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Executive Summary 

Existing grid data sources and monitoring methods are generally stovepiped into 
operational data (e.g., SCADA), customer or billing data (metering), and 3rd party data 
(forecasting) repositories. Further, the value of this data is limited by gaps, errors, and a 
lack of data fusion. This segmentation reduces the value of the data by limiting real-
time, market, and planning analyses for solar PV.  
 
Camus Energy has created a cloud-based situational awareness software platform for 
understanding grid behavior in dynamic environments with high levels of distributed 
energy resources (DERs). Working with researchers at Pacific Northwest National 
Laboratory (PNNL), we empirically tested, downselected, and incorporated advanced 
machine learning (ML) and data analytics (DA) methods into our collection and analysis 
pipelines with the aim to apply ML/DA methods to two primary data sources: 
loads/injections at the network endpoints and flows and voltages over the network.  
 
Using ML/DA methods integrated into the Camus pipeline, we were able to create 
unified network endpoint time series data across data inputs by detecting and correcting 
gaps, estimating time series data at unmetered network endpoints, and providing 
intraday and day-ahead forecasts for all network endpoints.  
 
The activities/research tasks were organized into five major areas: 1) Use case and 
data management, 2) Endpoint Data Processing and Analysis, 3) Network Models and 
Situational Awareness, 4) Software integration, and 5) Integrated Software Performance 
Verification. The technical scope also included: 
 

● Developing high-quality, unified historical, real-time, and forecast time series data 
for all metered and unmetered network endpoints (customer load and PV 
generation and larger solar PV generation sites) and exogenous environmental 
variables (i.e., solar insolation) that drive the behavior of network endpoints. 

● Developing a physics-informed methodology for network data correlation which is 
robust to inaccurate and incomplete data sources, even in the absence of a 
power system model. 

 
Through this project, Camus Energy was able to generate state-of-the-art grid analytics 
tools by improving upon existing open source tooling already available, and adding our 
own open source code for available public use.  
 
This report describes findings from three endeavors: (1) End-Point Data Analysis; (2) 
Intra-day Solar Forecasts; and (3) Reduced Order Network Models (ROM). 
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1 Background 

Gap filling time series data typically depends on linear interpolation [1]. More recently 
gap filling advancements include machine learning techniques [2]. However, none 
leverage advanced learning approach that uses cohort training [3] or a neighborhood 
informed approach, which is described in this report.  
 
The report also describes a physics informed approach using Reduced Order Models 
(ROM). There are several methods to capture the nature of the detailed system in 
aggregated models, however there is a trade-off for these methods developed for 
multiple applications [4]- [5]. These methods have specific requirements and 
applications that includes consideration of dynamics or covering a larger range of 
operating conditions, etc. The various methods of aggregation are: 

1) Thevenin equivalents for downstream networks [4], [6] 
2) Equivalent feeder representation to capture downstream network losses 

accurately [7] 
3) Structured reduced order models for dynamics [8] 
4) System identification-based ROM (abstract dynamical model) [5] 

 
Methods described in items 1 and 2 above are ideal for steady-state models and useful 
for this application. Of these two methods, based on the data availability, the targeted 
application, the reduced order model that is proposed to be developed is the equivalent 
feeder model representation. This includes a structure of the reduced order model 
whose parameters can be determined by the system load and losses with the meter 
measurements. 
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2 Project Objectives 

Clean energy goals are threatened by a lack of understanding of the true impacts of 
distributed energy resources (DERs) and their real-time impact on grid operations. Solar 
developers in particular have identified delays in the interconnection process as a key 
barrier to both utility-scale and behind the meter DERs. Secretary Granholm has 
repeatedly identified hosting capacity and impacts analysis as a key challenge in 
deploying sufficient renewable energy to meet our clean energy deployment and climate 
targets. For both small rural cooperative utilities and large investor-owned utilities, gaps 
and lags in real-time data, stovepiping of data, and high penetration of unmetered PV all 
make quickly and accurately performing DER interconnection analysis nearly 
impossible.  
 
Unfortunately, data reliability is a significant issue. In some cases, data might be 
missing from a particular meter for large periods of time. In other cases, the data may 
be sparse and have missing data scattered throughout the data set. This report 
addresses these issues by exploring both model- and machine learning (ML)-based 
methods for filling in missing data. 
 
Through this grant, we were able to increase the availability and value of the situational 
awareness on the distribution grid through real-time gap filling, back casting, 
nowcasting, near casting, and forecasting throughout the system from net system load 
to feeder heads, to individual meter endpoints and photovoltaic (PV) production meters. 
We leveraged two techniques for applying machine learning algorithm (XGBoost) to fill 
in missing data:  
 

1. A nowcasting approach that trains using cohort data sets and estimates missing 
metered data without training on the meter itself. The outputs from this model 
produced mean square error results that were comparable to common ARIMA 
and persistence-based approaches.  

2. Using a meter's neighbors to estimate missing data values. In this case, the 
algorithm also used and produced results that generated high r-squared values.  

 
In each of these approaches the net metering of PV creates unique challenges for the 
analysis. Therefore, the report explores and defines a PV forecasting approach. The 
outputs from the forecasting are useful for improving the two gap filling approaches. The 
PV forecasting implementation used HRRR to forecast the solar irradiance at defined 
locations. The irradiance was then provided to a PV model and estimated the power 
output during clear and cloudy conditions. 
 
In some cases, the data could be so sparse that data-driven methods will not work and 
therefore require a physical model to represent the system well. In past literature, 
models were shown to represent systems with accuracy, but require significant time and 
effort to create, calibrate and maintain. With that in mind, this work implemented a 
reduced order model (ROM) that would require less work to operate. The simulation 
results of the model used to represent a single feeder in Northern New Mexico were 
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promising and could potentially provide utilities with the necessary information to make 
important decisions.     
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3 Project Results & Discussion 

The work conducted under this award was broken out into 5 subtasks as described in 
the Statement of Project Objectives (SOPO). Task 1 (data, use-cases management, 
and advisory board) consisted of convening a technical advisory board to provide input 
on data and use cases; the results of this task are described in Section 3.1. Task 2 
(customer load and short-term PV data) consisted of gathering, processing, and 
cleaning end point data, including gap filling; the outcome of this task is described in 
Section 3.2. Task 3 (Network models and situational awareness) consisted of 
developing a parameter estimation algorithm and comparing that to a power flow model; 
this work is described in Section 3.3. Task 4 (Software integration) focused on 
integrated parts of the modules from Task 2 and 3 into the Camus software platform 
and is described in Section 3.4. Finally, Task 5 (Integrated software performance 
verification) aimed to test the performance of the integrated software, as described in 
Section 3.5. 
 
In addition to the outcome of the tasks described in section 3, Table 1 shows whether, 
when, and how the milestones described in the SOPO were achieved.  
 

 
Table 1: Summary of Milestones Achieved 

Milestone Description Achieved  How 
1 The power flow model and the 

GridAPPS-D / GridLAB-D solver will 
yield a converged power flow model for 
> 95% of typical cases 

Yes (July 2021) Subtasks 3.1 and 3.2 

2 Adaptation and assessment of 
quantitative measures of accuracy of 
the ML/DA methods used for network 
endpoint analysis 

Yes (November 2021) Subtasks 2.1 

3 Availability of 6 months of historical PV 
reforecast data in the Camus software 
environment 

Yes (March 2022) Subtask 4.3 

4 Prototype of advanced Ritta software 
completes an end-to-end analysis of 
endpoint and network data in < 10 sec 
for the selected subsection of the utility 
network with: 

  

4.1 Synchronized data with granularity of < 
1 minutes for all data sources, including 
lower-frequency sources which rely on 
model-based estimates to enhance 
time resolution 

Yes (July 2022) 

Task 4 (machine 
learning model-based 
methods for fill, but at 
60-minute intervals) 

4.2 Model-based network-level situational 
awareness available at < 5-minute 
resolution Yes (July 2022) 

Task 4 (machine 
learning model-based 
methods for fill, but at 
60-minute intervals) 

5 The Camus software system achieves 
the following performance targets: End-
to-end collection and processing 
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latency of < 10 sec for high-fidelity data 
sources 

5.1 Synchronized data (including un-
metered PV) with hourly granularity 
available across the distribution 
system.  

Yes (November 2022) 

Task 4 (machine 
learning model-based 
methods for fill, but at 
60 minute intervals) 

5.2 Intra-hour forecasts for the network 
endpoints available at < 5 minute 
resolution Yes (January 2023) 

Task 4 (machine 
learning model-based 
methods for fill, but at 
60 minute intervals) 

5.3 Model-based network-level situational 
awareness available at < 5 minutes 
resolution Yes (January 2023) 

Task 4 (machine 
learning model-based 
methods for fill, but at 
60 minute intervals) 

5.4 Composite system model that 
integrates measured and interpolated 
data in < 1 sec No 

Did not run physics 
model of the system 
that integrates 
measured and 
interpolated data. 

