

LA-UR-24-26807

Approved for public release; distribution is unlimited.

Title: HOSS-FSIS example: Energetic Event

Author(s): Euser, Bryan Jeffry
Rougier, Esteban
Padilla, Angel Melissa
Lei, Zhou
Knight, Earl E.

Intended for: Training material for external customers

Issued: 2024-07-08

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

HOSS-FSIS example: Energetic Event

**Bryan Euser, Esteban
Rougier, Angel Padilla, Zhou
Lei, Earl Knight**

July 2024

UNCLASSIFIED

Create input files that represent an energetic event that interacts with a fixed solid

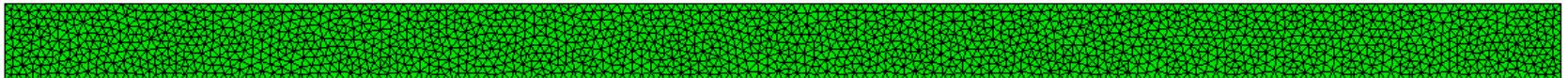
UNCLASSIFIED

Create the solid geometry and mesh in Cubit

reset

```
create surface rectangle width 40.0 height 2.0
zplane
move vertex 3 y {-1.0}
```

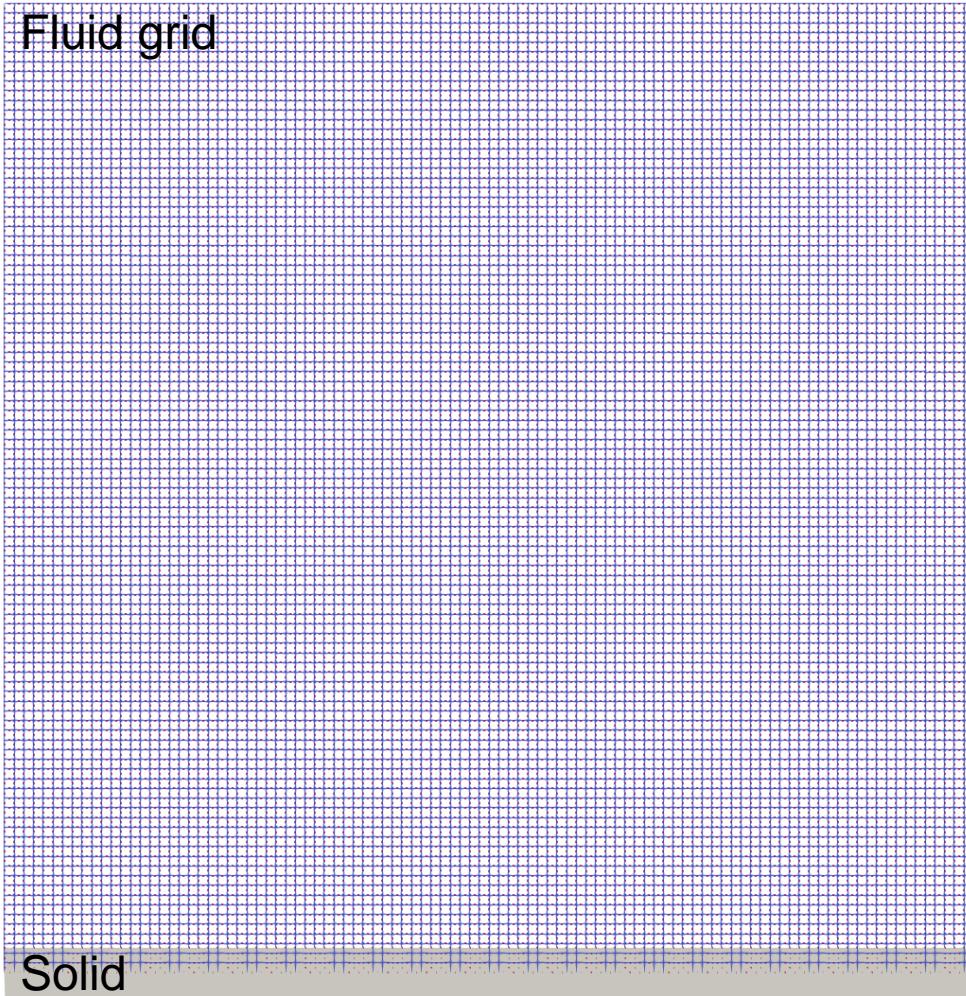
```
surface all scheme tridelaunay
tridelaunay point placement gq
surface all size {1.0/4}
mesh surface all
```


```
surface all smooth scheme edge length
smooth surface all
```

```
# Nodeset & Sideset
nodeset 1 surface 1
nodeset 1 name 'fixed'
```

```
block 1 surface 1
block 1 name 'n_rock'
```

```
# export
set abaqus precision 15
export abaqus "mesh.inp" all overwrite everything
```


