management and Advisory Board

3.1.1 Data Management Plan

The project team consulted with Kit Carson Electric Cooperative (KCEC) to determine
the data sets used, update the Data Management Plan, and provide a high-level
document to summarize the use-cases as communicated by our utility partner.

The Camus Energy team worked closely with Kit Carson Electric Cooperative to
understand their needs in understanding the impacts of high penetration, largely
unmetered PV on their system. At the time, Kit Carson was working towards their goal
of 100% daytime power sourced from solar (since achieved in December 2022). We
chose the Arroyo-Hondo (A-H) feeder as the first system we would explore. The A-H
feeder has high renewables penetration, a high concentration of smart meters, and what
seemed to be a power flow model with recent updates.

Table 2: Data sources obtained on Arroyo-Hondo feeder

Data Source

Type--Resolution

Record length

Achieved

Transmission 1 minute 6 months No transmission data
collected
SCADA 5 minute 10 months Yes, but at 15-minute

interval

12
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15 minute 3-6 months Yes
Customer AMI Monthly energy 1-2 years Not obtained
Large PV meters Time series-- 7 months Yes

1 minute
GIS network and asset | Static n/a Yes
data/models

The selected feeder had approximately 3,000 meters, 60 distributed PV systems, and
an average load greater than 4 MW.

The one-year of Kit Carson AMI data is available for use for given researchers or
organizations obtain an NDA with Kit Carson for its use. Contact Richard Martinez,
COO, Kit Carson Electric Cooperative, rmartinez@kitcarson.com, to execute an NDA".

In addition, sample AMI load data and weather data used to validate the forecast
models described in sections 3.2.1 and 3.2.2 is available online without an NDA in a
Google Cloud Storage Bucket. For the work described in Section 4.2, the PNNL power
flow parameter estimation is also available at the same bucket.2. Readme files are
included for both sets of data.

3.1.2 Use-Cases Management

The project team worked with the Technical Advisory Board (TAB) to develop a set of
high-level use cases for situational awareness with the end goal of converting enhanced
data streams into actionable information for distribution grid operators and planners.
Discussions with the TAB centered around gaps between the ideal and actual data
environment for electric distribution utilities. Figure 1 describes the ideal data
environment where all endpoint time series data is captured at 1 minute (or better)

1 Upon completion of the NDA, users may reach out to Camus Energy at seto-2243@camus.energyfor
access to the non-public storage bucket:
https://console.cloud.google.com/storage/browser/kcec_data;tab=objects?forceOnBucketsSortingFiltering
=true&project=seto2243&prefix=&forceOnObjectsSortingFiltering=false

2 Available freely with any Gmail account: https://console.cloud.google.com/storage/browser/seto2243-
forecasting;tab=objects?forceOnBucketsSortingFiltering=true&project=seto224 3&prefix=&forceOnObjects
SortingFiltering=false

Or via API without a Google identity here: https://storage.googleapis.com/seto2243-forecasting/

Further documentation on how to access publicly available Google storage buckets is here:
https://cloud.google.com/storage/docs/public-datasets#how_to_use_public_datasets on

13
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resolution, there are no data gaps or errors, and all endpoint data is available in near
real time (<10-30 seconds).

Disaggregated metering
of PV generation and load

IR R
69 kV/13.2kV I I l %;*\\MM

i i ¢ ¢ i All PV generators metered

2 s
10 T4
All customer LI
endpoints £, /Ww’\\ ~ O
metered g, ’/\/ \, o 4 8 1 16 2
/ \ /
’ \“w/“

4 8 12 16 20 24
four of Day

PV "Load" (kV

Figure 1: Ideal data environment for electric distribution utilities

Figure 2 describes the actual data environment for many electric distribution utilities
where the resolution of data is limited to monthly readings, often with a delay, and has
gaps and/or errors. Additionally, local generation, such as distributed PV, is not
separately metered, meaning utilities do not have insight into gross demand and end
points.
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Aggregated metering of
PV generation and load
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Figure 2: Actual data environment for electric distribution utilities

Based on this, the TAB focused on two use cases for an enhanced data environment:

1. Case 1: Input data includes individual meter
2. Case 2: Input data does NOT include the individual meter

Use Case 1 represents the approach that most power systems and operational
engineers at a distribution utility take in situations of sparse meter endpoint data on a
section of the grid with a growing number of behind-the-meter (BTM) DERSs. This case
assumes that power flows on upstream assets (nearer the substation) can be estimated
by aggregating data in the downstream flows. This estimation/aggregation is more
formally and accurately done by solving power flow equations for the network based on
endpoint/meter loads. Solving the power flow equations gives you the voltages, as well.
But given sparse meter endpoint data, the aggregation step requires both net and gross
forecasting (and now-casting given the significant delays in rural distribution
cooperatives’ RF mesh networks to deliver advanced metering infrastructure back to the
head end).

Use Case 2 addresses situations where hourly meters are sparse on the feeder, if they
exist at all. There are many distribution cooperatives that have monthly (or more
infrequent) reporting of usage at meter endpoints. With such sparse data, Use Case 1 is
not really viable, and this is a technical fallback. The utility installs some sparse
additional sensing on the trunks of circuits to provide data for power flow and voltage.
These data would be used in statistical methods to infer flow and voltage downstream of
the measurement points. Given more distribution utilities are adding hourly (or more
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frequently) advanced metering infrastructure (AMI), we focused more on Use Case 1 for
this project.

3.1.3 Technical Advisory Board

The Camus team recruited a Technical Advisory Board (TAB) to help ensure the
impacts of this research were properly targeted to real life utility challenges. The TAB
members are shown in the table below.

Table 3: Membership in Technical Advisory Board (TAB)

Name Position Organization
Bryan Hannigan CEO Holy Cross Energy (Glenwood
Springs, CO)

Dan Harms Executive VP of Grid Solutions La Plata Electric Association
and Special Projects (Durango, CO)

Soumya Kundu Staff Research Engineer PNNL

Emma Stewart Chief Scientist NRECA

Chris Campbell Senior Director of Distribution & | Salt River Project (Tempe, AZ)
Telecom Operations

The technical advisory board met 4 times throughout the duration of this project including
once in person at the Distributech conference in Dallas, TX.

The purpose of convening the TAB was to agree upon a set of high-level use cases with
the end goal of converting enhanced data streams into actionable information for
distribution grid operators and planners. Specifically;

e Forthe TAB to provide feedback on the applicability of the results to other
electric utilities, especially concerning the impacts of varying data quality from
different utilities on the methods used in this project

e For Camus to report on interesting / useful findings as the project progressed, as
well as challenges and difficulties in achieving the intended deliverables.

e Forthe TAB participants will provide feedback and recommendations on the
status and progress of the project.

Specific questions posed to the TAB during these meetings were:
e Are we solving the right data problems?
e Are we planning for the right use of power system modeling within Camus’s
platform?
What are use cases for ML-enabled now- or near-casting?
How do we integrate research in user experiences?
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The TAB facilitated use case definitions, as outlined in Section 3.1.2.

3.2 Task 2: End-Point Data Processing and Analysis

3.2.1 Customer Load and Short-Term PV Data
3.2.1.1 Endpoint Data Pre-Processing

Advanced Metering Infrastructure (AMI) data was provided by the utility partner: Kit
Carson Electric Cooperative (KCEC) in Taos, New Mexico. The preliminary statistical
analysis identified missing data within the yearlong set of AMI data. The cumulative
distribution function (CDF) in Figure 3 shows how many data gaps occur for each length
of gap, which is key information that guides our development and testing of ML/DA
methods to fill these gaps. The assessment shows that 50% of the data gaps span 2
reporting periods (30 minutes) or less, and 90% of the data gaps span 10 reporting
periods (150 minutes) or less. To fill the 30-minute gaps and remove 50% of the total
number of gaps, we anticipate that simple interpolation will be sufficiently accurate. To
fill the next 40% of the gaps and remove 90% of the total number of gaps, we anticipate
that more sophisticated methods will be necessary. More sophisticated methods can
capture and reproduce (quasi) periodic behaviors of the data towards more accurate
interpolation than a simple straight-line approximation.