5.5 < 10% error in inferred load / 
generation for missing, dropped, or 
unmetered endpoints; < 1% error in 
voltage and aggregate power flows in 
the medium-voltage network 

Yes (January 2023) Task 5 

 

3.1 Task 1: Data, Use-cases Management and Advisory Board 

3.1.1 Data Management Plan  
The project team consulted with Kit Carson Electric Cooperative (KCEC) to determine 
the data sets used, update the Data Management Plan, and provide a high-level 
document to summarize the use-cases as communicated by our utility partner.  
 
The Camus Energy team worked closely with Kit Carson Electric Cooperative to 
understand their needs in understanding the impacts of high penetration, largely 
unmetered PV on their system. At the time, Kit Carson was working towards their goal 
of 100% daytime power sourced from solar (since achieved in December 2022). We 
chose the Arroyo-Hondo (A-H) feeder as the first system we would explore. The A-H 
feeder has high renewables penetration, a high concentration of smart meters, and what 
seemed to be a power flow model with recent updates. 
 

Table 2: Data sources obtained on Arroyo-Hondo feeder 

Data Source Type--Resolution Record length Achieved 

Transmission 1 minute 6 months No transmission data 
collected 

SCADA 5 minute 10 months Yes, but at 15-minute 
interval 
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Customer AMI 

15 minute 3-6 months Yes 

Monthly energy 1-2 years Not obtained 

Large PV meters Time series-- 
1 minute 

7 months Yes 

GIS network and asset 
data/models 

Static n/a Yes 

 
The selected feeder had approximately 3,000 meters, 60 distributed PV systems, and 
an average load greater than 4 MW.  
 
The one-year of Kit Carson AMI data is available for use for given researchers or 
organizations obtain an NDA with Kit Carson for its use. Contact Richard Martinez, 
COO, Kit Carson Electric Cooperative, rmartinez@kitcarson.com, to execute an NDA1. 
 
In addition, sample AMI load data and weather data used to validate the forecast 
models described in sections 3.2.1 and 3.2.2 is available online without an NDA in a 
Google Cloud Storage Bucket. For the work described in Section 4.2, the PNNL power 
flow parameter estimation is also available at the same bucket.2. Readme files are 
included for both sets of data.  

3.1.2 Use-Cases Management 
The project team worked with the Technical Advisory Board (TAB) to develop a set of 
high-level use cases for situational awareness with the end goal of converting enhanced 
data streams into actionable information for distribution grid operators and planners. 
Discussions with the TAB centered around gaps between the ideal and actual data 
environment for electric distribution utilities. Figure 1 describes the ideal data 
environment where all endpoint time series data is captured at 1 minute (or better) 

 
1 Upon completion of the NDA, users may reach out to Camus Energy at seto-2243@camus.energyfor 
access to the non-public storage bucket: 
https://console.cloud.google.com/storage/browser/kcec_data;tab=objects?forceOnBucketsSortingFiltering
=true&project=seto2243&prefix=&forceOnObjectsSortingFiltering=false  
2 Available freely with any Gmail account: https://console.cloud.google.com/storage/browser/seto2243-
forecasting;tab=objects?forceOnBucketsSortingFiltering=true&project=seto2243&prefix=&forceOnObjects
SortingFiltering=false 
Or via API without a Google identity here: https://storage.googleapis.com/seto2243-forecasting/ 
Further documentation on how to access publicly available Google storage buckets is here: 
https://cloud.google.com/storage/docs/public-datasets#how_to_use_public_datasets_on 
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resolution, there are no data gaps or errors, and all endpoint data is available in near 
real time (<10-30 seconds).  
 

 
Figure 1: Ideal data environment for electric distribution utilities 

 
Figure 2 describes the actual data environment for many electric distribution utilities 
where the resolution of data is limited to monthly readings, often with a delay, and has 
gaps and/or errors. Additionally, local generation, such as distributed PV, is not 
separately metered, meaning utilities do not have insight into gross demand and end 
points.  
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Figure 2: Actual data environment for electric distribution utilities 

 
Based on this, the TAB focused on two use cases for an enhanced data environment: 

1. Case 1: Input data includes individual meter 
2. Case 2: Input data does NOT include the individual meter 

 
Use Case 1 represents the approach that most power systems and operational 
engineers at a distribution utility take in situations of sparse meter endpoint data on a 
section of the grid with a growing number of behind-the-meter (BTM) DERs. This case 
assumes that power flows on upstream assets (nearer the substation) can be estimated 
by aggregating data in the downstream flows. This estimation/aggregation is more 
formally and accurately done by solving power flow equations for the network based on 
endpoint/meter loads. Solving the power flow equations gives you the voltages, as well. 
But given sparse meter endpoint data, the aggregation step requires both net and gross 
forecasting (and now-casting given the significant delays in rural distribution 
cooperatives’ RF mesh networks to deliver advanced metering infrastructure back to the 
head end).  
 
Use Case 2 addresses situations where hourly meters are sparse on the feeder, if they 
exist at all. There are many distribution cooperatives that have monthly (or more 
infrequent) reporting of usage at meter endpoints. With such sparse data, Use Case 1 is 
not really viable, and this is a technical fallback. The utility installs some sparse 
additional sensing on the trunks of circuits to provide data for power flow and voltage. 
These data would be used in statistical methods to infer flow and voltage downstream of 
the measurement points. Given more distribution utilities are adding hourly (or more 
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frequently) advanced metering infrastructure (AMI), we focused more on Use Case 1 for 
this project.   
 

3.1.3 Technical Advisory Board 
The Camus team recruited a Technical Advisory Board (TAB) to help ensure the 
impacts of this research were properly targeted to real life utility challenges. The TAB 
members are shown in the table below. 
 

Table 3: Membership in Technical Advisory Board (TAB) 

Name Position  Organization 

Bryan Hannigan CEO Holy Cross Energy (Glenwood 
Springs, CO) 

Dan Harms Executive VP of Grid Solutions 
and Special Projects 

La Plata Electric Association 
(Durango, CO) 

Soumya Kundu Staff Research Engineer PNNL 

Emma Stewart Chief Scientist NRECA 

Chris Campbell Senior Director of Distribution & 
Telecom Operations 

Salt River Project (Tempe, AZ) 

 
The technical advisory board met 4 times throughout the duration of this project including 
once in person at the Distributech conference in Dallas, TX.  
 
The purpose of convening the TAB was to agree upon a set of high-level use cases with 
the end goal of converting enhanced data streams into actionable information for 
distribution grid operators and planners. Specifically; 

● For the TAB to provide feedback on the applicability of the results to other 
electric utilities, especially concerning the impacts of varying data quality from 
different utilities on the methods used in this project 

● For Camus to report on interesting / useful findings as the project progressed, as 
well as challenges and difficulties in achieving the intended deliverables. 

● For the TAB participants will provide feedback and recommendations on the 
status and progress of the project. 
 

Specific questions posed to the TAB during these meetings were:  
● Are we solving the right data problems?   
● Are we planning for the right use of power system modeling within Camus’s 

platform?   
● What are use cases for ML-enabled now- or near-casting? 
● How do we integrate research in user experiences? 
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The TAB facilitated use case definitions, as outlined in Section 3.1.2.  
 

3.2 Task 2: End-Point Data Processing and Analysis 

3.2.1  Customer Load and Short-Term PV Data 
3.2.1.1 Endpoint Data Pre-Processing 
 
Advanced Metering Infrastructure (AMI) data was provided by the utility partner: Kit 
Carson Electric Cooperative (KCEC) in Taos, New Mexico. The preliminary statistical 
analysis identified missing data within the yearlong set of AMI data. The cumulative 
distribution function (CDF) in Figure 3 shows how many data gaps occur for each length 
of gap, which is key information that guides our development and testing of ML/DA 
methods to fill these gaps. The assessment shows that 50% of the data gaps span 2 
reporting periods (30 minutes) or less, and 90% of the data gaps span 10 reporting 
periods (150 minutes) or less. To fill the 30-minute gaps and remove 50% of the total 
number of gaps, we anticipate that simple interpolation will be sufficiently accurate. To 
fill the next 40% of the gaps and remove 90% of the total number of gaps, we anticipate 
that more sophisticated methods will be necessary. More sophisticated methods can 
capture and reproduce (quasi) periodic behaviors of the data towards more accurate 
interpolation than a simple straight-line approximation.  
 

 

 
Figure 3: Cumulative distribution function (CDF) for the length of the gap in the KCEC AMI data. Each unit on the gap 

length axis represents a gap of one data reporting period or a 15-minute gap in the data. 
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Figure 2 shows a different interpretation of the impact of the gaps on the data received. 
Weighting each gap occurrence by the gap length gives a measure of data lost in that 
gap. Figure 4 shows the cumulative fraction of data lost for each gap length. In contrast 
to occurrence of a gap (in Figure 2), Figure 3 show that 60% of lost data would be 
recovered by filling gaps with a length of 10 reporting periods (150 minutes), and we will 
not reach 90% recovery of data until we fill gaps of 100 reporting periods (approximately 
1 day in length).  
 
