
PNNL-33338

Sequential Decision Making (SDM)

for Mesh Refinement and Model

Selection in Multiscale,

Multi-Physics Applications

March 4, 2022

R Tipireddy

WR Rosenthal
M Subramanian

V Amatya

Prepared for the U.S. Department of Energy

Under contract DE-AC05-76RL01830

PNNL-33338

Sequential Decision Making (SDM)
for Mesh Refinement and Model
Selection in Multiscale,
Multi-Physics Applications

March 4, 2022

R Tipireddy

WR Rosenthal

M Subramanian

V Amatya

Prepared for

the U.S. Department of Energy

Under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory

Richland, Washington 99352

PNNL-33338

Abstract

Intelligent automation and decision support are needed to enhance computational efficiency and

robustness in multiscale and multi-physics problems, including materials science,

manufacturing, and climate and weather modeling. Current scientific computing approaches for

enabling decisions by scientists fail to explore the role of learning, reasoning, and probabilistic

planning. Often these decisions are not performed in real-time during the computation but are

made prior to the start of the computation, which must be interrupted in order to make changes

to the prior choices. Such interruptions at different stages of the computation increase the total

computing time and the need for a human expert to frequently monitor the results. State of art

scientific computing methods consist of rule-based algorithms that cannot automatically adapt to

a dynamically changing computing environment. The development of a Sequential Decision

Making (SDM) framework will automate scientific computing by optimizing the policies for mesh

refinement, time-stepping, model and algorithm selection, resource allocation, and pre and

post-processing. Our agent SDM framework for scientific computing will consist of data-driven

learning (Classifier), automated reasoning (contextual knowledge), and probabilistic planning

(Reinforcement Learning). In this project, we focused on three problems to demonstrate our

SDM framework on a set of ordinary and partial differential equations. Classification of Lorenz

system regions using Feed-Forward Neural Networks examined learning in the SDM

framework. On the other hand, reasoning and planning in the SDM framework were used in two

problems: adaptive time-stepping for nonlinear ODEs using on-policy RL algorithms, and

adaptive mesh refinement for 2-D PDEs using off-policy RL algorithms.

Abstract iv

PNNL-33338

Executive Summary

Development of a Sequential Decision Making (SDM) framework will automate scientific

computing by optimizing the policies for mesh refinement, time-stepping, model and algorithm

selection, resource allocation, and pre and post processing. Our multi-agent SDM framework

for scientific computing will consist of data-driven learning (Classifier), automated reasoning

(contextual knowledge) and probabilistic planning (POMDP/RL). The data driven learning will

analyze the problem environment to evaluate the systems state. Automated reasoning consists

of probabilistic, physics-based or contextual knowledge reasoning about stochastic multiscale

and multi-physics problems. This element will eliminate the non-feasible systems states using

contextual knowledge reasoning. Finally, the probabilistic planning is the main decision making

element which is based on both model-based and model-free, multi-agent reinforcement

learning algorithms. In this approach different scientific computing agents will work in a

cooperative manner to achieve common goal of obtaining efficient, accurate and stable

numerical solution. Each agent will have a specific role such as adaptively choosing the optimal

time step, adaptive mesh refinement, model selection, optimal resource allocation.

Although Artificial Intelligence (AI) and Machine Learning (ML) methods have proven to be

beneficial in many fields such as robotics, optimal control etc., these techniques have not

completely been utilized in the scientific computing applications. Model-based and model-free

multi-agent reinforcement learning algorithms developed in this project will enhance the existing

numerical methods for their numerical stability, accuracy and computational efficiency.

Algorithms developed in this project can be easily adapted to efficiently compute the numerical

solutions to mathematical models of systems with relevance to the DOE missions.

Automated decision making in complex systems relies on robust system state identification

under uncertainty. System state identification via data-driven learning is the often the first step

within a sequential decision making (SDM) framework [2]. An SDM framework may comprise of

multiple computational modules for system state estimation, context-aware reasoning, and

probabilistic planning. A computational agent in such settings may continuously interact with an

external environment, compute the best policies (state to action mappings), and execute actions

that maximize learning reward signals in the long run [19]. In this context, system state is often

hidden or partially observable from an agent. This requires an agent to infer the state of the

system indirectly through a combination of data driven learning and domain knowledge.

Executive Summary v

PNNL-33338

Acknowledgments

The research described in this paper is supported by the Mathematics of Artificial Reasoning in

Science (MARS) Initiative at Pacific Northwest National Laboratory (PNNL). It was conducted

under the Laboratory Directed Research and Development Program at PNNL, a multiprogram

national laboratory operated by Battelle for the U.S. Department of Energy under

DE-AC05-76RL01830.

Acknowledgments vi

PNNL-33338

Contents

Abstract . iv

Executive Summary . v

Acknowledgments . vi

1.0 Introduction . 1

2.0 Sequential Decision Making . 2

2.1 Learning-based classification . 2

2.2 MDP and Deep Reinforcement Learning . 3

2.3 Deep Q-Learning . 4

2.3.1 Q-learning . 4

2.3.2 Deep Q-Network (DQN) . 4

2.4 On-policy and off-policy RL . 4

2.4.1 Vanilla Policy Gradient . 5

2.4.2 Exploration versus exploitation . 5

2.4.3 Proximal Policy Optimization . 5

3.0 Lorenz System State Stability Identification using Neural Networks 7

3.1 Lorenz system of equations . 7

3.2 Labeling strategy . 8

3.2.1 Identification of left and right regimes 8

3.3 Labeling the data points as stable or unstable 8

3.4 Training and validation datasets . 9

3.5 Initial conditions for training dataset . 9

3.6 Initial conditions for the validation dataset . 10

3.7 Neural network architecture . 10

4.0 Adaptive Time Stepping for Nonlinear ODEs Using On-policy RL Algorithms 12

5.0 Adaptive Mesh Refinement for 2-D PDEs Using Off-policy RL Algorithms 14

5.1 Model problem . 14

5.2 Notation . 14

5.3 Finite element approximation . 15

5.3.1 Weak formulation . 15

5.4 Adaptive strategies . 15

5.5 Residual-based estimator . 16

5.5.1 Recovery-based estimator . 16

5.6 Numerical examples . 17

Contents vii

PNNL-33338

5.6.1 Smooth problem . 17

5.6.2 L-Shape domain . 17

5.6.3 Contrast problem . 17

6.0 Numerical Experiments . 18

6.1 Lorenz system state stability identification . 18

6.2 Initial conditions for training and validation data sampled from same interval . . 18

6.3 Initial conditions for training and validation data sampled from different intervals 19

6.4 Normalization . 20

6.4.1 Normalization . 24

6.5 Adaptive time stepping for nonlinear ODEs . 29

6.5.1 Van der Pol oscillator . 29

6.5.2 Lorenz equations . 29

6.6 Adaptive mesh refinement for 2-D PDEs . 30

7.0 Conclusions . 33

Contents viii

PNNL-33338

Figures

1 Sequential decision making. 2

2 A typical Lorenz system simulation . 8

3 Lorenz system labeling. a) A Lorenz system with labeled left and right regimes. The

regimes are labeled based on the mean value of the x-coordinate. b) A Lorenz

system with stable and unstable regions. 9

4 Schematic of the fully-connected feed-forward neural network architecture used in the

experiments. Note that hnm denotes the mth hidden node in nth layer. 11

5 An empirical reward function for reinforcement learning that enables the efficient adap-

tive time stepping of the Runge-Kutta 4-5 algorithm 13

6 A classification result using neural network models in matched conditions. The initial

conditions for training data were sampled according to Eq. (3.5.2a), and for vali-

dation data they were sampled according to Eq. (3.6.3a). The precision and recall

scores are 0.9 and 0.744, respectively. 19

7 A classification result using neural network models in matched conditions. The initial

conditions for training data were sampled according to Eq. (3.5.2b), and for vali-

dation data they were sampled according to Eq. (3.6.3b). The precision and recall

scores are 0.94 and 0.78, respectively. 20

8 A classification result using neural network models in mismatched conditions. The

initial conditions were sampled according to Eq. (3.5.2a) for training data and

Eq. (3.6.3b) for validation data. The precision and recall scores are 0.01 and 0.004,
respectively. 21

9 A classification result using neural network models in matched conditions. The initial

conditions were sampled according to Eq. (3.5.2b) for training data and Eq. (3.6.3b)

for validation data. The precision and recall scores are 0.7955 and 0.5659, respec-
tively. 21