This solid mesh is a simple strip of rock material

UNCLASSIFIED

Visualizing the FSIS set up

Fluid grid

- The fluid is a uniform grid which must be created using the fmesh.dat file.
- There should be a minimum of a 4 cell overlap between the fluid mesh and solid mesh to ensure proper fluid-solid interactions.

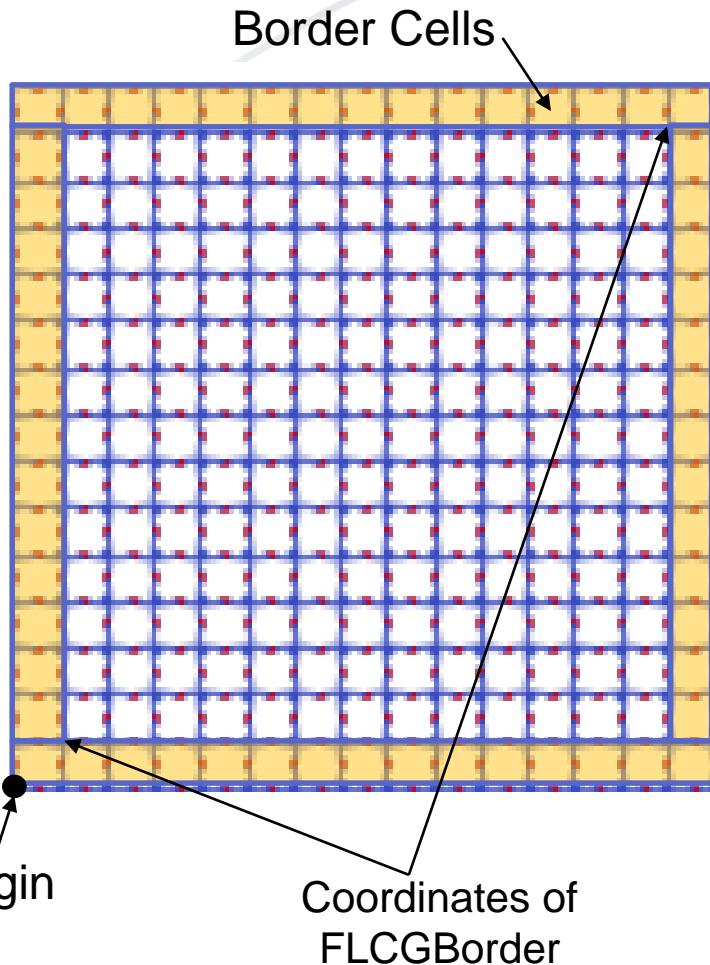
UNCLASSIFIED

fmesh.dat

- Defines the fluid group by specifying border cells
- Defines node groups for the v_x and v_y nodes associated with the border

```
<Dimension>
  2
</Dimension>

<RegularMeshDomain> FLUIDGROUP
  MeshOriginCoordinateX -2.000000E+01
  MeshOriginCoordinateY -1.000000E+00
  CellSize 0.2
  NumberOfCellsInX 200
  NumberOfCellsInY 200
</RegularMeshDomain>


<FLCellGroupBC> FLCGBorder
  IfInside 0
  Corner1CoordinateX -1.980000E+01
  Corner1CoordinateY -8.000000E-01
  Corner2CoordinateX 1.980000E+01
  Corner2CoordinateY 3.880000E+01
</FLCellGroupBC> FLCGBorder

  <VelocityNodeGroup> FLNGVxBorder
    IfInside 0
    VelocityNodeType 1
    Corner1CoordinateX -1.982000E+01
    Corner1CoordinateY -7.800000E-01
    Corner2CoordinateX 1.978000E+01
    Corner2CoordinateY 3.882000E+01
  </VelocityNodeGroup> FLNGVxBorder

  <VelocityNodeGroup> FLNGVyBorder
    IfInside 0
    VelocityNodeType 2
    Corner1CoordinateX -1.982000E+01
    Corner1CoordinateY -7.800000E-01
    Corner2CoordinateX 1.978000E+01
    Corner2CoordinateY 3.882000E+01
  </VelocityNodeGroup> FLNGVyBorder
```

