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Gowayed et al. conducted a characterization study and utilized an analytical model 
to study the influence of material defects on the elastic properties of two systems of 
SiC/SiC and one oxide/oxide CMCs [7]. The elastic properties were shown to 
deteriorate with increasing defects volume fraction (VF). Santhosh et al. used spheroidal 
inclusions with a micromechanics-based progressive damage model to predict the 
effects of porosity on the elastic properties of CG-Nicalon/SiNC CMCs [8]. Their 
results showed a more significant knockdown in the through-thickness modulus 
compared to the in-plane modulus. Although analytical models, such as Mori–Tanaka 
mean-field homogenization approach [9], can efficiently predict the homogenized 
properties of heterogeneous materials, they are unable to accommodate the effect of 
geometrical variations of constituent materials and capture the critical load transfer 
characteristics and damage mechanisms at lower length scales due to their idealized
assumptions. In a recent effort, the authors have conducted an in-depth investigation of 
as-produced defects in C/SiNC CMC at multiple length scales using several 
experimental techniques, such as laser scanning microscopy, scanning electron 
microscopy (SEM), and energy dispersive spectroscopy (EDS) [5]. The primary classes 
of these defects were denuded matrix, interlaminar separations, open porosity, shrinkage 
cracks, and intratow porosity. An algorithm was also developed to generate stochastics 
representative volume elements (SRVEs) accounting for material variabilities such as 
inter- and intratow porosity and fiber VFs, fiber radii, intratow spacing, average tow 
size, and shape, size, VF, and distribution of defects, to facilitate high-fidelity multiscale 
physics-based modeling linking the constituent properties and subscale features to 
CMCs response.

In micromechanics, periodic boundary conditions (PBCs) are commonly utilized to 
model a periodic microstructure as a material point and obtain the effective properties 
of the material. Several authors developed and reported PBC algorithms for periodic 
RVEs in ABAQUS [10- 12]. Omairey et al. have reported a detailed algorithm for 
calculating material effective elastic properties [10]. However, this algorithm is 
computationally expensive and was limited to mechanical loadings. Tian et al. have 
developed a simple 3D PBC algorithm, where the authors conducted thermal 
simulations and discussed the calculation of effective thermal conductivities [11]. This 
paper discusses implementing a 3D PBC algorithm in ABAQUS for SRVEs under 
mechanical and thermal loading conditions. The PBCs are implemented via a linear 
multi-point constraint equation, which requires a linear combination of nodal degree of 
freedom (DoF) equated to zero. The procedure to calculate the effective material 
properties under different loading conditions (thermal and mechanical) is also 
discussed. The developed approach is combined with the previously developed
multiscale SRVEs generation algorithm to investigate the effects of varying VF of 
defects on material properties and localized stress/strain distributions. This is 
particularly important since high-fidelity SRVE results of unidirectional CMCs are not 
readily available in the published literature. Since the SRVE algorithm utilizes an
orthogonal structured mesh, its fidelity is first compared with traditional non-orthogonal 
finite element (FE) mesh. The SRVEs are then subject to different loading directions to 
compute elastic properties; the results are validated with the theoretical rule of mixture-
based predictions. 
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Implementation of high-fidelity SRVEs in ABAQUS

The open-source DREAM.3D package, which allows for customized workflows to 
visualize multidimensional and multimodal data [13], is used to construct FE discretized 
microstructures generated using the previous developed SRVE generation algorithm. 
The FE discretized SRVEs are directly implemented within the commercial ABAQUS 
FE solver. Note that the SRVE generation algorithm generates orthogonal grid 
microstructures, where first, the composite domain is discretized, then the constituent
geometry is assigned based on the mesh constraint [5]. However, in FE solvers such as 
ABAQUS (non-orthogonal grid), the constituent geometry is modeled first, and the 
domain is then meshed based on the geometric boundary constraints. Therefore, to 
verify the accuracy of the SRVE algorithm implementation in ABAQUS, a comparison 
of linear elastic FE simulations was conducted for single fiber RVEs obtained from the 
developed SRVEs generation algorithm (orthogonal grid) and ABAQUS (non-
orthogonal grid). The fiber VF is 48%. The lower boundaries of the microstructure were 
fixed, and a force was applied to the upper boundaries. It is to be noted that the same 
grid size was used in both geometries. The results obtained using both geometries are 
in excellent agreement, as shown in Fig. 1. Figures 1a and 1b show contours of effective 
von Mises stress and Figs. 1c and 1d show contours of in-plane shear stress in 
orthogonal and non-orthogonal grids, respectively. While the results show excellent 
agreement between both geometries, the orthogonal grid microstructure does not show 
a smooth surface on the fiber-matrix interface due to the orthogonal elements. As a 
result, stress/strain was localized on the fiber-matrix interface. This can be improved 
with smaller mesh sizes. While the current implementation is demonstrated for FE 
analysis, the SRVE can also be simulated using other semi-analytical models such as 
the high-fidelity generalized method of cells (HFGMC) [14].