10 A classification result using neural network models in mismatched conditions. The

initial conditions were sampled according to Eq. (3.5.2c) for training data and

Eq. (3.6.3b) for validation data. The precision and recall scores are 0.846 and

0.125, respectively. 22

11 A classification result using neural network models. The initial conditions were sam-

pled according to Eq. (3.6.3b) for validation data. The initial conditions for training

data were sampled according to Eq. (3.5.2a) for Fig. 7a, Eq. (3.5.2b) for Fig. 11b,

and Eq. (3.5.2c) for Fig. 11c. 23

12 Histogram and Kernel Density Estimates (KDE) of x-coordinates of the training and

validation data for the mismatched and matched cases. The initial conditions for

training data were sampled according to Eq. (3.5.2a) for Fig. 12a and according

to Eq. (3.5.2b) for Fig. 12b. The initial conditions for validation data were sampled

according to Eq. (3.6.3b) for both the cases. 24

13 Histogram and Kernel Density Estimates (KDE) of x-coordinates of the training and

validation data for the mismatched case, before and after normalization. The initial

conditions for training data for Fig. 13a and Fig. 13b were sampled according to

Eq. (3.5.2a). The initial conditions for validation data were sampled according to

Eq. (3.6.3b). 25

Figures ix

PNNL-33338

14 Comparison of the location of stable and unstable data points of a Lorenz System

before and normalization. Note that the only change is in the ranges of axes values. 25

15 Classification results using neural network models in mismatched conditions, after

normalization. The initial conditions for training data were sampled according to

Eq. (3.5.2c), and for validation data they were sampled according to Eq. (3.6.3b).

The precision and recall scores are 0.983 and 0.972, respectively. 27

16 Classification results using neural network models in mismatched conditions, after

normalization. The initial conditions for training data were sampled according to

Eq. (3.5.2c), and for validation data they were sampled according to Eq. (3.6.3d).

The precision and recall scores are 0.99 and 0.939, respectively. 28

17 Classification results using neural network models in mismatched conditions, after

normalization. The initial conditions for training data were sampled according to

Eq. (3.5.2c), and for validation data they were sampled according to Eq. (3.6.3e).

The precision and recall scores are 1 and 0.91, respectively. 28

18 Classification results using neural network models in mismatched conditions, after

normalization. The initial conditions for training data were sampled according to

Eq. (3.5.2c), and for validation data they were sampled according to Eq. (3.6.3f).

The precision and recall scores are 1 and 0.95, respectively. 29

19 Van der Pol oscillator solution. 30

20 Van der Pol oscillator reward function. 30

21 Solution of Lorenz equations. 31

22 Lorenz equations reward. 31

23 Reward during off-policy RL-training. 32

24 Comparison of errors from RL-based adaptive mesh refinement and classical adaptive

mesh refinement techniques over a range of DoFs. 32

Tables

6.4.1Average precision and recall values – without normalization. 26

6.4.2Average precision and recall values – with normalization. (IC = initial conditions.) . . . 27

x

PNNL-33338

1.0 Introduction

In this project, we developed a sequential decision making (SDM) framework to automate the

process of obtaining optimal solutions to stochastic multiscale and multi-physics problems,

including method selection, workload balancing, and the use of quality control heuristics.

Computing the solution of large-scale problems with multiscale processes, such as fluid flow

and heat transfer in a reactor core, is computationally expensive and involves iterative stages of

preprocessing, high performance computing, and post-processing. In the existing multi-physics

application frameworks [1], human intervention is required due to the stochasticity of the

decision variables that need to be analyzed and parameterized. Such decision variables can

influence various phases of the application framework, including pre-processing, core

computation, and result validation. Examples of the types of decision choices required are:

real-time mesh refinement and model or algorithm selection in a dynamically changing

computing environment; efficient exchange of parameters and information between coarse

scale and fine scale physics models; and allocation of optimal computing resources. Often

these decisions are not performed in real time during the computation but are made prior to the

start of the computation, which must be interrupted in order to make changes to the prior

choices. Such interruptions at different stages of the computation increases the total computing

time and need for a human expert to frequently monitor the results. In this one-year project, we

focused on three specific problems: a) classification of Lorenz system regions using

Feed-Forward Neural Networks, examining learning in the SDM framework; b) adaptive time

stepping for nonlinear ODEs using on-policy RL algorithms for reasoning and planning in an

SDM framework; and c) adaptive mesh refinement for 2-D PDEs using off-policy RL algorithms,

looking at reasoning and planning in SDM frameworks. We demonstrated our SDM framework

on a set of ordinary and partial differential equations.

This report is organized as follows: In Section 2.0, we introduce the sequential decision

making (SDM) framework. We introduce stability identification of a Lorenz system of equations

as an example of learning in the SDM framework in Section 3.0. We provide an adaptive time

stepping method for nonlinear ODEs using on-policy RL algorithms in Section 4.0 and present

an adaptive mesh refinement approach for 2-D elliptic equations using off-policy RL algorithms

in Section 5.0. Then, we demonstrate our SDM framework with numerical experiments in

Section 6.0. Finally, we end the report with conclusions in Section 7.0.

Introduction 1

PNNL-33338

2.0 Sequential Decision Making

In this section we present sequential decision making based on data driven learning, contextual

reasoning and probabilistic planning. In particular we introduce a neural network based

classification method for stability identification in a Lorenz system of equations, and describe

on-policy and off-policy reinforcement learning algorithms for adaptive time stepping and

adaptive mesh refinement for ordinary and partial differential equations, respectively. Fig. 1

shows our SDM framework based on learning, reasoning, and planning tasks.

Figure 1: Sequential decision making.

2.1 Learning-based classification

Neural networks are a sequence of densely interconnected nodes. Through a process known

as training, the networks learn the parameters, or the relationship between these nodes. The

availability of large amounts of data and massive computational power are some of the reasons

that have facilitated training of deep neural networks in recent years. Consequently, deep

neural networks have garnered widespread attention across different scientific disciplines

including speech recognition [7], image classification [6], language modeling [20] and even

protein folding [17]. The idea of leveraging neural networks to study dynamical systems has

been explored for many years [14]. Recently, both feed-forward and recurrent architectures

have been used for several forecasting and prediction based tasks on chaotic systems. For

example, feed-forward neural networks have been shown to predict extreme events in Hénon

map [11] and LSTM [8] architectures have been used for forecasting high-dimensional chaotic

systems [23]. Additionally, Reservoir Computing-based approaches have been leveraged for

data-driven prediction of chaotic systems. There is also literature suggesting that a hybrid

approach to forecasting that involves both machine learning and knowledge based models [15]

leads to higher prediction accuracy for a longer period on chaotic systems. Another line of work

involves discovering underlying models from data, wherein auto-encoder network architectures

are used to recognize the coordinate transformation and the governing equations of a

dynamical system [4]. All these examples highlight the general feasibility of using machine

learning and neural networks to study a wide variety of tasks involving chaotic systems.

Previous work has shown that feed-forward neural networks are reasonable candidates for

predicting the timing and duration of oscillations between attractors in Lorenz63 systems [3].

Sequential Decision Making 2

PNNL-33338

Inspired by this approach, we leverage feed-forward neural networks for our novel task of

classifying the data points of a Lorenz system. The solution of the Lorenz system consists of

two regimes which we refer to as the left and right regimes. Unlike the approach proposed in

[3], we do not restrict ourselves to the boundary x = 0 to distinguish between the left and right

regimes. Since we are interested in studying a broader range of Lorenz systems, we adopt the

mean value of x-coordinates as a boundary to distinguish between the left and right regimes.

One common problem associated with neural network architectures is a lack of

generalization to validation data that is drawn from a different distribution as compared to the

data used for training. This mismatch between training and validation distributions, also referred

to as covariate shift [18] is a well-studied aspect in most of the scientific fields that have

benefited from advances in neural network architectures. For example, within the speech

recognition community, this issue is referred to as acoustic mismatch and is a critical factor that

affects the deployment of speech recognition systems in real world environments [21]. A similar

terminology used in the field of natural language processing is domain mismatch, which renders

tasks like cross-lingual document classification especially challenging [10]. In the context of

chaotic systems, there has been some published work [16] that discusses the generalization

capabilities of neural networks trained on Lorenz systems. One of the results of this work on

Lorenz63 systems is that neural networks trained only on a part of the system’s phase space

struggle to skillfully forecast in regions that are excluded from the training phase space. These

observations are consistent with our initial results in Section 6.3, where we notice and analyze

the drop in performance of neural networks in the mismatched case.

In this project, we further show how a very simple yet effective normalization approach helps

in counteracting the mismatch problem. As we will show in Section 6.4, this pre-processing step

of normalization helps in training neural networks to perform well on a wide variety of validation

data for the task of classification of stable/unstable data points. To the best of our knowledge,

neural networks that classify data points of Lorenz system as stable or unstable, performance

analysis in the mismatched case, as well as the proposed normalization scheme, have not been

examined in the literature.

