

Sparse-grid Discontinuous Galerkin Methods for the Vlasov–Poisson–Lenard–Bernstein Model ^{*,**}

Stefan Schnake^{a,*}, Coleman Kendrick^c, Eirik Endeve^{a,d}, Miroslav Stoyanov^a, Steven Hahn^a, Cory D. Hauck^{a,e}, David L. Green^g, Phil Snyder^b, John Canik^f

^a*Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA*

^b*Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA*

^c*Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA*

^d*Department of Physics and Astronomy, University of Tennessee Knoxville, TN 37996 USA*

^e*Department of Mathematics, University of Tennessee Knoxville, TN 37996 USA*

^f*Type One Energy Group, Oak Ridge, TN 37830 USA*

^g*Commonwealth Scientific and Industrial Research Organisation, Mayfield West, NSW, 2304, Australia*

Abstract

Sparse-grid methods have recently gained interest in reducing the computational cost of solving high-dimensional kinetic equations. In this paper, we construct adaptive and hybrid sparse-grid methods for the Vlasov–Poisson–Lenard–Bernstein (VPLB) model. This model has applications to plasma physics and is simulated in two reduced geometries: a $0 \times 3v$ space homogeneous geometry and a $1 \times 3v$ slab geometry. We use the discontinuous Galerkin (DG) method as a base discretization due to its high-order accuracy and ability to preserve important structural properties of partial differential equations. We utilize a multiwavelet basis expansion to determine the sparse-grid basis and the adaptive mesh criteria. We analyze the proposed sparse-grid methods on a suite of three test problems by computing the savings afforded by sparse-grids in comparison to standard solutions of the DG method. The results are obtained using the adaptive sparse-grid discretization library ASGard.

Keywords: Kinetic equation, Discontinuous Galerkin, Implicit-Explicit, Sparse Grids, Vlasov–Poisson, Lenard–Bernstein

*This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

**This material is based upon work partially supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, as part of their Applied Mathematics Research Program; the U.S. Department of Energy, Office of Science, Office of Fusion Energy Science as part of their Fusion Research Energy Program; and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. De-AC05-00OR22725. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

*Corresponding author. Address: PO Box 2008, MS6013, Oak Ridge, TN 37831-6013

Email addresses: schnakesr@ornl.gov (Stefan Schnake), kendrick6@ornl.gov (Coleman Kendrick), endevee@ornl.gov (Eirik Endeve), stoyanovmk@ornl.gov (Miroslav Stoyanov), hahnse@ornl.gov (Steven Hahn), hauckc@ornl.gov (Cory D. Hauck), d.green@csiro.au (David L. Green), snyderpb@ornl.gov (Phil Snyder), john.canik@typeoneenergy.com (John Canik)

1 **1. Introduction**

2 In this paper, we investigate sparse-grid solutions to kinetic equations with applications in plasma physics.
3 In a general setting, equations of this type are defined in terms of a kinetic distribution f that evolves over a
4 six-dimensional phase space (three position and three velocity variables). To discretize f in phase-space, we
5 work with sparse-grid approximations based on the discontinuous Galerkin (DG) method. First introduced
6 for kinetic models of radiation transport [70], the DG method is a finite element method that offers high-
7 order accurate solutions to elliptic [71] and hyperbolic partial differential equations (PDEs) [24] with compact
8 stencils. In addition to being locally conservative, DG methods are efficient at preserving important physical
9 constraints and structural properties inherited from the underlying PDEs that they are used to simulate.
10 Such properties include positivity [89], energy conservation [34, 88, 85], asymptotic limits [55, 2, 38, 76, 86,
11 82], entropy stability [18, 33, 16, 87, 8], and invariant domains [65, 23, 63]. For these reasons, the DG method
12 has become a popular tool in the simulation of kinetic equations [43, 29, 3, 19, 20, 26, 30, 35, 46, 69, 1].

13 When applied to high-dimensional PDEs, Eulerian grid-based methods, including DG, suffer from the
14 *curse of dimensionality* [9], where the cost to approximate a general measurable function scales like $\mathcal{O}(N^d)$,
15 with d the dimension of the domain and N the degrees of freedom in a single dimension. Such a scaling
16 in six dimensions makes the standard DG method intractable for approximating general kinetic equations,
17 even on leadership class computing facilities [39].

18 Particle-based methods, e.g. particle in cell, attempt to mitigate the curse of dimensionality using a
19 Lagrangian approach [11, 17, 53, 47, 45, 15]. However, there has been recent interest in reducing the
20 computational and memory footprint of Eulerian methods by compressing the full-resolution distribution.
21 One popular technique is low-rank approximations where the discretized kinetic distribution is treated as
22 a d -mode tensor and compressed using a low-rank factorization. The low-rank decomposition is evolved
23 through time using methods such as step-truncation [72, 41] or dynamical low-rank approximation [28, 27].
24 Another popular avenue is the sparse-grid method [40, 83, 49] which is the focus of this paper.

25 The sparse-grid method [12] is a general technique used for the approximation of high-dimensional
26 functions. These methods replace the $\mathcal{O}(N^d)$ scaling of tensor-based discretizations to $\mathcal{O}(N(\log N)^{d-1})$.
27 First developed for the integration of high-dimensional functions [77, 36], current flavors of the sparse-grid
28 method are far reaching. Sparse-grid interpolation has been successfully employed in the construction of
29 surrogate models [13, 21] including addressing challenges of adaptivity for basis with local support [68, 66,
30 67, 58, 52, 79], global support [81, 61, 62, 60], and even discontinuous response surfaces [50, 51, 80].

31 Additionally, sparse-grids have gained favor in the approximation of high-dimensional PDEs with exam-
32 ples in finite differences [56], finite volumes [44, 59], conforming finite element methods [73, 74, 75, 7] as well
33 as the DG method [84, 39]. In the DG context, functions are decomposed in a multiwavelet basis [4] with
34 specific basis functions discarded via a sparse-grid selection rule. This multiwavelet decomposition induces
35 a decay in the coefficient's magnitude over finer levels. This decay is utilized to build model-independent
36 criteria for adaptively choosing whether to keep or discard basis functions. This is referred to as the adaptive
37 sparse-grid DG method and has shown promise in the modelling of kinetic equations [54, 40, 83].

38 The main goal of this work is to study the computational savings provided by sparse-grids on the Vlasov–
39 Poisson–Lenard–Bernstein (VPLB) model. We measure the savings by the reduction of the total degrees of
40 freedom required to accurately represent the solution. The grids of choice are the adaptive sparse-grid DG
41 method and a hybrid sparse-grid method, called the mixed-grid method, which is a standard DG grid in
42 position space tensored with a sparse-grid in velocity space. Similar hybrid splittings have been studied in
43 the context of collisionless kinetic problems [54]. The methods are tested on the following three problems: a
44 simple relaxation to a Maxwellian equilibrium, the Sod shock tube problem [78], and an example of collisional
45 Landau damping [25, 43, 32]. In each problem, we present the computational savings achieved as well as
46 general qualitative performance, such as capturing desired physical features, of the methods presented. In
47 general, the adaptive sparse-grid method significantly reduces the storage cost of the distribution while the
48 mixed-grid method only provides favorable savings in determining lower-order moments of the distribution.

49 We work with the VPLB model on a slab geometry which reduces the problem to a four-dimensional
50 $1 \times 3v$ problem (one position dimension, three velocity dimensions). This is done so that the problem size
51 is sufficiently small to be run on a single node machine; the Chu reduction method [22] can be utilized to

52 further reduce the problem to a moment model in $1x1v$ which then allows the creation of fine-resolution
 53 reference solutions; and, in a slab geometry, the VPLB model can be written as a sum of terms which
 54 are each tensor products of one-dimensional PDE operators. The latter property, commonly referred to
 55 as separability, allows efficient evaluations of the model on sparse-grids. We note that recent endeavors,
 56 e.g. interpolatory wavelets [49], are being researched to bypass the separability condition. Nonetheless, DG
 57 approximations to the slab problem with sufficient resolution to accurately capture fine-scale features will
 58 still tax a single node machine and thus will require some sort of compression. Additionally, we are keeping
 59 three velocity dimensions which we expect to provide the main source of savings captured by the adaptive
 60 sparse-grid DG method; this is because, locally in space, the collision operator mollifies the distribution in
 61 the velocity domain, which will in turn cause a rapid decay in the coefficient size when the distribution is
 62 represented in the multiwavelet DG basis. Moreover, in regimes of high collisionality, where the distribution
 63 typically approaches a local thermal equilibrium that is very smooth in the velocity variable, the distribution
 64 in physical space is close to a fluid model which can form shocks and other non-smooth features. Therefore,
 65 we believe the $1x3v$ geometry provides an indication of the savings expected in the full $3x3v$ model, as well
 66 as clues for constructing hybrid approaches.

67 Complementing this work is the development of the adaptive sparse-grid DG codebase ASGarD (Adaptive
 68 Sparse-Grid Discretization) [37]. The goal of this open-source project is to facilitate and promote the
 69 use of adaptive sparse-grid methods for the approximation of kinetic models by providing a robust yet
 70 flexible adaptive sparse-grid library. All sparse-grid results of this work were computed using ASGarD.
 71 The algorithmic specifics of how ASGarD evaluates PDE operators will be delayed for a future work. This
 72 manuscript only focuses on the mathematics of the adaptive sparse-grid method and the memory reduction
 73 realized via its utilization.

74 The rest of the paper is organized as follows. In Section 2, we present the VPLB model, as well as the
 75 Chu reduction method for generating reference solutions and the geometric reductions used to formulate
 76 the aforementioned test problems. In Section 3, we present the DG method for the VPLB model which
 77 we refer to as the full-grid method. Section 4 provides an overview to the standard and adaptive sparse-
 78 grid methods and details the specifics implemented in ASGarD. In Section 5, we analyze the results of the
 79 adaptive sparse-grid and mixed-grid methods, compared against the full-grid method, for the chosen suite
 80 of test problems. Finally, Section 6 gives our conclusions and future plans.

81 2. The Vlasov–Poisson–Lenard–Bernstein Model

82 The Vlasov–Poisson–Lenard–Bernstein (VPLB) model describes the dynamics of charged particles in-
 83 fluenced by a self-consistent electric field and collisional dynamics. It couples a kinetic equation for the
 84 phase-space distribution function of charged particles with a Poisson equation for the electrostatic potential.

85 Assuming ions of unit mass and charge, the governing kinetic equation is

$$86 \quad \partial_t f(\mathbf{x}, \mathbf{v}, t) + \mathbf{v} \cdot \nabla_{\mathbf{x}} f(\mathbf{x}, \mathbf{v}, t) + \mathbf{E}(\mathbf{x}, t) \cdot \nabla_{\mathbf{v}} f(\mathbf{x}, \mathbf{v}, t) = \mathcal{C}_{\text{LB}}(f)(\mathbf{x}, \mathbf{v}, t), \quad (2.1)$$

86 where the phase-space distribution function f depends on position $\mathbf{x} = (x_1, x_2, x_3)^\top \in \Omega_{\mathbf{x}} \subseteq \mathbb{R}^3$, velocity
 87 $\mathbf{v} = (v_1, v_2, v_3)^\top \in \mathbb{R}^3$, and time $t \geq 0$. The electric field $\mathbf{E} = -\nabla_{\mathbf{x}} \Phi$ is obtained from the electrostatic
 88 potential Φ by solving the Poisson equation

$$89 \quad -\nabla_{\mathbf{x}} \cdot \nabla_{\mathbf{x}} \Phi(\mathbf{x}, t) = n_f(\mathbf{x}, t) - n_e, \quad (2.2)$$

89 where $n_f = \langle f \rangle_v \equiv \int_{\mathbb{R}^3} f d\mathbf{v}$ is the ion density, and n_e is a constant background electron density chosen to
 90 enforce global charge neutrality: $n_e = \int_{\Omega_{\mathbf{x}}} n_f(\mathbf{x}, t) d\mathbf{x}$ for all $t \geq 0$. We assume the physical domain Ω_x is
 91 periodic. The collision operator \mathcal{C}_{LB} on the right-hand side of (2.1) is the Lenard–Bernstein (LB) operator
 92 [57]. It takes the form [43, 32]

$$93 \quad \mathcal{C}_{\text{LB}}[\rho_f](f)(\mathbf{x}, \mathbf{v}, t) = \nu \nabla_{\mathbf{v}} \cdot ((\mathbf{v} - \mathbf{u}_f) f + \theta_f \nabla_{\mathbf{v}} f), \quad (2.3)$$

93 where $\nu \geq 0$ is a collision frequency that is assumed to be a constant independent of \mathbf{v} , \mathbf{x} , and t . The
 94 moments of f ,

$$\boldsymbol{\rho}_f = \langle \mathbf{e}f \rangle_v, \quad \text{where } \mathbf{e} = (e_0, \mathbf{e}_1, e_2)^\top \equiv (1, \mathbf{v}, \frac{1}{2}|\mathbf{v}|^2)^\top, \quad (2.4)$$

95 represent the number, momentum, and energy densities, respectively, and the bulk velocity and temperature
 96 are defined from $\boldsymbol{\rho}_f$ by

$$\mathbf{u}_f = \frac{1}{n_f} \langle f \mathbf{v} \rangle_v \quad \text{and} \quad \theta_f = \frac{1}{3n_f} \langle f |\mathbf{v} - \mathbf{u}_f|^2 \rangle_v. \quad (2.5)$$

97 Direct calculations show that

$$\boldsymbol{\rho}_f = (n_f, n_f \mathbf{u}_f, n_f (\frac{1}{2}|\mathbf{u}_f|^2 + \frac{3}{2}\theta_f))^\top. \quad (2.6)$$

98 **Proposition 1** ([43, 29]). *The LB operator satisfies the following properties*

99 1. *Conservation of number, momentum, and energy:*

$$\langle \mathcal{C}_{\text{LB}}[\boldsymbol{\rho}_w](w) \mathbf{e} \rangle_v = 0, \quad \forall w \in \text{Dom}(\mathcal{C}_{\text{LB}}). \quad (2.7)$$

100 2. *Dissipation of entropy:*

$$\langle \mathcal{C}_{\text{LB}}[\boldsymbol{\rho}_w](w) \log w \rangle_v \leq 0, \quad \forall w \in \text{Dom}(\mathcal{C}_{\text{LB}}). \quad (2.8)$$

101 3. *Characterization of equilibria:* For any $w \in \text{Dom}(\mathcal{C}_{\text{LB}})$,

$$\langle \mathcal{C}_{\text{LB}}[\boldsymbol{\rho}_w](w) \log w \rangle_v = 0 \quad (2.9)$$

102 if and only if w is a Maxwellian distribution, i.e.,

$$w = M_w := \frac{n_w}{(2\pi\theta_w)^{3/2}} \exp\left\{-\frac{|\mathbf{v} - \mathbf{u}_w|^2}{2\theta_w}\right\}. \quad (2.10)$$

103 **Proposition 2** ([43, 29]). *On a periodic spatial domain $\Omega_{\mathbf{x}} \subseteq \mathbb{R}^3$, the VPLB model satisfies the following
 104 global conservation laws:*

105 1. *Conservation of number:*

$$\partial_t \int_{\Omega_{\mathbf{x}}} \langle f \rangle_v \, d\mathbf{x} = 0. \quad (2.11)$$

106 2. *Conservation of momentum:*

$$\partial_t \int_{\Omega_{\mathbf{x}}} \langle \mathbf{e}_1 f \rangle_v \, d\mathbf{x} = 0. \quad (2.12)$$

107 3. *Conservation of energy:*

$$\partial_t \int_{\Omega_{\mathbf{x}}} (\langle e_2 f \rangle_v + \frac{1}{2}|\mathbf{E}|^2) \, d\mathbf{x} = 0. \quad (2.13)$$

108 2.1. *Geometric reductions*

109 2.1.1. *Space homogeneous problem*

110 To investigate the relaxation induced by the LB collision operator of a velocity distribution to a Maxwellian,
 111 we consider the equation (2.3) under the assumption that f does not depend on \mathbf{x} . In this case, the PDE is
 112 given by

$$\partial_t f(\mathbf{v}, t) = \nu \mathcal{C}_{\text{LB}}(f)(\mathbf{v}, t). \quad (2.14)$$

113 2.1.2. Reduction to slab geometry

114 Under the assumption that $\partial_y f = \partial_z f = 0$, the VPLB model (2.1) reduces to

$$\partial_t f(x, \mathbf{v}, t) + v_x \partial_x f(x, \mathbf{v}, t) + E \partial_{v_x} f(x, \mathbf{v}, t) = \mathcal{C}_{\text{LB}}(f)(x, \mathbf{v}, t), \quad (2.15)$$

115 where $E := E_x = -\partial_x \Phi$ and Φ satisfies

$$-\partial_{xx} \Phi(x) = n_f(x, t) - n_e. \quad (2.16)$$

116 Let $(v_r, \vartheta, \varphi)$ be a spherical-polar coordinate system in which the x -axis is aligned with the polar direction,
117 so that

$$v_x = v_r \cos \vartheta, \quad v_y = v_r \sin \vartheta \cos \varphi, \quad \text{and} \quad v_z = v_r \sin \vartheta \sin \varphi, \quad (2.17)$$

118 where $v_r = |\mathbf{v}|$, ϑ is the polar angle, and φ is the azimuthal angle. We assume further that f is independent
119 of φ ; as a result $(u_f)_y = (u_f)_z = 0$, and by abuse of notation we set

$$(u_f)_x := u_f = \frac{\langle f v_x \rangle_v}{n_f} \quad (2.18)$$

120 so that $\mathbf{u}_f = [u_f, 0, 0]^\top$. The equation (2.15) has a phase space with four total dimensions: one for physical
121 space and three for velocity space, i.e., $1x3v$.