The four subplots in Figure 5 show the probability distribution function (PDF) of the 
number of gaps of length N at each meter for N = 2, 4, 8, and 16, respectively. For N=2, 
nearly all the meters have between 2200 and 2800 gaps of length 2. This relatively 
narrow distribution shows that, for N=2, the failures that lead to these short gaps are 
spread relatively uniformly across the entire AMI fleet, i.e., there are no “problematic 
meters” that generate a large majority of these short data gaps. The remaining subplots 
in Figure 5 lead to the same conclusion for gaps of length N = 16.  
 

 
Figure 4: Cumulative fraction of the AMI power data lost as a function of the gap length measured in data reporting 

periods (one data reporting period = 15 minutes.) 

 
3.2.1.2 Select ML Models for Gap Filling 
Two data gap filling approaches were developed and tested using actual data from the 
field. Each used an XGBoost algorithm, but the training approach and inputs varied. 
One implementation took a cohort forecasting approach and is described in Section 
3.2.1.3. A second implementation considered data from the neighbor’s power and 
voltage to estimate gaps (Section 3.2.1.3.2). 
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Extreme Gradient Boosting (XGBoost) is a supervised machine learning algorithm 
consisting of a distributed gradient-boosted decision tree. This approach has been 
proven useful for regression, classification, and ranking. 
 
This algorithm uses decision tree ensembles, which include both classification and 
regression. The classification (often referred to as a decision) occurs as the tree is 
broken down into smaller and smaller subsets (or branches). The tree ensembles are 
useful in other modeling approaches, such as random forest. The gradient boosted tree 
approach differs in how training is administered. 
 

 
Figure 5: Probability distribution function of the number of gaps of length N at each meter for N = 2, 4, 8, and 16. 

 
The objective of the training process is to find parameters (i.e., segments of the tree) 
that reduce the training loss. This is done through an additive training approach. This 
means that what has been learned is maintained and anything new is added upon 
observation of system states. The iterative training process estimates values that start 
off at zero at time step zero. Then at each step after zero a new estimate is made using 
the formed tree and the formation of the tree is created using an optimization algorithm. 
The prediction value (𝑦) at each step (t) is estimating using the following: 
 

𝑦"!
(#) = 0	 (1) 

𝑦"!
(%) 	= 𝑓%(𝑥!) = 	𝑦"!

(#) +	𝑓%(𝑥!)	 (2) 
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𝑦"!
(&) 	= +𝑓'(𝑥!)

&

'(%

=	𝑦"!
(&)%) + 𝑓&(𝑥!)		

 
(3) 

 
One key aspect of this training process is the model complexity, which in this case is 
referred to as the regularization term. Including the complexity slightly refines the tree 
definition to be: 
 

𝑓&(𝑥) 	= 	𝑤*(+), 𝑤	 ∈ 	𝑅, 	, 𝑞:	𝑅- →	 {1,2, . . . , 𝑇} (4) 

In the above equation, w is the leaf scores vector, q assigns the data point to each leaf, 
and T represents the number of leaves. The complexity w, is defined as:    

 
   𝑤(𝑓) 	= 	𝛾𝑇	 +	%

.
𝜆 ∑ 𝑤/.,

/(%  
 

(5) 

3.2.1.2.1 Nowcast Estimates 
Nowcasting is a portmanteau that blends the word now with forecast. This implies that 
forecasting prediction methods are used to estimate current operations. In this case, the 
forecasting model was the XGBoost supervised learning algorithm.  
3.2.1.3 Implementation Method 
The learning algorithm was deployed in a cohort environment where meters were 
grouped into categories. Training involved the exposure to a subset of data out of each 
of the cohorts. The learning model had no concept of the individual meter, nor of time. 
Which means that when training ends, the model can be used to estimate missing data 
for meters that were previously not part of the training set. The learning algorithm tries 
to find the internal parameterizations that minimize the error, but the model will not be 
perfect, and some errors will exist. 
 
The nowcast models were trained using lagged features. The feature matrix includes 
back-shifted values, which are past values useful for predicting future values (i.e., 
autoregression). So, when testing occurred, to nowcast potentially unknown or missing 
values, past values of each meter were used as inputs.  
3.2.1.3.1 Results 
The implementation of the XGBoost algorithm, using the cohort training and testing 
approach, produced varied results. In most cases, the outputs accurately represented 
the system, as shown in Figure 6. But, in some cases, the outputs did not represent the 
performance of the meter well. 
 
These results were compared with other common approaches including ARIMA and 
Persistence models. It turned out that using training with missing data points using the 
proposed approach resulted in root mean square error (RMSE) results that were greater 
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than the ARIMA and persistence results. The undesirable result is likely caused by the 
training that included gaps. Removal of the gaps is anticipated to improve the 
performance significantly. 
 

 
Figure 6: Results for the nowcasting implementation on 16 meters 

The comparison of the three approaches, were tested on electric meters X1, X2, X3, 
and X4, shown in Table 4. As stated before, there was variation in the performance. For 
meters X1 and X2 the ARIMA and Persistence approaches did better in all cases. But, 
for meters X3 and X4, the ML was about the same as the 3-hr ARIMA and the 3-hr 
Persistence. The 6-hr ARIMA and Persistence did noticeably worse than the ML 
approach. On average, however, the ML did worse than each of the other four 
implementations.  
3.2.1.3.2 Neighbor Informed Estimates 
Likely missing data occurs at random meter locations and not in a concentrated area. 
Although not proven, an example of this idea is shown in Figure 7 where the number of 
missing data points for a single day are plotted as a heat map. Most of the meters with 
missing data in this example did not have any data for the entire day (i.e., 96 missing 
data points for an expected 15-minute data increment data set.) There were some 
meters that had a smaller number of missing data points, including 10 missing data 
points and 53 missing. 
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Table 4: Cohort model results comparison 

RMSE (W) ML model (1 hr) 
Grid search 

AR features only 

ARIMA  
(3 hr) 

Persistenc
e (3 hr) 

ARIMA (6 
hr) 

Persistence 
 (6 hr) 

Meter X1 0.397 (.451) 0.197 (.451) 0.199 0.230 0.265 

Meter X2 0.181 (.118) 0.048 (.139) 0.052 0.054 0.059 

Meter X3 1.14 (1.57) 1.132 (1.57) 1.191 1.476 1.361 

Meter X4 1.40 (2.44) 1.451 (2.62) 1.042 1.635 1.492 

Average of 
4 meters 

0.865(1.14) 0.707 (1.19) 0.621 0.849 0.794 

 

 
Figure 7: Example map of missing data points for a day of operations 

 
To estimate the missing data and fill in the gaps, the proposed method considered the 
measurements of nearby meters to inform a ML. More specifically, the data from nearby 
meters were used as inputs into an XGBoost algorithm [1] that outputs an estimate of 
the meters measured data. Using the neighbor’s data to estimate gaps, especially gaps 
that extend more than 6 hours, will be more reliable than depending on its own lagged 
data to estimate missing points. 
3.2.1.3.3 Community Analytics 
Gap filling using the community data entailed a comparison of nearby meters with the 
meter that requires gap filling. Figure 8 depicts this method spatially. In the figure, the 
meter that requires gap filling is shown in blue and nearby meters are depicted with gray 
circles. A time series comparison of this evaluation is shown in Figure 9, where the 
meter (or node) that requires gap filling is in black, the average of the neighbors around 
it is in blue, and their standard deviation is indicated in the blue shade. The figure 

DocuSign Envelope ID: 8E2D3851-6F5D-44D3-9004-415465A1C2BF



23 
 

includes the power and the voltage for both the meter in question and its neighboring 
group. 

 
Figure 8: This image shows the spatial proximity of the gap filling meter with its neighbors 

 

 

Figure 9: The time series power and voltage for the gap filling meter (node) and the neighboring meters statistics 

 
The analysis tested two input approaches: 

1. Input Option A:  
a. Group Average Power 
b. Group Standard Deviation 
c. Group Average Voltage 

2. Input Option B:  
a. Group Average Power 
b. Group Standard Deviation 
c. Group Average Voltage 
d.  Lagged value for the gap meter needing gap filling. 

3.2.1.3.4 Gap Filling Results Using Inputs A 
Using only the data from the group as inputs into the algorithm, the approach was able 
to represent the system relatively well. The top part of Figure 10 shows the training 
period in gray and the testing was where the red lines overlap with the gray. Over this 
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10-day period the estimate represented the general variation in the metered load will. It 
is however evident that the estimate included unnecessary noise that resulted in 
significant variation from the actual. This provides some evidence that the approach 
could be effective but requires further investigations of hundreds or thousands of meters 
to prove its overall accuracy. 
3.2.1.3.5 Gap Filling Results Using Inputs B 
The second implementation of the neighborhood-based approach included lagged 
values of the meter with missing data points. This would be effective in situations where 
the data is available to estimate the missing gaps. For this meter, the estimate followed 
closely with the actual values, as shown in Figure 10. In addition to capturing the 
general behaviors of the metered load, the extra input reduced the noise observed in 
the previous implementation that did not include a lagged value. 