2.2 MDP and Deep Reinforcement Learning

In this section we present Markov decision process and describe various on-policy and

off-policy reinforcement algorithms. Reinforcement learning (RL) can be described as a tuple

〈S,A,R, P, p0〉 such that

• S = {s1, · · · , sn} is a set of all valid states,

• A = {a1, · · · , an} is a set of all valid actions,

• R : S ×A× S → R is the reward function rt = R(st, at, st+1),

• P : S×A → P(S is the transition probability such that P (s′|a, s) is the probability of transitioning
from state s to state s′ after taking action a, and

• p0(s0) is the probability distribution of the initial state.

In reinforcement learning [19], the decision maker or ”agent” continuously interacts with an

external environment by selecting a set of actions. The environment responds to these actions

with changes in its state and offers an instantaneous reward. The objective of the agent is to

learn about the environment while interacting with it and maximize the long-term reward. The

reinforcement learning method can be described as a Markov Decision Process (MDP). It

Sequential Decision Making 3

PNNL-33338

consists of: a set of states S; initial state distribution p(s0); a set of actions A; dynamics

describing the state transition T(st+1|st, at) that maps state-action pairs (st, at) at time t to the

state distribution at time t+ 1; a reward function R(st, at, st+1) that gives an instantaneous

reward value when the state transitions from st to st+1 upon executing the action at; and a

discount factor γ ∈ [0, 1] which discounts the value of future rewards at the current time.

2.3 Deep Q-Learning

The Deep Q-Network (DQN) was developed by Deep Mind in 2015 to solve a wide range of

Atari games. A DQN combines the RL algorithm Q-learning with deep neural networks along

with experience replay.

2.3.1 Q-learning

Q-learning is based on a state-action value function called a Q-function Qπ(s, a), which is

defined on a policy π. The Q-function measures the expected sum of discounted rewards by

taking action a when in state s while following the policy π. The optimal Q-function obeys the

Bellman equation given by

Q ∗ (s, a) = E[r + γmax
a′

(Q ∗ (s′, a′))] (2.3.1)

In Q-learning, the Bellman equation is solved iteratively to obtain the optimal Q-function, which

can be expressed as

Qi+1(s, a) = E[r + γmax
a′

(Qi(s
′, a′))] (2.3.2)

and Qi → Q∗ as i → ∞.

2.3.2 Deep Q-Network (DQN)

As the number of states in the state space and actions in the action space increase, the

problem becomes intractable to solve the Bellman equation using traditional Q-learning

methods such as a Q-table. Recent developments in deep neural networks (DNN), such as

function approximators in a variety of applications, are attractive tools to model a Q-function.

Let the Q-function be parameterized by θ. The Q-network Q(s, a, θ) modeled with DNNs can be

trained by minimizing the loss function,

Li(θi) = Es,a,s′≈ρ(·)[(yi −Q(s, a, θi))
2], (2.3.3)

where yi = r + γmaxa′ Q(s′, a′; θi−1) is the temporal difference (TD) and yi −Q is the TD error.

Q-learning is an off-policy algorithm that learns about the greedy policy a = maxaQ(s, a; θ).

2.4 On-policy and off-policy RL

In this section, we introduce several types of reinforcement learning algorithms which utilize

policy gradient and Q-learning.

Sequential Decision Making 4

PNNL-33338

Algorithm 1 DQN algorithm [13]

1: Initialize replay memory D to capacity N

2: Initialize action-value function Q with random weights

3: for episode = 1,M do

4: Initialize sequence s1 = {s1} and preprocessed sequenced φ1 = φ(s1)

5: for t = 1, T do

6: With probability ε select a random action at

7: Otherwise select a random action at = maxaQ
∗(φ(st), a; θ)

8: Execute action at in emulator and observe reward rt and state st+1

9: Set st+1 = st and preprocess φt+1 = φ(st+1)

10: Store transition (φt, at, rt, φt+1) in D

11: Sample random minibatch of transitions φj , aj , rj , φj+1 from D

12: Set yj =

{
rj , for terminalφj+1

rj + γQ(φj+1, a
′, ; θ), for non-terminalφj+1

13: Perform gradient descent step on yj −Q(φj , aj ; θ)
2

2.4.1 Vanilla Policy Gradient

In Vanilla Policy Optimization (VPG), also known as the REINFORCE algorithm, the policy πθ
parameterized by θ is optimized using a policy gradient algorithm. The parameters at step k + 1
are updated using

θk+1 = θk + α∇θJ(πθk) (2.4.4)

where J(πθk) is the finite-horizon undercounted return of the policy.

2.4.2 Exploration versus exploitation

VPG trains a stochastic policy in an on-policy way. This means that it explores the action space

by sampling actions according to the latest version of its stochastic policy. The amount of

randomness in action selection depends on both initial conditions and the training procedure.

Over the course of training, the policy typically becomes progressively less random, as the

update rule encourages it to exploit rewards that it has already found. This may cause the

policy to get trapped in local optima.

2.4.3 Proximal Policy Optimization

PPO-Penalty approximately solves a KL-constrained update and penalizes the KL-divergence in

the objective function, instead of making it a hard constraint. It automatically adjusts the penalty

coefficient over the course of training so that it is scaled appropriately. IN contrast, PPO-Clip

does not have a KL-divergence term in the objective and does not have a constraint at all.

Instead, it relies on specialized clipping in the objective function to remove incentives for the

new policy to drift far from the old policy. Here, we focus only on PPO-Clip (the primary variant

used at OpenAI).

Sequential Decision Making 5

PNNL-33338

PPO-clip updates policies via

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a, θk, θ)], (2.4.5)

where

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ε, Aπθk (s, a))

)
, (2.4.6)

and

g(ε, A) =

{
(1 + ε)A, A ≥ 0

(1− ε)A, A < 0
(2.4.7)

Sequential Decision Making 6

PNNL-33338

3.0 Lorenz System State Stability Identification using Neural
Networks

In this section, we demonstrate the use of neural networks to classify data points of a Lorenz

system as stable/unstable, analyzing their performance in the mismatched case, and proposed

a novel normalization scheme.

3.1 Lorenz system of equations

The Lorenz-63 system (which we will simply term a Lorenz system, hereafter) is a dynamical

system consisting of three coupled differential equations,

dx

dt
= σ(y − x), (3.1.1a)

dy

dt
= x(ρ− z)− y, (3.1.1b)

dz

dt
= xy − βz, (3.1.1c)

where x, y, and z are the state variables, and σ, ρ, and β are the parameters. In this work, we

set σ = 10, ρ = 28, and β = 8
3 [12]. We represent the time derivatives by dx

dt ,
dy
dt , and

dz
dt ,

respectively, and x0, y0 and z0 are the initial conditions of the Lorenz system in the x, y, and z
directions, respectively.

Fig. 2a shows the trajectory of data points of the system state of a typical Lorenz system.

The Lorenz system is a highly chaotic system. Even a small perturbation in the initial conditions

can cause the trajectories to diverge significantly. The system is characterized by two distinctive

regimes that give rise to a butterfly-shaped figure. Starting from similar initial conditions, the

data points of a Lorenz system can either remain in the same regime or can alternate between

the two regimes. In this work, we are interested in identifying those data points of the Lorenz

system that will either undergo a regime change in the future time steps or would have

undergone a regime change in the past few time steps. In other words, we are interested in

isolating those data points whose past or future data points lie in different regimes. We refer to

such data points as unstable data points. We train a neural network to distinguish between

stable and unstable data points based on labeled training examples of Lorenz systems. We

then test the ability of the neural network models to identify the unstable data points on unseen

validation data. Since the Lorenz system is a highly chaotic system, even a small change in the

initial conditions will cause a major shift in the location of stable and unstable data points.

Consequently, it is a challenging task for neural network models to isolate the unstable data

points on unseen validation data.

In this work, we use neural network models to classify unstable data points in both matched

(i.e when the initial conditions for training and validation data are sampled from the same

interval) and mismatched conditions (i.e when the initial conditions for training and validation

data are sampled from different intervals). We first demonstrate that it is particularly difficult for

neural network models to reliably classify the unstable data points in mismatched conditions.

We further observe that certain normalization schemes can greatly improve the performance of

neural network models in mismatched conditions.

Lorenz System State Stability Identification using Neural Networks 7

PNNL-33338

(a) A typical Lorenz system. (b) x-axis values and their mean.

Figure 2: A typical Lorenz system simulation

3.2 Labeling strategy

The classification of data points as stable or unstable can be posed as a supervised learning

problem that requires labeled data points during training. We use a two-step process to

generate the labels for stable/unstable classification. In the first step, we introduce a heuristic

method to identify the right and left regimes of the Lorenz attractor. In the second step, we label

the data points as stable or unstable based on the regimes identified in the first step.