UNCLASSIFIED

Making the fmesh.dat


```
<Dimension> 2
</Dimension>

<RegularMeshDomain> FLUIDGROUP
  MeshOriginCoordinateX -2.000000E+01
  MeshOriginCoordinateY -1.000000E+00
  CellSize 0.2
  NumberOfCellsInX 200
  NumberOfCellsInY 200
</RegularMeshDomain>

<FLCellGroupBC> FLCGBorder
  IfInside 0
  Corner1CoordinateX -1.980000E+01
  Corner1CoordinateY -8.000000E-01
  Corner2CoordinateX 1.980000E+01
  Corner2CoordinateY 3.880000E+01
</FLCellGroupBC> FLCGBorder
```

(x,y) coordinates of the origin

Size of the fluid cells

Number of cells in each direction.

UNCLASSIFIED

Generate the *MPIDomains.input* and *mesh.input* using executables *hosssd* and *hossm*

Mesh Translator for HOSScom (Version: 07/04/2019)

Job started at 24 April 2024 11:36:52 AM

The next slide breaks down what each executable outputs and what input you use with the executables.

Domains Generator for HOSScom (Version: 07/04/2019)

Job started at 24 April 2024 11:36:01 AM

Error> No input file is specified

USAGE :

hossd [-i] <inp file> [options]

OPTIONS:

-w: Average weight, default=1000.0;
-e: Size of the space extension, de

EXAMPLES :

```
hossd mesh.inp -w 100.0 -e 1.0  
hossd mesh.inp
```

UND

Job finished at 24 April 2024 11:36:01 AM

HOSS Executable and Their Outputs

For Solid Only:

Path	Command	Output
/usr/projects/packages/lei/tools/ hosssd	HOSSd mesh.inp	MPIDomains.input
usr/projects/packages/lei/tools/ hossm	HOSSm mesh.inp	mesh.input

For Fluid and Solid:

Path	Command	Output
/usr/projects/packages/lei/tools/ hosssd	HOSSd mesh.inp	MPIDomains.input (only need Maximum Buffer Zone Size and Domain Initial Buffer Zone from MPIDomains.input file)
/usr/projects/packages/erougier/HOSS_FSiS_2020/chintel/ HOSSm	HOSSm mesh.inp --fsis	mesh.input (with fsis tag)
/usr/projects/packages/erougier/HOSS_FSiS_2020/chintel/ HOSSfmNoCubit	HOSSfm fmesh.dat --vtu	fmeshgroups.input, fmesh.input (the 'vtu' tag also outputs FMesh.vtu)
N/A: Place script in your geometry folder	Run GenerateMPIDomainsFluid.py script	MPIDomains.input (see next slide for more info)

UNCLASSIFIED

Generate MPI domains using the python script 'GenerateMPIDomainsFluid.py'

- Generating MPI domains for problems involving the FSIS require two steps:
 - First, the user must use the **hosssd** executable on the mesh.inp associated from the solid.
 - This will provide the user with values for 'Maximum Buffer Zone Size' and 'Domain Initial Buffer Zone'.
- From the GenerateMPIDomainsFluid.py, one then defines:
 - A pair of coordinates that define opposing sides of a rectangle the encompasses the fluid domain (dmincx, dmincy, etc.)
 - The numbers of MPI domains they would like in the x, y, and z-directions (ncx, ncy, ncz) in the script. The total number of MPI domains should follow the rule of 6000 fluid cells per domain or 2000 solid elements per domain, whichever is greater.
 - The maximum buffer zone size (dbuffmax)
 - The domain initial buffer zone size (dbuffmin)

```
import sys

#*****
#***** INPUT DATA
#*****
#***** dmincx = -20.5
#***** dmincy = -2.5
#***** dmincz = -20.0
#***** dmaxcx = 20.5
#***** dmaxcy = 40.5
#***** dmaxcz = +20.0
#***** ncx = 3
#***** ncy = 3
#***** ncz = 1
#***** nMPI = ncx*ncy*ncz
#***** ddx = (dmaxcx-dmincx) / float(ncx)
#***** ddy = (dmaxcy-dmincy) / float(ncy)
#***** ddz = (dmaxcz-dmincz) / float(ncz)
#***** ifAutoBuffer = 1
#***** nintervals = 50
#***** dbuffmax = 0.019851
#***** dbuffmin = 7.0711975582039e-01
```