 
Figure 10: Sample results for the algorithm that used input option A for training 

 
Figure 11: Sample results for the algorithm that used input option B for training 
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3.2.2 Intra-Day PV Forecast 

3.2.3 PV System Modeling 
Solar PV forecasts deployed in Camus’s software uses the National Oceanic and 
Atmospheric Administration’s (NOAA’s) High-Resolution Rapid Refresh (HRRR) 
forecasts3 and leverage’s the National Renewable Energy Laboratory’s PySAM model4. 
A summary of the solar PV pipeline is shown Figure 12.  

 

 
Figure 12: Solar PV forecast pipeline 

HRRR is a cloud-resolving, convection-allowing atmospheric model, available in a 3 x 3 
km grid, and are made every hour for up to 18 hours in the future, and every 6 hours for 
up to 48 hours in the future5. Data includes DNI, DHI, GHI, air temperature, wind speed, 
and visibility. Data is retrieved from a NOAA API endpoint in the grid file format, 
converted to zarr, aggregated by horizon, and then parsed for radiation data.  
 
PySAM is a Python package that is used in Python code to make calls to SAM’s 
simulation core, enabling access to many default values and component libraries. For 
smaller, customer-sited PV systems, where detailed information about the solar system 
(beyond rated capacity) is not readily available, we use the PVWatts implementation of 
PySAM, which requires only location and system size as inputs. Larger, utility owned 
and/or controlled systems are modeled in more detail to include specific inverter and 

 
3 https://rapidrefresh.noaa.gov/hrrr/ 
4 https://sam.nrel.gov/software-development-kit-sdk/pysam.html 
5 Future work includes the integration of 15-minute forecasts as they become available from NOAA. 
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panel manufacturer, tracking, and orientation of the system. Current applications of 
solar PV forecasts (along with load forecasts) in Camus’ software include informing the 
dispatch of large-scale storage systems, and accounting for the shadow load of un-
metered DERs for grid restoration workflows.  
3.2.3.1 PySam Model Validation 
We used NREL’s PySAM to model a 1.792 MW-DC/1.525 MW-AC solar PV system 
located at Sunnyside Ranch (SSR) in western Colorado. Key model inputs are 
described below:  

● System size: 1.792 MW-DC/1.525 MW-AC 
● Module: Hanwa Solar HSL (from spec sheet using the SAM simple efficiency 

module): Temperature coefficient: -0.41%/deg. C; Area: 1.995622 m2; Max 
power voltage: 36.8 Vdc, Open circuit voltage: 45 Vdc, Module structure: 
glass/cell/polymer - open rack, Module efficiency: 15.6 % 

● Inverter: Yaskawa Solectrica SGI 500XTM (from SAM inverter library [2]) 
● Electrical configuration: estimated using SAM logic based on DC/AC ratio. 
● Tracking and orientation: 1 axis tracking, 0-degree tile and azimuth, GCR: 0.3  

To validate the SAM representation of SSR, we compared the 2020 observed system 
output with 2020 NSRDB data (2020 is the most recent year for which AMY data is 
available from the NSRDB). Because of the NSRDB’s 4 x 4 km resolution, and the 
varied weather conditions in this location, we don’t expect perfect alignment; results for 
5 days in November are shown in Figure 13.  

 

 
Figure 13: Comparison of actual versus modeled 

3.2.3.2 Implementation 
Finally, we re-forecast PV by executing the PySAM model as described above with 
NOAA forecasted weather. A comparison of PV forecasts with the actual AMI readings 
from SSR is shown in Figure 14 for 6- and 24-hour horizons. In general, the model 
shows reasonably good agreement with AMI data, both qualitatively and quantitatively. 
Note that for the 24-hour horizon case (right), a comparison is only possible every 6 
hours when multi-day forecasts are made available by NOAA. Differences between the 
two are expected and are attributed to simplifications in model configurations (e.g., 
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system architecture, inverter parameters, module variations), features not accounted for 
by the model (e.g., snowfall), forecasting error, and inaccuracies in AMI data. 
 

 

 
Figure 14: PV forecast for 6-hr horizon (left) and 24-hr horizon (right). The modeled results are shown in black and 

are compared with the actual data in blue 

MAPE (Mean Absolute Percent Error) scores for forecasts made for various hours with 
several horizons (6, 12, 24 and 48 hours) over a six-month period- January 2022 to 
June 2022. The MAPE score for a given hour and horizon (say) hour = 11 and horizon = 
6 represents the mean absolute error for PV power (kW) production at 11 am based on 
the forecast provided at 5 am local time. The MAPE for most hours is between 20-30%. 

 
MAPE is not a perfect metric, because a few poor forecast values can skew the overall 
metric. This is clearly illustrated in Figure 15 where the computed MAPE for the three-
day period is 34.77% even though 75% of the predictions have <7% error. 

 
Figure 15: PV forecast for 6-hour horizon compared with AMI data 
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3.3 Task 3: Network Models & Situational Awareness 

3.3.1 Physics Informed Methods 
This work developed an equivalent feeder representation method. The method 
aggregated the down-stream distribution network into single loads and line losses. A 
detailed analysis used the IEEE test systems. Implementation defined the accuracies 
and the parameters sensitivities that impact the ROM parameter estimation.  
 
The analysis showed that the ROM should be modeled as a ZIP load connected to an 
impedance to represent the losses correctly. The accuracy of the ROM is measured 
against the trunk node voltages observed in the complete model. The method accounts 
for a practical implementation by considering the available measurements: real power 
metering, voltage magnitude (no phasor information is available), no metering for trunk 
node voltages, etc.  
 
After testing using the IEEE model, the Structured ROM (SROM) method was 
implemented on an actual utility feeder model. The analysis included AMI data and 
system models for Kit Carson Electric Cooperative (KCEC) in Northern New Mexico, 
U.S.A.  
 
The Arroyo-Hondo (A-H) model in OpenDSS initially included many errors that were 
corrected to ensure the SROM implementation was accurate. Four trunk nodes were 
selected for aggregating the downstream parts of the system into a SROM. Synthetic 
AMI data was used to derive the SROM parameters. The accuracy of the voltages of 
the network with SROM and the full distribution system network were within the targeted 
±0.005 p.u or ±0.5% of the absolute voltage values. Without recomputing the SROM 
parameters, based on the synthetic AMI data, the SROM power was updated for 
various operating conditions. The voltage errors for the varying operating conditions 
were also within the targeted worst-case errors of ±0.005 p.u or ±0.5% for the system 
model with SROM and full distribution system model. 
3.3.1.1 Structure of the Reduced Order Model 
The intent is to create a ROM that can capture the losses in the system with reasonably 
accurate results for slightly changing operating conditions with a similar load distribution 
in the system. The approach separates the load and the loss components of the 
network that is being aggregated. The simple method of lumping the losses along with 
the load does not capture the accurate behavior of the network losses for varying 
operating conditions. This method aggregates the positive sequence models for the 
three phase networks. The approach assumes the mutual coupling between the phases 
is minimal for the reduced order models, however the individual phase losses are 
translated into the ROM. 
 
Figure 16 shows a single line diagram for a typical radial distribution feeder with zones 
in the feeder identified where the network needs to be reduced to enable meaningful 
system-level analysis. Figure 17 shows the radial distribution feeder with the ROM at 
the locations where ROMs are deployed to reduce the number of feeder nodes in the 
distribution network. 
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Figure 16: Single line diagram of an IEEE feeder with regions of the network that were reduced 

 

 
Figure 17: Single line diagram of distribution feeder with ROMs at the feeder terminals 

 
3.3.1.2 Reduced Order Model Parameter Estimation 
The approach assumes that the downstream network at the trunk node 'K' needs to be 
reduced using the above-described structure of ROM. Using simple power flow 
calculations and/or metering data the ROM parameters can be estimated by separating 
load and loss components of the distribution feeder. The equations below use complex 
powers (active and reactive power values). In real life the reactive powers may not be 
metered, however using the power factors, the reactive powers can be determined. For 
each phase, the below analysis is done to determine the three-phase ROMs. 
 

𝑆,0&123 = ∑ 𝑆456 + 𝑆70889
!(% ∀	𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚	𝑛𝑜𝑑𝑒𝑠, 𝑖	 ∈ [1	, 𝑁]  (6) 
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L𝑃701-3 + 𝑗𝑄701-3 P =+𝑆456

9

!(%

	∀	𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚	𝑛𝑜𝑑𝑒𝑠, 𝑖	 ∈ [1	, 𝑁]	 (7) 

𝐼:0;<8&=>1?3 = R
𝑆,0&123

𝑉3
T
∗

	 (8) 

(𝑅70883 + 𝑗𝑋70883 ) = R
𝑆7088

𝐼:0;<8&=>1?3 × 𝐼:0;<8&=>1?3 ∗T	 (9) 

 
Where, 
S Complex Powers 
I Complex currents 
V Complex Voltages 
RLoss ROM Resistance that represents the network real losses. 
XLoss ROM Reactance that represents the network reactive losses. 
 