3.2.1 Identification of left and right regimes

In [3], the authors sampled the initial conditions for the dynamic variables from the interval [0, 1]
for their experiments. They used the condition x < 0 to define the left regimes and x ≥ 0 to
define the right regimes. Since we want to apply the results of our classification to a wide

variety of Lorenz systems which may not be perfectly aligned with the boundary x = 0, we adopt
a different approach. Specifically, we define the left and right regimes of the Lorenz attractor

based on the mean value of x-coordinate. The Fig. 2b shows the x-axis values and their mean.

In our heuristic-approach, if the x-coordinate of the data point has a value greater than the

mean in the x-direction (x > mean(x)), then the data point belongs to the right regime.

Otherwise, it belongs to the left regime (x < mean(x)). Fig. 3a shows a Lorenz system with left

and right regimes labeled using this approach.

3.3 Labeling the data points as stable or unstable

After defining the left and right regimes, we label the data points at every time step t as stable or
unstable. Specifically, we consider a window around the data point at time step t. In this study,

we work with a window of 5 data points from the past time steps t− 1, t− 2, t− 3, t− 4, t− 5
and 5 data points from the future time steps t+ 1, t+ 2, t+ 3, t+ 4, t+ 5. A data point at time

Lorenz System State Stability Identification using Neural Networks 8

PNNL-33338

(a) Left and right regimes. (b) Stable and unstable regions.

Figure 3: Lorenz system labeling. a) A Lorenz system with labeled left and right regimes. The

regimes are labeled based on the mean value of the x-coordinate. b) A Lorenz system with stable

and unstable regions.

step t is considered stable if the past 5 and the future 5 neighboring data points belong to the

same regime. The data point is labeled unstable even if one of the 10 neighbors belongs to the

different regime. Here the number of points is a hyper-parameter that we chose as based on

trial and error to manually classify the regions into stable and unstable. This number can be

calibrated in advance for different dynamical systems. Fig. 3b shows a Lorenz system with

labeled stable and unstable data points.

3.4 Training and validation datasets

For generating a Lorenz System such as the one shown in Fig. 2a, we specify the initial

condition x0, y0 and z0 for the dynamic variables. We then integrate the system with a time step

of 0.01 using ODEINT [1] and the Runge-Kutta 4-5 (RK45) algorithm provided by scipy [22]. For

every Lorenz System, we generate 4000 data points. For training, we use 25 such Lorenz

systems, resulting in a total of 100, 000 data points for the training set. For validation, we use 5
such Lorenz systems, resulting in a total of 20, 000 data points for the validation set.

3.5 Initial conditions for training dataset

We experiment with three different initial condition intervals for the training data set. The

Eqs. (3.5.2) describe the intervals from which the initial condition values for the training data are

sampled randomly. It is important to remember that each of the initial conditions x0, y0 and z0
are sampled independently from the choice of intervals.

x0, y0, z0 ∼ [0, 1] (3.5.2a)

Lorenz System State Stability Identification using Neural Networks 9

PNNL-33338

x0, y0, z0 ∼ [−1, 0] (3.5.2b)

x0, y0, z0 ∼ [−1, 1] (3.5.2c)

For each of the initial conditions shown in Eqs. (3.5.2), we generate 25 Lorenz systems
according to the procedure described above. These Lorenz systems are then used to train

different neural networks. We are interested in evaluating whether a neural network trained on

the chaotic Lorenz System with the initial condition intervals specified in Eqs. (3.5.2) can

achieve accurate classification performance on validation sets generated from a wide variety of

initial conditions.

3.6 Initial conditions for the validation dataset

Eqs. (3.6.3) describe the intervals from which the initial condition values for the validation data

are sampled randomly for our experiments. We use different random initial seeds while

generating the initial conditions for training and validation data. This ensures that the randomly

sampled initial conditions for training and validation data are different, even though the intervals

from which these are sampled might be the same.

x0, y0, z0 ∼ [0, 1] (3.6.3a)

x0, y0, z0 ∼ [−1, 0] (3.6.3b)

x0, y0, z0 ∼ [−1, 1] (3.6.3c)

x0, y0, z0 ∼ [2, 4] (3.6.3d)

x0, y0, z0 ∼ [0, 10] (3.6.3e)

x0, y0, z0 ∼ [−10, 10] (3.6.3f)

It is particularly challenging for neural networks to accurately classify the stable and unstable

points when the initial conditions for training and validation data are sampled from different

intervals. We will also see how the normalization scheme discussed in Section 6.4 can help

improve the performance in these cases.

3.7 Neural network architecture

In this section, we describe the neural network architecture used to classify the data points of

the Lorenz System (See Fig. 4). The neural network takes as input the three Lorenz variables

x, y, and z of the data point, as well as the three time derivatives dx
dt ,

dy
dt , and

dz
dt . Thus, the

input to the network is a 6-dimensional feature vector. The neural network outputs the

probabilities of the input feature vector being stable or unstable. The network consists of four

fully connected layers. The first two layers have 512 neurons each and have hyperbolic tangent

and rectified linear unit (ReLU) activation functions, respectively. The third layer consists of 256
neurons and ReLU activation functions. The final layer consists of 2 neurons and sigmoid

activation function that predicts the probabilities of the data points belonging to either the stable

or unstable classes. We use an Adam optimizer [9] with a learning rate of 0.001 and a binary

cross-entropy loss function. The neural network was implemented using the Keras library [5].

Lorenz System State Stability Identification using Neural Networks 10

PNNL-33338

Figure 4: Schematic of the fully-connected feed-forward neural network architecture used in the

experiments. Note that hnm denotes the mth hidden node in nth layer.

Lorenz System State Stability Identification using Neural Networks 11

PNNL-33338

4.0 Adaptive Time Stepping for Nonlinear ODEs Using
On-policy RL Algorithms

In this section we describe the numerical methods used to solve each Lorenz System and

generate its data points. Runge-Kutta methods are a family of methods used to solve

initial-value problems for ordinary differential equations such as

ẏ(t) = f(t, y) (4.0.1)

y(t0) = y0.

A fourth-order Runge-Kutta method (rk4) with fixed time step h can be written as

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (4.0.2)

k1 = hf(tn, yn)

k2 = hf

(
tn +

h

2
, yn +

k1
2

)
k3 = hf

(
tn +

h

2
, yn +

k2
2

)
k4 = hf(tn + h, yn + k3)

Adaptive or embedded Runge-Kutta algorithms such as the Dormand-Prince algorithm (rk45)

can be used to adaptively change the time step of the algorithm during the integration to

improve computational efficiency. The Dormand-Prince algorithm can be written as

yn+1 = yn +
35

384
k1 +

500

1113
k3 +

125

192
k4 −

2187

6784
k5 +

11

84
k6 (4.0.3)

and

zn+1 = yn +
5179

57600
k1 +

7571

16695
k3 +

393

640
k4 −

92097

339200
k5 +

187

2100
k6 +

1

40
k7, (4.0.4)

where yn+1 and zn+1 are 4th and 5th order solutions respectively and the values of k1, · · · , k7
are given by

k1 = hf(tn, yn)

k2 = hf

(
tn +

h

5
, yn +

k1
5

)
k3 = hf

(
tn +

3h

10
, yn +

3k1
40

+
9k2
40

)
k4 = hf

(
tn +

4h

5
, yn +

44k1
45

− 56k2
15

+
32k3
9

)
k5 = hf

(
tn +

8h

9
, yn +

19372k1
6561

− 25360k2
2187

+
64448k3
6561

− 212k4
729

)
k6 = hf

(
tn + h, yn +

9017k1
3168

− 355k2
33

+
46732k3
5247

+
49k4
176

− 5103k5
18656

)
k7 = hf

(
tn + h, yn +

35k1
384

+
500k3
1113

+
125k3
192

− 2187k4
6784

+
11k5
84

)

Adaptive Time Stepping for Nonlinear ODEs Using On-policy RLAlgorithms 12

PNNL-33338

Figure 5: An empirical reward function for reinforcement learning that enables the efficient adap-

tive time stepping of the Runge-Kutta 4-5 algorithm

The adaptive algorithm (rk45) simultaneously computes the 4th and 5th-order solutions. The
local error is given by

error = |zn+1 − yn+1| (4.0.5)

and the optimal time step hopt at time t+ 1 is computed as

hopt = h

(
εh

2error

) 1
5

, (4.0.6)

where ε is the desired tolerance. In this work, we used on-policy RL algorithms such as

proximal policy optimization techniques to optimize the time step of the rk45 algorithm. To
implement the RK algorithms we define Markov decision process (MDP) tuples as: states

S = h, k1, · · · , k7, action A = dt0, · · · , dtn and the empirical reward function R as

R =

{
10(cosh(eq−0.95)5−1) + log 10(eq0.25); eq < 1

−2, eq ≥ 1,
(4.0.7)

where eq = error/ε. Here the reward function R is plotted as a function of eq in Fig. 5. It shows

that the reward is greater when the ratio eq is less than 1 and close to 1. Such a reward function
pushes the time step up toward an optimally large size without exceeding the error tolerance.