122 2.2. Reduction to $1x1v$

123 The Chu reduction method is a tool for further reducing the slab geometry problem to $1x1v$, at the cost
124 of solving an additional equation. It was first developed in [22] for the Bhatnagar–Gross–Krook (BGK)
125 equation and is used here to provide reference solutions in Section 5 for sparse-grid simulations when exact
126 solutions are not known and full-grid reference calculations are prohibitively expensive.

127 To derive the Chu reduction of (2.15), let

$$g_1(x, v_x) = \int_{\mathbb{R}^2} f(x, \mathbf{v}) dv_y dv_z \quad \text{and} \quad g_2(x, v_x) = \int_{\mathbb{R}^2} (v_y^2 + v_z^2) f(x, \mathbf{v}) dv_y dv_z, \quad (2.19)$$

128 Testing (2.15) by 1 and by $v_y^2 + v_z^2$, respectively and integrating over $dv_y dv_z$ yields the following coupled
129 system in (x, v_x) :

$$\partial_t g_1 + v_x \partial_x g_1 + E \partial_{v_x} g_1 = \nu \mathcal{C}_1(g_1; u_f, \theta_f), \quad (2.20a)$$

$$\partial_t g_2 + v_x \partial_x g_2 + E \partial_{v_x} g_2 = \nu \mathcal{C}_1(g_2; u_f, \theta_f) + \nu (4\theta_f g_1 - 2g_2), \quad (2.20b)$$

130 where

$$\mathcal{C}_1(g; u, \theta) = \partial_{v_x}((v_x - u)g + \theta \partial_{v_x} g), \quad E = -\partial_x \Phi, \quad \text{and} \quad -\partial_{xx} \Phi = n_f - n_e, \quad (2.21)$$

131 and, importantly, the velocity moments of f can be expressed in terms of g_1 and g_2 :

$$n_f = \int_{\mathbb{R}} g_1 dv_x, \quad u_f = \frac{\int_{\mathbb{R}} g_1 v_x dv_x}{n_f}, \quad \text{and} \quad \theta_f = \frac{1}{3n_f} \int_{\mathbb{R}} [g_1(v_x - u_f)^2 + g_2] dv_x. \quad (2.22)$$

132 The conservation properties of (2.7) are preserved; namely,

$$\int_{\mathbb{R}} \mathcal{C}_1(\tilde{g}_1; u_f, \theta_f) dv_x = \int_{\mathbb{R}} \mathcal{C}_1(\tilde{g}_1; u_f, \theta_f) v_x dv_x = 0, \quad (2.23a)$$

$$\frac{1}{2} \int_{\mathbb{R}} \mathcal{C}_1(\tilde{g}_1; u_f, \theta_f) v_x^2 + \mathcal{C}_1(\tilde{g}_2; u_f, \theta_f) + (4\theta_f \tilde{g}_1 - 2\tilde{g}_2) dv_x = 0, \quad (2.23b)$$

133 for any \tilde{g}_1 and \tilde{g}_2 such that the fluid variables n_f , u_f , and θ_f are built via (2.22) using \tilde{g}_1 and \tilde{g}_2 .

134 Though not required for (2.20), we will, for diagnostic purposes in Section 5, also consider the function

$$g_3(x, v_x) = \int_{\mathbb{R}^2} (v_y^4 + v_z^4) f(x, \mathbf{v}) dv_y dv_z, \quad (2.24)$$

135 which satisfies

$$\partial_t g_3 + v_x \partial_x g_3 + E \partial_{v_x} g_3 = \nu \mathcal{C}_1(g_3; u_f, \theta_f) + \nu (12\theta_f g_2 - 4g_3). \quad (2.25)$$

136 **3. Notation and the Discontinuous Galerkin Method**

137 *3.1. Notation*

138 Let $\ell_x \in \mathbb{N}_0 = \{0, 1, 2, \dots\}$, $\Omega_x = (-L_x, L_x)$ be an interval in physical space, and \mathcal{T}_{x, ℓ_x} be a uniform
139 mesh on Ω_x with 2^{ℓ_x} elements. Let \mathcal{E}_{x, ℓ_x} be the skeleton of \mathcal{T}_{x, ℓ_x} .

140 Similarly, let $\ell_v \in \mathbb{N}_0$, $\Omega_v = (-L_v, L_v)^3 \subset \mathbb{R}^3$, and \mathcal{T}_{v, ℓ_v} be a uniform cubic mesh on Ω_v with 2^{ℓ_v} elements
141 in each dimension. Let $\mathcal{E}_{v, \ell_v}^I$ be the interior (i.e., not including boundaries) skeleton on this mesh. We will
142 often use $\langle \cdot \rangle_v$ and $\langle \cdot \rangle_{v_y, v_z}$ to denote integration in $d\mathbf{v}$ and $dv_y dv_z$, respectively.

143 We let $\Omega = \Omega_x \times \Omega_v \subset \mathbb{R}^4$, and denote $L^2(\Omega)$ and $H^s(\Omega)$ to be the standard Lebesgue and Sobolev
144 spaces on Ω . Let $\langle \cdot, \cdot \rangle$ be the $L^2(\Omega)$ -inner product with norm $\|\cdot\|_{L^2(\Omega)}$ and let $\|\cdot\|_{H^s(\Omega)}$ be the norm on
145 $H^s(\Omega)$. We denote by $L^2(D)$ and $\langle \cdot, \cdot \rangle_D$ the L^2 space with standard inner product on some domain D which
146 is typically Ω_x or Ω_v . Any of the inner products mentioned above can be trivially extended to vector-valued
147 functions with the standard Euclidean inner product.

148 Denote the discontinuous Galerkin finite element spaces $V_{x, \ell_x} \subset L^2(\Omega_x)$ and $V_{v, \ell_v} \subset L^2(\Omega_v)$ by

$$\begin{aligned} V_{x, \ell_x} &= \{g \in L^2(\Omega_x) : g|_K = \mathbb{Q}_k(K) \forall K \in \mathcal{T}_{x, \ell_x}\} \\ V_{v, \ell_v} &= \{g \in L^2(\Omega_v) : g|_K = \mathbb{Q}_k(K) \forall K \in \mathcal{T}_{v, \ell_v}\} \end{aligned} \quad (3.1)$$

149 where $\mathbb{Q}_k(K)$ is the set of all polynomials of maximum degree k in any direction on K . We assume $k = 2$
150 unless written otherwise. Let $\mathcal{V}_\ell = V_{x, \ell_x} \otimes V_{v, \ell_v}$.

151 Given $x_* \in \mathcal{E}_{x, \ell_x}$, let g be a function with traces $g^\pm(x_*) := \lim_{x \rightarrow x_*^\pm} g(x)$ well defined. Define the average
152 and jump of g in x , respectively, by

$$\{g\} = \frac{1}{2}(g^+ + g^-) \quad \text{and} \quad [g] = g^- - g^+. \quad (3.2)$$

153 We account for the periodic boundary in \mathcal{E}_{x, ℓ_x} by defining the jumps and averages on the boundary using
154 (3.2) with $g^+ = g(L_x)$ and $g^- = g(-L_x)$. We denote by S_{x, ℓ_x} the intersection of V_{x, ℓ_x} with $k = 1$ and all
155 continuous and periodic functions on the closure of Ω_x , i.e. $\overline{\Omega_x}$. The space S_{x, ℓ_x} is used for the discretization
156 of (2.16) and uses linear functions so that the electric field E is constant on each element.

157 Similarly, consider the edge $e \in \mathcal{E}_{v, \ell_v}^I$, where $e = \partial K^+ \cap \partial K^-$ and $K^\pm \in \mathcal{T}_{v, \ell_v}$ with normal outward
158 vector \mathbf{n}_v^\pm . Given a scalar and vector valued function g and $\boldsymbol{\sigma}$ respectively with well defined traces on ∂K^\pm ,
159 define the average and jump of g and $\boldsymbol{\sigma}$ in \mathbf{v} , respectively, by

$$\begin{aligned} \{g\} &= \frac{1}{2}(g^+ + g^-) \quad \text{and} \quad [g] = g^- \mathbf{n}_v^- + g^+ \mathbf{n}_v^+, \\ \{\boldsymbol{\sigma}\} &= \frac{1}{2}(\boldsymbol{\sigma}^+ + \boldsymbol{\sigma}^-) \quad \text{and} \quad [\boldsymbol{\sigma}] = \boldsymbol{\sigma}^- \cdot \mathbf{n}_v^- + \boldsymbol{\sigma}^+ \cdot \mathbf{n}_v^+, \end{aligned} \quad (3.3)$$

160 where for any $\mathbf{v}_* \in e$,

$$g^\pm(\mathbf{v}_*) = \lim_{\substack{\mathbf{v} \rightarrow \mathbf{v}_* \\ \mathbf{v} \in K^\pm}} g(\mathbf{v}) \quad (3.4)$$

161 with analogous definition for $\boldsymbol{\sigma}^\pm$. While the same notation for average and jumps is used in the physical
162 and velocity domains, the domain of integration of the DG formulation provides context to which case is
163 used (see (3.6)). Let $\langle \cdot, \cdot \rangle_e$ be the L^2 inner product over an edge e and denote $\langle \cdot, \cdot \rangle_{\mathcal{E}_{x, \ell_x}} = \sum_{e \in \mathcal{E}_{x, \ell_x}} \langle \cdot, \cdot \rangle_e$
164 with an analogous definition for $\langle \cdot, \cdot \rangle_{\mathcal{E}_{v, \ell_v}^I}$. For functions g in \mathcal{V}_ℓ , let ∂_x and $\nabla_{\mathbf{v}}$ represent the piece-wise
165 spatial derivative and velocity gradient g .

166 Finally, for time integration, let $\Delta t > 0$ be the timestep, assumed for our purposes to be uniform. For
167 $\mathbf{n} \in \mathbb{N}_0$ define $t^\mathbf{n} = \mathbf{n} \Delta t$ and denote $f^\mathbf{n}$ to be an approximation to $f(t^\mathbf{n})$.

168 *3.2. Discontinuous Galerkin Method*

169 We first discretize (2.1) in phase space on \mathcal{V}_ℓ by the following semi-discrete problem: Find $f_h \in$
170 $C([0, \infty]; \mathcal{V}_\ell)$ such that

$$(\partial_t f_h, g_h) + \mathcal{A}_{\text{VP}}(f_h, g_h) = \nu \mathcal{A}_{\text{LB}}(f_h, \rho_{f_h}, g_h) \quad (3.5)$$

171 holds for all $g_h \in \mathcal{V}_\ell$. The Vlasov–Poisson portion, \mathcal{A}_{VP} , is discretized with upwind fluxes; specifically,

$$\begin{aligned} \mathcal{A}_{\text{VP}}(w_h, g_h) &= -(v_x w_h, \partial_x g_h) + \langle\langle v_x \{w_h\} + \frac{|v_x|}{2} \llbracket w_h \rrbracket, \llbracket g_h \rrbracket \rangle\rangle_{\mathcal{E}_{x,\ell_x} \times \Omega_v} \\ &\quad - (\tilde{\mathbf{E}}_h w_h, \nabla_{\mathbf{v}} g_h) + \langle\langle \{\tilde{\mathbf{E}}_h w_h\} + \frac{|\tilde{\mathbf{E}}_h \cdot \mathbf{n}_v|}{2} \llbracket w_h \rrbracket, \llbracket g_h \rrbracket \rangle\rangle_{\Omega_x \times \mathcal{E}_{v,\ell_v}^1} \end{aligned} \quad (3.6)$$

172 for all $w_h, g_h \in \mathcal{V}_\ell$ where $\tilde{\mathbf{E}}_h := (E_h, 0, 0)^\top$ and E_h is given by $-\partial_x \Phi_h$ where $\Phi_h \in S_{x,\ell_x}$ satisfies

$$(\partial_x \Phi_h, \partial_x q_h)_{\Omega_x} = (\langle w_h \rangle_v - n_e, q_h)_{\Omega_x} \quad (3.7)$$

173 for every $q_h \in S_{x,\ell_x}$. The boundary conditions are periodic in x and we impose zero fluxes on the velocity
174 boundaries.

175 The Lenard–Bernstein portion, \mathcal{A}_{LB} , of Equation (3.5) is discretized with the LDG method (e.g., [24]),
176 with central fluxes for the diffusion term and a local Lax–Friedrichs flux for the advection term; namely,

$$\begin{aligned} \mathcal{A}_{\text{LB}}(w_h, \rho_h, g_h) &= -((\mathbf{v} - \mathbf{u}) w_h, \partial_v g_h) + \langle\langle \{\mathbf{v} w_h\} - \frac{|\mathbf{v} \cdot \mathbf{n}_v|}{2} \llbracket w_h \rrbracket, \llbracket g_h \rrbracket \rangle\rangle_{\Omega_x \times \mathcal{E}_{v,\ell_v}^1} \\ &\quad - (\boldsymbol{\sigma}_h, \nabla_{\mathbf{v}} g_h) + \langle\langle \{\boldsymbol{\sigma}_h\}, \llbracket g_h \rrbracket \rangle\rangle_{\Omega_x \times \mathcal{E}_{v,\ell_v}^1} \end{aligned} \quad (3.8)$$

177 for every $w_h, g_h \in \mathcal{V}_\ell$, where \mathbf{u} is determined from $\rho_h \in [V_{x,\ell_x}]^3$ via formulas in (2.5). Here $\boldsymbol{\sigma}_h \in [\mathcal{V}_\ell]^3$ is the
178 approximation to the velocity gradient of w_h and is defined by

$$(\boldsymbol{\sigma}_h, \tau_h) = (\theta \nabla_{\mathbf{v}} w_h, \tau_h) - \langle\langle \theta \llbracket w_h \rrbracket, \llbracket \tau_h \rrbracket \rangle\rangle_{\Omega_x \times \mathcal{E}_{v,\ell_v}^1} \quad (3.9)$$

179 for every $\tau_h \in [\mathcal{V}_\ell]^3$, where θ is determined by ρ_h the relevant formula in (2.5).