CDF for gaps in power readings
10 1
0.8 1
0.6 1
.
o
o
04 -
0.2 1
001
10° 10! 10° 10° 10*
Gap length (15-minute increments)

Figure 3: Cumulative distribution function (CDF) for the length of the gap in the KCEC AMI data. Each unit on the gap
length axis represents a gap of one data reporting period or a 15-minute gap in the data.
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Figure 2 shows a different interpretation of the impact of the gaps on the data received.
Weighting each gap occurrence by the gap length gives a measure of data lost in that
gap. Figure 4 shows the cumulative fraction of data lost for each gap length. In contrast
to occurrence of a gap (in Figure 2), Figure 3 show that 60% of lost data would be
recovered by filling gaps with a length of 10 reporting periods (150 minutes), and we will
not reach 90% recovery of data until we fill gaps of 100 reporting periods (approximately
1 day in length).

The four subplots in Figure 5 show the probability distribution function (PDF) of the
number of gaps of length N at each meter for N = 2, 4, 8, and 16, respectively. For N=2,
nearly all the meters have between 2200 and 2800 gaps of length 2. This relatively
narrow distribution shows that, for N=2, the failures that lead to these short gaps are
spread relatively uniformly across the entire AMI fleet, i.e., there are no “problematic
meters” that generate a large majority of these short data gaps. The remaining subplots
in Figure 5 lead to the same conclusion for gaps of length N = 16.

10 1

0.8 1

0.6 1

0.4 1

Fraction of data loss

0.2 1

0.0 1

10° 10! 102 10° 10¢
Gap length (15-minute increments)

Figure 4: Cumulative fraction of the AMI power data lost as a function of the gap length measured in data reporting
periods (one data reporting period = 15 minutes.)

3.2.1.2 Select ML Models for Gap Filling

Two data gap filling approaches were developed and tested using actual data from the
field. Each used an XGBoost algorithm, but the training approach and inputs varied.
One implementation took a cohort forecasting approach and is described in Section
3.2.1.3. A second implementation considered data from the neighbor’s power and
voltage to estimate gaps (Section 3.2.1.3.2).
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Extreme Gradient Boosting (XGBoost) is a supervised machine learning algorithm
consisting of a distributed gradient-boosted decision tree. This approach has been
proven useful for regression, classification, and ranking.

This algorithm uses decision tree ensembles, which include both classification and
regression. The classification (often referred to as a decision) occurs as the tree is
broken down into smaller and smaller subsets (or branches). The tree ensembles are
useful in other modeling approaches, such as random forest. The gradient boosted tree
approach differs in how training is administered.
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Figure 5: Probability distribution function of the number of gaps of length N at each meter for N = 2, 4, 8, and 16.

The objective of the training process is to find parameters (i.e., segments of the tree)
that reduce the training loss. This is done through an additive training approach. This
means that what has been learned is maintained and anything new is added upon
observation of system states. The iterative training process estimates values that start
off at zero at time step zero. Then at each step after zero a new estimate is made using
the formed tree and the formation of the tree is created using an optimization algorithm.
The prediction value (y) at each step (t) is estimating using the following:

952 =0 1

9 = ) = 90+ filx) (2)
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90 = futr) = 3V + ) @)
k=1

One key aspect of this training process is the model complexity, which in this case is
referred to as the regularization term. Including the complexity slightly refines the tree
definition to be:

fr(xX) = wgu,w € RT,q:R* - {1,2,...,T} (4)

In the above equation, w is the leaf scores vector, q assigns the data point to each leaf,
and T represents the number of leaves. The complexity w, is defined as:

w(f) = VT + SA%] w} (5)

3.2.1.2.1 Nowcast Estimates

Nowcasting is a portmanteau that blends the word now with forecast. This implies that
forecasting prediction methods are used to estimate current operations. In this case, the
forecasting model was the XGBoost supervised learning algorithm.

3.2.1.3 Implementation Method

The learning algorithm was deployed in a cohort environment where meters were
grouped into categories. Training involved the exposure to a subset of data out of each
of the cohorts. The learning model had no concept of the individual meter, nor of time.
Which means that when training ends, the model can be used to estimate missing data
for meters that were previously not part of the training set. The learning algorithm tries
to find the internal parameterizations that minimize the error, but the model will not be
perfect, and some errors will exist.

The nowcast models were trained using lagged features. The feature matrix includes
back-shifted values, which are past values useful for predicting future values (i.e.,
autoregression). So, when testing occurred, to nowcast potentially unknown or missing
values, past values of each meter were used as inputs.

3.2.1.3.1 Results

The implementation of the XGBoost algorithm, using the cohort training and testing
approach, produced varied results. In most cases, the outputs accurately represented
the system, as shown in Figure 6. But, in some cases, the outputs did not represent the
performance of the meter well.

These results were compared with other common approaches including ARIMA and
Persistence models. It turned out that using training with missing data points using the
proposed approach resulted in root mean square error (RMSE) results that were greater
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than the ARIMA and persistence results. The undesirable result is likely caused by the
training that included gaps. Removal of the gaps is anticipated to improve the
performance significantly.
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Figure 6: Results for the nowcasting implementation on 16 meters

The comparison of the three approaches, were tested on electric meters X1, X2, X3,
and X4, shown in Table 4. As stated before, there was variation in the performance. For
meters X1 and X2 the ARIMA and Persistence approaches did better in all cases. But,
for meters X3 and X4, the ML was about the same as the 3-hr ARIMA and the 3-hr
Persistence. The 6-hr ARIMA and Persistence did noticeably worse than the ML
approach. On average, however, the ML did worse than each of the other four
implementations.

3.2.1.3.2 Neighbor Informed Estimates

Likely missing data occurs at random meter locations and not in a concentrated area.
Although not proven, an example of this idea is shown in Figure 7 where the number of
missing data points for a single day are plotted as a heat map. Most of the meters with
missing data in this example did not have any data for the entire day (i.e., 96 missing
data points for an expected 15-minute data increment data set.) There were some
meters that had a smaller number of missing data points, including 10 missing data
points and 53 missing.

21



DocuSign Envelope ID: 8E2D3851-6F5D-44D3-9004-415465A1C2BF

Table 4: Cohort model results comparison

RMSE (W) ML model (1 hr) ARIMA Persistenc ARIMA (6 Persistence
Grid search (3 hr) e (3 hr) hr) (6 hr)
AR features only
Meter X1 0.397 (.451) 0.197 (.451) 0.199 0.230 0.265
Meter X2 0.181 (.118) 0.048 (.139) 0.052 0.054 0.059
Meter X3 1.14 (1.57) 1.132 (1.57) 1.191 1.476 1.361
Meter X4 1.40 (2.44) 1.451 (2.62) 1.042 1.635 1.492
Average of 0.865(1.14) 0.707 (1.19) 0.621 0.849 0.794
4 meters
‘ 80 )
o
00' ° %
@ 40 g
205
D @
e 0

Figure 7: Example map of missing data points for a day of operations

To estimate the missing data and fill in the gaps, the proposed method considered the
measurements of nearby meters to inform a ML. More specifically, the data from nearby
meters were used as inputs into an XGBoost algorithm [1] that outputs an estimate of
the meters measured data. Using the neighbor’s data to estimate gaps, especially gaps
that extend more than 6 hours, will be more reliable than depending on its own lagged
data to estimate missing points.