(a)                                                                                   (b)

(c)                                                                                   (d)
Fig 1. Single fiber matrix SRVE with 48% VF and fixed lower sides boundary

conditions; Von-Mises results (in MPa) of (a) orthogonal and (b) non-orthogonal grid 
microstructures and in-plane shear stress (in MPa) of (c) orthogonal and (d) non-

orthogonal grid microstructures
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Implementation of periodic boundary conditions in ABAQUS

In micromechanics-based modeling or direct numerical simulation (e.g., FE), the 
application of PBCs to SRVEs idealizes them as material points over which the 
conjugate fields (e.g., stress and strain) are assumed to be uniform. The application of 
PBCs idealizes the SRVE as infinitely repeating in the directions in which periodicity 
is considered and allows the extraction of effective properties via volume averaging.

In this study, PBCs are implemented in ABAQUS via a linear multi-point constraint 
equation, which requires a linear combination of nodal DoF equated to zero. It also 
requires the nodes on opposite faces to be coupled to ensure the displacement periodicity 
and account for the applied strain or displacement. Equation (1) shows a generalized
linear constraint equation, where �� is a coefficient to define the relative motion of nodes 
and �� is the DoF. Please note that in ABAQUS, DoF of displacement along x, y, and z 
are 1, 2, and 3, respectively, and temperature DoF is 11. The PBCs are introduced to 
SRVEs through reference points (RPs), whereas in 3D SRVE, three RPs should be 
defined for the three directions, see Table (1). Equation (2) shows an example of couple 
displacements of two opposite sides along i-direction, one side (��+) and the other side 
(���) through the RP with a displacement value of ∆�.

���� � ���� � ���� � ���� � ⋯� ���� = 0 (1)

��+ � ��� = ���, and ��� = ∆� (2)

In 3D SRVEs, there are six faces/surfaces, and their corresponding nodes should be 
coupled along with all directions. However, edges of SRVEs are shared by multiple 
faces, and, likewise, corners are shared by multiple edges and faces. Coupling the same 
edge/node more than once to its opposite node will result in over constrains [10].
Consequently, developing an algorithm to capture these three sets (faces, edges, and 
vertices) is crucial. In the developed PBC algorithm, these three sets are extracted and 
stored independently. For instance, in Fig 2, the top face (face 1-2-3-4) can be extracted 
and stored as all nodes at the top surface (surface 1-2-3-4) except the four edges
(including the red edge) and vertices (1, 2, 3, and 4).

Similarly, in Fig 2, edges such as the red edge can be extracted as all nodes at edges
2-3 except vertices 2 and 3. To facilitate the application of arbitrary displacement-
controlled loading to SRVEs, an RP should be defined along each direction (i.e., x, y, 
and z). In the same way, for thermal simulations and calculating the effective thermal 
conductivity, only one RP with temperature DoF should be utilized. In this case, 
displacements at Eq. (2) should be replaced by temperature.
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Fig 2. Schematic figure showing how the PBC algorithm extract and store different 
sets such as faces, edges, and vertices in a simple cubic RVE

The following section shows all linear equation constraints used in ABAQUS. 
Please note that the illustrative figure (Fig. 2) illustrates the coupling in the following 
equations. For example, ����� refers to a displacement applied on all nodes of the upper 
face or face 1-2-3-4, similarly ��� refers to a displacement applied on all nodes of the 
red edge or edge 2-3, and �� refers to the displacement applied on vortex 1. The 
reference points can be defined arbitrarily outside the SRVE domain.