Adaptive Time Stepping for Nonlinear ODEs Using On-policy RLAlgorithms 13

PNNL-33338

5.0 Adaptive Mesh Refinement for 2-D PDEs Using
Off-policy RL Algorithms

Over the decades, adaptivity has been a well-established tool used to improve the resolution of

rough solutions. Since analytic solutions to multiphysics problems are rarely available, one has

to resort to numerical solution techniques. In order to obtain a ”good” approximation of the true

solution, a rather fine discretization mesh appears to be necessary. This leads to extremely

large scale problems on the discrete level which pose many challenges to numerical

procedures. The goal of mesh adaptation is to coarsen the mesh in subdomains where the

(continuous) solution and data of the problem is ”calm”, and to use a fine mesh only in regions

where we expect nonlinearity or non-smoothness over a significant portion of the solution or

data. In a sense, one wishes to minimize the number of nodes in a finite element discretization

of the problem under the restriction to maintain solution accuracy. To achieve this goal, error

estimates and local error indicators are required in order to guide that adaptation process. In

recent years, automatic adaptivity has become an area of interest in the field of applied

mathematics. The convergence of the adaptive solution process, as well as its quasi-optimality

in terms of its computational complexity, with respect to a properly specified approximation

class has been well-established. High quality software implementations are available to test the

algorithms and validate the analysis.

5.1 Model problem

Let Ω ⊂ R2 be a bounded polygonal domain having boundary Γ consisting of disjoint parts ΓD

and ΓN , with ΓD being a closed set with respect to Γ. We consider the following model

problem:

−∇ · a∇u = f in Ω, (5.1.1a)

∂u

∂n
= 0 on ΓN , (5.1.1b)

u = 0 on ΓD, (5.1.1c)

where a is a non-negative real-valued bounded function on Ω, and f and gN are assumed to be

square-integrable functions on Ω and ΓN , i.e., they live in L2(Ω) and L2(ΓN), respectively.

5.2 Notation

Here and in the sequel, we employ the standard notation for the well-known Sobolev space

H1(Ω), which is the space of all square integrable functions admitting L2 first-order weak

derivatives. Let (·, ·)S and ‖ · ‖S denote the L2-inner product and norm on a set S, respectively,
and the subscript S is omitted when S = Ω. Let Th be a geometrically conforming

shape-regular triangulation of Ω̄. Associated with Th, we introduce the following notation:

• hK = diameter of cell K (h = maxK∈Th
hK),

• |K| = area of the cell K,

• E i
h = the set of all the edges of the interior cells in Th

• E D
h = the set of all the edges of the cells in Th excluding edges which intersect the boundary

ΓN ,

Adaptive Mesh Refinement for 2-D PDEs Using Off-policy RL Algorithms 14

PNNL-33338

• E N
h = the set of all the edges of the cells in Th which intersect the boundary ΓN ,

• e = the edge of a cell.

• he = length of an edge.

• PN (K) is the space of polynomials on cell K having degree at most N .

• (u, v)S is the L2-inner product of u and v on S ⊂ Rd, d = 1, 2.

• (u, v)Th
=

∑
T∈Th

(∇u,∇v)T and ‖u‖2Th
= (u, u)Th

.

5.3 Finite element approximation

5.3.1 Weak formulation

Find u ∈ V such that

a(u, v) = `(v), v ∈ V. (5.3.2)

where

a(u, v) :=

∫
Ω

∇u · ∇v dx, `(v) =

∫
Ω
fv dx−

∫
ΓN

gNv ds.

Thanks to the Lax-Milgram Lemma, a unique solution exists for (5.3.2). The conforming finite

element space of order N is defined by

Vh := {vh ∈ V
∣∣ vh|K ∈ PN (K),K ∈ Th},

where uh ∈ Vh, satisfying

a(uh, vh) = `(vh) ∀vh ∈ Vh, (5.3.3)

The well-posedness holds due to the Lax-Milgram Lemma.

We introduce a gradient-recovery-type error estimator based on the Zienkiewicz-Zhu (ZZ)

estimator. It is defined as the L2-norm of the difference between the recovered and the

numerical gradients, where the recovered gradient is an L2-projection of the numerical gradient

in an H(div)-conforming space. On any T ∈ Th, let RTN−1(T) be the Raviart-Thomas space of

index N − 1 (N ≥ 1), i.e.,
RTN−1(T) = PN−1(T)

2 + xPN−1(T).

The H(div; Ω)-conforming broken Raviart-Thomas space of index N − 1 is given by

RTN−1 := {q ∈ H(div; Ω)
∣∣ q|T ∈ RTN−1(T), T ∈ Th}.

5.4 Adaptive strategies

The implementation of the adaptive algorithm is done accordance with the cycle:

SOLVE =⇒ ESTIMATE =⇒ MARK =⇒ REFINE

where

Adaptive Mesh Refinement for 2-D PDEs Using Off-policy RL Algorithms 15

PNNL-33338

• SOLVE amounts to seeking a solution uh ∈ Vh such that.

ah(uh, vh) = `(vh) vh ∈ Vh holds.

• ESTIMATE is the computation of the error estimator ηh

• MARK deals with the selection of the elements and edges for refinement using the bulk

criterion

θ ηh ≤ ηM.

where M denotes the set of cells and edges in Th selected for refinement.

• REFINEMENT is realized using the newest vertex bisection in case Th consists of triangles.

The adaptive mesh refinement process is driven by ESTIMATE through estimators which could

be: residual-type a posteriori error estimators (popular owing to their low computational cost) or

a wide range of averaging estimators and estimators based on the solution to local problems.

The role of the estimator is two-fold, namely: drive the adaptive process and play the role of the

global discretization error. The latter is achieved by proving the equivalence of the estimator to

the global discretization error up to constants. For residual-type estimators, establishing the

equivalence is challenging because of the dependence of the constants on sensitive

parameters such as the high wave number or the inverse of the viscosity. In response to this,

equilibration estimators have been proposed where the constants are unity. However, this

estimator is expensive to compute since it relies on solving local problems to reconstruct the

flux. The goal is to automate the selection of estimators in the “ESTIMATE” step based on the

data of the problem and computed solution.

5.5 Residual-based estimator

We consider the residual-type a posteriori error estimator

ηh :=
(∑

T∈Th

η2T +
∑
e∈E D

h

η2e,1 +
∑
e∈E N

h

η2e,2

)1/2
,

consisting of the element residuals

ηT := hT ‖f +∆uh‖0,T , T ∈ Th(Ω),

and the edge residuals

ηe,1 := he

∥∥∥[∂uh
∂n

]
e

∥∥∥
e
, e ∈ E D

h ,

ηe,2 := he

∥∥∥∂uh
∂n

∥∥∥
e
, e ∈ E N

h .

5.5.1 Recovery-based estimator

In the absence of any information related to the exact gradient, we estimate the difference

between the numerical (possibly non-smooth) gradient and a smooth gradient constructed to

estimate the solution error.

Adaptive Mesh Refinement for 2-D PDEs Using Off-policy RL Algorithms 16

PNNL-33338

5.6 Numerical examples

We present the existing results for the following benchmark problems focusing on the

performance of the estimator and the optimal complexity achieved.

5.6.1 Smooth problem

−∇ ·
(
a∇u

)
= f in Ω := (0, 1)2,

u = 0 on ΓD := {0} × [0, 1] ∪ [0, 1]× {0},
n · ∇u = gN on ΓN := Γ \ ΓD,

where a = 1 and the data is chosen according to u(x, y) = 0.5 sin(πx) sin(πy)
π2 . θ = 0.25

5.6.2 L-Shape domain

−∇ ·
(
a∇u

)
= f in Ω := [−1, 1]2 \ [0, 1]2,

u = 0 on ΓD := {0} × [0, 1] ∪ [0, 1]× {0},
n · ∇u = gN on ΓN := Γ \ ΓD,

where a = 1 and the data (in polar coordinates) is chosen according to u(r, φ) = r
2
3 sin(23φ).

θ = 0.25.

5.6.3 Contrast problem

−∇ ·
(
a∇u

)
= f in Ω := [−1, 1]2,

u = 0 on ΓD = Γ.

Here we choose a as follows

a =

{
−1 (−1, 0)× (−1, 0) ∪ (0, 1)× (0, 1);

1 otherwise

and f = 1 with no information about the exact solution.