3.2.1.3.3 Community Analytics

Gap filling using the community data entailed a comparison of nearby meters with the
meter that requires gap filling. Figure 8 depicts this method spatially. In the figure, the
meter that requires gap filling is shown in blue and nearby meters are depicted with gray
circles. A time series comparison of this evaluation is shown in Figure 9, where the
meter (or node) that requires gap filling is in black, the average of the neighbors around
it is in blue, and their standard deviation is indicated in the blue shade. The figure
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includes the power and the voltage for both the meter in question and its neighboring
group.

@ Gap filling meter
Jgrt * Glh /7 © Nearby meter

Figure 8: This image shows the spatial proximity of the gap filling meter with its neighbors
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Figure 9: The time series power and voltage for the gap filling meter (node) and the neighboring meters statistics

The analysis tested two input approaches:

1. Input Option A:
a. Group Average Power
b. Group Standard Deviation
c. Group Average Voltage

2. Input Option B:
a. Group Average Power
b. Group Standard Deviation
c. Group Average Voltage
d. Lagged value for the gap meter needing gap filling.

3.2.1.3.4 Gap Filling Results Using Inputs A

Using only the data from the group as inputs into the algorithm, the approach was able
to represent the system relatively well. The top part of Figure 10 shows the training
period in gray and the testing was where the red lines overlap with the gray. Over this
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10-day period the estimate represented the general variation in the metered load will. It
is however evident that the estimate included unnecessary noise that resulted in
significant variation from the actual. This provides some evidence that the approach

could be effective but requires further investigations of hundreds or thousands of meters
to prove its overall accuracy.

3.2.1.3.5 Gap Filling Results Using Inputs B

The second implementation of the neighborhood-based approach included lagged
values of the meter with missing data points. This would be effective in situations where
the data is available to estimate the missing gaps. For this meter, the estimate followed
closely with the actual values, as shown in Figure 10. In addition to capturing the
general behaviors of the metered load, the extra input reduced the noise observed in
the previous implementation that did not include a lagged value.
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Figure 10: Sample results for the algorithm that used input option A for training
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Figure 11: Sample results for the algorithm that used input option B for training
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3.2.2 Intra-Day PV Forecast

3.2.3 PV System Modeling

Solar PV forecasts deployed in Camus’s software uses the National Oceanic and
Atmospheric Administration’s (NOAA’s) High-Resolution Rapid Refresh (HRRR)
forecasts® and leverage’s the National Renewable Energy Laboratory’s PySAM model*.
A summary of the solar PV pipeline is shown Figure 12.
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term forecasts
(includes radiation)
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Figure 12: Solar PV forecast pipeline

HRRR is a cloud-resolving, convection-allowing atmospheric model, available ina 3 x 3
km grid, and are made every hour for up to 18 hours in the future, and every 6 hours for
up to 48 hours in the future®. Data includes DNI, DHI, GHI, air temperature, wind speed,
and visibility. Data is retrieved from a NOAA API endpoint in the grid file format,
converted to zarr, aggregated by horizon, and then parsed for radiation data.

PySAM is a Python package that is used in Python code to make calls to SAM’s
simulation core, enabling access to many default values and component libraries. For
smaller, customer-sited PV systems, where detailed information about the solar system
(beyond rated capacity) is not readily available, we use the PVWatts implementation of
PySAM, which requires only location and system size as inputs. Larger, utility owned
and/or controlled systems are modeled in more detail to include specific inverter and

3 https://rapidrefresh.noaa.qgov/hrrr/
4 https://sam.nrel.gov/software-development-kit-sdk/pysam.html
S Future work includes the integration of 15-minute forecasts as they become available from NOAA.
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panel manufacturer, tracking, and orientation of the system. Current applications of
solar PV forecasts (along with load forecasts) in Camus’ software include informing the
dispatch of large-scale storage systems, and accounting for the shadow load of un-
metered DERs for grid restoration workflows.

3.2.3.1 PySam Model Validation
We used NREL'’s PySAM to model a 1.792 MW-DC/1.525 MW-AC solar PV system
located at Sunnyside Ranch (SSR) in western Colorado. Key model inputs are
described below:
e System size: 1.792 MW-DC/1.525 MW-AC
e Module: Hanwa Solar HSL (from spec sheet using the SAM simple efficiency
module): Temperature coefficient: -0.41%/deg. C; Area: 1.995622 m2; Max
power voltage: 36.8 Vdc, Open circuit voltage: 45 Vdc, Module structure:
glass/cell/polymer - open rack, Module efficiency: 15.6 %
e Inverter: Yaskawa Solectrica SGI 500XTM (from SAM inverter library [2])
e Electrical configuration: estimated using SAM logic based on DC/AC ratio.
e Tracking and orientation: 1 axis tracking, 0-degree tile and azimuth, GCR: 0.3
To validate the SAM representation of SSR, we compared the 2020 observed system
output with 2020 NSRDB data (2020 is the most recent year for which AMY data is
available from the NSRDB). Because of the NSRDB’s 4 x 4 km resolution, and the
varied weather conditions in this location, we don’t expect perfect alignment; results for
5 days in November are shown in Figure 13.
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Figure 13: Comparison of actual versus modeled

3.2.3.2 Implementation

Finally, we re-forecast PV by executing the PySAM model as described above with
NOAA forecasted weather. A comparison of PV forecasts with the actual AMI readings
from SSR is shown in Figure 14 for 6- and 24-hour horizons. In general, the model
shows reasonably good agreement with AMI data, both qualitatively and quantitatively.
Note that for the 24-hour horizon case (right), a comparison is only possible every 6
hours when multi-day forecasts are made available by NOAA. Differences between the
two are expected and are attributed to simplifications in model configurations (e.g.,
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system architecture, inverter parameters, module variations), features not accounted for
by the model (e.g., snowfall), forecasting error, and inaccuracies in AMI data.

—_ AMI A — AMI - g
1200 { --- PySAM a 4 V M M M: 1400 { o  PYSAM °
— v h ~ )
wh H
£ 1000 A 1| 3 100
) : -]
[ |
o i o
8 800 E i 8 1000
3 i | 2 00
e 6001 i 2
o : a 6001
¢ 400 . -
Qo o
g i g 400
a 200 J E_ 2 200
0 0 o-l u
9
. @O
o
v ~
~
=&

022-02-12 E
2022-02-13 1 |
2022-02-14 | E
2022-06-17 | C
20220621 1§

“—

2022-02-08
2022-02-09
2022-02-10
022-02-11
2022-02-15
2022-06-15
022-06-18
022-06-19 4
2022-06-20
2022-06-22

timestamp [-] timestamp [-]

Figure 14: PV forecast for 6-hr horizon (left) and 24-hr horizon (right). The modeled results are shown in black and
are compared with the actual data in blue

MAPE (Mean Absolute Percent Error) scores for forecasts made for various hours with
several horizons (6, 12, 24 and 48 hours) over a six-month period- January 2022 to
June 2022. The MAPE score for a given hour and horizon (say) hour = 11 and horizon =
6 represents the mean absolute error for PV power (kW) production at 11 am based on
the forecast provided at 5 am local time. The MAPE for most hours is between 20-30%.

MAPE is not a perfect metric, because a few poor forecast values can skew the overall
metric. This is clearly illustrated in Figure 15 where the computed MAPE for the three-
day period is 34.77% even though 75% of the predictions have <7% error.
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Figure 15: PV forecast for 6-hour horizon compared with AMI data
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3.3 Task 3: Network Models & Situational Awareness

3.3.1 Physics Informed Methods

This work developed an equivalent feeder representation method. The method
aggregated the down-stream distribution network into single loads and line losses. A
detailed analysis used the IEEE test systems. Implementation defined the accuracies
and the parameters sensitivities that impact the ROM parameter estimation.

The analysis showed that the ROM should be modeled as a ZIP load connected to an
impedance to represent the losses correctly. The accuracy of the ROM is measured
against the trunk node voltages observed in the complete model. The method accounts
for a practical implementation by considering the available measurements: real power
metering, voltage magnitude (no phasor information is available), no metering for trunk
node voltages, etc.