Faces:

Coupling faces along the Y-axis:

����� – ����8  =  ���� (3)

Coupling faces along the X-axis:

���8� – �����  =  ���� (4)

Coupling faces along the Z-axis:

���8� – ����8  =  ���� (5)

Edges:

Coupling edges along the Y-axis:

��� – ��8  =  ���� (6)

�8� – ���  =  ���� (7)

Coupling edges along the X-axis:

��� – ���  =  ���� (8)
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��8 – ���  =  ���� (9)

��� – ���  =  ���� (10)

��8 – ���  =  ���� (11)

Coupling edges along the Z-axis:

��� – ��8  =  ���� (12)

��� – �8�  =  ���� (13)

��� – ���  =  ���� (14)

Vertices:

Coupling vertices along the Y-axis:

�� – �8 =  ���� (15)

Coupling vertices along the X-axis:

�� – �� =  ���� (16)

�� – �8 =  ���� (17)

Coupling vertices along the Z-axis:

�� – �� =  ���� (18)

�� – �8 =  ���� (19)

�� – �� =  ���� (20)

�� – �� =  ���� (21)

A single fiber SRVE is generated from the developed SRVE generation algorithm 
to validate the accuracy of coupling equations in ABAQUS, as shown in Fig 3. The 
upper subfigures in Fig. 3 show 2D and 3D views of a single fiber SRVE with a domain 
size of 40 x 40 x 20 grids. The lower subfigures in Fig. 3 also show the sets 
corresponding to specific faces, edges, and vertices. For each set (faces, edges, and
vertices), one node was selected to show the algorithm’s accuracy; see orange nodes in 
each subfigure.

Fig 3. A single fiber matrix SRVE geometry highlighting the different sets in the PBC 
algorithm (faces, edges, and vertices)
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Next, RPs are introduced in the FE model to couple the DoF of node sets (faces, 
edges, and vertices) along each principal direction (see Fig. 3). For instance, applying 
load on RP1 means applying load along x-direction, and RP2 and RP3 are the 
corresponding RPs along the y- and z-axis. The SRVE with the RPs is subject to six 
independent load paths (three normal directions and three shear directions) to obtain the 
3D effective (homogenized) elastic material properties such as Young’s and shear 
moduli and Poisson’s ratio. Table (1) lists all required displacement BCs to calculate 
the effective material properties.

TABLE 1. Displacement boundary conditions of the PBC algorithm

RP1 RP2 RP3

uxx uxy uxz uyx uyy uyz uzx uzy uzz

E11 value 0 0 0 ----- 0 0 0 ----

E22 ----* 0 0 0 value 0 0 0 ----

E33 ---- 0 0 0 ---- 0 0 0 value

G12 0 value 0 value 0 0 0 0 0

G13 0 0 value 0 0 0 value 0 0

G23 0 0 0 0 0 value 0 value 0

*---- : No constraints are required

From the results of each simulation, the reaction forces and displacements are 
calculated at the corresponding RP, and the stress and strain are obtained accordingly 
based on the cross-sectional area and domain size. The Young’s modulus and Poisson’s 
ratio are calculated correspondingly. Since the experimental results are available only 
for constituents (fiber and matrix), the theoretical rule of mixture (RoM) was used to 
compare against the numerical results. Note that the RoM is known to underestimate 
matrix-dominated properties (e.g., the transverse Young’s modulus) of composite 
materials but provides reasonably accurate predictions for fiber-dominated properties. 
In this paper, both matrix and fiber were assumed to be isotropic, and the material 
properties are listed in Table 2. Equations (23-25) show an example for calculating the 
homogenized material properties of the SRVE. Figure 4 shows the material properties 
at different SRVE mesh accuracy and fiber VFs. Where the results of Young’s modulus 
along the fiber directions (���) show excellent agreement compared to the theoretical 
RoM. ��� and ��� show compatible results with different SRVE accuracy; however, 
theoretical RoM underestimates the shear modulus compared to the numerical results 
as discussed earlier.

��� =
��� (���)/(� × �)

�� (���)/� (23)
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��� =
��� (���)/(� × �)
�� (���)

�
�

�� (���)

�
(24)

��� =
��� (���)/�

�� (���)/�
(25)

Where RF and u refer to the reaction force and displacement at the RPs. L, W, and H 
are the cube dimensions as shown in Fig 2.