180 If $w_h = 0$ on $\partial \Omega_v$, then it can be shown that $\mathcal{A}_{\text{LB}}(w_h, \rho_{w_h}, \mathbf{e} q_h) = 0$ for all $q_h \in V_{x,\ell_x}$, which implies that
181 the conservation properties in Equation (2.7) hold.

182 For brevity, we do not provide the discretization for the Chu reduction (2.20), but we note it is similar
183 to the discretizations given above for the slab problem.

184 3.3. Time Stepping Method

185 We discretize (3.5) in time via Implicit-Explicit (IMEX) Runge–Kutta (RK) methods [6]. Such methods
186 are popular time steppers for evolving kinetic models that feature multiple time scales [64, 23, 29]. In
187 our case, the Vlasov–Poisson portion \mathcal{A}_{VP} will be evolved explicitly and the collision operator \mathcal{A}_{LB} will be
188 evolved implicitly. We will use IMEX-RK method of [23] which is given by:

$$(f_h^{(1,*)}, g_h) = (f_h^n, g_h) - \Delta t \mathcal{A}_{\text{VP}}(f_h^n, g_h), \quad (3.10a)$$

$$(f_h^{(1)}, g_h) = (f_h^{(1,*)}, g_h) + \Delta t \nu \mathcal{A}_{\text{LB}}(f_h^{(1)}, \rho_{f_h^{(1*)}}, g_h), \quad (3.10b)$$

$$(f_h^{(2,*)}, g_h) = \frac{1}{2} (f_h^n, g_h) + \frac{1}{2} ((f_h^{(1)}, g_h) - \Delta t \mathcal{A}_{\text{VP}}(f_h^{(1)}, g_h)), \quad (3.10c)$$

$$(f_h^{(2)}, g_h) = (f_h^{(2,*)}, g_h) + \frac{1}{2} \Delta t \nu \mathcal{A}_{\text{LB}}(f_h^{(2)}, \rho_{f_h^{(2*)}}, g_h), \quad (3.10d)$$

189 and $f_h^{n+1} := f_h^{(2)}$

190 Assuming zero velocity-boundary data, the invariance of the discrete collision operator implies $\rho_{f_h^{(s,*)}} =$
191 $\rho_{f_h^{(s)}}$, for $s \in \{1, 2\}$. Therefore we plug the moments $f_h^{(s,*)}$ into the collision operator \mathcal{A}_{LB} in (3.10b) and
192 (3.10d) for $s = 1$ and $s = 2$ respectively. This decouples the moments from the distribution and provides
193 a linear solve for $f_h^{(s)}$. Both (3.10b) and (3.10d) are solved iteratively using GMRES with the possible
194 inclusion of a block-Jacobi preconditioner.

195 **4. Sparse-grid Method**

196 In this section, we describe the sparse-grid DG method and adaptivity procedure used in ASGarD. The
 197 method, first introduced in [84] (and from which some of the presentation of this section is based), is provided
 198 here for completeness. We first construct the multiwavelet basis in one dimension, then extend to multiple
 199 dimensions and introduce the sparse-grid selection rule, and finally discuss the adaptivity procedure.

200 *4.1. Single Dimension Multiwavelet Basis*

201 The one-dimensional multiwavelet basis is a hierarchical basis in which additional basis functions for
 202 resolving fine scale features are introduced using orthogonal complements to current functions in the basis.
 203 To simplify the presentation, we assume a domain $\Omega = [0, 1]$. Given a level $\ell \in \{0, \dots, N\}$, let \mathcal{T}_ℓ be a
 204 uniform mesh of Ω with mesh size $h_\ell = 2^{-\ell}$. The partition of \mathcal{T}_ℓ is characterized by the union of disjoint
 205 intervals $I_{\ell,j} := (2^{-\ell}j, 2^{-\ell}(j+1))$ for $j = 0, \dots, 2^\ell - 1$. Given this mesh, define the corresponding DG finite
 206 element space V_ℓ by¹

$$V_\ell := V_\ell^k = \left\{ g \in L^2(\Omega) : g|_{I_{\ell,j}} \in \mathbb{P}_k(I_{\ell,j}) \ \forall j = 0, \dots, 2^\ell - 1 \right\}, \quad (4.1)$$

207 where \mathbb{P}_k is the space of polynomials of degree up to k . This space has dimension $\dim(V_\ell) = 2^\ell(k+1)$.
 208 Additionally, due to the uniform partitioning,

$$V_0 \subset V_1 \subset V_2 \subset \dots \subset V_N. \quad (4.2)$$

209 Let W_ℓ to be the orthogonal complement of $V_{\ell-1}$ in V_ℓ with respect to the $L^2(\Omega)$ inner product; that is,
 210 $W_0 = V_0$, while for $\ell \geq 1$,

$$V_\ell = V_{\ell-1} \oplus W_\ell \quad \text{and} \quad W_\ell \perp V_{\ell-1}, \quad (4.3)$$

211 where \oplus is the direct sum and $\dim(W_\ell) = \max\{0, 2^{\ell-1}(k+1)\}$. Then

$$V_N = \bigoplus_{\ell=0}^N W_\ell. \quad (4.4)$$

212 The hierarchical decomposition in (4.4) induces a natural decay in the coefficients for the approximation
 213 of smooth functions. Specifically, let $Q_\ell : L^2(\Omega) \rightarrow W_\ell$ be the orthogonal L^2 projection onto W_ℓ . Then by
 214 standard polynomial approximation theory (see, e.g., [14, Section 5.4.2] or [71, Theorem 2.6]), there exists
 215 a constant $C > 0$, independent of ℓ , such that for any $g \in H^s(\Omega)$,

$$\|Q_\ell g\|_{L^2(\Omega)} \leq C h_\ell^{\min\{s, k+1\}} \|g\|_{H^s(\Omega)}. \quad (4.5)$$

216 This decay property motivates the adaptive strategy described in Section 4.4.

217 A standard choice for the basis of W_ℓ for $\ell \geq 1$ are *wavelets* – functions that are scaled and shifted to
 218 capture finer-scale features. The prototype wavelet is the piece-wise constant Haar basis [42]. Here we use
 219 Alpert wavelets [4].

220 **Definition 1.** *The Alpert wavelets are a set of functions $\{\phi_i(y) : i = 1, \dots, k+1\} \subset L^2(\mathbb{R})$ with support
 221 in $[-1, 1]$ and defined such that*

- 222 1. $\phi_i|_{(0,1)} \in \mathbb{P}_k(0, 1)$.
- 223 2. $\phi_i(y) = (-1)^{i+k} \phi_i(-y)$.
- 224 3. $\int_{-1}^1 \phi_i(y) y^j dy = 0$ for all $j = 0, 1, \dots, i+k-1$.
- 225 4. $\int_{-1}^1 \phi_i(y) \phi_j(y) dy = \delta_{ij}$ for all $i, j = 1, \dots, k$ where δ_{ij} is the Kronecker delta.

¹We will often drop the polynomial degree superscript on V_ℓ^k for brevity.

226 For a given polynomial degree k , the Alpert wavelets satisfying Definition 1 are unique up to a sign. The
227 Alpert basis is not hierarchical in the polynomial degree; thus each wavelet must be reconstructed when k
228 is changed. For $k = 0$, Alpert's wavelets correspond to the Haar basis. For $k = 2$, the wavelets are given on
229 the interval $(0, 1)$ by

$$\phi_1(y) = \frac{1}{3}\sqrt{\frac{1}{2}}(1 - 24y + 30y^2), \quad \phi_2(y) = \frac{1}{2}\sqrt{\frac{3}{2}}(3 - 16y + 15y^2), \quad \phi_3(y) = \frac{1}{3}\sqrt{\frac{5}{2}}(4 - 15y + 12y^2) \quad (4.6)$$

230 Construction of the wavelets and examples for other polynomial degrees can be found in [4, Page 5].

231 For each $\ell \geq 0$, we use the Alpert wavelets to define a basis set $\{g_{\ell,j}^i\}$ of W_ℓ . For $\ell = 0$, we choose $g_{0,0}^i$
232 to be the shifted Legendre polynomials normalized on $L^2(\Omega)$. For $\ell \geq 1$, we shift and rescale the Alpert
233 wavelets so that for each $x \in (0, 1)$,

$$g_{\ell,j}^i(y) = 2^{(\ell-1)/2}\gamma_i(2^{\ell-1}y - j), \quad \text{where } \gamma_i(y) := \sqrt{2}\phi_i(2y - 1). \quad (4.7)$$

234 Here ℓ is the level, $j = 0, \dots, 2^{\ell-1} - 1$ is the level index, and $i = 1, \dots, k + 1$ is the polynomial index. The
235 support of $g_{\ell,j}^i$ is precisely $I_{\ell-1, \lfloor j/2 \rfloor}$, where $\lfloor \cdot \rfloor$ is the floor function. Additionally, since every wavelet $g_{\ell',j'}^{i'}$
236 for any i', j' , and $\ell' < \ell$ is a polynomial on $I_{\ell-1, \lfloor j/2 \rfloor}$, Item 3 of Definition 1 ensures that the wavelet bases
237 are all orthonormal; that is,

$$\int_0^1 g_{\ell,j}^i(y)g_{\ell',j'}^{i'}(y) dy = \delta_{ii'}\delta_{\ell\ell'}\delta_{jj'}. \quad (4.8)$$

238 Plots of the wavelets $g_{\ell,j}^i$ for $\ell = 0, 1, 2, 3$ and $k = 2$ are given in Figure 4.1.1.

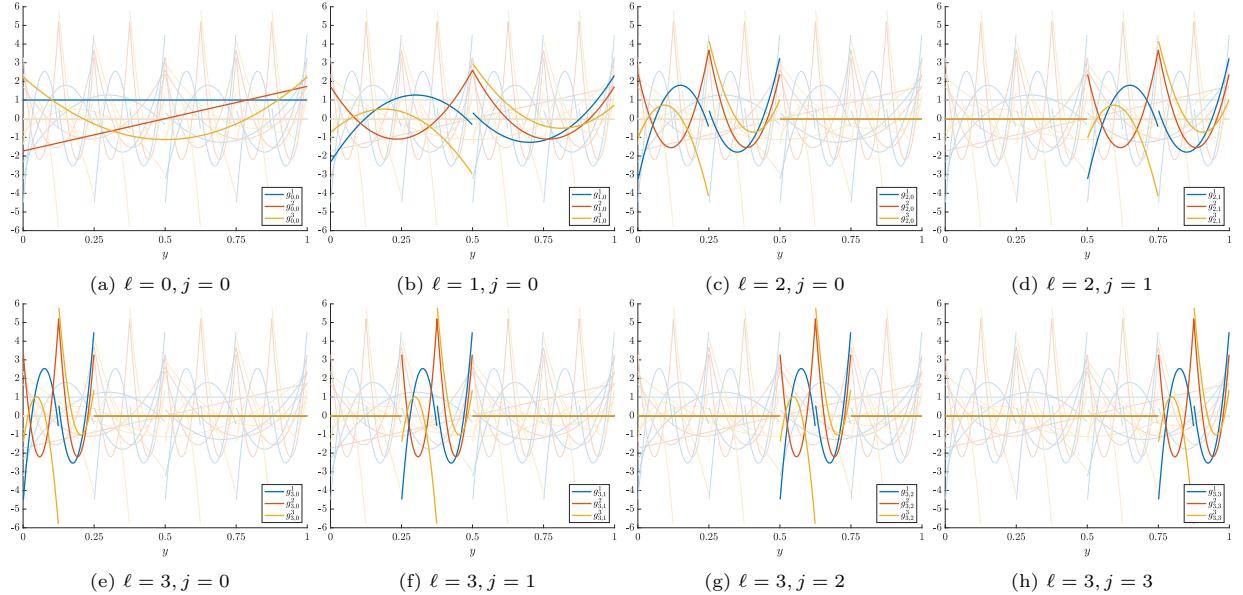


Figure 4.1.1: Plots of the wavelet basis $g_{\ell,j}^i$, given by (4.7), for $k = 2$. In each plot, the entire set of wavelet basis functions for level $\ell = 3$ and lower are shown in each plot and are translucent.

239 4.2. Multiwavelet Basis in Higher Dimensions

240 A d -dimensional basis is achieved through a tensor product extension. Let $\Omega^d = (0, 1)^d$ with $\mathbf{y} =$
241 $(y_1, \dots, y_d) \in \Omega^d$. Given a multi-index $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$, define the norms

$$|\boldsymbol{\alpha}|_1 = \sum_{m=1}^d \alpha_m \quad \text{and} \quad |\boldsymbol{\alpha}|_\infty = \max_{1 \leq m \leq d} \alpha_m. \quad (4.9)$$

242 Let $\ell = (\ell_1, \dots, \ell_d)$ be a multi-index level set, where ℓ_d defines the level for dimension d , and let \mathcal{T}_ℓ be a
243 tensor product mesh with multi-dimensional mesh parameter $\mathbf{h} := (2^{-\ell_1}, \dots, 2^{-\ell_d})$. We label all elements
244 in \mathcal{T}_ℓ by $I_{\ell,j} = \{\mathbf{y} : y_m \in (2^{-\ell_m} j_m, 2^{-\ell_m} (j_m + 1))\}$ and define the tensor product finite element space by

$$\mathbf{V}_\ell := \mathbf{V}_\ell^k = \{g \in L^2(\Omega) : g|_{I_{\ell,j}} \in \mathbb{Q}_k(I_{\ell,j}), \forall 0 \leq j_m \leq 2^{\ell_m} - 1, m = 1, \dots, d\}, \quad (4.10)$$

245 where $\mathbb{Q}_k(I_{\ell,j})$ represents the set of polynomials of degree up to k in each dimension on $I_{\ell,j}$. If $\ell = (N, \dots, N)$, then we abbreviate \mathbf{V}_ℓ by \mathbf{V}_N .

247 Recall the one-dimensional hierarchical decomposition in Section 4.1. Given the complementary sets
248 W_{ℓ_m} defined in (4.3), let

$$\mathbf{W}_\ell = W_{\ell_1} \otimes W_{\ell_2} \otimes \cdots \otimes W_{\ell_d}. \quad (4.11)$$

249 Then (4.4) extends to the multidimensional setting:

$$\mathbf{V}_\ell = V_{\ell_1} \otimes \cdots \otimes V_{\ell_d} = \bigoplus_{\mathbf{0} \leq \ell' \leq \ell} \mathbf{W}_{\ell'}. \quad (4.12)$$

250 An extension of the coefficient decay result (4.5) also holds. Let $\mathbf{Q}_\ell : L^2(\Omega) \rightarrow \mathbf{W}_\ell$ be the orthogonal L^2
251 projection onto \mathbf{W}_ℓ , then

$$\|\mathbf{Q}_\ell g\|_{L^2(\Omega)} = \mathcal{O} \left(\prod_{m=1}^d h_m^{\min\{s, k+1\}} \right), \quad (4.13)$$

252 where s is a regularity parameter tied to a Sobolev-like space including high-order mixed derivative control.
253 We refer the reader to [39, (A.8)] and [73, Proposition 5.1] for specifics on (4.13).