After testing using the IEEE model, the Structured ROM (SROM) method was
implemented on an actual utility feeder model. The analysis included AMI data and
system models for Kit Carson Electric Cooperative (KCEC) in Northern New Mexico,
U.S.A.

The Arroyo-Hondo (A-H) model in OpenDSS initially included many errors that were
corrected to ensure the SROM implementation was accurate. Four trunk nodes were
selected for aggregating the downstream parts of the system into a SROM. Synthetic
AMI data was used to derive the SROM parameters. The accuracy of the voltages of
the network with SROM and the full distribution system network were within the targeted
1+0.005 p.u or £0.5% of the absolute voltage values. Without recomputing the SROM
parameters, based on the synthetic AMI data, the SROM power was updated for
various operating conditions. The voltage errors for the varying operating conditions
were also within the targeted worst-case errors of £0.005 p.u or £0.5% for the system
model with SROM and full distribution system model.

3.3.1.1 Structure of the Reduced Order Model

The intent is to create a ROM that can capture the losses in the system with reasonably
accurate results for slightly changing operating conditions with a similar load distribution
in the system. The approach separates the load and the loss components of the
network that is being aggregated. The simple method of lumping the losses along with
the load does not capture the accurate behavior of the network losses for varying
operating conditions. This method aggregates the positive sequence models for the
three phase networks. The approach assumes the mutual coupling between the phases
is minimal for the reduced order models, however the individual phase losses are
translated into the ROM.

Figure 16 shows a single line diagram for a typical radial distribution feeder with zones
in the feeder identified where the network needs to be reduced to enable meaningful
system-level analysis. Figure 17 shows the radial distribution feeder with the ROM at
the locations where ROMs are deployed to reduce the number of feeder nodes in the
distribution network.
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Figure 16: Single line diagram of an IEEE feeder with regions of the network that were reduced

. — Parts ofthe distribution feeder needed to be aggregated

Figure 17: Single line diagram of distribution feeder with ROMs at the feeder terminals

3.3.1.2 Reduced Order Model Parameter Estimation

The approach assumes that the downstream network at the trunk node 'K' needs to be
reduced using the above-described structure of ROM. Using simple power flow
calculations and/or metering data the ROM parameters can be estimated by separating
load and loss components of the distribution feeder. The equations below use complex
powers (active and reactive power values). In real life the reactive powers may not be
metered, however using the power factors, the reactive powers can be determined. For
each phase, the below analysis is done to determine the three-phase ROMs.

SK et = SN Samr + S1oss V Downstream nodes, i € [1,N] (6)
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N
(PEaa +JQKaa) = ESAM, V Downstream nodes,i € [1,N] (7)
i=1
I[( _ <S¥otal> (8)
Downstream — T
K v K — SLoss
(RLoss +]XLoss) - K K * (9)
IDownstream X IDownstream
Where,
S Complex Powers

I Complex currents

Vv Complex Voltages

RLoss ROM Resistance that represents the network real losses.
XLoss ROM Reactance that represents the network reactive losses.

Equations (7) and (9) determine the ROM parameters from the metered data along with
network analysis. The information available from metered data is real power, voltage
magnitude at all nodes, power factors at all meter locations, network model to determine
the losses and the complex voltages. The voltage magnitudes can be used to validate
the network model simulations.

For the present project, we will develop methods to process the AMI data, utilize the
network model solutions to determine the ROMs at the identified Trunk Nodes. We will
utilize the information from the daughter nodes and where required metered data is
missing, we will augment it with the network model solutions from distribution system
solvers.

The algorithm that is developed to determine the ROM parameters based on the
strategies highlighted above is given in Algorithm 1.

Algorithm 1:

1. Perform a detailed distribution system analysis on the model to estimate: (a) the average load
power factor; (b) the average loss% for a region of the network that needs to be reduced; (c)
record the powers resulting in a synthetic AMI meter data set.

2. Using the synthetic AMI data as the input, compute: (d) the expected losses based on the
loss%; (e) the reactive power powers using the average power factor.

3. Using nominal voltage at the ROM location, determine the ROM equivalent impedance.

4. Adjust the ZIP profiles on the ROM for the three phases based on heuristics until the trunk

node voltage error is <0.005 pu.

. Validate the ROM using the field AMI data for different scenarios.

. With the feeder impedance and load profile fixed, the ROM cam be represented with just the

corresponding change in load.

o O
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3.3.1.3 Analysis and Results on IEEE 37-Bus Distribution System

The IEEE 37-Bus distribution system was used to perform analysis on the IEEE test
systems. The system has varying ZIP profiles which mimics real-world distribution
feeder characteristics. Algorithm 1 described above, was used for the analysis and
ROM development.

Figure 18 shows the IEEE 37-Node system with full network representation and the
reduced system with the structured ROM. Figure 18 (a) shows the part of the network
that is intended to be reduced in the red circle. The two parts are rooted to the trunk
node 702. The IEEE 37 bus system is a 3-phase system that is not evident from the
single line diagram, however the 3-phase structured reduced order model is shown in
Figure 16 (b).

The accuracy of the structured ROM is determined based on the accuracy of the trunk
node voltages for the model with the structured ROM (S-ROM) compared to that of the
full model.

The trunk nodes where the voltage comparison is done are Nodes: 701, 702, 703, 709,
730, 775. The error is determined for voltage at each phase at these nodes as a percent
of the deviation from the full system voltage:

VS—ROM _ VFull
=2 ? %100 % ¢ € {a,b,c} (10)

¢ Full
error V

ZA
‘_l——ww—"m—> PP+ jQF"
Zp
d—]iw—"m—» PP + g
PWWNN—s PEIT + jQET
Structured ¢

ROM '—I—’— "

O Region of Network
to be reduced

(a) Full Network with Network to be Reduced (b) Reduced Network with the Structured ROM

Figure 18: IEEE 37-node feeder and network reduction using AMI data
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3.3.1.4 Preliminary Analysis

Initially the ROM loads were set to be constant and based on the AMI maximum values.
Full information from the model was used and assumptions of reactive power metering
and realistic loss values were used. Under the unbalanced case, there was some
missing loss data due to mutual coupling.

The system of equations was consistent and non-independent. This led to non-unique
solutions, which resulted in the estimation of the mutual coupling impedance impossible
in the S-ROM. However, using engineering judgement, the mutual impedance did not
impact the load models.

Table 5 to Table 7 describe the model output accuracies at the trunk node using
different methods for estimating the mutual impedances. There were three main
parameters that determine the accuracy of the ROM:

1. The trunk node voltage used in Equation (3);

2. The Impedance computed in Equation (4), and

3. The Load profile (ZIP profile + power factor).

To understand these factors in detail and their impact, the project team evaluated
several methods of deriving the S-ROM.

3.3.1.5 Deriving S-ROM parameters
Table 5 gives the errors of the voltages at the trunk node for each phase.

Table 5: SROM Accuracy w/ Measured Voltages

Trunk nodes [Va Error (%) Vb Error (%) |Vc Error (%)
701 -0.34516 -0.2827 -0.61831
702 -0.62191 -0.49337 -1.07316
703 -0.63068 -0.49661 -1.07823
709 -0.63839 -0.49909 -1.08346
730 -0.63638 -0.49847 -1.08212
775 -0.64293 -0.49479 -1.08329

From Table 5 the errors on all the phases are quite high and this could impact the ROM
accuracy significantly. The hypothesis was that the model could achieve an error of
<0.5% (or about 0.005 pu).

Based on engineering judgment, the individual phase voltages completely decoupled
the 3-phase S-ROM. An average voltage was used to compute the S-ROM parameters.
Table 6 shows the accuracies with the average phase voltages.