UNCLASSIFIED

Now piece together the *xxx.input* file

- Define the <Problem> and <Solver> contexts

```

<Problem>
  Problem Title  = "2DEnergeticEvent"
  Problem_Description = "2DEnergeticEvent"
  CycleLimit = 15001
  StopTime = 1000.0e+0 s
  InitialTimeStep = 1.0e-07
  MessageFreq = 1000
  OutSolidFreq = 1000
  OutFluidFreq = 1000
  OutputScaleValueFreq = 200
  MemoryFactor = 1.0

  . . . (developer commands, ignore)
</Problem>

<Solver>
  <SKF_2D3CST> SolidSolverS1
    Cell_Group_Name      = "N_ROCK"
  </SKF_2D3CST>
  <FKF_2D4CSQ> FSolver_1
    Cell_Group_Name      = "FLUIDGROUP"
  </FKF_2D4CSQ>
</Solver>

```


Problem title/description

Number of time steps

Time step

Message and results output frequency

UNCLASSIFIED

Now piece together the *xxx.input* file

- Define the `<Initial_Conditions>` context

Initial_Conditions
Context

```
<Initial_Conditions>
  <FLInitialSpecificEnergy> MyInitSpecEnergy
```

ShapeType = CIRCLE

Shape? Circle or rectangle

Is_Specific_Energy_Fixed = 1

Symmetry
flags

NumberofPhases = 1

Initial spec. energy

PhaseId = 0

Symmetry_Flag_Direction_1 = -1

Symmetry_Flag_Direction_2 = 1

Specific_Energy_Fixed = 2.04E11

Coordinates of
the center of the
shape

Center_Coordinate_X = 19.6

Center_Coordinate_Y = 0.2

Unit_Vector_1_Coordinate_X = 1.0

Specify the size
of the shape

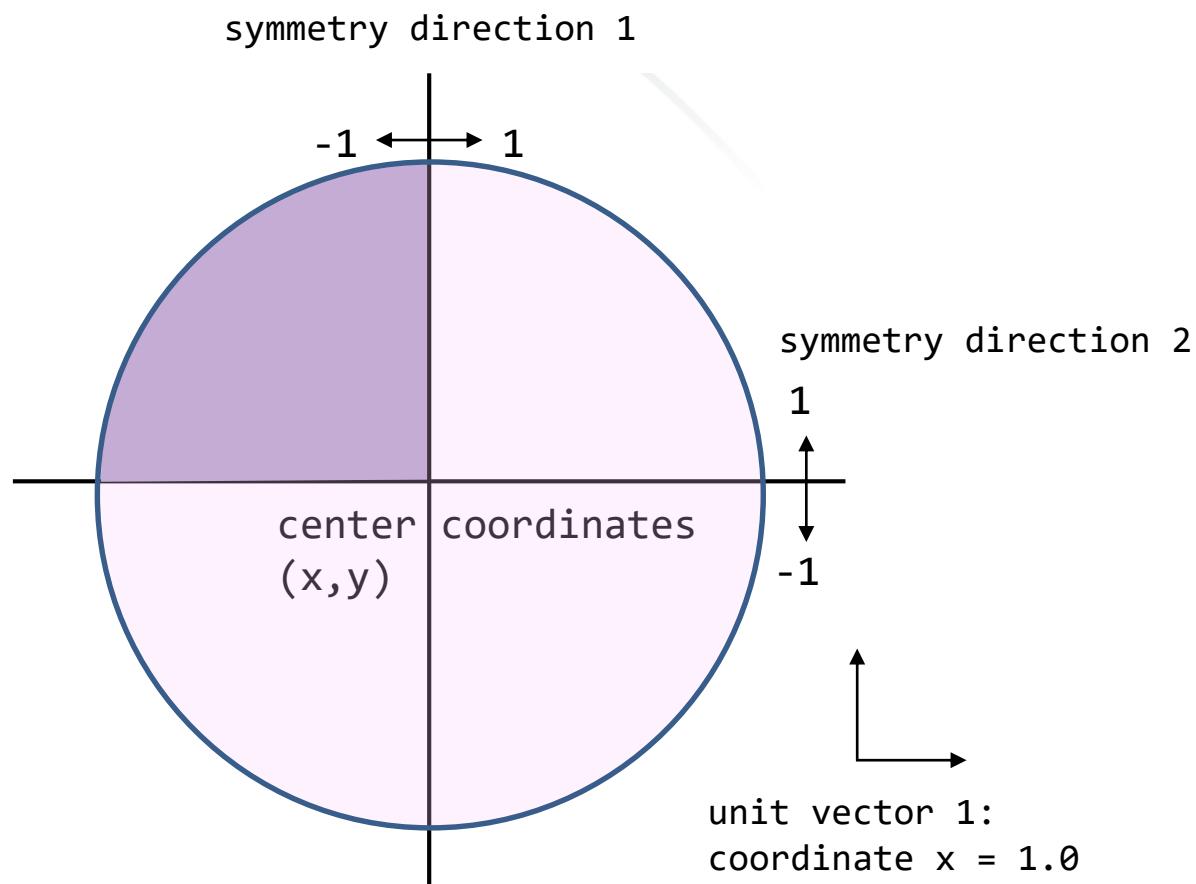
Unit_Vector_1_Coordinate_Y = 0.0

Dimension_In_Direction_1 = 2.0

Dimension_In_Direction_2 = 1.0

```
</FLInitialSpecificEnergy>
```

Unit vectors to
specify the local
orientation of
the shape


```
</Initial_Conditions>
```

UNCLASSIFIED

Explaining the <Initial_Conditions> Context