Equations (7) and (9) determine the ROM parameters from the metered data along with 
network analysis. The information available from metered data is real power, voltage 
magnitude at all nodes, power factors at all meter locations, network model to determine 
the losses and the complex voltages. The voltage magnitudes can be used to validate 
the network model simulations. 
 
For the present project, we will develop methods to process the AMI data, utilize the 
network model solutions to determine the ROMs at the identified Trunk Nodes. We will 
utilize the information from the daughter nodes and where required metered data is 
missing, we will augment it with the network model solutions from distribution system 
solvers. 
 
The algorithm that is developed to determine the ROM parameters based on the 
strategies highlighted above is given in Algorithm 1. 
 
Algorithm 1: 
1. Perform a detailed distribution system analysis on the model to estimate: (a) the average load 

power factor; (b) the average loss% for a region of the network that needs to be reduced; (c) 
record the powers resulting in a synthetic AMI meter data set. 

2. Using the synthetic AMI data as the input, compute: (d) the expected losses based on the 
loss%; (e) the reactive power powers using the average power factor. 

3. Using nominal voltage at the ROM location, determine the ROM equivalent impedance. 
4. Adjust the ZIP profiles on the ROM for the three phases based on heuristics until the trunk 

node voltage error is <0.005 pu. 
5. Validate the ROM using the field AMI data for different scenarios. 
6. With the feeder impedance and load profile fixed, the ROM cam be represented with just the 

corresponding change in load. 
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3.3.1.3 Analysis and Results on IEEE 37-Bus Distribution System 
The IEEE 37-Bus distribution system was used to perform analysis on the IEEE test 
systems. The system has varying ZIP profiles which mimics real-world distribution 
feeder characteristics. Algorithm 1 described above, was used for the analysis and 
ROM development.  
 
Figure 18 shows the IEEE 37-Node system with full network representation and the 
reduced system with the structured ROM. Figure 18 (a) shows the part of the network 
that is intended to be reduced in the red circle. The two parts are rooted to the trunk 
node 702. The IEEE 37 bus system is a 3-phase system that is not evident from the 
single line diagram, however the 3-phase structured reduced order model is shown in 
Figure 16 (b).  
 
The accuracy of the structured ROM is determined based on the accuracy of the trunk 
node voltages for the model with the structured ROM (S-ROM) compared to that of the 
full model. 
 
The trunk nodes where the voltage comparison is done are Nodes: 701, 702, 703, 709, 
730, 775. The error is determined for voltage at each phase at these nodes as a percent 
of the deviation from the full system voltage: 
 

𝑉A>==0= =
𝑉A
B)CD5 − 𝑉A

EF22

𝑉A
EF22 × 100			%														𝜙 ∈ {𝑎, 𝑏, 𝑐}	 (10) 

 
 
 

Figure 18: IEEE 37-node feeder and network reduction using AMI data 
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3.3.1.4 Preliminary Analysis 
Initially the ROM loads were set to be constant and based on the AMI maximum values. 
Full information from the model was used and assumptions of reactive power metering 
and realistic loss values were used. Under the unbalanced case, there was some 
missing loss data due to mutual coupling.   
 
The system of equations was consistent and non-independent. This led to non-unique 
solutions, which resulted in the estimation of the mutual coupling impedance impossible 
in the S-ROM. However, using engineering judgement, the mutual impedance did not 
impact the load models.  
 
Table 5 to Table 7 describe the model output accuracies at the trunk node using 
different methods for estimating the mutual impedances. There were three main 
parameters that determine the accuracy of the ROM:  

1. The trunk node voltage used in Equation (3);  
2. The Impedance computed in Equation (4), and  
3. The Load profile (ZIP profile + power factor).  

 
To understand these factors in detail and their impact, the project team evaluated 
several methods of deriving the S-ROM. 
3.3.1.5 Deriving S-ROM parameters 
Table 5 gives the errors of the voltages at the trunk node for each phase.  
 

Table 5: SROM Accuracy w/ Measured Voltages 

Trunk nodes Va Error (%) Vb Error (%) Vc Error (%) 
701 -0.34516 -0.2827 -0.61831 
702 -0.62191 -0.49337 -1.07316 
703 -0.63068 -0.49661 -1.07823 
709 -0.63839 -0.49909 -1.08346 
730 -0.63638 -0.49847 -1.08212 
775 -0.64293 -0.49479 -1.08329 

 
From Table 5 the errors on all the phases are quite high and this could impact the ROM 
accuracy significantly. The hypothesis was that the model could achieve an error of 
<0.5% (or about 0.005 pu).  
 
Based on engineering judgment, the individual phase voltages completely decoupled 
the 3-phase S-ROM. An average voltage was used to compute the S-ROM parameters. 
Table 6 shows the accuracies with the average phase voltages. 
 

Table 6: SROM Accuracy w/ Average Phase Voltage 

Trunk nodes Va Error (%) Vb Error (%) Vc Error (%) 
701 -0.0867 -0.52758 -0.22577 
702 -0.11692 -0.95559 -0.37774 
703 -0.11989 -0.96012 -0.37908 
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709 -0.12234 -0.96307 -0.38054 
730 -0.12169 -0.96234 -0.38016 
775 -0.407 -0.65816 -0.40602 

 
Table 6 data shows very high errors shifted from phase C to Phase B and phase A 
errors were computed to be much lower. However, the errors were still high. But the 
issue with this method was that the voltage measurements at the trunk nodes were not 
available in real life. Therefore, the nominal voltages at the trunk nodes were used. The 
results of this are shown in Table 7. The accuracy of the S-ROM derived from the 
nominal voltages match the accuracy with using the average voltages. This validates 
the approach that used the nominal voltages at the trunk nodes as the measurements. 
 

Table 7: SROM Accuracy w/ Nominal Phase Voltage 

Trunk nodes Va Error (%) Vb Error (%) Vc Error (%) 
701 -0.0867 -0.52758 -0.22577 
702 -0.11692 -0.95559 -0.37774 
703 -0.11989 -0.96012 -0.37908 
709 -0.12234 -0.96307 -0.38054 
730 -0.12169 -0.96234 -0.38016 
775 -0.407 -0.65816 -0.40602 

 
For the initial ROM method development constant P-Q loads were used to represent the 
ROM, and it clearly shows that this might be a drastic assumption as all the voltage 
errors with the S-ROM seem to be negative. 
 
The team evaluated to use ZIP load profiles with the actual power factors from the 
reactive power measurements in each phase. ZIP loads can be defined as shown 
below: 
 

𝑃G6H = 𝑃# R𝑃G \
𝑉
𝑉#
]
.
+ 𝑃6 \

𝑉
𝑉#
] + 𝑃HT	 (10) 

𝑄G6H = 𝑄# R𝑄G \
𝑉
𝑉#
]
.
+ 𝑄6 \

𝑉
𝑉#
] + 𝑄HT	 (11) 

 
Where, 
𝑃!, 𝑄! →	 base real and reactive powers of the load 
𝑃" , 𝑄" →	constant impedance fraction of real & reactive power 
𝑃# , 𝑄# 	→	constant current fractions of real & reactive power 
𝑃$ , 𝑄$ →	constant power fractions of real & reactive power 
𝑃" + 𝑃# + 𝑃$ = 𝑄" + 𝑄# + 𝑄$ = 1  
 
An average ZIP profile of [𝑍𝐼𝑃1] = [0.4	0.3	0.3] was chosen for the loads on all the three 
phases that indicates 40% constant impedance load, 30% constant current load and 
30% constant power load. The accuracies with the ZIP profile were reasonable and are 
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shown in Table 8. The nominal phase voltages were used to determine the S-ROM 
parameters. 
 

Table 8: SROM Accuracy w/ Nominal Phase Voltage and Avg. ZIP 

Trunk nodes Va Error (%) Vb Error (%) Vc Error (%) 
701 0.070059 -0.20155 0.0492 
702 0.147888 -0.37402 0.091086 
703 0.149017 -0.37552 0.091893 
709 0.150172 -0.37642 0.092621 
730 0.149892 -0.37619 0.092443 
775 -0.01919 -0.19116 0.07356 

 
Table 8 errors also indicate that the ZIP profile could be different for different phases as 
the errors were consistently high and negative on Phase B. Therefore, the ZIP profile on 
Phase B was tuned and the corresponding accuracies are shown in Table 9. The ZIP 
profile for phases A and C were the average ZIP profiles ZIP Loads 𝑍𝐼𝑃%& =
[0.4		0.3		0.3] and the ZIP profile for phase B was tuned to get the errors low and was 
𝑍𝐼𝑃' 	 = 	[0.9		0.1		0] 
 

Table 9: SROM Accuracy w/ tuned ZIP load profiles 

Trunk nodes Va Error (%) Vb Error (%) Vc Error (%) 
701 0.006202 0.006306 0.051135 
702 0.017011 0.016461 0.082249 
703 0.017528 0.016556 0.082452 
709 0.017814 0.016759 0.082675 
730 0.017728 0.016708 0.08261 
775 -0.01274 -0.00331 0.134358 

 
This still has some challenges from practical implementation perspective. The loss and 
power factor metering. Considering both averaged power factors and losses, the S-
ROM was tuned, and the parameters determined that resulted in accuracies shown in 
Table 10. The accuracies are very encouraging as can be seen from Table 10. The 
tuned ZIP profiles are 𝑍𝐼𝑃%& 	 = 	[0.4		0.3		0.3]	𝑎𝑛𝑑	𝑍𝐼𝑃' 	 = 	[1		0		0]. 
 