Table 6: SROM Accuracy w/ Average Phase Voltage

Trunk nodes [Va Error (%) [Vb Error (%) |Vc Error (%)
701 -0.0867 -0.52758 -0.22577
702 -0.11692 -0.95559 -0.37774
703 -0.11989 -0.96012 -0.37908
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709 -0.12234 -0.96307 -0.38054
730 -0.12169 -0.96234 -0.38016
775 -0.407 -0.65816 -0.40602

Table 6 data shows very high errors shifted from phase C to Phase B and phase A
errors were computed to be much lower. However, the errors were still high. But the
issue with this method was that the voltage measurements at the trunk nodes were not
available in real life. Therefore, the nominal voltages at the trunk nodes were used. The
results of this are shown in Table 7. The accuracy of the S-ROM derived from the
nominal voltages match the accuracy with using the average voltages. This validates
the approach that used the nominal voltages at the trunk nodes as the measurements.

Table 7: SROM Accuracy w/ Nominal Phase Voltage

Trunk nodes |Va Error (%) Vb Error (%) Vc Error (%)
701 -0.0867 -0.52758 -0.22577
702 -0.11692 -0.95559 -0.37774
703 -0.11989 -0.96012 -0.37908
709 -0.12234 -0.96307 -0.38054
730 -0.12169 -0.96234 -0.38016
775 -0.407 -0.65816 -0.40602

For the initial ROM method development constant P-Q loads were used to represent the
ROM, and it clearly shows that this might be a drastic assumption as all the voltage
errors with the S-ROM seem to be negative.

The team evaluated to use ZIP load profiles with the actual power factors from the
reactive power measurements in each phase. ZIP loads can be defined as shown

below:
V2 1%
Pzip = Py PZ(V_0> +P1<V_O>+PP

Qzip = Qo <Qz (%) + 0 (VKO) + QP)
Where,

Py, Q, — base real and reactive powers of the load

P,, Q, — constant impedance fraction of real & reactive power
P;, Q; — constant current fractions of real & reactive power
Pp, Qp — constant power fractions of real & reactive power
P,+P+Pp=0;+0,+Qp=1

(10)

(11)

An average ZIP profile of [ZIP1] = [0.4 0.3 0.3] was chosen for the loads on all the three
phases that indicates 40% constant impedance load, 30% constant current load and
30% constant power load. The accuracies with the ZIP profile were reasonable and are
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shown in Table 8. The nominal phase voltages were used to determine the S-ROM
parameters.

Table 8: SROM Accuracy w/ Nominal Phase Voltage and Avg. ZIP

Trunk nodes |Va Error (%) [Vb Error (%) |Vc Error (%)
701 0.070059 -0.20155 0.0492

702 0.147888 -0.37402 0.091086
703 0.149017 -0.37552 0.091893
709 0.150172 -0.37642 0.092621
730 0.149892 -0.37619 0.092443
775 -0.01919 -0.19116 0.07356

Table 8 errors also indicate that the ZIP profile could be different for different phases as
the errors were consistently high and negative on Phase B. Therefore, the ZIP profile on
Phase B was tuned and the corresponding accuracies are shown in Table 9. The ZIP
profile for phases A and C were the average ZIP profiles ZIP Loads ZIP,, =

[0.4 0.3 0.3] and the ZIP profile for phase B was tuned to get the errors low and was
ZIP; = [0.9 0.1 0]

Table 9: SROM Accuracy w/ tuned ZIP load profiles

Trunk nodes [Va Error (%) [Vb Error (%) Vc Error (%)
701 0.006202 0.006306 0.051135
702 0.017011 0.016461 0.082249
703 0.017528 0.016556 0.082452
709 0.017814 0.016759 0.082675
730 0.017728 0.016708 0.08261

775 -0.01274 -0.00331 0.134358

This still has some challenges from practical implementation perspective. The loss and
power factor metering. Considering both averaged power factors and losses, the S-
ROM was tuned, and the parameters determined that resulted in accuracies shown in
Table 10. The accuracies are very encouraging as can be seen from Table 10. The
tuned ZIP profiles are ZIP,. = [0.4 0.3 0.3] and ZIP; = [1 0 0].

Table 10: SROM Accuracy w/ tuned ZIP load profiles and average loss & load power factors

Trunk nodes |Va Error (%) [Vb Error (%) [Vc Error (%)
701 -0.04475 -0.01099 -0.00518
702 -0.07519 -0.01027 -0.01564
703 -0.07573 -0.01042 -0.01602
709 -0.07645 -0.0104 -0.01636
730 -0.07629 -0.01041 -0.01629
775 -0.09386 -0.05355 0.045776
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3.3.1.6 Validation of the S-ROM for changing Operating Conditions
A few of the complete model loads were changed at random. Loads at nodes 712, 720
and 725 were changed that resulted in a reduction of 85 kW on phase C and 21 kW on

phase B. For the S-ROM, The ZIP profiles, the impedances, the average power factor
and average loss % were kept the same.

With just the new synthetic AMI real power data, the S-ROM load base power values
were determined, and the accuracies were compared to the new full system voltages.
The trunk node voltage errors are shown in Table 11. The overall accuracy of the S-
ROM is reasonable and worst-case error within the targeted +0.5 % (0.005 pu).

Table 11: SROM Accuracy for Changed Loading Conditions

Trunk nodes |Va Error (%) [Vb Error (%) [Vc Error (%)
701 -0.00177 -0.02971 0.088401
702 0.004375 -0.05148 0.153166
703 0.004777 -0.05171 0.153712
709 0.005019 -0.05178 0.154275
730 0.004941 -0.05176 0.154132
775 -0.02538 -0.03042 0.163088

3.3.1.7 Implementing SROM on the Arroyo-Hondo (A-H) Feeder
The A-H feeder model is a 6,534-bus radial distribution feeder with 11,641 single-phase
nodes. It has a total of 4,350 Lines and 1,770 transformers. Of the total buses, there are

3,057 load buses that include 1-phase, 2-phase and 3-phase loads. The feeder
structure is shown below in Figure 19.

O Region-4

Region-1

Figure 19: A-H Feeder model with the regions for aggregation indicated by red ovals
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To prepare for the creation of the ROM, errors in the A-H feeder model were fixed and
the fixes were informed by available AMI measurements. The OpenDSS model had
some irregularities, and the details are given below:

1) The capacitances of most of the underground (UG) cables and the overhead
(OH) lines in the feeder were very high. These were identified from the large
negative reactive losses and overall negative reactive power demand at the
substation. The power flow summaries from the OpenDSS models for the cases
before the correction and after the correction are shown below:

2) Inaccurate voltage levels for the single-phase loads in OpenDSS. In OpenDSS,
the single-phase loads should be specified with the nominal line-neutral voltage,
but the model has line-line voltages. This caused an inaccurate power demand
from the single-phase loads.

3) 50% of transformers had no downstream loads.

4) The voltage range for the loads were very wide with Vmax=2 pu and Vmin=0.7

pu.

Four regions of the A-H feeder, shown in Figure 19, that had good correlation to the
latest GIS data are used to demonstrate the application of the SROM. These 4 trunk
nodes were a mix of 1-phase, 2-phase and 3-phase nodes of varying scale as indicated
in Table 12. The smallest region has 20 consumers, and the largest region has 243
downstream consumers.

The regions of the feeders that were to be aggregated into SROMs are shown in Figure
19. The identified regions were shown with red circles, and these are replaced by SROMs
and after aggregation, these portions are replaced by the SROMs and were disconnected
from the feeder. Once disconnected, OpenDSS detects these as hanging nodes.