Adaptive Mesh Refinement for 2-D PDEs Using Off-policy RL Algorithms 17

PNNL-33338

6.0 Numerical Experiments

In this section, we provide numerical results for the stability identification of the Lorenz system

using feed-forward neural networks; adaptive time stepping using an on-policy RL algorithm,

namely proximal policy optimization; and adaptive mesh refinement for elliptic PDEs using an

off-policy RL algorithm, namely the Q-learning algorithm.

6.1 Lorenz system state stability identification

The Lorenz system is a chaotic system which is highly sensitive to initial conditions. Even a

small perturbation in the initial conditions can cause the trajectories to diverge to a large extent

and can affect the location of stable and unstable data points. Hence, it is a non-trivial task for

neural network models to predict the unstable data points of Lorenz systems which have not

been encountered during training. As we discuss in succeeding sections, it is especially

challenging for neural networks to predict the unstable data points of Lorenz systems in

mismatched conditions i.e when the initial conditions of Lorenz systems used for validation have

been sampled from a different interval as compared to Lorenz systems used for training. In

subsection 6.2, we present the results of predicting unstable data points using neural networks

when the initial conditions for training and validation have been sampled from the same interval.

In subsection 6.3, we discuss the results in mismatched conditions. Note that our dataset is

unbalanced. The number of stable data points (majority class) is much greater than the number

of unstable data points (minority class). In such cases, using the accuracy scores as a

performance evaluation metric is misleading since the model will have a high accuracy even if it

always predicts the majority class. Hence we do not report our results in terms of an accuracy

score. Instead we report the results in terms of precision and recall scores which are defined in

Eqs. 6.1.1.

Precision =
TruePositives

TruePositives+ FalsePositives
(6.1.1a)

Recall =
TruePositives

TruePositives+ FalseNegatives
(6.1.1b)

6.2 Initial conditions for training and validation data sampled from
same interval

The example shown in Fig 6 shows the results of applying neural networks for predicting

unstable data points when the initial condition variables x0, y0, and z0 for both the training and

the validation data are sampled from the same interval. The initial conditions for the training

data for the model are sampled according to Eq. (3.5.2a), and those for validation data are

sampled according to Eq. (3.6.3a). It is important to note that even though the sampling

intervals for initial conditions are the same, the randomly sampled initial conditions for training

and validation data within this interval are different. We observe that the neural network

performs reasonably well in predicting the unstable data points with a precision of 0.90 and a

recall of 0.744. Fig 7 shows another example of applying neural networks for the classification

of unstable data points when the initial conditions for both the training and validation data are

sampled from the same interval. In this example, the initial conditions for the training data for

the model are sampled according to Eq. (3.5.2b), and those for validation data are sampled

Numerical Experiments 18

PNNL-33338

(a) Ground truth labels. (b) Predicted labels.

Figure 6: A classification result using neural network models in matched conditions. The initial

conditions for training data were sampled according to Eq. (3.5.2a), and for validation data they

were sampled according to Eq. (3.6.3a). The precision and recall scores are 0.9 and 0.744,
respectively.

according to Eq. (3.6.3b). The precision and recall scores obtained are 0.94 and 0.78,
respectively.

We observe that for both the examples, the recall scores are lower than those for precision.

According to Eq. (6.1.1b), a lower recall score corresponds to a greater number of false

negatives. This effect is better seen in Fig 7, where the model sometimes fails to predict the

unstable data points in the gap region. This observation is also prevalent in mismatched

conditions. We will see in Section 6.4 that the normalization scheme helps in reducing the false

negatives and in improving the recall scores.

6.3 Initial conditions for training and validation data sampled from
different intervals

Fig. 8 illustrates the performance of neural network models in mismatched conditions. The

initial conditions for training data are sampled according to Eq. (3.5.2a), and for validation data

they are sampled according to Eq. (3.6.3b). In this example, the neural network models almost

completely miss the region of unstable data points and fail to identify them reliably. This is also

reflected in the low precision and recall values of 0.01 and 0.004, respectively. As a reference,

Fig. 9 shows the result on the same validation set as Fig. 8 using a neural network model that

has the initial conditions for training data sampled according to Eq. 3.5.2b. A comparison of

Fig. 8 and Fig. 9 shows the importance of initial conditions on the performance of neural

networks for the specific task to identify the unstable data points of a Lorenz System. One can

clearly see that using the features described in Section 3.7 as-is limits the usability of the neural

network models. The models cannot be used for the mismatched scenario.

Numerical Experiments 19

PNNL-33338

(a) Ground truth labels. (b) Predicted labels.

Figure 7: A classification result using neural network models in matched conditions. The initial

conditions for training data were sampled according to Eq. (3.5.2b), and for validation data they

were sampled according to Eq. (3.6.3b). The precision and recall scores are 0.94 and 0.78,
respectively.

Neural network models that are generalizable should be able to perform reliably on a broad

variety of validation data. To this end, we train neural network models that have the initial

conditions for the training data sampled from a slightly larger interval. Specifically, we use

Eq. (3.5.2c) to sample the initial conditions for training data. Fig. 10 shows the classification

result when the initial conditions were sampled according to Eq. (3.5.2c) for training data and

Eq. (3.6.3b) for validation data. The precision and recall values are 0.846 and 0.125,
respectively. Again, the low recall score indicates a high number of false negatives (which is

also reflected in the small number of data points labeled in red in Fig. 10). Although the

classification results of the models shown in Fig. 10 are not comparable to matched case

shown in Fig. 9, these models are able to capture the region of unstable data points better than

those in Fig. 8. Since it is impractical to have a matched model for every validation set (one

whose initial conditions during training have been sampled from the same interval, such as the

one shown in Fig. 9), we think that a model trained according to Eq. (3.5.2c) (such as the one

shown in Fig. 10) might serve as a good candidate for training neural networks that can perform

reliably on a wide variety of validation data. In the section 6.4, we show how the normalization

scheme helps in further improving the performance of models trained according to Eq. (3.5.2c)

in mismatched conditions.

6.4 Normalization

In order to understand why the classification results shown in Fig. 8 are worse than those in

Fig. 9, we look at the statistics of the training and validation data. Fig. 12 compares the

histograms and kernel density estimates of the features of training and validation data in the

Numerical Experiments 20

PNNL-33338

(a) Ground truth labels. (b) Predicted labels.

Figure 8: A classification result using neural network models in mismatched conditions. The initial

conditions were sampled according to Eq. (3.5.2a) for training data and Eq. (3.6.3b) for validation

data. The precision and recall scores are 0.01 and 0.004, respectively.

(a) Ground truth labels. (b) Predicted labels.

Figure 9: A classification result using neural network models in matched conditions. The initial

conditions were sampled according to Eq. (3.5.2b) for training data and Eq. (3.6.3b) for validation

data. The precision and recall scores are 0.7955 and 0.5659, respectively.

Numerical Experiments 21

PNNL-33338

(a) Ground truth labels. (b) Predicted labels.

Figure 10: A classification result using neural network models in mismatched conditions. The

initial conditions were sampled according to Eq. (3.5.2c) for training data and Eq. (3.6.3b) for

validation data. The precision and recall scores are 0.846 and 0.125, respectively.

mismatched and matched cases. For simplicity, only the x-coordinate features are shown. In

Fig. 12a, the initial conditions of training data were sampled according to Eq. (3.5.2a) and those

of the validation data were sampled according to Eq. (3.6.3b). We note the strong mismatch

between the histograms and kernel density estimates of training and validation data in Fig. 12a.

This mismatch leads to a degradation in the performance of the neural networks. In contrast,

the initial conditions of the training data were sampled according to Eq. (3.5.2b) in Fig. 12b, and

the initial conditions for validation data were sampled according to Eq. (3.6.3b). Since the initial

conditions for training and validation data were sampled from the same interval in Fig. 12b,

there is no mismatch between their histograms and the kernel density estimates. Consequently,

the performance of neural network models trained on this data is better, as evidenced by higher

precision and recall scores.

In this work, we employ a normalization scheme that reduces the mismatch between training

and validation data. Intuitively, we think that the smaller the mismatch between the distributions

of training and validation data, the better the performance will be. With such a normalization

scheme, the initial conditions for the training data can be sampled from a relatively small

interval and the trained neural network models will give reliable performance on different kinds

of validation data.

As described in section 3.4, we use 25 Lorenz systems for training the neural network. We

sample the initial conditions of training data according to Eq. (3.5.2c), as we think this interval is

a good candidate for training generalizable models. We normalize each of the 25 Lorenz
systems separately. As noted in Section 3.7, the input to the neural network is a 6-dimensional
feature vector. We calculate the mean and standard deviation along each of the feature

dimensions for each of the Lorenz systems. Specifically, if x represents the x-coordinate of one

of the data points of the Lorenz System, we transform x according to Eq. 6.4.2a, where the

Numerical Experiments 22

PNNL-33338

(a) Ground truth labels. (b) Predicted labels.