254 The basis we choose for \mathbf{W}_ℓ are the *multiwavelets* which are products of the 1D wavelets in (4.7):

$$g_{\ell,j}^i(\mathbf{y}) := \prod_{m=1}^d g_{\ell_m, j_m}^{i_m}(y_m), \text{ where } j_m = 0, \dots, \max\{0, 2^{\ell_m-1} - 1\}, i_m = 1, \dots, k+1. \quad (4.14)$$

255 It follows from repeated application of (4.8) in each dimension that these multiwavelets are orthonormal in
256 $L^2(\Omega)$.

257 4.3. The Sparse-grid Selection Rule

258 The spaces \mathbf{W}_ℓ are used to define the sparse grid. From (4.12) we can rewrite the full-grid as

$$\mathbf{V}_N = \bigoplus_{\|\ell\|_\infty \leq N} \mathbf{W}_\ell. \quad (4.15)$$

259 This space has dimension $\dim(\mathbf{V}_N) = (k+1)^d 2^{Nd}$. The sparse grid is defined via a selection rule that relaxes
260 the index norm in (4.15).

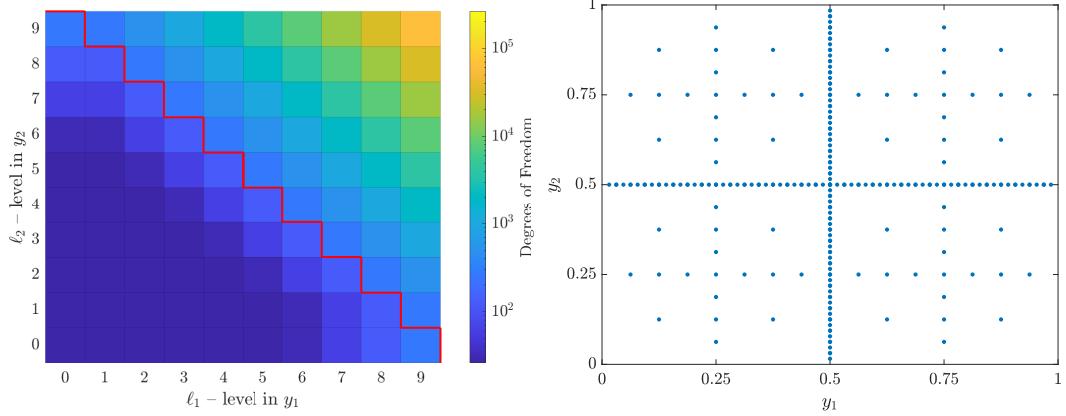
261 **Definition 2** ([84, 13]). *The level N sparse grid, $\hat{\mathbf{V}}_N \subseteq \mathbf{V}_N$, is defined by*

$$\hat{\mathbf{V}}_N = \bigoplus_{\|\ell\|_1 \leq N} \mathbf{W}_\ell. \quad (4.16)$$

262 By definition, the sparse-grid only includes components \mathbf{W}_ℓ whose level indices ℓ sum up to N , and
263 throws away basis functions deemed too fine to include in multiple dimensions. It was shown in [84, Lemma
264 2.3] that

$$\dim(\hat{\mathbf{V}}_N) = \Theta((k+1)^d 2^N N^{d-1}), \quad (4.17)$$

265 which avoids the costly $\mathcal{O}(2^{Nd})$ scaling of the full-grid in (4.15) but still maintains exponential dependence
266 on k and on $\log(N)$.



(a) A heat map for the degrees of freedom of \mathbf{W}_ℓ for a 2 dimensional problem. The whole rectangle corresponds to all degrees of freedom for the full-grid \mathbf{V}_9 while the sparse-grid $\hat{\mathbf{V}}_9$ only contains the spaces on the lower-left portion divided by the red line.

(b) Plot showing the coverage of sparse-grids in two dimensions. Each point represents the barycenter of the support of a wavelet that is in the level 7 sparse-grid.

Figure 4.3.1: Sparse-grid illustrations.

Figure 4.3.1 illustrates which basis functions are kept in the sparse-grid and the reduction in degrees of freedom that sparse-grids provide for the case with $d = 2$. Figure 4.3.1a shows that the dimension of the spaces \mathbf{W}_ℓ being thrown away in the sparse-grid truncation are significantly larger on average than the dimension of the spaces that are kept. As a result, there is a reduction in degrees of freedom from the full-grid space \mathbf{V}_9 of size $2^{18} \approx 2.62 \times 10^5$ to the sparse grid space $\hat{\mathbf{V}}_9$ of size 2816.² Figure 4.3.1b shows that the basis functions kept in the sparse-grid allow accurate approximations of derivatives in coordinate directions while throwing away mixed-derivative data which is assumed to be smaller than the components kept by the sparse-grid. It has been shown that $\hat{\mathbf{V}}_N$ shares similar approximation properties to \mathbf{V}_N in L^2 , which is $\mathcal{O}(h^{k+1})$, up to a poly-logarithmic factor of $|\log_2 h|^{d-1}$ (see [84, Theorem 2.4]). This result holds for functions with bounded mixed derivatives of sufficient order.

4.4. Adaptive Sparse-grids

The adaptive sparse-grid method uses an adaptive algorithm based on the hierarchical framework of the sparse-grid method [40]. The first step is to further decompose the orthogonal complements \mathbf{W}_ℓ by their level ℓ and position \mathbf{j} within the level. This position \mathbf{j} in the level is based on the multiwavelet basis. Given the basis in (4.14), we define the space $\mathbf{W}_{\ell,\mathbf{j}} \subset \mathbf{W}_\ell$, called a *hierarchical element*, by

$$\mathbf{W}_{\ell,\mathbf{j}} = \text{span}_{\substack{1 \leq i_m \leq k+1 \\ 1 \leq m \leq d}} \{g_{\ell,\mathbf{j}}^i\}. \quad (4.18)$$

This space has dimension $\dim(\mathbf{W}_{\ell,\mathbf{j}}) = (k+1)^d$ and

$$\mathbf{W}_\ell = \bigoplus_{\mathbf{j} \in \mathcal{B}_\ell} \mathbf{W}_{\ell,\mathbf{j}} \quad (4.19)$$

where

$$\mathcal{B}_\ell := \{\mathbf{j} = (j_1, \dots, j_d) : j_m = 0, \dots, \max\{0, 2^{\ell_m-1} - 1\}, \forall m = 1, \dots, d\}. \quad (4.20)$$

²Here we use $k = 0$ to calculate $\dim(\mathbf{V}_9)$ and $\dim(\hat{\mathbf{V}}_9)$.

284 The spaces $\mathbf{W}_{\ell,j}$ are deemed hierarchical because they carry a natural parent-child relationship of which the
 285 details will be postponed (see Definition 4). The full- and sparse-grid spaces, (4.15) and (4.16) respectively,
 286 can be written as

$$\mathbf{V}_N = \bigoplus_{\substack{|\ell|_\infty \leq N \\ j \in \mathcal{B}_\ell}} \mathbf{W}_{\ell,j} \quad \text{and} \quad \hat{\mathbf{V}}_N = \bigoplus_{\substack{|\ell|_1 \leq N \\ j \in \mathcal{B}_\ell}} \mathbf{W}_{\ell,j}. \quad (4.21)$$

287 For the adaptive sparse-grid algorithm, it is helpful to view the full- and sparse-grid spaces as direct sums of
 288 the hierarchical elements $\mathbf{W}_{\ell,j}$. We can now define an adaptive sparse-grid which is an arbitrary collection
 289 of hierarchical elements.

290 **Definition 3.** Given a max level $N_{max} \in \mathbb{N}_0$ and a level index set $\{(\ell^\iota, j^\iota)\}_{\iota=1}^M$ such that for all $\iota = 1, \dots, M$,
 291 $|\ell^\iota|_\infty \leq N_{max}$ and $j^\iota \in \mathcal{B}_\ell$, the adaptive sparse-grid $\mathbf{V} \subseteq \mathbf{V}_{N_{max}}$ is defined as

$$\mathbf{V} = \bigoplus_{\iota} \mathbf{W}_{\ell^\iota, j^\iota}. \quad (4.22)$$

292 Here M is said to be the number of active elements of the adaptive sparse-grid \mathbf{V} .

293 We will often drop the ι superscript in (4.22) and refer to the level index set as $\{(\ell, j)\}$. From (4.21),
 294 the standard sparse-grid is a specific adaptive sparse-grid where we include all hierarchical elements $\mathbf{W}_{\ell,j}$
 295 such that $|\ell|_1 \leq N_{max}$ and $j \in \mathcal{B}_\ell$.

296 4.4.1. Adaptive Approximation of Initial Data

297 Let $\mathcal{P}_{\mathbf{V}}$ be the L^2 projection from $L^2(\Omega)$ onto \mathbf{V} . The main idea of the adaptive sparse-grid is to choose
 298 a grid $\mathbf{V} \subseteq \mathbf{V}_{N_{max}}$, depending on the distribution w , such that

- 299 1. The relative projection error $\|w - \mathcal{P}_{\mathbf{V}}w\|_{L^2(\Omega)}/\|w\|_{L^2(\Omega)}$ is small;
- 300 2. $\dim(\mathbf{V})$ is approximately minimal.

301 We will first demonstrate this process for an initial condition, and then extend the result to functions
 302 formulated via a dynamical system.

303 For a fixed max level N_{max} , choosing $\mathbf{V} = \mathbf{V}_{N_{max}}$ would minimize the L^2 projection error over all possible
 304 adaptive sparse-grid spaces, but with significant costs in terms of the number of degrees of freedom. Thus
 305 we assume $w \in \mathbf{V}_{N_{max}}$ is our target; then the coefficient expansion with respect to the multiwavelet basis of
 306 (4.14) is given by

$$w(\mathbf{y}) = \sum_{\substack{(\ell, j): \\ |\ell|_\infty \leq N_{max}, j \in \mathcal{B}_\ell}} \sum_{\substack{1 \leq i_m \leq k+1 \\ 1 \leq m \leq d}} w_{\ell,j}^i g_{\ell,j}^i(\mathbf{y}) \quad \text{where} \quad w_{\ell,j}^i = \int_{\Omega} w(\mathbf{y}) g_{\ell,j}^i(\mathbf{y}) \, d\mathbf{y}. \quad (4.23)$$

307 For simplification, we define $w_{\ell,j}$ to be the multilinear rank- d tensor with $k+1$ entries in each dimension,
 308 defined by

$$[w_{\ell,j}]_i = w_{\ell,j}^i. \quad (4.24)$$

309 When taking the norm of $w_{\ell,j}$, we first flatten the tensor into a vector in $\mathbb{R}^{(k+1)^d}$ and apply the appropriate
 310 vector norm in ℓ^p where $1 \leq p \leq \infty$. Then the L^2 -norm of w can be written as

$$\|w\|_{L^2(\Omega)}^2 = \sum_{\substack{(\ell, j): \\ |\ell|_\infty \leq N_{max}, j \in \mathcal{B}_\ell}} \|w_{\ell,j}\|_2^2 \quad (4.25)$$

311 Additionally, for any adaptive sparse-grid space \mathbf{V} with level index set $\{(\ell, j)\}$ we have

$$\mathcal{P}_{\mathbf{V}}w = \sum_{(\ell, j)} \sum_{\substack{1 \leq i_m \leq k+1 \\ 1 \leq m \leq d}} w_{\ell,j}^i g_{\ell,j}^i \quad \text{and} \quad \|\mathcal{P}_{\mathbf{V}}w\|_{L^2(\Omega)}^2 = \sum_{(\ell, j)} \|w_{\ell,j}\|_2^2. \quad (4.26)$$

³¹² From (4.23) and (4.26), it is clear that the relative projection error satisfies

$$\frac{\|w - \mathcal{P}_V w\|_{L^2(\Omega)}^2}{\|w\|_{L^2(\Omega)}^2} = \sum_{(\ell, j): \mathbf{W}_{\ell, j} \subseteq V} \frac{\|w_{\ell, j}\|_2^2}{\|w\|_{L^2(\Omega)}^2}. \quad (4.27)$$

³¹³ Therefore, given $\tau > 0$, called the *threshold*, we want to keep all hierarchical elements $\mathbf{W}_{\ell, j}$ such that

$$\|w_{\ell, j}\|_2 \geq \tau \|w\|_{L^2(\Omega)} \quad (4.28)$$

³¹⁴ lest they contribute to the error in (4.27).

³¹⁵ *Refinement.* We will now describe how hierarchical elements are added to the adaptive sparse-grid – which
³¹⁶ we call refinement. The primary challenge in building a grid that contains all elements satisfying (4.28) is
³¹⁷ to avoid checking all hierarchical elements in the full-grid – an operation that naively would require $\mathcal{O}(2^{Nd})$
³¹⁸ operations.

³¹⁹ The refinement process is iterative, where an initial grid is chosen and then added upon. For adapting
³²⁰ an initial condition, we choose our initial grid as the sparse-grid $V = \hat{V}_{N_{\max}}$. Given a current grid V ,
³²¹ the coefficients $w_{\ell, j}$ are computed for every hierarchical element in the grid. In order to determine what
³²² elements to add to the grid, we appeal to the hierarchical representation of the full-grid space which embeds
³²³ the following parent-child relation.

³²⁴ **Definition 4.** Let $\mathbf{W}_{\ell, j}$ for $(\ell, j) = ((\ell_1, \dots, \ell_d), (j_1, \dots, j_d))$ be a hierarchical element with max level N_{\max} .
³²⁵ The children of $\mathbf{W}_{\ell, j}$, with up to two per dimension, are defined for each dimension $m = 1, \dots, d$ by the
³²⁶ following:

- ³²⁷ • If $\ell_m = 0$, then $\mathbf{W}_{\ell', j'}$, where

$$(\ell', j') = ((\ell_1, \dots, \ell_{m-1}, 1, \ell_{m+1}, \dots, \ell_d), (j_1, \dots, j_{m-1}, 0, j_{m+1}, \dots, j_d)), \quad (4.29)$$

³²⁸ is a child of $\mathbf{W}_{\ell, j}$.

- ³²⁹ • If $0 < \ell_m < N_{\max}$, then $\mathbf{W}_{\ell', j'}$, where

$$(\ell', j') = ((\ell_1, \dots, \ell_{m-1}, \ell_m + 1, \ell_{m+1}, \dots, \ell_d), (j_1, \dots, j_{m-1}, 2j_m, j_{m+1}, \dots, j_d)) \quad \text{and} \quad (4.30a)$$

$$(\ell', j') = ((\ell_1, \dots, \ell_{m-1}, \ell_m + 1, \ell_{m+1}, \dots, \ell_d), (j_1, \dots, j_{m-1}, 2j_m + 1, j_{m+1}, \dots, j_d)), \quad (4.30b)$$

³³⁰ are children of $\mathbf{W}_{\ell, j}$.

- ³³¹ • If $\ell_m = N_{\max}$, then there are no children of $\mathbf{W}_{\ell, j}$ in dimension m .

³³² The parents of an element $\mathbf{W}_{\ell, j}$ are all elements $\mathbf{W}_{\ell', j'}$ such that $\mathbf{W}_{\ell, j}$ is a child of $\mathbf{W}_{\ell', j'}$.