Table 12: Statistics of the four regions

Region Trunk Node for Each Number of Number of
Region Phases Consumers
Region- OH2960022 3 243
1
Region- OH11000029 1 39
2
Region- OH430097 2 153
3
Region- OH2530068 1 20
4

3.3.1.8 S-ROM Implementation and Validation

The Camus Energy team helped to develop a network exploration tool based on
Network-X and the GIS data of the A-H feeder model. The network exploration tool is
utilized to determine all the downstream network components for any given node. This
node is the one where the SROM will be connected to aggregate the downstream
system. For the determination of the SROM parameters, the total losses and the total
load downstream of a trunk node is needed.
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3.3.2 Parameter Estimation

Consider a set of AMI measurements consisting of voltage V, real power P, and reactive
power Q and the analysis described in the flowchart in Figure 20. When these power
flows (P and Q) are used in the network power flow model to simulate the node
voltages, these voltages may differ from the measured voltage in the AMI data. If these
differences exceed a certain threshold, it may be due to inaccurate impedance
parameters, which then need to be refined using distribution network parameter
estimation (DNPE).

mm==) Dataflow

Map AMI power data to AMI power
— Procedure load power at each node metering data
on OpenDSS Pamr

l

Solve power flow with
AMI loads on OpenDSS

:

Get power flow results

V/;MI
i
Get nodes with voltage
problems by comparing
power flow result Va
and actual measured

Vami

metering data

YES AMI voltage
Vami

NO

Calibrate Vy;; by updating
line parameter {R, X} on
OpenDSS using PE

Figure 20: Map AMI metering data to power distribution system

The objective of distribution network parameter estimation (DNPE) is to use high-
resolution AMI measurements of P, Q, and V to correct the R, X, and Xc parameters of
a set of secondary distribution lines at the sites with high-resolution AMI data (see the
red highlighted branch in Figure 21). V, and Vq are the voltages at the upstream down-
stream nodes, respectively, of these secondary lines. The ML approach used here
estimates the optimal impedance parameters using three possible methods--linear
regression algorithm, back-propagation neural network (BPNN) and long and short-term
memory model (LSTM).

3.3.2.1 Training Data Generation

The training of ML-based DNPE models, especially the BPNN, requires a large amount
of high-quality data. In the best data situation, these training data come from accurate
AMI measurements under a wide range of operating conditions on networks with
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accurately known impedance parameters. For the A-H distribution system and most
distribution networks, such data are not available or are highly uncertain. Instead, we
use power flow simulation to create these training data.

Primary Secondary
distribution distribution
network network

7 2kV/120V

Va
Service XFMR

Figure 21: The low-voltage distribution lines addressed by DNPE algorithms

The initial distribution model that seeded the process in Figure 22 is the same A-H
model. The impedance parameters X and R of the secondary distribution lines in this
model are varied (via random sampling) and the power flow model is solved for the AMI
data V, /, P, and Q. From these simulation samples, the line parameters are the labels,
and the AMI data are the inputs for model training.
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Generate n sets of
random simulation data ‘ Data flow

by running power flow n

: — Procedure
times

dataset D
Get simulation dataset [, and
labelthemas X andY
X={V,I,P,Q},
Y={R X,(C}

Shuffle and
separate dataset to
training set and testing

set
70% go for training 30% go for testing
Xtrain = {V,1,P,Q}, Xtrain = {V,1,P,Q},
Yirain = {R'Xr C} Yirain = {R'X' C}

Figure 22: Sampling and power flow simulation process used to create training and test data for the DNPE algorithms

3.3.2.2 Offline Training
The offline training process is shown in Figure 23, and the specific process is as
follows:
1. Step 1: Prepare the training data set from the previous process by splitting it
into 70% for training (Xeesan, Yeewn) @and 30% for testing (Xecws, Yeews)
2. Step 3: Construct the ML based DNPE model f and specify the model
parameters.
3. Step 4: Use the training dataset to train the model f and create model f*.
4. Step 5: Evaluate the model * using the withheld test data set (Xeces, Yeews)
5. Step 6: Based on the evaluation, terminate the training or iterate the training
until its accuracy within a preset threshold.
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Construct a ML model:
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Xpg—train = {V, 1, P, Q}
Ypp—train = {R, X}

Train the machine learning
algorithm
{Xpe—train) Y pe—train} = f~

Tune hyperparameter
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Obtain the trained model

(XPE—test ={V1 P:Q} P

Validate model
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loss within an
acceptable range?
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Available ML model for PE

£
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Figure 23: Offline training of ML-based DNPE model

3.3.2.3 Online Estimation of Pre-Trained DNPE Model

The pre-trained DNPE model is used for distribution line parameter estimation using the

process shown in Figure 24:

1. Step 1: Solve power flow model using the measured AMI data for P.
2. Step 2: Traverse the entire distribution network to find the nodes where the
difference between the simulated and measured voltages is larger than a

prescribed threshold.

3. Step 3: Normalize the data at the nodes from Step 2 and serve the data as
input to the trained DNPE model f*.

o~

Step 4: Use DNPE model f* to compute a set of new impedance parameters.
Step 5: Update the impedance parameters in the original power flow model

and repeat as additional AMI data become available.
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Input AMI metering data
X = {Vamr I, Pami, @}

Make prediction
fr{&-7

Output data
P = (R R C}

Figure 24: Estimate parameters using pre-trained model

3.3.2.4 Results

A DNPE model training and testing dataset containing 10,000 frames of samples was
created. The range of the impedance parameters R and X and the range of the output
parameters U and / are shown in Table 13.

Table 13: DNPE Model Training Data Generation

Parameters Range Interval * Samples
Simulation Input R (Q) 1.345 — 6.345 0.05 * 100
X(Q) 0.5124 — 5.5124 0.05 * 100

Simulation Output

U (V)

110.015 - 130.97

| (A)

0.15-12

Table 14 shows a subset of the results (for two overhead (OH) lines labeled “A” and “B”)
from applying the DNPE approach to the A-H substation circuits. Prior to applying
DNPE, the compute node voltages were 2-4 volts different (out of roughly 120 volts)
from the measured AMI data. These differences are significant and would modify both
the operational and planning decisions for these circuits. After applying DNPE and
refining the R and X values in the secondary circuits, the simulated and measured
voltage differences are within about 0.2 volts. Using our DNPE approach, it is possible
to estimate correct line parameters at various locations with less computational burden
than model-based methods.

Two metrics were used to evaluate the performance of the developed ML model — Mean
square error (MSE) and mean average error (MAE). The metric MSE measures the
variance of the residuals. The calculated MSE is 0.0328, and MAE is 0.179, which
shows the estimated parameters from the proposed model are close to actual values.
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Table 14: Voltage magnitudes seen in 2 overhead lines with and without parameter estimation

Pre DNPE Post DNPE AMI
OH Line A 126.425 122.702 122.5
OH Line B 131.675 129.343 129.5
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3.4 Task 4: Software Integration

Task 4 resulted in the integration of customer load and short term PV forecasts (subtask
4.2), and intraday PV forecasts (subtask 4.3) as described in Sections 3.4.2 and 3.4.3 of
this document respectively. Efforts to fully integrate the power flow simulator (subtask
4.1) and the network parameter estimation (subtask 4.4) were unsuccessful; these
efforts are described in Sections 3.4.1 and 3.4.4.

Figure 25 shows an architectural diagram for the forecasting components that were
integrated into the larger Camus system. The forecasting system uses the ingestion
pipeline as input data and produces the load and generation forecasts used by the
physical models. The PV Process and AMI Process along with the HRRR Data Fetcher
were implemented as part of the project. These composable Time Series Model
components were integrated in the framework and deployed using the Camus Forecast
System cloud architecture shown below. The entire Time Series Models library was
released as part of the project. The cloud service architecture is representative of the
broader Camus owned system. The emphasis on production system engineering you
can see here is characteristic of our approach to these systems, focusing on speed and
scalability.