(c) Predicted labels. (d) Predicted labels.

Figure 11: A classification result using neural network models. The initial conditions were sampled

according to Eq. (3.6.3b) for validation data. The initial conditions for training data were sampled

according to Eq. (3.5.2a) for Fig. 7a, Eq. (3.5.2b) for Fig. 11b, and Eq. (3.5.2c) for Fig. 11c.

Numerical Experiments 23

PNNL-33338

(a) Histogram & KDE – mismatched case. (b) Histogram & KDE – matched case.

Figure 12: Histogram and Kernel Density Estimates (KDE) of x-coordinates of the training and

validation data for the mismatched and matched cases. The initial conditions for training data

were sampled according to Eq. (3.5.2a) for Fig. 12a and according to Eq. (3.5.2b) for Fig. 12b.

The initial conditions for validation data were sampled according to Eq. (3.6.3b) for both the

cases.

mean ux and standard deviation σx are given by Eq. (6.4.2b) and Eq. (6.4.2c), respectively.

x =
x− ux

σx
(6.4.2a)

ux =
1

N

N∑
i=1

xi (6.4.2b)

σx =
1

N

N∑
i=1

(xi − ux)
2 (6.4.2c)

We perform the normalization on both the training and validation data. Fig. 13 compares the

histograms and kernel density estimates of the training and validation data before and after

normalization. One can clearly see that after normalization (Fig. 13b), the histograms and

kernel density estimates of the training and validation data have a greater overlap and a

reduced mismatch.

Fig. 14 shows the location of stable and unstable data points before and after normalization.

Thus, we are able to verify that the normalization scheme does not alter the relative location of

stable and unstable data points. It merely shifts the data points along the axes.

6.4.1 Normalization

Fig. 15 shows the classification result in the mismatched case when the neural network is

trained on normalized feature vectors. The initial conditions for training are sampled according

to Eq. 3.5.2c, and those for validation are sampled according to Eq. 3.6.3b. The precision are

recall scores are 0.983 and 0.9727, respectively. One can also see that the results of Fig. 15

clearly outperform those of Fig. 8, Fig. 9, and Fig. 10. This also highlights that neural network

Numerical Experiments 24

PNNL-33338

(a) Histogram & KDE – mismatched case before nor-

malization.

(b) Histogram & KDE – mismatched case after nor-

malization.

Figure 13: Histogram and Kernel Density Estimates (KDE) of x-coordinates of the training and

validation data for the mismatched case, before and after normalization. The initial conditions

for training data for Fig. 13a and Fig. 13b were sampled according to Eq. (3.5.2a). The initial

conditions for validation data were sampled according to Eq. (3.6.3b).

(a) Stable and unstable data points of Lorenz Sys-

tem before normalization.

(b) Stable and unstable data points of a Lorenz Sys-

tem after normalization.

Figure 14: Comparison of the location of stable and unstable data points of a Lorenz System

before and normalization. Note that the only change is in the ranges of axes values.

Numerical Experiments 25

PNNL-33338

Table 6.4.1: Average precision and recall values – without normalization.

Training Validation Mean Precision Mean Recall Stddev-Precision Stddev-Recall

[0, 1] [0, 1] 0.82 0.617 0.122 0.170

[−1, 0] [−1, 0] 0.632 0.455 0.247 0.202

[0, 1] [−1, 0] 0.034 0.026 0.049 0.044

[−1, 0] [0, 1] 0.028 0.032 0.014 0.025

[−1, 1] [−1, 0] 0.704 0.128 0.195 0.06

models are sensitive to the mismatch between distributions of training and validation data and

that normalization schemes are necessary to reduce the mismatch.

We also verify whether neural networks trained on normalized data, whose initial conditions

are sampled according to Eq. (3.5.2c) can perform reliably on a wide variety of validation data.

To this end, we test the neural network model on validation data whose initial conditions are

sampled according to Eq. (3.6.3d), Eq. (3.6.3e), and Eq. (3.6.3f). Fig. 16 shows the results of

applying neural network models when the initial conditions of validation data were sampled

according to Eq. (3.6.3d). This interval is completely outside of the interval used for sampling

the initial conditions of the training data, (Eq. (3.5.2c)). Yet, we see that the classification

performance is reasonably good, with a precision score of 0.99 and a recall score of 0.939.
Fig. 17 and Fig. 18 show the classification performance when the initial conditions for

validation data were sampled according to Eq. (3.6.3e) and Eq. (3.6.3f), respectively. Both

these intervals are much wider compared to those for sampling initial conditions for training

data, (Eq. (3.5.2c)). Again, we see that the performance of neural network models is reasonably

accurate. The precision and recall scores of the classification result shown in Fig. 17 are 1 and
0.91, respectively. The precision and recall scores of the classification result shown in Fig. 18

are 1 and 0.95, respectively.
Tables 6.4.1 and 6.4.2 summarize the results of our experiments by depicting the average

precision and recall scores without and with normalization, respectively. For each row, neural

network models are trained using training data whose initial conditions are sampled from the

intervals specified in the first column. As described in Section 3.4, we use 25 Lorenz systems

for training and 5 Lorenz systems for validation. The mean precision and recall values are

obtained by averaging over the 5 validation Lorenz systems. We also show the standard

deviations to quantify how much the precision and recall scores deviate from the mean. Per

Table 6.4.1, we observe that the performance of the neural network models drops significantly

in the mismatched case (Rows 3 and 4 of Table 6.4.1). We choose the interval [−1, 1] to sample
initial conditions for training data for our further experiments, per our observation that it

represents a valid subset of the validation data intervals that the neural network is likely to

encounter. The results in Table 6.4.2 indicate that our assumption is justified. The neural

networks whose training data are sampled from the interval [−1, 1] perform well on a wide

variety of validation datasets. These results also show that our normalization scheme greatly

helps in improving the performance of neural networks on mismatched data and is a promising

step towards training generalizable neural networks for this classification task.

Numerical Experiments 26

PNNL-33338

Table 6.4.2: Average precision and recall values – with normalization. (IC = initial conditions.)

Training Interval

Mean Precision Mean Recall Stddev-Precision Stddev-Recallsample to sample

x0, y0, z0 from ICs for Validation

[−1, 1] [0, 1] 0.96 0.964 0.032 0.007

[−1, 1] [−1, 0] 0.963 0.969 0.039 0.015

[−1, 1] [−1, 1] 0.982 0.978 0.007 0.005

[−1, 1] [2, 4] 0.988 0.934 0.01 0.015

[−1, 1] [0, 10] 0.975 0.955 0.025 0.028

[−1, 1] [−10, 10] 0.952 0.9464 0.066 0.032

(a) Ground truth labels. (b) Predicted labels.

Figure 15: Classification results using neural network models in mismatched conditions, after

normalization. The initial conditions for training data were sampled according to Eq. (3.5.2c), and

for validation data they were sampled according to Eq. (3.6.3b). The precision and recall scores

are 0.983 and 0.972, respectively.

Numerical Experiments 27

PNNL-33338

(a) Ground truth labels. (b) Predicted labels.

Figure 16: Classification results using neural network models in mismatched conditions, after

normalization. The initial conditions for training data were sampled according to Eq. (3.5.2c), and

for validation data they were sampled according to Eq. (3.6.3d). The precision and recall scores

are 0.99 and 0.939, respectively.

(a) Ground truth labels. (b) Predicted labels.

Figure 17: Classification results using neural network models in mismatched conditions, after

normalization. The initial conditions for training data were sampled according to Eq. (3.5.2c), and

for validation data they were sampled according to Eq. (3.6.3e). The precision and recall scores

are 1 and 0.91, respectively.

Numerical Experiments 28

PNNL-33338

(a) Ground truth labels. (b) Predicted labels.

Figure 18: Classification results using neural network models in mismatched conditions, after

normalization. The initial conditions for training data were sampled according to Eq. (3.5.2c), and

for validation data they were sampled according to Eq. (3.6.3f). The precision and recall scores

are 1 and 0.95, respectively.

6.5 Adaptive time stepping for nonlinear ODEs

In this section we show numerical results for the Van der Pol oscillator and the Lorenz

equations, in which we compare the numerical cost in terms of number of the time steps and

the number of function evaluations using the Dormand-Prince rk45 algorithm and RL-enhanced

rk45 algorithm.

6.5.1 Van der Pol oscillator

Fig. 19 shows the solution of the Van der Pol oscillator computed using the Dormand-Prince

rk45 algorithm in scipy and RL-enhanced rk45 algorithms. Fig. 20 gives the corresponding

reward function obtained during the RL training method.