Table 10: SROM Accuracy w/ tuned ZIP load profiles and average loss & load power factors 

Trunk nodes Va Error (%) Vb Error (%) Vc Error (%) 
701 -0.04475 -0.01099 -0.00518 
702 -0.07519 -0.01027 -0.01564 
703 -0.07573 -0.01042 -0.01602 
709 -0.07645 -0.0104 -0.01636 
730 -0.07629 -0.01041 -0.01629 
775 -0.09386 -0.05355 0.045776 
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3.3.1.6 Validation of the S-ROM for changing Operating Conditions 
A few of the complete model loads were changed at random. Loads at nodes 712, 720 
and 725 were changed that resulted in a reduction of 85 kW on phase C and 21 kW on 
phase B. For the S-ROM, The ZIP profiles, the impedances, the average power factor 
and average loss % were kept the same.  
 
With just the new synthetic AMI real power data, the S-ROM load base power values 
were determined, and the accuracies were compared to the new full system voltages. 
The trunk node voltage errors are shown in Table 11. The overall accuracy of the S-
ROM is reasonable and worst-case error within the targeted ±0.5	%	(0.005	𝑝𝑢). 
 

Table 11: SROM Accuracy for Changed Loading Conditions 

Trunk nodes Va Error (%) Vb Error (%) Vc Error (%) 
701 -0.00177 -0.02971 0.088401 
702 0.004375 -0.05148 0.153166 
703 0.004777 -0.05171 0.153712 
709 0.005019 -0.05178 0.154275 
730 0.004941 -0.05176 0.154132 
775 -0.02538 -0.03042 0.163088 

 
3.3.1.7 Implementing SROM on the Arroyo-Hondo (A-H) Feeder 
The A-H feeder model is a 6,534-bus radial distribution feeder with 11,641 single-phase 
nodes. It has a total of 4,350 Lines and 1,770 transformers. Of the total buses, there are 
3,057 load buses that include 1-phase, 2-phase and 3-phase loads. The feeder 
structure is shown below in Figure 19. 

 
Figure 19: A-H Feeder model with the regions for aggregation indicated by red ovals 
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To prepare for the creation of the ROM, errors in the A-H feeder model were fixed and 
the fixes were informed by available AMI measurements. The OpenDSS model had 
some irregularities, and the details are given below: 

1) The capacitances of most of the underground (UG) cables and the overhead 
(OH) lines in the feeder were very high. These were identified from the large 
negative reactive losses and overall negative reactive power demand at the 
substation. The power flow summaries from the OpenDSS models for the cases 
before the correction and after the correction are shown below:  

2) Inaccurate voltage levels for the single-phase loads in OpenDSS. In OpenDSS, 
the single-phase loads should be specified with the nominal line-neutral voltage, 
but the model has line-line voltages. This caused an inaccurate power demand 
from the single-phase loads. 

3) 50% of transformers had no downstream loads. 
4) The voltage range for the loads were very wide with Vmax=2 pu and Vmin=0.7 

pu. 

Four regions of the A-H feeder, shown in Figure 19, that had good correlation to the 
latest GIS data are used to demonstrate the application of the SROM. These 4 trunk 
nodes were a mix of 1-phase, 2-phase and 3-phase nodes of varying scale as indicated 
in Table 12. The smallest region has 20 consumers, and the largest region has 243 
downstream consumers.  
 
The regions of the feeders that were to be aggregated into SROMs are shown in Figure 
19. The identified regions were shown with red circles, and these are replaced by SROMs 
and after aggregation, these portions are replaced by the SROMs and were disconnected 
from the feeder. Once disconnected, OpenDSS detects these as hanging nodes.  
 

Table 12: Statistics of the four regions 

Region Trunk Node for Each 
Region 

Number of 
Phases 

Number of 
Consumers 

Region-
1 

OH2960022 3 243 

Region-
2 

OH11000029 1 39 

Region-
3 

OH430097 2 153 

Region-
4 

OH2530068 1 20 

 
3.3.1.8 S-ROM Implementation and Validation 
The Camus Energy team helped to develop a network exploration tool based on 
Network-X and the GIS data of the A-H feeder model. The network exploration tool is 
utilized to determine all the downstream network components for any given node. This 
node is the one where the SROM will be connected to aggregate the downstream 
system. For the determination of the SROM parameters, the total losses and the total 
load downstream of a trunk node is needed. 
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3.3.2 Parameter Estimation 
Consider a set of AMI measurements consisting of voltage V, real power P, and reactive 
power Q and the analysis described in the flowchart in Figure 20. When these power 
flows (P and Q) are used in the network power flow model to simulate the node 
voltages, these voltages may differ from the measured voltage in the AMI data. If these 
differences exceed a certain threshold, it may be due to inaccurate impedance 
parameters, which then need to be refined using distribution network parameter 
estimation (DNPE).  

 
Figure 20: Map AMI metering data to power distribution system 

The objective of distribution network parameter estimation (DNPE) is to use high-
resolution AMI measurements of P, Q, and V to correct the R, XL, and XC parameters of 
a set of secondary distribution lines at the sites with high-resolution AMI data (see the 
red highlighted branch in Figure 21). Vu and Vd are the voltages at the upstream down-
stream nodes, respectively, of these secondary lines. The ML approach used here 
estimates the optimal impedance parameters using three possible methods--linear 
regression algorithm, back-propagation neural network (BPNN) and long and short-term 
memory model (LSTM). 
3.3.2.1 Training Data Generation 
The training of ML-based DNPE models, especially the BPNN, requires a large amount 
of high-quality data. In the best data situation, these training data come from accurate 
AMI measurements under a wide range of operating conditions on networks with 
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accurately known impedance parameters. For the A-H distribution system and most 
distribution networks, such data are not available or are highly uncertain. Instead, we 
use power flow simulation to create these training data.  
 

 
Figure 21: The low-voltage distribution lines addressed by DNPE algorithms 

 
The initial distribution model that seeded the process in Figure 22 is the same A-H 
model. The impedance parameters X and R of the secondary distribution lines in this 
model are varied (via random sampling) and the power flow model is solved for the AMI 
data V, I, P, and Q. From these simulation samples, the line parameters are the labels, 
and the AMI data are the inputs for model training.  
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Figure 22: Sampling and power flow simulation process used to create training and test data for the DNPE algorithms 

 
3.3.2.2 Offline Training 
The offline training process is shown in Figure 23, and the specific process is as 
follows:  

1. Step 1: Prepare the training data set from the previous process by splitting it 
into 70% for training (XPE-train, YPE-train) and 30% for testing (XPE-test, YPE-test)   

2. Step 3: Construct the ML based DNPE model f and specify the model 
parameters.  

3. Step 4: Use the training dataset to train the model f and create model f*. 
4. Step 5: Evaluate the model f* using the withheld test data set (XPE-test, YPE-test)    
5. Step 6: Based on the evaluation, terminate the training or iterate the training 

until its accuracy within a preset threshold. 
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Figure 23: Offline training of ML-based DNPE model 

3.3.2.3 Online Estimation of Pre-Trained DNPE Model 
The pre-trained DNPE model is used for distribution line parameter estimation using the 
process shown in Figure 24:  

1. Step 1: Solve power flow model using the measured AMI data for P.  
2. Step 2: Traverse the entire distribution network to find the nodes where the 

difference between the simulated and measured voltages is larger than a 
prescribed threshold.  

3. Step 3: Normalize the data at the nodes from Step 2 and serve the data as 
input to the trained DNPE model f*.  

4. Step 4: Use DNPE model f* to compute a set of new impedance parameters.  
5. Step 5: Update the impedance parameters in the original power flow model 

and repeat as additional AMI data become available. 
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Figure 24: Estimate parameters using pre-trained model 

3.3.2.4 Results 
A DNPE model training and testing dataset containing 10,000 frames of samples was 
created. The range of the impedance parameters R and X and the range of the output 
parameters U and I are shown in Table 13. 
 