³³³ It is clear from Definition 4 that each hierarchical element can have up to $2d$ children and up to d parents.
³³⁴ To tie Definition 4 to the wavelet representation, for a fixed dimension $m \in \{1, \dots, d\}$, the children of a
³³⁵ wavelet given in (4.7) are the up to two wavelets of one greater level whose support is contained in the
³³⁶ parent. Furthermore, based on the coefficient decay estimate (4.13), if w is sufficiently smooth, then it is
³³⁷ reasonable to assume that if $\mathbf{W}_{\ell', j'}$ is a child of $\mathbf{W}_{\ell, j}$, then $\|w_{\ell', j'}\| \leq \|w_{\ell, j}\|$. Therefore, if the size of a
³³⁸ hierarchical element in the grid is small, we assume the size of the children are also small, and we do not
³³⁹ need to search further along this path. This assumption leads to a stopping mechanism for the refinement
³⁴⁰ strategy: Given a grid V with level index set $\{(\ell, j)\}$, if

$$\|w_{\ell, j}\|_2 \geq \tau \left(\sum_{(\ell', j')} \|w_{\ell', j'}\|_2^2 \right)^{\frac{1}{2}} = \tau \|\mathcal{P}_V w\|_{L^2(\Omega)}, \quad (4.31)$$

³⁴¹ then we add all children of $\mathbf{W}_{\ell, j}$ to the grid. We repeat this process iteratively until no new children are
³⁴² added.

343 *Coarsening.* The process of removing active elements from the current grid, i.e., coarsening, is achieved by
344 simple thresholding of the coefficients. Let $0 < \mu < 1$ be the *coarsening factor*. For a given grid \mathbf{V} , if $\mathbf{W}_{\ell,j}$
345 is a hierarchical element such that

$$\|w_{\ell,j}\|_2 \leq \mu\tau \left(\sum_{(\ell',j')} \|w_{\ell',j'}\|_2^2 \right)^{\frac{1}{2}} = \mu\tau \|\mathcal{P}_{\mathbf{V}} w\|_{L^2(\Omega)}, \quad (4.32)$$

346 then it is removed from the grid. We acknowledge this coarsening strategy does not preserve structural
347 properties like parent completeness, i.e., requiring that all parents of an active element are active (see [79,
348 Section 3]), but still yields stable and accurate approximations as evidenced in Section 5.

349 While the criteria for refinement (4.31) and coarsening (4.32) are based on ℓ^2 -type norms, other discrete
350 norms can be used. For instance, the ℓ^∞ norm can also be used:

$$\|w_{\ell,j}\|_\infty \geq \tau \max_{(\ell',j')} \|w_{\ell',j'}\|_\infty \quad (\text{for refinement}), \quad (4.33a)$$

$$\|w_{\ell,j}\|_\infty \leq \mu\tau \max_{(\ell',j')} \|w_{\ell',j'}\|_\infty \quad (\text{for coarsening}). \quad (4.33b)$$

351 The first refinement criterion implemented in ASGarD was (4.33a). Currently both ℓ^∞ and ℓ^2 strategies are
352 supported, but our experiments did not show a significant difference in the accuracy or the degrees of freedom.
353 This is in contrast to the L^∞ refinement, which has been shown to yield a much denser grid compared to the
354 L^2 criteria, e.g., see [40]. In the rest of this work, we will use (4.33) as our coarsening/refinement strategy.

355 4.4.2. Adaptive sparse-grids of a dynamical system

356 Unlike adapting initial conditions, where the coefficients are drawn from analytic or quadrature data, the
357 adaptive strategy can also be utilized to create temporally varying grids that dynamically capture features of
358 the solution in time. To extend our adaptive strategy to dynamical systems, consider the abstract problem

$$(\partial_t w, g) = \mathcal{A}(w, g) \quad \forall g \in \mathbf{V}_{N_{\max}} \quad (4.34)$$

359 where $\mathcal{A} : \mathbf{V}_{N_{\max}} \times \mathbf{V}_{N_{\max}} \rightarrow \mathbb{R}$ (c.f. (3.5)). Here \mathcal{A} is one of the discretizations in (3.6) or (3.8). For a given
360 adaptive sparse-grid $\mathbf{V} \subseteq \mathbf{V}_N$ define the operator $\mathcal{R} : \mathbf{V} \rightarrow \mathbf{V}$ by

$$(\mathcal{R}_{\mathbf{V}} w, g) = \mathcal{A}(w, g) \quad \forall g \in \mathbf{V}. \quad (4.35)$$

361 Then (4.34) can be succinctly written as $\partial_t w = \mathcal{R}_{\mathbf{V}_{N_{\max}}} w$.

362 Consider a solution w^n at timestep t^n defined on an adaptive sparse-grid \mathbf{V}^n . To refine, we first set
363 $\mathbf{V} = \mathbf{V}^n$ and advance the abstract problem $\partial_t w = \mathcal{R}_{\mathbf{V}} w$ from t^n to t^{n+1} via a IMEX Runge–Kutta method
364 (3.10) to produce $w^{n+1} \in \mathbf{V}$. We then check for elements $\mathbf{W}_{\ell,j}$ of \mathbf{V} that satisfy the same refinement
365 requirement as the initial condition case, namely, (4.31) for a ℓ^2 -norm refinement or (4.33a) for a ℓ^∞ -norm
366 refinement. If there are elements satisfying the refinement criterion, then their children are added to \mathbf{V} .
367 We then go back to time t^n and advance $\partial_t w = \mathcal{R}_{\mathbf{V}} w$ from t^n to t^{n+1} with the updated space \mathbf{V} . Since
368 $\mathbf{V}^n \subseteq \mathbf{V}$, the coefficients of the state w^n can be extended into \mathbf{V} by setting $w_{\ell,j}^n = 0$ if $\mathbf{W}_{\ell,j} \subseteq \mathbf{V}$ but not
369 if $\mathbf{W}_{\ell,j} \not\subseteq \mathbf{V}^n$. This process is repeated until no new children are added into the grid \mathbf{V} – in which case we
370 set $\mathbf{V}^{n+1} = \mathbf{V}$. Typically, only one or two refinements are needed per timestep, but more may be needed
371 for the first few timesteps due to initial layers. Coarsening after refinement is done in a manner analogous
372 to the initial condition case. The procedure for refining and coarsening are summed up in Algorithm 1 and
373 Algorithm 2 respectively.

374 As visual illustration of the adaptive sparse-grid method is shown in Figure 4.4.1, where it is applied
375 to $1x3v$ Riemann problem in Section 5.3. As seen in Figure 4.4.1b, the adaptive algorithm focuses on
376 refinement around the discontinuity in the distribution, plotted in Figure 4.4.1a, while coarsening occurs
377 near the velocity boundaries.

Algorithm 1: Adaptive refinement using ℓ^∞ -norm

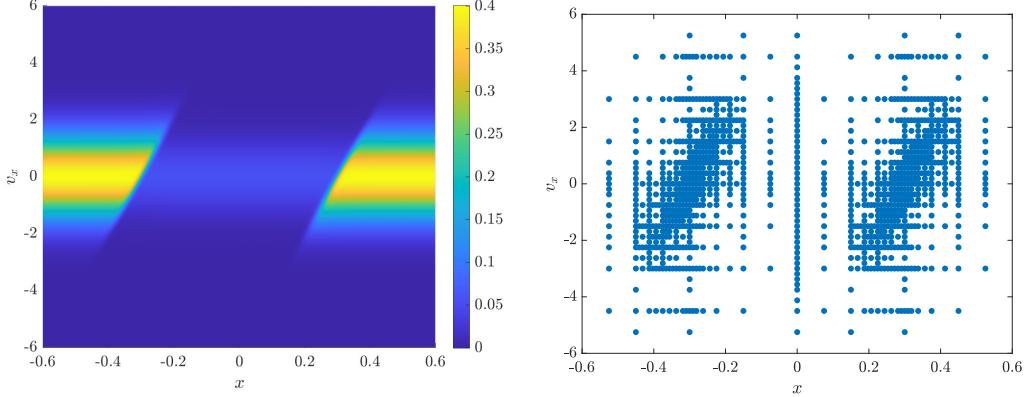
Input : Adaptive sparse-grid \mathbf{V} , threshold $\tau > 0$
Input : Distribution w or dynamical system $(w, \mathbf{U}) \rightarrow \partial_t w = \mathcal{R}_{\mathbf{U}} w$ defined in (4.35) with
coefficients $w_{\ell,j}^n$ computed for all $\mathbf{W}_{\ell,j} \subset \mathbf{V}$
Output: Adaptive sparse-grid \mathbf{V}^*
Output: Coefficients $w_{\ell,j}$ for all $\mathbf{W}_{\ell,j} \subset \mathbf{V}^*$

```
1  $\mathbf{V}^* := \mathbf{V};$ 
2 do
3    $\mathbf{N} := \{0\};$ 
4   Compute  $w_{\ell,j}$  for all  $\mathbf{W}_{\ell,j} \subset \mathbf{V}^*$  via  $w$  or dynamical system  $\partial_t f = \mathcal{R}_{\mathbf{V}^*} f$ ;
5   for  $\mathbf{W}_{\ell,j} \subset \mathbf{V}^*$  do
6     if  $\|w_{\ell,j}\|_\infty \geq \tau \max_{(\ell',j')} \|w_{\ell',j'}\|_\infty$  then /* Check if element needs refining */
7       Compute all children  $\mathbf{W}_{\ell',j'}$  of  $\mathbf{W}_{\ell,j}$  using Definition 4;
8       for children  $\mathbf{W}_{\ell',j'}$  of  $\mathbf{W}_{\ell,j}$  do
9         if  $\mathbf{W}_{\ell',j'} \not\subset \mathbf{V}^*$  and  $\mathbf{W}_{\ell',j'} \not\subset \mathbf{N}$  then
10           $\mathbf{N} := \mathbf{N} \oplus \mathbf{W}_{\ell',j'};$  /* Add element */
11           $w_{\ell',j'}^n = 0;$  /* Zero out new element at  $t^n$  */
12    $\mathbf{V}^* := \mathbf{V}^* \oplus \mathbf{N};$ 
13 while  $\mathbf{N} \neq \{0\};$  /* Repeat until no children are added. */
```

Algorithm 2: Adaptive coarsening using ℓ^∞ -norm

Input : Adaptive sparse-grid \mathbf{V} , threshold $\tau > 0$, coarsening factor $0 < \mu < 1$
Input : Coefficients $w_{\ell,j}$ for all $\mathbf{W}_{\ell,j} \subset \mathbf{V}$
Output: Adaptive sparse-grid \mathbf{V}^*

```
1  $\mathbf{V}^* := \{0\};$ 
2 for  $\mathbf{W}_{\ell,j} \subset \mathbf{V}$  do
3   if  $\|w_{\ell,j}\|_\infty > \mu \tau \max_{(\ell',j')} \|w_{\ell',j'}\|_\infty$  then /* Check if element needs to be removed */
4      $\mathbf{V}^* := \mathbf{V}^* \oplus \mathbf{W}_{\ell,j};$ 
```



(a) Phase space plot of $\langle f \rangle_{v_y, v_z}$ in (x, v_x) where f is the adaptive sparse-grid distribution.

(b) Plot showing which hierarchical elements are active in Figure 4.4.1a. The points represent the (x, v_x) coordinates of the barycenter of the support of each active wavelet.

Figure 4.4.1: Riemann problem – Section 5.3 – $\nu = 1$: Adaptive Sparse-grid Method at $t = 0.04918$. The threshold is $\tau = 10^{-4}$ and the adaptive sparse-grid cannot refine past $\ell = (7, 6, 6, 6)$.

378 5. Numerical Experiments

379 In this section, we present results from various test problems relevant to plasma physics. Our goals are
380 to demonstrate the performance of the adaptive sparse-grid and mixed-grid DG methods with IMEX time
381 stepping implemented in ASGarD, and investigate the computational benefit of the adaptive sparse-grid
382 and mixed-grid methods over the full-grid methods (see Section 5.1 for definitions). In increasing degree of
383 complexity, we consider: (i) relaxation to a Maxwellian velocity distribution (Section 5.2); (ii) a Riemann
384 problem for two different values of the collision frequency ν (Section 5.3); (iii) and the collisional Landau
385 damping problem (Section 5.4), also for two different values of the collision frequency. All the results
386 presented in this section were obtained with quadratic polynomials, i.e., $k = 2$. This choice of k is natural
387 considering that the velocity moments with respect to 1 , \mathbf{v} , and $|\mathbf{v}|^2$ compose the important fluid variables.

388 5.1. Choice of Grids

389 In the simulations presented below we choose to compare results obtained with three types of grids:
390 full-grid, mixed-grid, and adaptive sparse-grid. We provide the specifics of each grid in this section.

391 Our first choice is the standard full-grid \mathbf{V}_ℓ , where $\ell = (\ell_x, \ell_v, \ell_v, \ell_v)$. We use the Chu reduction
392 method of Section 2.2 in Sections 5.3 and 5.4 with $\ell = (\ell_x, \ell_v)$ to build reference solutions and numerical
393 approximations with the full-grid. This is because the full-grid space is too large in comparison to the
394 other two grids and can easily fill the memory of a single-node machine. When using the Chu reduction,
395 the discretization is performed using a local Legendre polynomial basis instead of the multiwavelets. When
396 determining the degrees of freedom or number of active elements for a full-grid run, we will always assume
397 that the underlying run is 4D, even if the Chu reduction method is used.

398 We have found that standard 4D sparse-grids such as $\hat{\mathbf{V}}_\ell$ are unstable for the VPLB model in (2.15).
399 This is due to both the lack of resolution in x and the lack of regularity of the distribution function in
400 physical space. Specifically, the temperature θ_f becomes negative which causes the solution to blow up. As
401 we expect savings to come from the smoothness in velocity space, induced by the LB collision operator, we
402 propose a mixed-grid approach for our second choice. The mixed-grid of level $\ell = (\ell_x, \ell_v, \ell_v, \ell_v)$ is defined
403 by

$$\tilde{\mathbf{V}}_\ell = \bigoplus_{\substack{\ell' : \ell'_1 \leq \ell_x, \\ |(\ell'_2, \ell'_3, \ell'_4)|_1 \leq \ell_v}} \mathbf{W}_{\ell'} = V_{\ell_x} \otimes \hat{\mathbf{V}}_{(\ell_v, \ell_v, \ell_v)}. \quad (5.1)$$

404 The mixed-grid space is a tensor product of a full-grid in physical space and a sparse-grid in velocity space.
 405 This can be viewed as a sparse-grid in velocity space attached to each degree of freedom in x , and thus
 406 provides computational savings relative to the full-grid (without the Chu reduction method). The dimension
 407 of $\tilde{\mathbf{V}}_\ell$ is $\mathcal{O}((k+1)^4 2^{\ell_x + \ell_v} \ell_v^2)$. We find this space is sufficient to maintain stability of the DG method for the
 408 problems considered here.

409 Additionally, since 1 and $v_y^2 + v_z^2$ are admissible DG functions that live on level $(0, 0)$ in (v_y, v_z) when $k \geq 2$,
 410 a 4D full-grid of level $(\ell_x, \ell_v, 0, 0)$ is sufficient to recover g_1 and g_2 in a 2D full-grid of level (ℓ_x, ℓ_v) . Since a
 411 full-grid of level $(\ell_x, \ell_v, 0, 0)$ is a subgrid of a mixed-grid with level $(\ell_x, \ell_v, \ell_v, \ell_v)$, the reduced moments g_1
 412 and g_2 created by the mixed-grid solution will be similar to the full-grid. However, for $k \leq 3$, the function
 413 $v_y^4 + v_z^4$ is not a DG function, and its projection onto the DG space will excite finer level coefficients that
 414 are better captured by the full-grid than by the mixed-grid for a certain level. We therefore evolve g_3 in the
 415 Chu reduction method in order to better understand differences in accuracy between the mixed-grid and
 416 full-grid methods.