In these numerical experiments, we observed a total number of time steps of 63 from scipy

rk45 and 69 from the RL-enhanced rk45. This shows that the scipy based rk45 is
computationally more efficient than the RL-enhanced rk45. However, we noticed that the

RL-enhanced rk45 is more efficient in terms of the number of function evaluations required,

compared to the number used in the scipy-based rk45. This is due to the fact that the

scipy-based implementation rejects the solution more often than the RL-enhanced rk45.

6.5.2 Lorenz equations

Similarly, Fig. 21 shows the solution of the Lorenz equations computed using the

Dormand-Prince rk45 algorithm in scipy and the RL-enhanced rk45 algorithm. Fig. 22 shows

Numerical Experiments 29

PNNL-33338

Figure 19: Van der Pol oscillator solution.

Figure 20: Van der Pol oscillator reward function.

the corresponding reward function obtained during the RL training method.

For the Lorenz equations, we noticed that RL-enhanced rk45 performed poorly both in terms

of the number of time steps (1064) and the number of function evaluations (2881), compared to

those used by the scipy-based rk45 with 134 and 480, respectively. This is understandable as

the Lorenz system is a chaotic system and it is much harder to train RL algorithms on such

systems, warranting further study.

6.6 Adaptive mesh refinement for 2-D PDEs

In this section, we compare the efficiency of adaptive mesh refinement using RL-enhanced

adaptive mesh refinement to that of classical adaptive mesh refinement methods such as

uniform, residual-based, and ZZ mesh refinement approaches. Fig. 24 plots the relationship

between error and degrees-of-freedom (DoFs) for RL-based adaptive mesh refinement and

classical adaptive mesh refinement techniques.

Fig. 23 shows the reward function convergence during the RL training process. In this work,

we observe that although RL-based adaptive mesh refinement performed better than uniform

mesh refinement, it did not show any better results than residual and ZZ mesh refinement

approaches.

Numerical Experiments 30

PNNL-33338

Figure 21: Solution of Lorenz equations.

Figure 22: Lorenz equations reward.

Numerical Experiments 31

PNNL-33338

Figure 23: Reward during off-policy RL-training.

Figure 24: Comparison of errors from RL-based adaptive mesh refinement and classical adaptive

mesh refinement techniques over a range of DoFs.

Numerical Experiments 32

PNNL-33338

7.0 Conclusions

In this project, we developed a sequential decision making framework (SDM) based on leaning,

reasoning and planning approaches. We used feed-forward neural networks as the learning tool

within the SDM framework to classify stability regions in Lorenz System of equations which are

chaotic in nature. We employed on-policy and off-policy reinforcement learning (RL) algorithms,

namely, proximal policy optimization (PPO) and deep Q-networks (DQNs), respectively. These

were employed to develop RL-enhanced adaptive time stepping schemes to solve nonlinear

ordinary differential equations, as well as adaptive mesh refinement techniques for 2-D elliptic

equations. Our numeral results suggest that classification performed using a feed-forward

neural network model can accommodate sensitivity to initial conditions in the training and

validation datasets. The classification performance degrades when there is a mismatch

between initial conditions used for generating training and validation datasets. We introduce a

normalization scheme and show that it significantly improves the classification performance of

neural network models in mismatched conditions. More broadly, our results show the feasibility

of using neural networks to study stability aspects of chaotic systems, like the Lorenz-63

system. Improvement in state estimation via neural network-based classification can

significantly enhance automated decision making in complex systems using a SDM framework.

We observed that the proposed RL-enhanced adaptive time stepping method performed better

than Dormand-Prince method in terms of the number of function evaluations for the Van der Pol

oscillator. However, we did not observe much improvement for the highly chaotic Lorenz

equations. We also notice that the RL-approach for adaptive mesh refinement for 2-D elliptic

equations performed better than uniform refinement. On the other hand, its performance is at

most equal to that of the classical adaptive mesh refinement benchmark. This approach needs

further study to improve RL-training. Future work will explore the scalability and explainability

aspects of our normalization scheme for neural network-based classification applied to state

estimation in large scale complex systems. We will also explore the adaptation of SDM

frameworks to large multiscale and multi-physics problems.

References

[1] Karsten Ahnert et al. “Odeint – Solving Ordinary Differential Equations in C++”. In: (2011).

DOI: 10.1063/1.3637934. URL: http://dx.doi.org/10.1063/1.3637934.

[2] Saeid Amiri, Mohammad Shokrolah Shirazi, and Shiqi Zhang. “Robot Sequential Deci-

sion Making using LSTM-based Learning and Logical-probabilistic Reasoning”. In: CoRR

(2019).

[3] Eduardo L Brugnago et al. “Classification strategies in machine learning techniques pre-

dicting regime changes and durations in the Lorenz system”. In: Chaos: An Interdisci-

plinary Journal of Nonlinear Science 30.5 (2020), p. 053101.

[4] Kathleen Champion et al. “Data-driven discovery of coordinates and governing equa-

tions”. In: Proceedings of the National Academy of Sciences 116.45 (2019), pp. 22445–

22451.

[5] Francois Chollet et al. Keras. 2015. URL: https://github.com/fchollet/keras.

[6] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.
03385 [cs.CV].

REFERENCES 33

https://doi.org/10.1063/1.3637934
http://dx.doi.org/10.1063/1.3637934
https://github.com/fchollet/keras
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

PNNL-33338

[7] G. Hinton et al. “Deep Neural Networks for Acoustic Modeling in Speech Recognition:

The Shared Views of Four Research Groups”. In: IEEE Signal Processing Magazine 29.6

(2012), pp. 82–97. DOI: 10.1109/MSP.2012.2205597.

[8] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural com-

putation 9.8 (1997), pp. 1735–1780.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017.

arXiv: 1412.6980 [cs.LG].

[10] Guokun Lai et al. Bridging the domain gap in cross-lingual document classification. 2019.

arXiv: 1909.07009 [cs.CL].

[11] Martin Lellep et al. “Using machine learning to predict extreme events in the Hénon map”.

In: Chaos: An Interdisciplinary Journal of Nonlinear Science 30.1 (Jan. 2020), p. 013113.

ISSN: 1089-7682. DOI: 10.1063/1.5121844. URL: http://dx.doi.org/10.1063/1.
5121844.

[12] Edward N Lorenz. “Deterministic Nonperiodic Flow Journal of the Atmospheric Sciences

Vol. 20”. In: No. In. XX (1963).

[13] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint

arXiv:1312.5602 (2013).

[14] KS Narendra and K Parthasarathy. “Identification and control of dynamical systems using

neural networks”. In: IEEE transactions on neural networks 1.1 (). ISSN: 2162-2388.

[15] Jaideep Pathak et al. “Hybrid Forecasting of Chaotic Processes: Using Machine Learning

in Conjunction with a Knowledge-Based Model”. In: CoRR abs/1803.04779 (2018). arXiv:

1803.04779. URL: http://arxiv.org/abs/1803.04779.

[16] Sebastian Scher and Gabriele Messori. “Generalization properties of feed-forward neural

networks trained on Lorenz systems”. In: Nonlinear processes in geophysics 26.4 (2019),

pp. 381–399.

[17] Andrew W Senior et al. “Improved protein structure prediction using potentials from deep

learning”. In: Nature. 577.7792 (). ISSN: 0028-0836.

[18] Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-stationary environ-

ments: Introduction to covariate shift adaptation. MIT press, 2012.

[19] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[20] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information Pro-

cessing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017, pp. 5998–

6008. URL: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91f
bd053c1c4a845aa-Paper.pdf.

[21] Emmanuel Vincent et al. “An analysis of environment, microphone and data simulation

mismatches in robust speech recognition”. In: Computer Speech I& Language 46 (2017),

pp. 535–557. ISSN: 0885-2308. DOI: https://doi.org/10.1016/j.csl.2016.11.005.
URL: http://www.sciencedirect.com/science/article/pii/S0885230816301231.

[22] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python”. In: Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

REFERENCES 34

https://doi.org/10.1109/MSP.2012.2205597
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1909.07009
https://doi.org/10.1063/1.5121844
http://dx.doi.org/10.1063/1.5121844
http://dx.doi.org/10.1063/1.5121844
https://arxiv.org/abs/1803.04779
http://arxiv.org/abs/1803.04779
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.csl.2016.11.005
http://www.sciencedirect.com/science/article/pii/S0885230816301231
https://doi.org/10.1038/s41592-019-0686-2

PNNL-33338

[23] Pantelis R Vlachas et al. “Data-driven forecasting of high-dimensional chaotic systems

with long short-term memory networks”. In: Proceedings. 474.2213 (). ISSN: 1364-5021.

REFERENCES 35

PNNL-XXXXX

Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354
1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