Table 13: DNPE Model Training Data Generation 

 Parameters Range Interval * Samples 
Simulation Input R (Ω) 1.345 – 6.345 0.05 * 100 

X (Ω) 0.5124 – 5.5124 0.05 * 100 
Simulation Output U (V) 110.015 – 130.97 - 

I (A) 0.15 – 12 - 
 
Table 14 shows a subset of the results (for two overhead (OH) lines labeled “A” and “B”) 
from applying the DNPE approach to the A-H substation circuits. Prior to applying 
DNPE, the compute node voltages were 2-4 volts different (out of roughly 120 volts) 
from the measured AMI data. These differences are significant and would modify both 
the operational and planning decisions for these circuits. After applying DNPE and 
refining the R and X values in the secondary circuits, the simulated and measured 
voltage differences are within about 0.2 volts. Using our DNPE approach, it is possible 
to estimate correct line parameters at various locations with less computational burden 
than model-based methods.  
 
Two metrics were used to evaluate the performance of the developed ML model – Mean 
square error (MSE) and mean average error (MAE). The metric MSE measures the 
variance of the residuals. The calculated MSE is 0.0328, and MAE is 0.179, which 
shows the estimated parameters from the proposed model are close to actual values. 
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Table 14: Voltage magnitudes seen in 2 overhead lines with and without parameter estimation 

 Pre DNPE Post DNPE AMI 
OH Line A 126.425 122.702 122.5 
OH Line B 131.675 129.343 129.5 
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3.4 Task 4: Software Integration 
Task 4 resulted in the integration of customer load and short term PV forecasts (subtask 
4.2), and intraday PV forecasts (subtask 4.3) as described in Sections 3.4.2 and 3.4.3 of 
this document respectively. Efforts to fully integrate the power flow simulator (subtask 
4.1) and the network parameter estimation (subtask 4.4) were unsuccessful; these 
efforts are described in Sections 3.4.1 and 3.4.4. 
 
Figure 25 shows an architectural diagram for the forecasting components that were 
integrated into the larger Camus system. The forecasting system uses the ingestion 
pipeline as input data and produces the load and generation forecasts used by the 
physical models. The PV Process and AMI Process along with the HRRR Data Fetcher 
were implemented as part of the project. These composable Time Series Model 
components were integrated in the framework and deployed using the Camus Forecast 
System cloud architecture shown below. The entire Time Series Models library was 
released as part of the project. The cloud service architecture is representative of the 
broader Camus owned system. The emphasis on production system engineering you 
can see here is characteristic of our approach to these systems, focusing on speed and 
scalability.  

 
Figure 25: Architectural diagram for forecasting components in Camus Energy system 

Additionally, a summary of algorithms used in Task 4 are described in Table 15 along 
with input data and assumptions. Camus’s load forecast system uses supervised 
machine learning, a type of artificial intelligence that can learn complex behaviors from 
previous observations to make future predictions. Specifically, we are using XGBoost 
for supervised machine learning. This is an open-source library of “boosted tree” 
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models, which combine decision trees in ways that strengthen predictions while limiting 
overfitting. A decision tree on its own is generally not good at prediction, but a series of 
decision trees can be quite powerful, with each tree correcting the errors of the previous 
one. We have found that XGBoost strikes a good balance: It is fast and efficient, it is 
good at learning nonlinear relationships among the input features, and the results are 
explainable. 
 
 

Table 15: Summary of algorithms used in Task 4 

 Algorithm Used Input Data & Assumptions 

Gap Filling Linear interpolation & 
imputation 

AMI data; drop missing observations in 
training sets 

Load Forecasting XGBoost on 
autoregressive features 
& endogenous data; 
cohorting 

AMI data, SCADA data, GIS, weather data, 
attributes (i.e. rate class, DER), seasonality 

PV Forecasting Physics based PV 
models 

NOAA HRRR, PV configuration 

Reduced Order 
Model 

Machine Learning 
Based Network 
Parameter Estimation 
using AMI data 

Feeder model, AMI 

Ditto 
improvements 

 Feeder model, load snapshot 

 

3.4.1 Power Flow Simulator Integration 
Our goal was to integrate GridAPPS-D (or other power flow model) into our software 
pipelines to be able to run it at scale. We containerized the power flow simulator and 
integrated it into our systems using a python-based API. We performed validation tests 
on the IEEE 4-bus distribution test network. And we ran it in our systems as a quasi-
static time series (QSTS) simulation that automatically advanced through consecutive 
timesteps, solving at each step and retaining its quasi-static state. Power flow inputs 
(load/generation using AMI usage and actual PV production) were applied at each note 
as it advanced through time.  
 
Despite these efforts, we struggled to run the simulator at scale. We found that 
converting the models into OpenDSS format was difficult and required modifications to 
NREL's DiTTo python package. Camus Energy submitted multiple contributions to the 
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NREL Ditto project to enable the GRIDLAB-D to OpenDSS workflow. These 
contributions are publicly available and documented on GitHub6. 
 
After exploration of the Kit Carson data set and power flow model, we determined it had 
significant missing data. We decided it would be more effective to perform this 
integration on another distribution cooperative’s system. We chose a feeder because of 
reasonable completeness of AMI data at the service meter endpoints that had 
approximately 2700 meters and 1250 distribution transformers. As is, the OpenDSS 
power flow model we received had several issues. The model was incomplete and load 
nodes at the ends of secondary lines were missing. The model was also plagued with 
inconsistencies with several key fields such as phasing, power ratings, and voltage 
bases of distribution transformers often not in agreement with GIS data. Anecdotally, 
this is not surprising: power flow models are not updated as frequently as the 
distribution grid inventory and are more often than not out of sync with GIS data. To 
resolve these discrepancies, we modified OpenDSS files based on GIS inputs. For 
instance, we created Loads.dss representing all the load nodes in the system, 
aggregated at the distribution transformer level. This process was tedious and 
painstaking as OpenDSS (or any power system tool) relies on consistency between 
various elements in the power system for convergence.  
 
We developed a power flow simulation tool which interfaces with OpenDSS via 
opendssdirect an official python extension of OpenDSS. Given OpenDSS files and AMI 
data, this tool solves snapshots sequentially and records metrics for post-processing.  
 
The following Figure 26 shows voltage distributions across the feeder at two distinct 
time instances. At 01:00 hrs local time, the majority of bus voltages (per unit) are in the 
range of 1.015-1.030, while this distribution shifts to 1.005-1.015 at 19:00 hrs local time. 
This shift stems from the higher load in the circuit in the evening hours.  

 

 
6 https://github.com/nlaws-camus/ditto  
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Figure 26: Voltage distributions at two distinct time instances 

 
It is also interesting to see the diurnal variation in bus voltages in different parts of the 
feeder. In the following Figure 27, bus 6433t7 is farther towards the end of the lines and 
shows relatively exaggerated voltage excursions compared to the more centrally 
situated bus 6550t9. 
 

 
Figure 27: Diurnal variation in bus voltages in different parts of the feeder 

 

3.4.2 Customer Load and Short-Term PV Integration 
We integrated the highest performing ML methods from Task 2.1, including 
parallelization and performance tuning, to meet real-time reporting requirements.  
 
We select the inputs (or “features”) drawing on our collective knowledge and 
experience. We tune these inputs for each forecast system, driven by the unique 
characteristics and behaviors of each distribution grid. The forecast model learns the 
relationship between the inputs and the forecasted net and gross load values. The 
result is a “trained” model which is later used to make predictions based on new inputs 
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and the learned historical behaviors. Features include harmonics, day of week, lags, 
temperature, humidity, and downward shortwave radiation flux. 
 
Cohort-based modeling enables us to leverage all the available data to inform our 
forecast at each individual load point without incurring massive compute costs. We use 
metadata to divide load points into cohorts with similar load behavior. This enables the 
forecast system to learn the load behaviors from data across many substations without 
the complexity and cost of distinct models. We then use each cohort model to make 
individual predictions for every load point, allowing the forecast to adapt to changes.  
 
Customer load and short-term PV forecasts solve several challenges for distribution 
utilities. First, it allows for gap-filling of data in the case data is missing, as seen on May 
29 in Figure 28. 
 

 
Figure 28: Gap filled generation and production data 

 
Second, it allows for the estimation of solar PV production for systems that do not have 
a production meter, as seen in Figure 29: 
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Figure 29: Estimated generation at non-metered PV system 

 
Third, it closes the collection gap between energy consumption and production, and 
when those readings are available to various systems. For example, in Figure 30, data 
from June 14 may not be available until June 16, but the nowcasts can be used to close 
this gap, making the data available in real time.  
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Figure 30: Closing data collection gap 

 

3.4.3 Intraday PV forecast integration 
We completed the infrastructure work to support integration of load and forecasting 
models into the Camus testing environment, including the assessment of computational 
requirements, development of parallel computing approaches, and validation and 
demonstration of gap filling on historical AMI data.  
 
The Camus PV forecasts leverage information about the physical system (such as the 
AC and DC capacity of the system, tilt, and orientation) along with weather data 
forecasts from the National Oceanic and Atmospheric Administration (NOAA). The 
NOAA weather forecasts, available directly in the cloud through the NOAA Open Data 
Dissemination program, are a key input in our forecast system. These high resolution 
weather forecasts update every hour for an 18-hour forecast horizon, and every 6 hours 
for a 48-hour forecast horizon. NOAA developed its High Resolution Rapid Refresh 
(HRRR) model to help predict renewable energy generation, and it assimilates data 
from satellites, radar, ground stations, and weather balloons.  
 