New Grid Process to JEURRSEEE ’ ‘,
Forecast . b

" Google Cloud Platform -
GCP Compute Engine

Managed Instance Groups

_ , Model Runtime Registry
Ingest grid data Ingest additional ' (EePAiEE i)
product for feature data (as
supervised ML needed) h -
GCP GCP
‘.. | Managed DB PubSub /
P 1 GCP Storage | /
Composable TS Model Git & CI/CD ! GCP Conipute Engine (Zarr Format) 1
Implement Data Fetcher Managed Instance Groups
A ]

A
. Forecast Product Forecast |
/ Mgmt Service Ingestion |
Composable TS Model

Implement Process .
features

Forecast Product
Composable TS Model Mgmt Service

Configuration GRPC Client

Colab Notebook
Full Scale Back Testing &
Evaluation

Colab Notebook
Development & Small Scale Back Testing /

Figure 25: Architectural diagram for forecasting components in Camus Energy system

Additionally, a summary of algorithms used in Task 4 are described in Table 15 along
with input data and assumptions. Camus’s load forecast system uses supervised
machine learning, a type of artificial intelligence that can learn complex behaviors from
previous observations to make future predictions. Specifically, we are using XGBoost
for supervised machine learning. This is an open-source library of “boosted tree”
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models, which combine decision trees in ways that strengthen predictions while limiting
overfitting. A decision tree on its own is generally not good at prediction, but a series of
decision trees can be quite powerful, with each tree correcting the errors of the previous
one. We have found that XGBoost strikes a good balance: It is fast and efficient, it is
good at learning nonlinear relationships among the input features, and the results are

explainable.
Table 15: Summary of algorithms used in Task 4
Algorithm Used Input Data & Assumptions
Gap Filling Linear interpolation & AMI data; drop missing observations in
imputation training sets
Load Forecasting | XGBoost on AMI data, SCADA data, GIS, weather data,
autoregressive features | attributes (i.e. rate class, DER), seasonality
& endogenous data;
cohorting
PV Forecasting Physics based PV NOAA HRRR, PV configuration
models
Reduced Order Machine Learning Feeder model, AMI
Model Based Network
Parameter Estimation
using AMI data
Ditto Feeder model, load snapshot
improvements

3.4.1 Power Flow Simulator Integration

Our goal was to integrate GridAPPS-D (or other power flow model) into our software
pipelines to be able to run it at scale. We containerized the power flow simulator and
integrated it into our systems using a python-based API. We performed validation tests
on the IEEE 4-bus distribution test network. And we ran it in our systems as a quasi-
static time series (QSTS) simulation that automatically advanced through consecutive
timesteps, solving at each step and retaining its quasi-static state. Power flow inputs
(load/generation using AMI usage and actual PV production) were applied at each note
as it advanced through time.

Despite these efforts, we struggled to run the simulator at scale. We found that

converting the models into OpenDSS format was difficult and required modifications to
NREL's DiTTo python package. Camus Energy submitted multiple contributions to the
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NREL Ditto project to enable the GRIDLAB-D to OpenDSS workflow. These
contributions are publicly available and documented on GitHub®.

After exploration of the Kit Carson data set and power flow model, we determined it had
significant missing data. We decided it would be more effective to perform this
integration on another distribution cooperative’s system. We chose a feeder because of
reasonable completeness of AMI data at the service meter endpoints that had
approximately 2700 meters and 1250 distribution transformers. As is, the OpenDSS
power flow model we received had several issues. The model was incomplete and load
nodes at the ends of secondary lines were missing. The model was also plagued with
inconsistencies with several key fields such as phasing, power ratings, and voltage
bases of distribution transformers often not in agreement with GIS data. Anecdotally,
this is not surprising: power flow models are not updated as frequently as the
distribution grid inventory and are more often than not out of sync with GIS data. To
resolve these discrepancies, we modified OpenDSS files based on GIS inputs. For
instance, we created Loads.dss representing all the load nodes in the system,
aggregated at the distribution transformer level. This process was tedious and
painstaking as OpenDSS (or any power system tool) relies on consistency between
various elements in the power system for convergence.

We developed a power flow simulation tool which interfaces with OpenDSS via
opendssdirect an official python extension of OpenDSS. Given OpenDSS files and AMI
data, this tool solves snapshots sequentially and records metrics for post-processing.

The following Figure 26 shows voltage distributions across the feeder at two distinct
time instances. At 01:00 hrs local time, the majority of bus voltages (per unit) are in the
range of 1.015-1.030, while this distribution shifts to 1.005-1.015 at 19:00 hrs local time.
This shift stems from the higher load in the circuit in the evening hours.
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6 https://github.com/nlaws-camus/ditto
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Figure 26: Voltage distributions at two distinct time instances
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It is also interesting to see the diurnal variation in bus voltages in different parts of the
feeder. In the following Figure 27, bus 643317 is farther towards the end of the lines and
shows relatively exaggerated voltage excursions compared to the more centrally
situated bus 655019.
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Figure 27: Diurnal variation in bus voltages in different parts of the feeder

3.4.2 Customer Load and Short-Term PV Integration

We integrated the highest performing ML methods from Task 2.1, including
parallelization and performance tuning, to meet real-time reporting requirements.

We select the inputs (or “features”) drawing on our collective knowledge and
experience. We tune these inputs for each forecast system, driven by the unique
characteristics and behaviors of each distribution grid. The forecast model learns the
relationship between the inputs and the forecasted net and gross load values. The
result is a “trained” model which is later used to make predictions based on new inputs

46



DocuSign Envelope ID: 8E2D3851-6F5D-44D3-9004-415465A1C2BF

and the learned historical behaviors. Features include harmonics, day of week, lags,
temperature, humidity, and downward shortwave radiation flux.

Cohort-based modeling enables us to leverage all the available data to inform our
forecast at each individual load point without incurring massive compute costs. We use
metadata to divide load points into cohorts with similar load behavior. This enables the
forecast system to learn the load behaviors from data across many substations without
the complexity and cost of distinct models. We then use each cohort model to make
individual predictions for every load point, allowing the forecast to adapt to changes.

Customer load and short-term PV forecasts solve several challenges for distribution
utilities. First, it allows for gap-filling of data in the case data is missing, as seen on May
29 in Figure 28.
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Figure 28: Gap filled generation and production data

Second, it allows for the estimation of solar PV production for systems that do not have
a production meter, as seen in Figure 29:
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Figure 29: Estimated generation at non-metered PV system

Third, it closes the collection gap between energy consumption and production, and
when those readings are available to various systems. For example, in Figure 30, data
from June 14 may not be available until June 16, but the nowcasts can be used to close

this gap, making the data available in real time.
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Figure 30: Closing data collection gap

3.4.3 Intraday PV forecast integration

We completed the infrastructure work to support integration of load and forecasting
models into the Camus testing environment, including the assessment of computational
requirements, development of parallel computing approaches, and validation and
demonstration of gap filling on historical AMI data.

The Camus PV forecasts leverage information about the physical system (such as the
AC and DC capacity of the system, tilt, and orientation) along with weather data
forecasts from the National Oceanic and Atmospheric Administration (NOAA). The
NOAA weather forecasts, available directly in the cloud through the NOAA Open Data
Dissemination program, are a key input in our forecast system. These high resolution
weather forecasts update every hour for an 18-hour forecast horizon, and every 6 hours
for a 48-hour forecast horizon. NOAA developed its High Resolution Rapid Refresh
(HRRR) model to help predict renewable energy generation, and it assimilates data
from satellites, radar, ground stations, and weather balloons.

These intra-day PV forecasts along with AMI forecasts as shown in Figure 31, allow
utilities to do better short term planning.

49



DocuSign Envelope ID: 8E2D3851-6F5D-44D3-9004-415465A1C2BF

Production & Consumption

4.00 kw

S & S £ 9
- o -
~>

~

-
S
~>

~

Figure 31: Intra-day PV and AMI forecasts

3.4.4 Network Parameter Estimation

We were not able to implement a repeatable methodology for network parameter
estimation because of the difficulties associated with calibrating incomplete or dated
network models. We were not able to integrate a systematized methodology into the
software platform. This, in turn, made completing all of Task 5 subtasks equally
challenging.