```
<Initial_Conditions>
  <FLInitialSpecificEnergy>
    ShapeType = CIRCLE
    Is_Specific_Energy_Fixed = 1
    NumberOfPhases = 1
    PhaseId = 0
    Symmetry_Flag_Direction_1 = -1
    Symmetry_Flag_Direction_2 = 1
    Specific_Energy_Fixed = 2.04E11
    Center_Coordinate_X = 19.8
    Center_Coordinate_Y = 0.2
    Unit_Vector_1_Coordinate_X = 1.0
    Unit_Vector_1_Coordinate_Y = 0.0
    Dimension_In_Direction_1 = 2.0
    Dimension_In_Direction_2 = 1.0
  </FLInitialSpecificEnergy>
</Initial_Conditions>
```


UNCLASSIFIED

Continue to piece together the *xxx.input* file...

- Define the <Materials> contexts

Elastic solid context

```

<Materials>
  <MEL_HossMatLib_2DSolid> Rock
    !-----!
    !      2D Plane Strain      !
    !-----!
    !  Young's Modulus:  1.9418000e+09
    !  Poisson's ratio:  3.3000000e-01
    !  Element Size:   1.0000000e+00
    !  Density:        2.0000000e+03
    !
    !-----!
    Cell_Group_Name = "N_Rock"
    13 1 1 1 1 1 1 1 1 1 1 1 1 1 1
    !-----!
    Density      =  2.0000000e+03
    MunjizaConstantV =  1.4170588e+09
    MunjizaConstant1 =  1.4600000e+09
    MunjizaConstant2 =  1.4600000e+09
    MunjizaConstant12 =  1.4600000e+09
    !
    !-----!
    MunjizaViscosityV =  0.0000000e+00
    MunjizaViscosity1 =  0.0000000e+00
    MunjizaViscosity2 =  0.0000000e+00
    MunjizaViscosity12=  0.0000000e+00
    !
    !-----!
    dmvi      =  0.0
    dm1i      =  0.0
    dm2i      =  0.0
    dm12i     =  0.0
  </MEL_HossMatLib_2DSolid>
<Materials>

```

UNCLASSIFIED

This context exists for completeness.
We assume the solid is completely
rigid in this simulation.