These intra-day PV forecasts along with AMI forecasts as shown in Figure 31, allow 
utilities to do better short term planning.   
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Figure 31: Intra-day PV and AMI forecasts 

3.4.4 Network Parameter Estimation 
We were not able to implement a repeatable methodology for network parameter 
estimation because of the difficulties associated with calibrating incomplete or dated 
network models. We were not able to integrate a systematized methodology into the 
software platform. This, in turn, made completing all of Task 5 subtasks equally 
challenging.  

3.4.5 Open Source Access to Code  
In addition to integrating short term load and PV forecasts into the Camus platform, as 
part of this award, Camus made the code publicly available per the End of Project 
deliverable, via an Apache 2.0 license on a GitHub repository7, with data available on a 
Google Cloud Storage bucket. Code will run most effectively on a Linux box but is not 
coupled to any one operating system. The code includes a readme file8 with an 
overview of the code. A summary of the readme file is provided below.  
 
This package provides the tools to construct machine learning models that fill gaps or 
forecast in the verification datasets. This includes loading the data and applying the 
XGBoost estimator. The composable model framework provides the configurable model 
inputs required for the Neighbor Informed Estimates and Community Analytics. The PV 
System model is also implemented using the composable model framework.  
 

 
7 https://github.com/SETO2243/forecasting  
8 https://github.com/SETO2243/forecasting/blob/main/README.md  
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The API for fit, predict, and metrics is reduced to specifying a start and end times for a 
given location. The model must construct feature data using column transforms. Having 
done so, forecasting as a service becomes trivial. 
 
This library is designed for use by technical engineers and data scientists. It takes 
advantage of the Python data science ecosystem and therefore requires installation of 
many third party open source libraries. It has been developed and tested in a Linux 
operating system. 
 
Models can be composed of mixins for various estimators and forecast processes. 
These composable pieces can be put together in different ways to solve many 
problems. The RegularTimeSeriesModel is the core that problem specific parts are 
added to when forecasting or gap filling a particular time series. The estimator is the 
next essential building block. The estimator can be either a Classifier (a discrete 
estimator) or a Regressor (a continuous estimator). There are many different numerical 
techniques for supervised learning estimators. The process is the last essential 
component. It defines the time series being forecast and the available feature data that 
might have predictive value. Having composed a Model class from these three parts, it 
is then up to the user to create an instance of the class with configuration arguments 
that tune the model features for the specific meter load or PV forecast. 
 
The PV Model uses the same composable framework to define models using the HRRR 
weather (see below) as an input to the NREL PySam PV generation algorithm. For the 
project we used the PySam generation forecast directly using the configuration shown 
below with the IdentityRegressor. Building additional input features for sites with direct 
telemetry would allow using machine learning models like XGBoost too. 

3.5 Task 5: Integrated Software Performance Verification 
The goal of task 5 was to test and validate the performance of the software modules 
that were integrated into the Camus platform. The SOPO called for the validation 
against three different states of the network model: Subtask 5.1 (Approach #1 
performance verification), where a network model is available and accurate, Subtask 
5.2 (Approach #2 performance verification), where the network model is available but 
the parameters are inaccurate, and Subtask 5.3 (Approach #3 performance verification,) 
where the network model is not available.  
 
Because of the challenges with quality in the customer sourced power flow model and 
extra effort spent on correcting these models along with contributing to enhancements 
to the Ditto source code (as described in detail in Section 3.4.1), we were never able to 
fully integrate the power flow model into the Camus infrastructure. As a result, we were 
not able to evaluate the performance of the ML/DA generated data against either the 
available and accurate model in approach #1, nor the inaccurate model in approach #2. 
However, we were able to assess the performance of the ML/DA generated data 
against actual meter endpoint data collected from the utility as described in approach 
#3.  
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3.5.1 Approach #1 performance verification 
The project team was unable to evaluate the ML/DA approaches against an available 
and accurate model because such a model was not made available.  

3.5.2 Approach #2 performance verification 
The project team was unable to evaluate the ML/DA approaches against a model with 
inaccurate parameters due to excessive inaccuracies in the model leading to the 
inability to converge, as well as challenges in model conversion to open source 
software.   

3.5.3 Approach #3 performance verification 
Analysis of the neighborhood informed analytics compared the gap filling outputs of the 
XGBoost algorithm with the true data. The verification process included data from a full 
month of operations. Data was collected at 15-minute intervals for the entire month and 
produced 2,976 instances. To represent missing data, portions of the set were removed 
and in total equaled about 500 missing data points. Figure 32 shows the total data set 
for one of the 20 meters used in the verification experiment. The blue sections in Figure 
32 depict the available data, while the red indicates where data was missing. The 
available and unavailable data depicted in Figure 32 represented a situation where a 
meter produced unreliable data. 

 
Figure 32: This image depicts the data set for the verification process where the red lines indicated randomly 

removed gaps in the data and the blue depicts the available data. 

The neighborhood informed analysis approach proved to provide reliable estimates of 
missing data. For example, applying the estimation approach for the meter highlighted 
in Section 3.2.1.3.2 produced results that were close to actual. Figure 33 shows a 
snapshot of the time series data for this meter. The collected data is in blue, which 
includes gaps that are filled in by the true (or actual) value using the gray dashed lines. 
The gap filling results are depicted with the red circles. These results did not fall exactly 
on the actual line each time but provided a reasonable approximation. 
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Figure 33: Sample time series plot of the gap filling for a single meter inside its group 

To quantify the gap filling estimate accuracy for this meter, Figure 34 plots the 
estimated versus actual. The results show that the model had a reasonable, but not 
great, level of fit. The r-squared value was computed to be 0.65. A visual inspection of 
the comparison indicated that the model tended to over predict at low power and under 
predict when the actual power was high. 
 

 
Figure 34: Meter 12's actual versus estimated power 
comparison for the single meter. The least-squares 

linear regression produced an r-squared of 0.65 

 
Figure 35: Meter 17’s actual versus estimated power 
comparison for the single meter. The least-squares 

linear regression produced an r-squared of 0.74 

The estimation results varied for the 20 different meters used in this experiment. For 
example, the analysis of data from another meter located in a different section of the 
grid produced a slightly higher r-squared value: 0.74. The estimated versus actual 
results, and the least squares linear fit line are shown in Figure 35.   
 
The overall results for all 20 meters are shown in Figure 36, which indicates that on 
average the approach was able to produce very good results. The r-squared value for 
the least squares fit of all the metes was 0.92. The least squares line, depicted with the 
red line in Figure 36, indicated that the estimate had very little bias throughout the entire 
range of actual power values. At low power, which was between 0 kW and 6 kW, the 
estimate tended to provide an accurate representation of the system. Similarly, at high 
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power draws above 6 kW, the estimated power tended to be correct. However, above 
10 kW the estimate tended to underestimate the actual value slightly.  
 

 
Figure 36: The combined actual versus estimated power comparison for all the meters. The least-squares linear 

regression produced an r-squared of 0.92 
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4 Significant Accomplishments and Conclusion 

The project found that ML can empower utilities by improving grid awareness in the 
following areas: 
 

1) Fill in missing data gaps for more complete visibility of system states. 
2) Forecasting PV generation for more informed gap filling. 
3) Estimate model parameters for efficient physics-based modeling. 

 
The report describes the implementation of two gap filling techniques. Each technique 
used the XGBoost ML algorithm but performed the training and testing tasks differently. 
In some cases, the ML algorithms used here did not outperform standard approaches 
but used least compute power and could be deployed with little effort. Validation of the 
neighborhood ML gap filling approach resulted in high r-squared values. This indicated 
that the ML approach had a strong “goodness-of-fit”. 
 
Weather forecasts and AMI data effectively informed a PV estimation model useful for 
predicting generator outputs.  
 
Extensive work was done to generate ROM of an IEEE and an actual system. The error 
results of the model were low and indicated that scaling the method will be useful for 
efficiently modeling system states during current or future conditions. And parameter 
estimation methods using ML can effectively identify the appropriate parameters for 
modeling an electrical system accurately. 
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5 Path Forward 

Future work that builds on this report will include an expansion of the gap filling 
analytics. One area for immediate improvement is the implementation of the cohort 
training and testing approach. Other research and testing are necessary to test the 
hypothesis that it will produce more accurate results when training includes proper filter 
of input data to exclude gaps or erroneous data.  
 
Also, future work can expand on the ROM work to further develop, test, and validate the 
approach. 
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6 Products 

C. Qin, B. Vyakaranam, P. Etingov, M. Venetos and S. Backhaus, "Machine Learning 
Based Network Parameter Estimation Using AMI Data," 2022 IEEE Power & Energy 
Society General Meeting (PESGM), Denver, CO, USA, 2022, pp. 1-5, doi: 
10.1109/PESGM48719.2022.99170349. 
  

 
9 https://www.pnnl.gov/publications/machine-learning-based-network-parameter-estimation-using-ami-
data 
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