417 Our last grid is the adaptive sparse-grid, \mathbf{V} , that is coarsened and refined as detailed in Algorithms 1
 418 and 2, using ℓ^∞ -thresholding. The refinement threshold τ will be problem dependent, but we use the
 419 coarsening factor $\mu = 0.1$, motivated from [40, 48], for all of our examples. Instead of a max level N_{\max}
 420 used in Section 4, we will not allow the adaptive sparse-grid to refine above a full-grid of specified level
 421 $\ell = (\ell_x, \ell_v, \ell_v, \ell_v)$. The number of degrees of freedom, or active elements, presented in the results below will
 422 be of the adaptive sparse-grid solution after the refinement step but before coarsening.

423 It is useful to view each of these grids as a velocity grid attached to each spatial degree of freedom.
 424 The full-grid attaches a three-dimensional full-velocity grid to every spatial degree of freedom while the
 425 mixed-grid attaches a sparse-velocity grid. The adaptive sparse-grid attaches a variable velocity grid, with
 426 possibly zero elements, to each spatial degree of freedom.

427 Finally, we will track the number of active elements, see Definition 3, as opposed to degrees of freedom
 428 in order to more clearly present the advantages of the mixed-grid and adaptive sparse-grid methods.

429 5.2. Relaxation Problem

430 We first consider the $0x3v$ problem in (2.14) in order to test the relaxation to equilibrium induced by
 431 the LB collision operator. In this case $f = f(\mathbf{v}, t)$ and the computational domain is truncated so that
 432 $\mathbf{v} \in (-8, 12)^3$. The initial condition is given by the sum of three Maxwellians, each sharing $n_f = 1/3$,
 433 $\theta_f = 1/2$, but differing in the bulk velocities, which are given by $[3, 0, 0]$, $[0, 3, 0]$, and $[0, 0, 3]$, respectively.
 434 This initial condition induces the following velocity moments: $n_f = 1$, $\mathbf{u}_f = [1, 1, 1]^\top$, and $\theta_f = 2.5$. By
 435 the properties of the LB collision operator Proposition 1, these moments are expected to remain constant
 436 in time and the velocity distribution to relax to the Maxwellian defined by the initial moments.

437 For this test, we will use a 3D sparse-grid of level (ℓ_v, ℓ_v, ℓ_v) as a substitute for the mixed-grid. The 4D
 438 $(1x3v)$ definitions of the full-grid and adaptive sparse-grid naturally carry to the 3D $(0x3v)$ case. We set
 439 $\nu = 10^3$, $\Delta t = 5 \times 10^{-4}$, and use backward Euler time stepping for this problem, with a tolerance of 10^{-8}
 440 for the GMRES implicit solve. Figure 5.2.1 illustrates the initial and final (equilibrium) distributions in the
 441 (v_x, v_y) -plane for a full-grid model.

442 Figure 5.2.2a plots the change in the fluid variables n_f , \mathbf{u}_f , and θ_f from their initial values as a function
 443 of νt , when using the full grid; the figure clearly shows that the loss in conservation of the moments is well
 444 below the GMRES tolerance. The error profiles for the mixed-grid and adaptive sparse-grid runs are similar,
 445 but not shown.

446 Figure 5.2.2b shows the number of GMRES iterations for each timestep for varying full-grid levels. The
 447 block-Jacobi preconditioner reduces the number of GMRES iterations for each simulation (dashed lines) and
 448 overall smoothly decays the iteration count as a function of timestep. However, the constant jump of the
 449 iteration count, in logarithmic scale, between velocity levels in both the standard GMRES and preconditioned
 450 version shows that the preconditioner does not asymptotically lower the $\mathcal{O}(4^{\ell_v})$ conditioning of the diffusion
 451 term in the LB operator. We found that the sparse-grid's iteration count was roughly two-thirds of the
 452 full-grid for the same level. Additionally, we found that the adaptive sparse-grid method often included
 453 elements from level 9 grids which caused a significant increase in the number of GMRES iterations in the

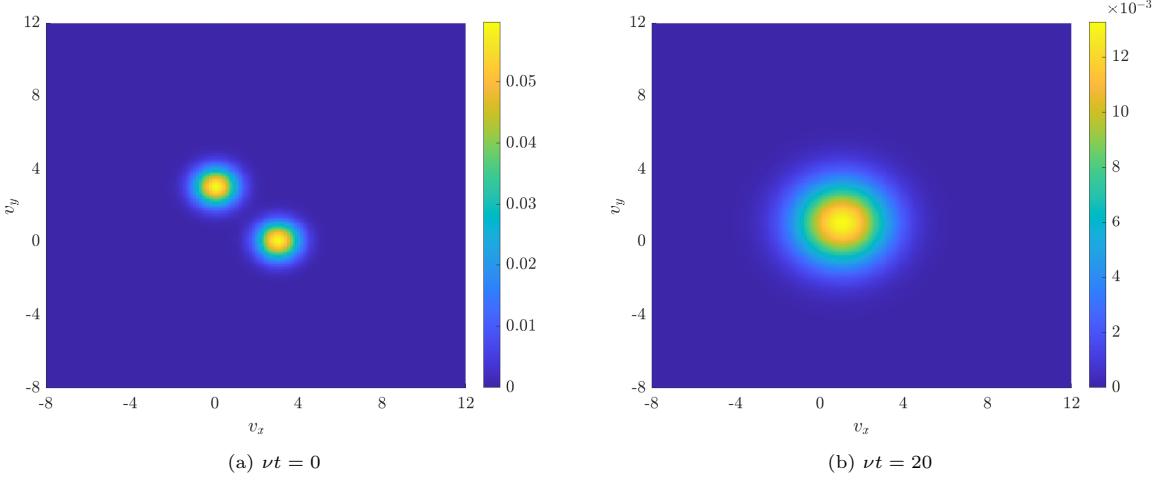


Figure 5.2.1: Relaxation Problem – Section 5.2: 2D plot of the velocity distribution $f_h(v_x, v_y, v_z = 0.019)$ at the start (left) and end (right) of a relaxation simulation. These results were obtained with a full-grid run with $\ell = (5, 5, 5)$.

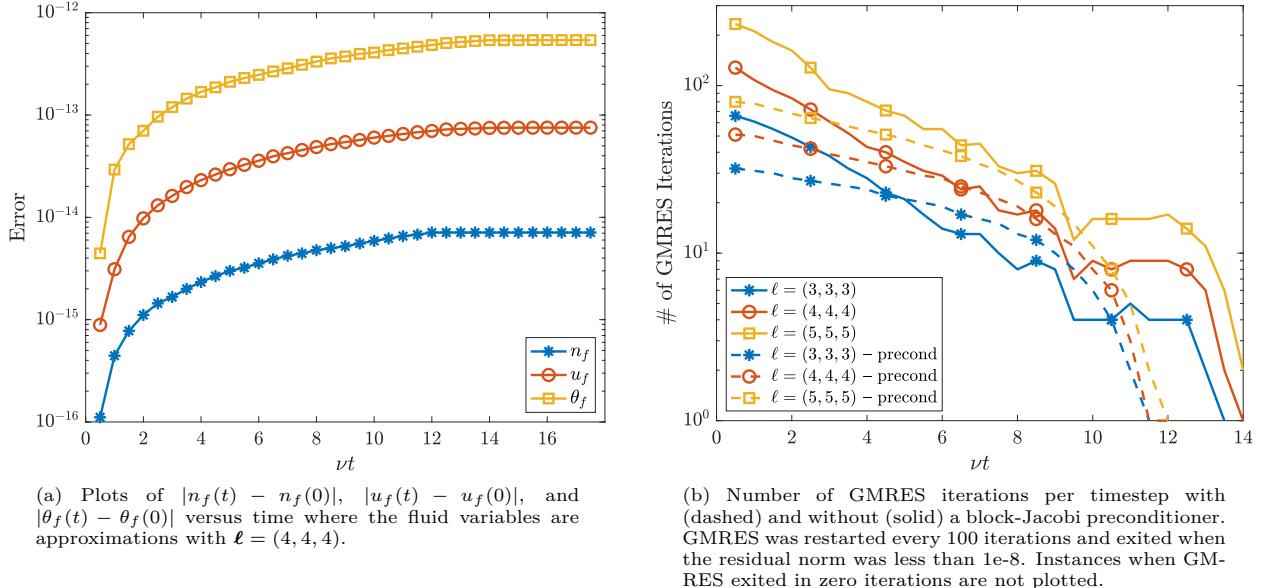


Figure 5.2.2: Relaxation Problem – Section 5.2: Plots of interest for full-grid runs with varying levels.

adaptive sparse-grid over full-grid runs with a similar number of active elements. The results of this test suggest that better preconditioners, e.g. multigrid type, are needed in order to effectively condition the problem. This is especially crucial for the adaptive sparse-grid method as finer level basis functions can be active for mild choices of the refinement threshold τ .

Figure 5.2.3 illustrates the advantages of adaptive sparse-grids over the full- and mixed-grid methods for the relaxation problem. The L^2 error of the relaxed distribution, relative to the analytic Maxwellian, is plotted versus the number of active elements. When plotted against the number of active elements, adaptive sparse grids are more accurate and asymptotically superior when compared against the other formulations. Additionally, the mixed-grid is comparable to the full-grid with the mixed-grid only gaining an advantage when a large number of active elements is used. This is not surprising as the Maxwellian, being radially symmetric, has large mixed derivatives and the coefficients to capture mixed derivative information are

465 thrown away in the standard sparse-grid construction. However, adaptive sparse-grids are able to capture
466 these mixed-derivative coefficients.

467 We lastly explore how the adaptive sparse-grid refinement threshold τ correlates with the relative error of
468 the approximation. In this problem the analytic equilibrium has a L^2 norm of approximately 7.539×10^{-2} .
469 Using the L^2 -errors provided from Figure 5.2.3, the relative L^2 -error for $\tau = 10^{-2}$ is approximately 0.6τ and
470 creeps to 2.03τ when $\tau = 10^{-5}$. Therefore τ provides a good estimate for the relative error of the problem.
471 This is in part because the equilibrium is smooth so that the chosen maximum level of 9 is sufficiently large
472 to capture the needed coefficient data and achieve the expected errors.

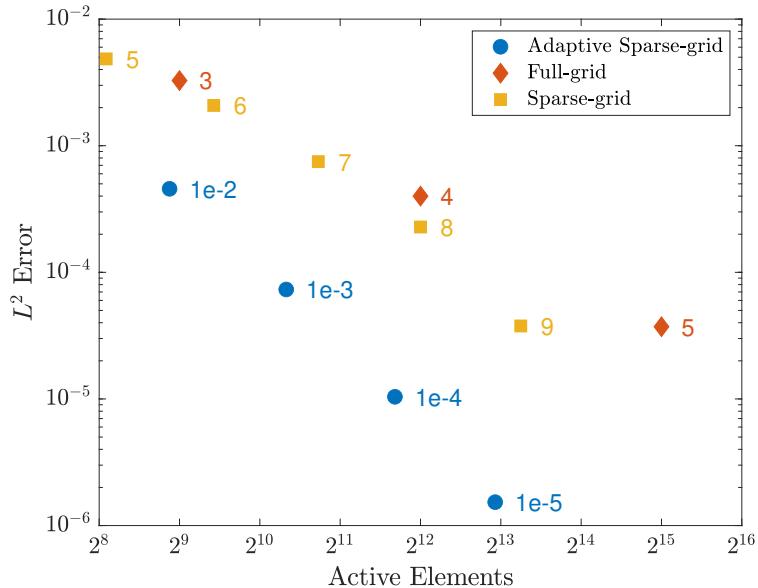


Figure 5.2.3: Relaxation Problem – Section 5.2: The L^2 error of solution versus the number of active elements used for the full-grid and adaptive sparse-grid runs. The error is calculated against the analytic equilibrium in (2.10). The full- and mixed-grid runs were set at $\ell = (\ell_v, \ell_v, \ell_v)$ where ℓ_v is the number by the marker. The marker next to the adaptive sparse-grid runs is the tolerance τ at which the run was set, and the adaptive run was not allowed to exceed a level of $\ell = (9, 9, 9)$.

473 5.3. Riemann Problem

474 Next, we consider a problem that includes both phase-space advection and collisions. The Sod shock tube
475 problem [78] is a standard test for numerical simulations of kinetic models with collisions (e.g., [10, 31]). For
476 this test, the PDE is given by (2.15) We consider two regimes of collisionality: The first is an intermediate
477 regime with $\nu = 1$, and the second is a collisional regime with $\nu = 10^3$. For both problems we fix $\mathbf{v} \in (-6, 6)^3$
478 and set the initial condition to a Maxwellian with moments given by:

$$\begin{bmatrix} n_f \\ \mathbf{u}_f \\ \theta_f \end{bmatrix} = \begin{bmatrix} 1 \\ \mathbf{0} \\ 1 \end{bmatrix} \quad \text{if } |x| \geq s_{\text{initial}}; \quad \begin{bmatrix} n_f \\ \mathbf{u}_f \\ \theta_f \end{bmatrix} = \begin{bmatrix} 0.125 \\ \mathbf{0} \\ 0.8 \end{bmatrix} \quad \text{if } |x| < s_{\text{initial}} \quad (5.2)$$

479 where s_{initial} is the location of the initial discontinuity. We set the GMRES tolerance to 10^{-8} .