Fig 4. Homogenized material properties at different SRVE size and fiber VFs

TABLE 2. Elastic material properties for SiC and carbon T300 fibers [15]

SiC Carbon T300 

� (���) 415.0 230.0
� 0.17 0.23

The effects of intratow porosity on C/SiC CMC properties

The SRVE generation algorithm is utilized with the developed PBC algorithm in 
ABAQUS to investigate the effects of as-produced defects on the material properties. 
SRVEs with dimensions of 60 × 60 × 20 grids, 48.9% fiber VF and different void VFs
(from 0% to 5%) are used. Each SRVE is subject to six independent loadings to study 
the effects of the manufacturing-induced voids on all effective material properties. 
Figure 5 shows Young’s and shear moduli degradation with increasing the void VF; see 
the secondary axis in Fig 5. Compared to the 0% (pristine), the longitudinal and 
transverse Young’s moduli of the SRVE with 5% void VF degraded by 11.2% and 
12.70%, respectively. The in-plane and through-thickness shear moduli also degraded 
by 13.29% and 13.99%, respectively. Due to the preferred location and distribution of 
voids with the matrix constituent, especially on the fiber-matrix interface, ��� showed 
the most degradation. Although the SRVE is heterogeneous due to the presence of 
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intratow voids, ��� and ��� have similar values as shown in Fig 5. The values of 
Poisson’s ratios (��� and ���) increased at different void VFs based on the distribution 
and location of these voids.

Fig 5. The influence of intratow porosity on the material properties using different 
voids VF SRVEs

While it is crucial to study the impact of voids on the material properties, it is also 
essential to investigate their influence on the stress/strain localization pattern. 
Consequently, the localization patterns could indicate potential damage and failure 
mechanisms simulated using physics-based inelastic simulations. Figures 6a and 6b 
show SRVEs with dimensions of 60 × 60 × 20, 48.9% fiber VF, and 0% and 4% 
intratow porosity VFs, respectively. The SRVEs were loaded along the fiber direction
(���). The effective von-Mises stress contour of the SRVE without voids is shown in 
Fig 6a, where the contour has only two values for the fiber and matrix. After introducing 
the 4% intratow porosity VF, the stress localized around the voids creates hotspots 
resulting in a complex stress contour, as shown in Fig 6b. Figure 6b shows the stress 
contour of a 2D slice cut perpendicular to the fiber direction. In other sections, the 
coalescence between intratow voids results in localization bands in the matrix domain 
and at the interface due to intratow voids in its vicinity. 

Moreover, the same SRVEs were utilized to investigate the effects of intratow
voids on the shear modulus and the stress distribution pattern, where the SRVEs were 
loaded along the in-plane shear direction (���). The effective von-Mises stress contour 

of the SRVE without voids is shown in Fig 7a, where the maximum stress localized 
around the fiber-matrix interface as expected during shear loads. Due to intratow voids, 
the effective von-Mises stress has a complex contour where the voids have around zero 
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value of stress (1.363 × 10−�9 MPa) while maximum stresses were found to be 
localized around the voids, as shown in Fig 7b.

(a)                                                                       (b)
Fig 6. Von-Mises stress contours of SRVEs, loaded along the fiber direction, with 

dimensions of 60 × 60 × 20, 48.9% fiber VF, and (a) 0%; (b) 4%

(a)                                                                   (b)
Fig 7. Von-Mises stress contours of SRVEs, loaded along the in-plane shear direction,

with dimensions of 60 × 60 × 20, 48.9% fiber VF, and (a) 0%; (b) 4%

CONCLUSIONS

In this work, the authors utilized a recently developed SRVE generation algorithm 
for use in the multiscale simulation of C/SiNC CMCs. The algorithm was developed 
based on an extensive study of multiscale material characterization of structural and 
manufacturing defects in C/SiNC CMCs. This paper presents the development and 
implementation of a 3D PBC algorithm in ABAQUS. The SRVE and PBC algorithm 
were used to obtain the effective material properties and investigate the effects of 
intratow voids on the material properties and stress/strain distribution patterns under 
different loading directions. The numerical results along the fiber direction showed
excellent agreement with the theoretical RoM model. However, the theoretical model 
underestimates the material properties on the transverse and shear directions compared 
to the numerical results, as expected. Different mesh size was used to ensure the 
convergence of the elastic material properties results. The elastic moduli degraded with 
increasing void VFs. Since the preferred location and distribution of intratow voids are 
near the matrix-fiber interface and in the matrix constituent, the stress concentration 
occurred around these voids, creating complex stress patterns and localization bands in 
the matrix domain. Consequently, these hotspots are expected to significantly affect the 
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damage initiation and failure mechanisms of the C/SiNC SRVEs subject to inelastic 
deformation.
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