3.4.5 Open Source Access to Code

In addition to integrating short term load and PV forecasts into the Camus platform, as
part of this award, Camus made the code publicly available per the End of Project
deliverable, via an Apache 2.0 license on a GitHub repository’, with data available on a
Google Cloud Storage bucket. Code will run most effectively on a Linux box but is not
coupled to any one operating system. The code includes a readme file® with an
overview of the code. A summary of the readme file is provided below.

This package provides the tools to construct machine learning models that fill gaps or
forecast in the verification datasets. This includes loading the data and applying the
XGBoost estimator. The composable model framework provides the configurable model
inputs required for the Neighbor Informed Estimates and Community Analytics. The PV
System model is also implemented using the composable model framework.

7 https://github.com/SET02243/forecasting
8 https://github.com/SET02243/forecasting/blob/main/README.md
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The API for fit, predict, and metrics is reduced to specifying a start and end times for a
given location. The model must construct feature data using column transforms. Having
done so, forecasting as a service becomes trivial.

This library is designed for use by technical engineers and data scientists. It takes
advantage of the Python data science ecosystem and therefore requires installation of
many third party open source libraries. It has been developed and tested in a Linux
operating system.

Models can be composed of mixins for various estimators and forecast processes.
These composable pieces can be put together in different ways to solve many
problems. The RegularTimeSeriesModel is the core that problem specific parts are
added to when forecasting or gap filling a particular time series. The estimator is the
next essential building block. The estimator can be either a Classifier (a discrete
estimator) or a Regressor (a continuous estimator). There are many different numerical
techniques for supervised learning estimators. The process is the last essential
component. It defines the time series being forecast and the available feature data that
might have predictive value. Having composed a Model class from these three parts, it
is then up to the user to create an instance of the class with configuration arguments
that tune the model features for the specific meter load or PV forecast.

The PV Model uses the same composable framework to define models using the HRRR
weather (see below) as an input to the NREL PySam PV generation algorithm. For the
project we used the PySam generation forecast directly using the configuration shown
below with the IdentityRegressor. Building additional input features for sites with direct
telemetry would allow using machine learning models like XGBoost too.

3.5 Task 5: Integrated Software Performance Verification

The goal of task 5 was to test and validate the performance of the software modules
that were integrated into the Camus platform. The SOPO called for the validation
against three different states of the network model: Subtask 5.1 (Approach #1
performance verification), where a network model is available and accurate, Subtask
5.2 (Approach #2 performance verification), where the network model is available but
the parameters are inaccurate, and Subtask 5.3 (Approach #3 performance verification,)
where the network model is not available.

Because of the challenges with quality in the customer sourced power flow model and
extra effort spent on correcting these models along with contributing to enhancements
to the Ditto source code (as described in detail in Section 3.4.1), we were never able to
fully integrate the power flow model into the Camus infrastructure. As a result, we were
not able to evaluate the performance of the ML/DA generated data against either the
available and accurate model in approach #1, nor the inaccurate model in approach #2.
However, we were able to assess the performance of the ML/DA generated data
against actual meter endpoint data collected from the utility as described in approach
#3.
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3.5.1 Approach #1 performance verification

The project team was unable to evaluate the ML/DA approaches against an available
and accurate model because such a model was not made available.

3.5.2 Approach #2 performance verification

The project team was unable to evaluate the ML/DA approaches against a model with
inaccurate parameters due to excessive inaccuracies in the model leading to the
inability to converge, as well as challenges in model conversion to open source
software.

3.5.3 Approach #3 performance verification

Analysis of the neighborhood informed analytics compared the gap filling outputs of the
XGBoost algorithm with the true data. The verification process included data from a full
month of operations. Data was collected at 15-minute intervals for the entire month and
produced 2,976 instances. To represent missing data, portions of the set were removed
and in total equaled about 500 missing data points. Figure 32 shows the total data set
for one of the 20 meters used in the verification experiment. The blue sections in Figure
32 depict the available data, while the red indicates where data was missing. The
available and unavailable data depicted in Figure 32 represented a situation where a
meter produced unreliable data.
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Figure 32: This image depicts the data set for the verification process where the red lines indicated randomly
removed gaps in the data and the blue depicts the available data.

The neighborhood informed analysis approach proved to provide reliable estimates of
missing data. For example, applying the estimation approach for the meter highlighted
in Section 3.2.1.3.2 produced results that were close to actual. Figure 33 shows a
snapshot of the time series data for this meter. The collected data is in blue, which
includes gaps that are filled in by the true (or actual) value using the gray dashed lines.
The gap filling results are depicted with the red circles. These results did not fall exactly
on the actual line each time but provided a reasonable approximation.
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Figure 33: Sample time series plot of the gap filling for a single meter inside its group

To quantify the gap filling estimate accuracy for this meter, Figure 34 plots the
estimated versus actual. The results show that the model had a reasonable, but not
great, level of fit. The r-squared value was computed to be 0.65. A visual inspection of
the comparison indicated that the model tended to over predict at low power and under
predict when the actual power was high.
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The estimation results varied for the 20 different meters used in this experiment. For
example, the analysis of data from another meter located in a different section of the
grid produced a slightly higher r-squared value: 0.74. The estimated versus actual
results, and the least squares linear fit line are shown in Figure 35.

The overall results for all 20 meters are shown in Figure 36, which indicates that on
average the approach was able to produce very good results. The r-squared value for
the least squares fit of all the metes was 0.92. The least squares line, depicted with the
red line in Figure 36, indicated that the estimate had very little bias throughout the entire
range of actual power values. At low power, which was between 0 kW and 6 kW, the
estimate tended to provide an accurate representation of the system. Similarly, at high
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power draws above 6 kW, the estimated power tended to be correct. However, above
10 kW the estimate tended to underestimate the actual value slightly.
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Figure 36: The combined actual versus estimated power comparison for all the meters. The least-squares linear
regression produced an r-squared of 0.92
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4  Significant Accomplishments and Conclusion

The project found that ML can empower utilities by improving grid awareness in the
following areas:

1) Fill in missing data gaps for more complete visibility of system states.
2) Forecasting PV generation for more informed gap filling.
3) Estimate model parameters for efficient physics-based modeling.

The report describes the implementation of two gap filling techniques. Each technique
used the XGBoost ML algorithm but performed the training and testing tasks differently.
In some cases, the ML algorithms used here did not outperform standard approaches
but used least compute power and could be deployed with little effort. Validation of the
neighborhood ML gap filling approach resulted in high r-squared values. This indicated
that the ML approach had a strong “goodness-of-fit”.

Weather forecasts and AMI data effectively informed a PV estimation model useful for
predicting generator outputs.

Extensive work was done to generate ROM of an IEEE and an actual system. The error
results of the model were low and indicated that scaling the method will be useful for
efficiently modeling system states during current or future conditions. And parameter
estimation methods using ML can effectively identify the appropriate parameters for
modeling an electrical system accurately.
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5 Path Forward

Future work that builds on this report will include an expansion of the gap filling
analytics. One area for immediate improvement is the implementation of the cohort
training and testing approach. Other research and testing are necessary to test the
hypothesis that it will produce more accurate results when training includes proper filter
of input data to exclude gaps or erroneous data.

Also, future work can expand on the ROM work to further develop, test, and validate the
approach.
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6 Products

C. Qin, B. Vyakaranam, P. Etingov, M. Venetos and S. Backhaus, "Machine Learning
Based Network Parameter Estimation Using AMI Data," 2022 IEEE Power & Energy
Society General Meeting (PESGM), Denver, CO, USA, 2022, pp. 1-5, doi:
10.1109/PESGM48719.2022.9917034°.

9 https://www.pnnl.gov/publications/machine-learning-based-network-parameter-estimation-using-ami-
data
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