480 Figure 5.3.1 shows plots of the distribution in the (x, v_x) -plane and plots of the velocity moments versus
481 position, as obtained with the full-grid using the Chu reduction technique. We will use these as reference
482 solutions when evaluating the performance of the adaptive sparse grid method. For moderate collisionality,
483 i.e. $\nu = 1$, the distribution, as shown in Figure 5.3.1a, deviates from the Maxwellian due to the streaming
484 effect and features a discontinuity in the (x, v_x) space. Additionally, as seen in Figure 5.3.1c, the streaming effect
485 smooths out features of the fluid variables. In the collision dominated regime ($\nu = 10^3$), the distribution,

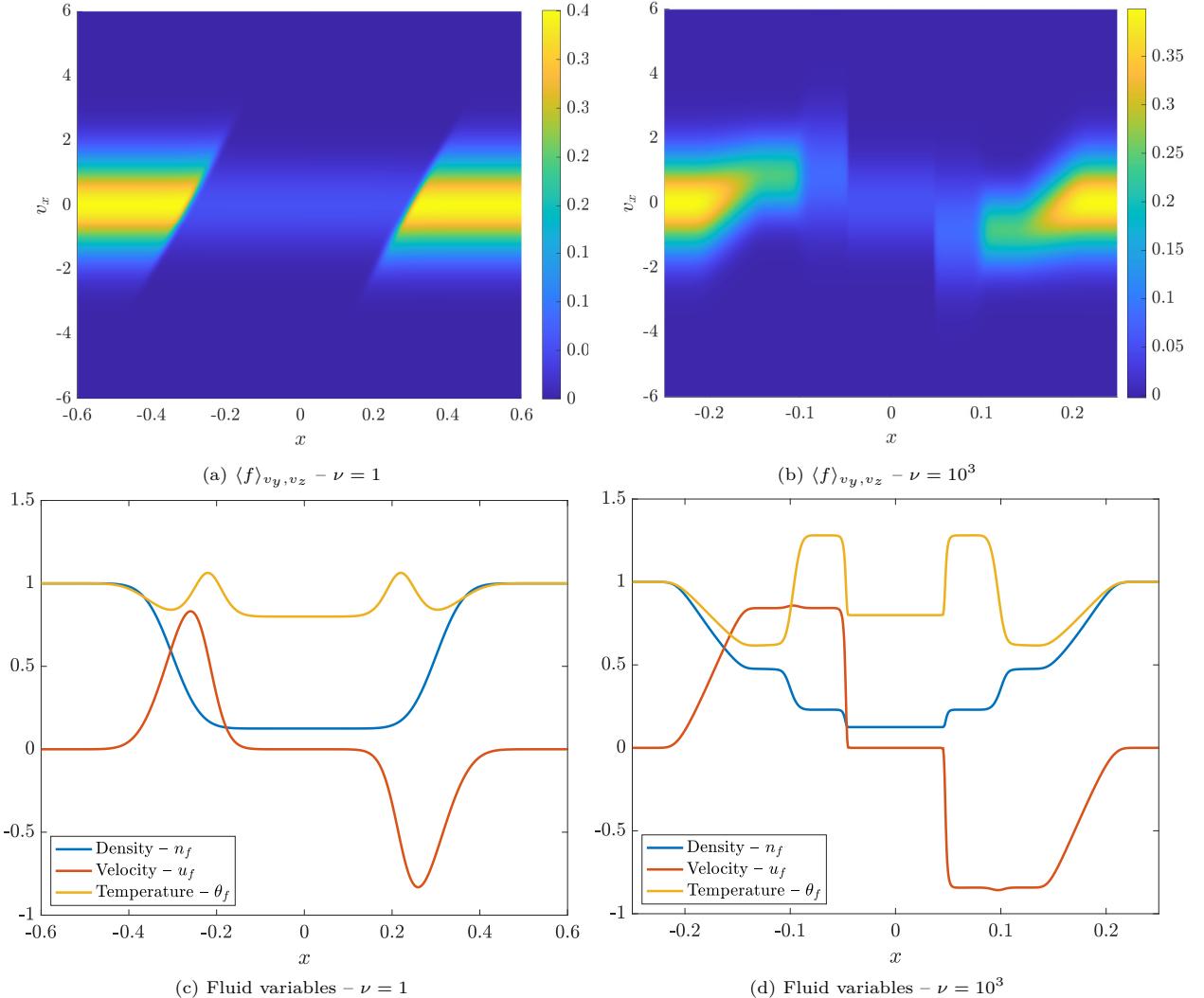


Figure 5.3.1: Riemann Problem – Section 5.3: Plots of the distribution and fluid variables for the which is computed using the Chu reduction model in Section 2.2 with $(\ell_x, \ell_v) = (9, 8)$ for $\nu = 1$ and $(\ell_x, \ell_v) = (8, 8)$ for $\nu = 10^3$. The $\nu = 1$ and $\nu = 10^3$ plots are taken at time $t = 0.04918$ and $t = 0.05$ and with $s_{\text{initial}} = 0.3$ and $s_{\text{initial}} = 9/64$ respectively.

as seen in Figure 5.3.1b, remains close to a local Maxwellian parameterized by the local fluid variables in Figure 5.3.1d.

When comparing results obtained with different grids, we first consider the case of $\nu = 1$, and we set $x \in (-0.6, 0.6)$, $s_{\text{initial}} = 0.3$, final time $T = 0.04918$, and time step $\Delta t = 2.3419 \times 10^{-4}$. Our reference solution is the full-grid solution of level $\ell = (9, 8, 8, 8)$, displayed in the left panels in Figure 5.3.1. Figure 5.3.2 shows the error versus the number of active elements for g_1 and g_3 (defined in Section 2.2). It is shown in Figure 5.3.2a that the mixed-grid yields the same error as the full-grid – for the same velocity space resolution level ℓ_v . This is because g_1 is embedded in the mixed-grid as mentioned in Section 5.1. The adaptive sparse-grid error saturates at the level of the mixed-grid error when $\ell_v = 6$, but with about 50% fewer active elements. The saturation is because the adaptive grid is not allowed to refine past level $\ell = (7, 6, 6, 6)$ in the hierarchy (see Section 5.1) and therefore the associated error will not be significantly lower than the full-grid of level $\ell = (7, 6, 6, 6)$. When viewing the same plot for the higher-order moment g_3 in Figure 5.3.2b, we see the degradation in the mixed-grid method when compared to the full-grid and

adaptive sparse-grid methods. While the slope in the error from the mixed-grid method is steeper than the full-grid method, its error constant is significantly larger. Additionally, the adaptive sparse-grid method is significantly better than both the mixed-grid and full-grid methods with respect to both the slope and error constant.



Figure 5.3.2: Riemann Problem – Section 5.3 – $\nu = 1$: Errors of the distribution and fluid variables at $t = 0.01$ for the $1 \times 3v$ Riemann problem in Section 5.3 with $\nu = 1$. All errors are measured against the full-grid solution at level $\ell = (9, 8, 8, 8)$ (see Figure 5.3.1a). All adaptive sparse-grid runs are capped at $\ell = (7, 6, 6, 6)$. The full- and mixed-grid runs use $\ell = (7, \ell_v, \ell_v, \ell_v, \ell_v)$ where ℓ_v is the symbol by each marker. The adaptive sparse-grid method performs well in both cases while the mixed-grid method is accurate only in the low-order moment.

Figure 5.3.3 shows the particle density n_f (left and middle panels) and the pointwise error of the particle density (right panel) for a mixed-grid and an adaptive sparse-grid model with a similar number of active elements. Figure 5.3.3a shows that the density appears to be relatively constant in x toward the edges of the plot. When zooming in on a smaller x -range near the right edge, see Figure 5.3.3b, it becomes clear that the density obtained with the adaptive sparse-grid features a discontinuity (around $x = -0.15$) and exhibits more spatial variation when compared to the full-grid and mixed-grid solutions. This is primarily caused by the adaptive method uniformly distributing the error across the spatial domain, and this is further evidenced in the error plot (see Figure 5.3.3c), where the error in x is much more uniform across the spatial domain for the adaptive sparse-grid than it is with the mixed-grid method. In the mixed-grid method, where each DOF in x is attached with the same sparse-grid in v , the moment errors are much smaller away from the wave regions, i.e., the regions where the moments are constant.

Next, we consider the case with $\nu = 10^3$. Here we set $x \in (-0.25, 0.25)$, $s_{\text{initial}} = 9/64$, $T = 0.05$, and $\Delta t = 2 \times 10^{-4}$. Figure 5.3.4 shows the error of g_1 and g_3 against the number of active elements. In this higher-collisional regime, the distribution is much smoother in velocity, and the L^2 error saturates sooner than when $\nu = 1$. This saturation is due to the dominant error that appears near the discontinuities in the x -domain (see Figures 5.3.1b and 5.3.1d). In Figure 5.3.4a, the mixed-grid and adaptive sparse-grid methods are very similar. At saturation, the number of active elements for the mixed-grid and adaptive sparse grid, around 2^{14} are approximately 128 times fewer than the number of active elements in the full-grid, which is 2^{21} .

When looking at the error in the higher-order moments, Figure 5.3.4b, we observe a separation in the performance of the mixed-grid and adaptive sparse-grid that is similar to the $\nu = 1$ case. However, in this case, the adaptive sparse-grid method has nearly hit saturation while the mixed-grid with $\ell_v = 6$ is still not at saturation. In particular, the grouping of the errors for mixed-grid $\ell_v = 6$ and the full-grid $\ell_v = 3$ is similar to the grouping in the relaxation case (see Figure 5.2.3). This shows that the dominant error in the mixed-grid method is the lack of velocity resolution sufficient to capture the local Maxwellian behavior of

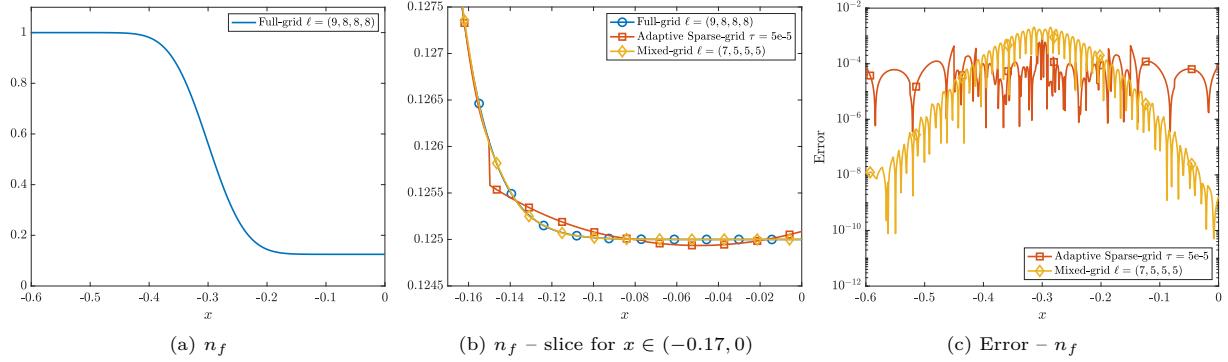


Figure 5.3.3: Riemann Problem – Section 5.3 – $\nu = 1$: Plots of the density and error to the reference density for the $1 \times 3v$ Riemann problem with $\nu = 1$ and $t = 0.04918$. The reference density is calculated with the full-grid method at level $\ell = (9, 8, 8, 8)$ (see Figure 5.3.1c). The adaptive sparse-grid solution is not allowed to be refined beyond level $\ell = (7, 6, 6, 6)$. The adaptive sparse-grid method equally spaces out the error in physical space while the mixed-grid is only accurate in the constant regions of the density.

528 the distribution.

529 We include a plot of the fourth-order moment g_3 in the (x, v_x) -plane for each grid type, each having a
530 similar number of degrees of freedom, in Figure 5.3.5. The full-grid solution, Figure 5.3.5a, exhibits discontinuities
531 on element interfaces in the velocity dimension (due the discontinuous basis) while the mixed-grid
532 moment, Figure 5.3.5b, is oscillatory in the region immediately left of the contact line, i.e. $x \in (-0.15, -0.1)$.
533 The solution obtained with the adaptive sparse-grid, Figure 5.3.5c, is the most accurate of the three and
534 does not suffer from either of the previously mentioned artifacts.

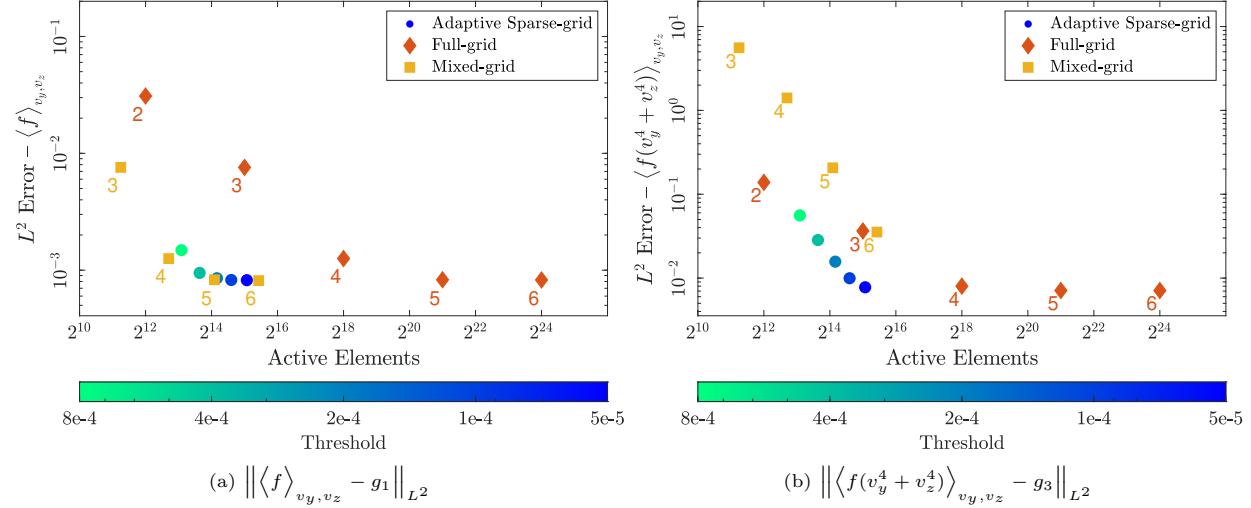


Figure 5.3.4: Riemann Problem – Section 5.3 – $\nu = 10^3$: Errors of the distribution at $t = 0.05$ for the $1 \times 3v$ Riemann problem in Section 5.3 with $\nu = 10^3$. All errors are measured against the full-grid solution at level $\ell = (8, 8, 8, 8)$ (see Figure 5.3.1b). All adaptive sparse-grids are capped at level $\ell = (6, 6, 6, 6)$. The full- and mixed-grid levels are given by $\ell = (6, \ell_v, \ell_v, \ell_v)$ where ℓ_v is the symbol to the lower left of the marker. The quick saturation of the error is due to smoothness in velocity and the discontinuities in the fluid variables (see Figure 5.3.1d). The adaptive sparse-grid method performs well in both cases while the mixed-grid method is accurate only in the low-order moment.

535 5.4. Collisional Landau Damping

536 Finally, we consider a version of the collisional Landau damping test (e.g., [25, 43, 32]), which involves
537 phase-space advection of charged particles, influenced by a self-consistent electric field and particle collisions.

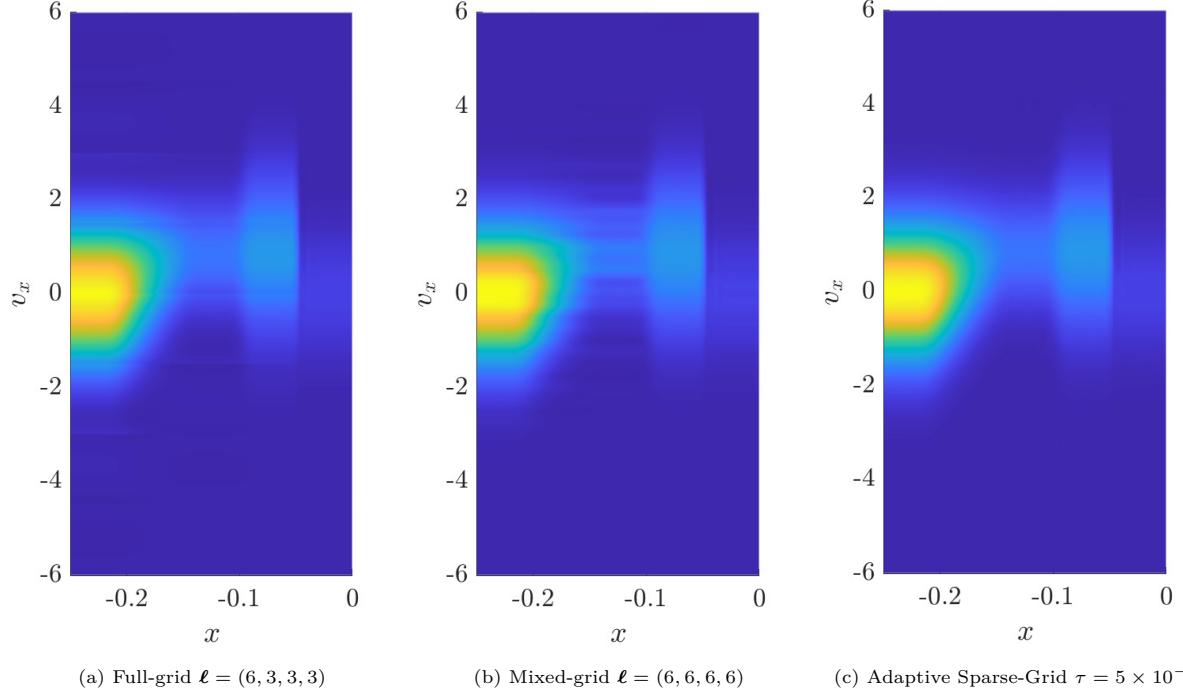


Figure 5.3.5: Riemann Problem – Section 5.3 – $\nu = 10^3$: Plots of $\langle f(v_y^4 + v_z^4) \rangle_{v_y, v_z}$ for the $1x3v$ Riemann Problem with $\nu = 10^3$ and $t = 0.05$ in the (x, v_x) plane for $x \in (-0.25, 0)$ and $v_x \in (-6, 6)$. The adaptive sparse-grid was not allowed to refine past level $\ell = (6, 6, 6, 6)$. The artifacts seen in the full-grid and mixed-grid solutions are not found in the adaptive- sparse grid solution.