Continue to piece together the *xxx.input* file...

- Define the <Materials> contexts

```

<Materials>
  <EOS_HossMatLib_IdealGas> EOSFLCG
    Cell_Group_Name = "FLUIDGROUP"
    8 1 1 1 1 1 1 1 1
  !
  Density      =  1.2250000e+00
  SpecificEnergy = 2.0674763e+05
  InitialTemperature= 0.0000000e+00
  InitialInternalEnergy = 0.0000000e+00
  InitialPressure   = 0.0000000e+00
  SpecificGasConstant = 287.058 ! J/kg K
  SpecificHeatConstVol = 717.5   ! J/kg K
  PhaseId          = 0
</EOS_HossMatLib_IdealGas>

```

Fluid EOS contexts

The fluid behaves as an ideal gas in this simulation

Density of air

Specific energy of air

gas constant

spec. heat

UNCLASSIFIED

Piecing together the *xxx.input* file continued...

Include Context

```
<INCLUDE>
  FileName = GEOMETRY/MPIDomains.input
  Format = ASCII
</INCLUDE>
```

File that defines the MPI Domains

```
<INCLUDE>
  FileName = GEOMETRY/mesh.input
  Format = ASCII
</INCLUDE>
```

File that describes the solid mesh

```
<INCLUDE>
  FileName = GEOMETRY/fmesh.input
  Format = ASCII
</INCLUDE>
```

File that describes the fluid mesh

```
<INCLUDE>
  FileName = bc.input
  Format = ASCII
</INCLUDE>
```

File to describes the boundary conditions

UNCLASSIFIED

Defining the boundary conditions in the *bc.input* file

This context defines establishes the interaction between the fluid and solid

```
<FSISolver> MyFSISolver1
  SCellGroupName = N_ROCK
  FCellGroupName = FLUIDGROUP
  Is_Solver_Active = 1
  IfQuadraticSearch = 0
  FSISolverType = 0
  Penalty = 1.0e14
</FSISolver>
```

Defined in the geometry creation

Is the solver active?
yes (1) or no (0)

FSISolverType 0 is used when the fluid cells are much smaller than the solid mesh.
FSISolverType 1 is used when the fluid cells are larger or similar to the size of the solid mesh.

Penalty for the fluid-solid interaction

Note: The penalty defined in this context does not affect the time step of the simulation

UNCLASSIFIED

Defining the boundary conditions in the *bc.input* file (cont.)

```
<FLNodalVelocity> FLNGVxBorder
  Group = FLNGVxBorder
  Is_Velocity_Fixed = 1
  Velocity_Fixed = 0.0
  NPointFactor = 2
  InitialTimeFactor = 0.0
  FinalTimeFactor = 0.0
  DefaultValueLeftFactor = 0.0
  DefaultValueRightFactor = 0.0
  Factor = 0.0 0.0
</FLNodalVelocity>
```

Defined in the geometry creation

Is the velocity fixed?
flag = 1
Is the velocity free?
flag = 0

Velocities applied to nodeset

```
<FLNodalVelocity> FLNGVyBorder
  Group = FLNGVyBorder
  Is_Velocity_Fixed = 1
  Velocity_Fixed = 0.0
  NPointFactor = 2
  InitialTimeFactor = 0.0
  FinalTimeFactor = 0.0
  DefaultValueLeftFactor = 0.0
  DefaultValueRightFactor = 0.0
  Factor = 0.0 0.0
</FLNodalVelocity>
```

As defined, x- and y-velocities in the border nodes are zero for all time

UNCLASSIFIED

Defining the boundary conditions in the *bc.input* file (cont.)

```
<Boundary Conditions>
```

```
<NodalVelocity> fixed
```

```
  Group = "FIXED" ←
```

Defined in the
geometry creation

```
  Is_Velocity_X_Fixed = 1 ←
```

```
  Is_Velocity_Y_Fixed = 1 ←
```

Is the velocity fixed?
yes (1) or no (0)

```
  Velocity_Fixed_X = 0.0 ←
```

```
  Velocity_Fixed_Y = 0.0 ←
```

Velocities applied
to nodeset

```
  NPointFactorX = 2
```

```
  NPointFactorY = 2
```

```
  InitialTimeFactorX = 0.0
```

```
  InitialTimeFactorY = 0.0
```

```
  FinalTimeFactorX = 1.0
```

```
  FinalTimeFactorY = 1.0
```

```
  DefaultValueLeftFactorX = 0.0
```

```
  DefaultValueLeftFactorY = 0.0
```

```
  DefaultValueRightFactorX = 1.0
```

```
  DefaultValueRightFactorY = 1.0
```

```
  FactorX = 1.0 , 1.0
```

```
  FactorY = 1.0 , 1.0
```

```
</NodalVelocity>
```

```
<Boundary Conditions>
```

**As defined, the solid material is
completely fixed for all time**

UNCLASSIFIED

Defining the boundary conditions in the *bc.input* file (cont.)

```

<Boundary Conditions>
<FLDensity> FLCGBorder
  Group = FLCGBorder
  Is_Density_Fixed = 1
  Density_Fixed = 1.225
  Number_Of_Factor_Points = 2
  InitialTimeFactor = 0.0
  FinalTimeFactor = 0.0
  DefaultValueLeftFactor = 1.0
  DefaultValueRightFactor = 1.0
  Factor = 1.0 1.0
</FLDensity>

```

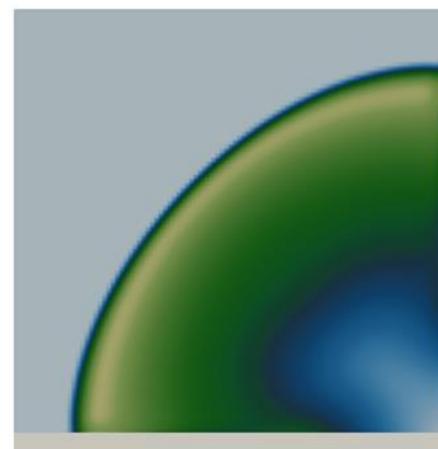
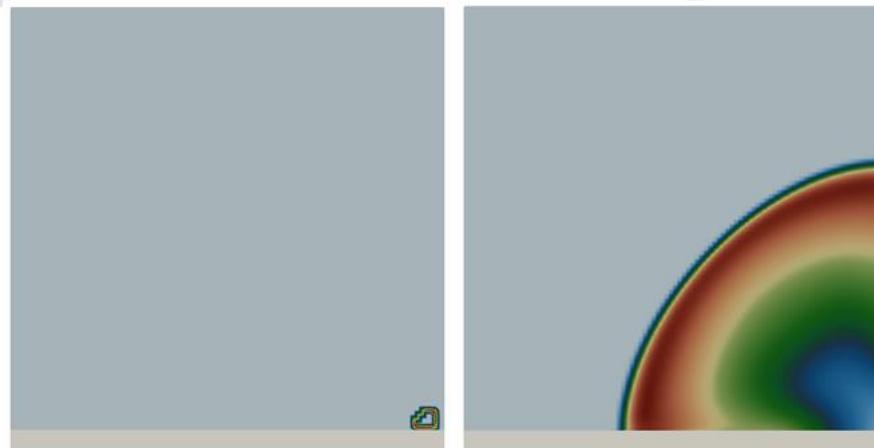
```

<FLSpecificEnergy> FLCGBorder
  Group = FLCGBorder
  Is_SpecificEnergy_Fixed = 1
  Specific_Energy_Fixed = 2.0674763e+05
  Number_Of_Factor_Points = 2
  InitialTimeFactor = 0.0
  FinalTimeFactor = 0.0
  DefaultValueLeftFactor = 1.0
  DefaultValueRightFactor = 1.0
  Factor = 1.0 1.0
</FLSpecificEnergy>
<Boundary Conditions>

```

Defined in the geometry creation

Is the velocity fixed? flag = 1
Is the velocity free? flag = 0



Fluid density of the border cells

Describes the behavior of the density as a function of time.

As defined, the density and specific energy in the border cells are constant for all time

UNCLASSIFIED

Run the executable... once finished, the results can be visualized with Paraview

UNCLASSIFIED

*The End!
Any questions?*

UNCLASSIFIED