538 The PDEs solved in this test are given by the VPLB system in (2.15) and (2.16).
 539

540 The $1x3v$ phase-space domain is given by $x \in (-2\pi, 2\pi)$ and $\mathbf{v} \in (-6, 6)^3$, and the model is evolved to
 541 the final time $T = 50$. The initial condition is set as Maxwellian with a small spatial perturbation so that
 542 the velocity moments are $n_f = 1 + 10^{-4} \cos(\frac{x}{2})$, $u_f = 0$, $\theta_f = 1$. The timestep taken depends on the spatial
 resolution and $\max |v_x|$, and is taken as $\Delta t = \frac{0.75}{30} \Delta x$, where $\Delta x = \frac{4\pi}{2\ell_x}$.

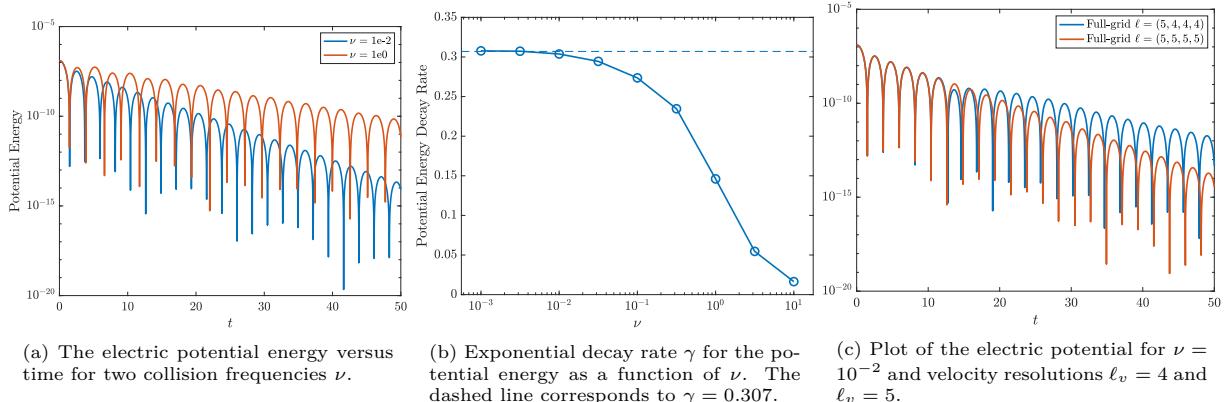


Figure 5.4.1: Collisional Landau Problem – Section 5.4: Plots demonstrating collisional Landau damping. All runs use the Chu reduction method of Section 2.2. The levels set are $\ell_x = 5$ and $\ell_v = 6$ except in Figure 5.4.1c.

543 In the collisionless case, the Landau damping problem is characterized by exponential decay of the

544 potential energy with time, $E_{\text{Pot}}(t) = \frac{1}{2} \int_{\Omega_x} E^2 dx \propto \exp(-\gamma t)$, where the damping rate is $\gamma \approx 0.307$
 545 [5]. Moreover, with evolving time, the solution will exhibit increasingly smaller-scale structures about the
 546 Maxwellian that eventually become unresolved with fixed or finite resolution (see [29]). With collisions,
 547 the damping rate decreases with increasing collision frequency (e.g., [25, 43]), tending to zero in the Euler–
 548 Poisson limit ($\nu \rightarrow \infty$).

549 Figure 5.4.1a shows the potential energy versus time, as obtained with the full-grid method, for $\nu = 10^{-2}$
 550 (blue) and $\nu = 1$ (red). Figure 5.4.1b shows numerically determined damping rates as a function of collision
 551 frequency. These results were obtained with the full-grid method using the Chu reduction technique. The
 552 damping rate is determined by a least squares fit using the local maxima of the potential energy. For small
 553 collision frequencies, the damping rate tends to the expected result in the collisionless limit indicated by
 554 the horizontal dashed line. The damping rate drops rapidly for $\nu \gtrsim 0.3$, and has dropped to about 0.01
 555 for $\nu = 10$. Figure 5.4.1c compares the evolution of the potential energy versus time for the $\nu = 10^{-2}$ case
 556 with two different velocity resolutions; $\ell_v = 4$ (blue) and $\ell_v = 5$ (red). For the simulation with the coarser
 557 velocity resolution, the damping rate is consistent with the analytic prediction until $t \approx 10$. For $t \gtrsim 10$,
 558 the potential energy increases briefly with time before decreasing again with a modified damping rate. For
 559 the finer velocity resolution, the damping rate stays constant at the correct value for all times. Based on
 560 this observation, we consider $\ell_v = 5$ the minimum resolution needed to perform satisfactory on this test
 561 when $\nu = 10^{-2}$. We performed a similar comparison with $\nu = 1$, which revealed that $\ell_v = 4$ is sufficient for
 562 this case. In the following, we consider the two cases: $\nu = 10^{-2}$ (low collisionality) and $\nu = 1$ (moderate
 563 collisionality), in more detail to compare the adaptive sparse-grid method against the full-grid method. Due
 564 to the embedding of the $1 \times 1 \times 1$ full-grid into the $1 \times 3 \times 1$ mixed-grid as discussed in Section 5.1, the electric
 565 field E is similar for the full- and mixed-grids of the same level. For this reason, the mixed-grid results are
 566 omitted.

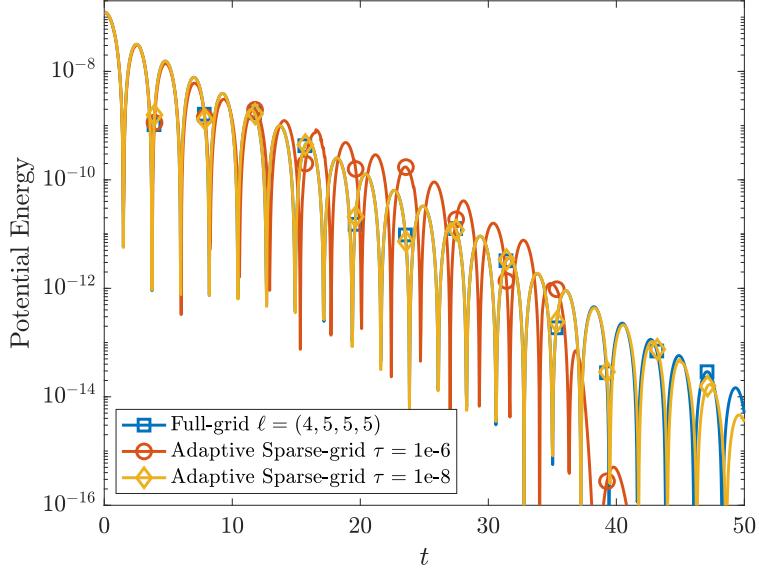


Figure 5.4.2: Collisional Landau Problem – Section 5.4: Plot of the potential energy with $\nu = 10^{-2}$. The adaptive sparse grid is not allowed to refine past level $\ell = (4, 5, 5, 5)$, and the GMRES tolerance is set to 10^{-14} . A tolerance of $\tau = 10^{-6}$ is not sufficient to capture the proper decay. The tolerance of $\tau = 10^{-8}$ agrees quite well with the full-grid solution except for a slight deviation at longer times.

567 Figure 5.4.2 compares adaptive sparse-grid against full-grid for the low collisionality case by plotting
 568 the potential energy versus time. The full-grid run with $\ell = (4, 5, 5, 5)$, used as reference in Figure 5.4.2,
 569 is in close agreement with the full-grid run with $\ell = (5, 5, 5, 5)$ plotted in the right panel of Figure 5.4.1c.
 570 When the tolerance for refinement is $\tau = 10^{-6}$, the adaptive results agree with the full-grid results up to
 571 about $t = 10$. For later times, the resolution allowed by the threshold is not sufficient to capture the correct

572 damping of the potential energy. Past $t = 35$, the solution coarsens to only global elements in x , i.e. $\ell_x = 0$,
 573 which forces the electric field to zero before refinement, and causes unreliable behavior in the potential
 574 energy. When the tolerance is reduced to $\tau = 10^{-8}$, the adaptive sparse-grid is in better agreement with the
 575 full-grid throughout the simulation, although some deviations near the end are observed. For the $\tau = 10^{-6}$
 576 case, the number of active elements stays around 1.1×10^4 throughout, while for the $\tau = 10^{-8}$ case the
 577 number of active elements starts out around 3×10^4 , which drops steadily to about 2.5×10^4 at the end
 578 of the simulation. In comparison, the full-grid with $\ell = (4, 5, 5, 5)$, the maximum allowed for the adaptive
 579 sparse-grid, consists of about 5.2×10^5 elements. Thus, the adaptive grid provides significant savings in
 580 terms of the number of degrees of freedom.

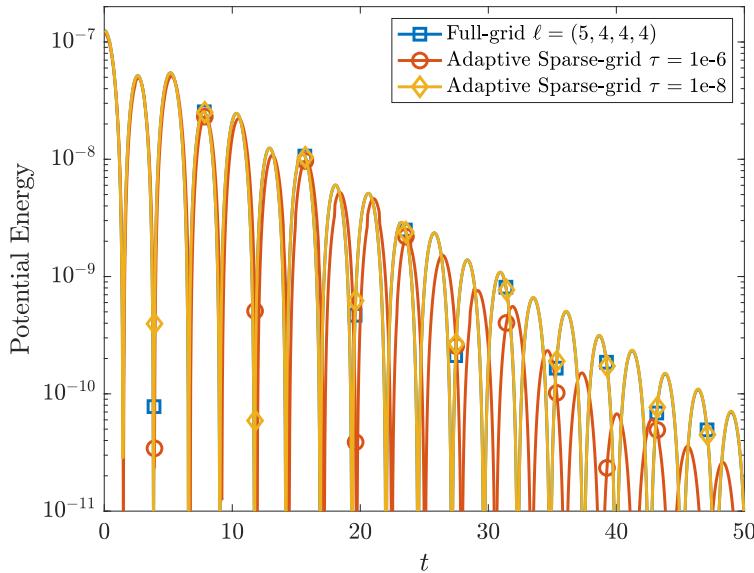


Figure 5.4.3: Collisional Landau Problem – Section 5.4: Plot of the potential energy with $\nu = 1$. The adaptive sparse grid is not allowed to refine past level $\ell = (5, 4, 4, 4)$, and the GMRES tolerance is set to 10^{-11} . A tolerance of $\tau = 10^{-6}$ is not sufficient to capture the proper decay. The tolerance of $\tau = 10^{-8}$ agrees quite well with the full-grid solution at all times plotted.

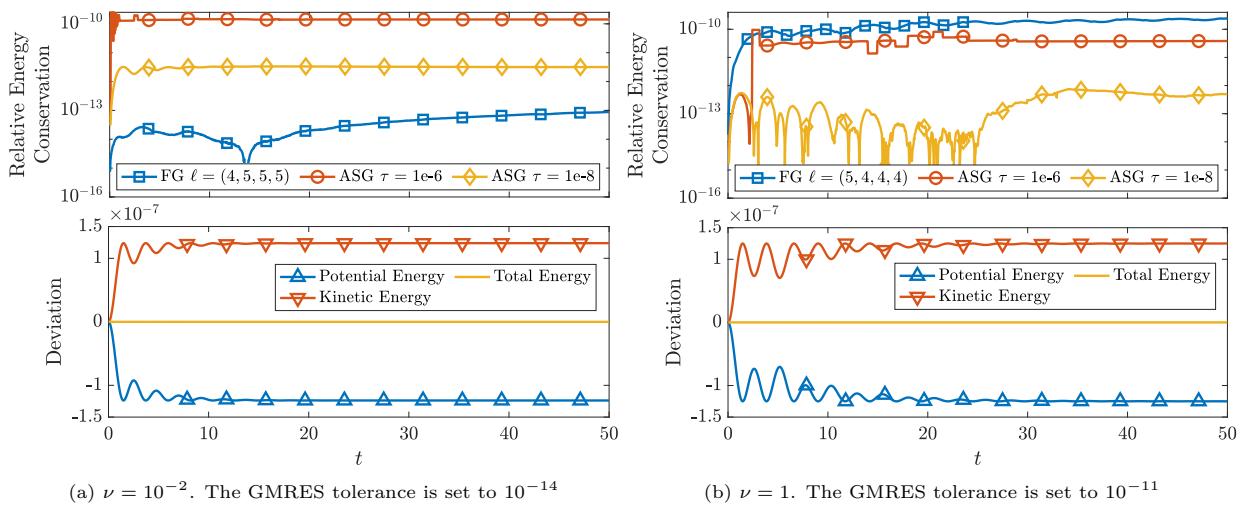


Figure 5.4.4: Collisional Landau Problem – Section 5.4: Top: Relative change in total energy versus time. Bottom: Deviation of the potential, kinetic, and total energy from the initial condition for the adaptive sparse-grid method with $\tau = 10^{-8}$.

581 Figure 5.4.3 compares adaptive sparse-grid against full-grid for the moderate collisionality case, where
 582 we plot the same quantities as in Figure 5.4.2. For this collisionality, we have determined that a full-grid
 583 resolution of $\ell = (5, 4, 4, 4)$ is sufficient to accurately capture the evolution of the potential energy. Similar
 584 to the low collisionality case, the potential energy evolution obtained with adaptivity threshold $\tau = 10^{-6}$
 585 is not in satisfactory agreement with the full-grid and analytic results. However, we find that the adaptive
 586 sparse-grid and full-grid results are indistinguishable when the adaptivity threshold is reduced to $\tau = 10^{-8}$.
 587 For $\tau = 10^{-6}$, the number of active elements stays roughly constant at about 4.8×10^3 , while for the case
 588 with $\tau = 10^{-8}$, the number of active elements starts out around 1.1×10^4 , and decreases to about 7×10^3
 589 at the end of the simulation. For comparison, the full-grid with $\ell = (5, 4, 4, 4)$ consists of about 1.3×10^5
 590 elements. Thus, the adaptive sparse-grid with $\tau = 10^{-8}$ is as accurate as the full-grid solution, but with
 591 substantially fewer degrees of freedom.

592 In Figure 5.4.4 we plot the the relative change in total energy for both collisionalities discussed above.
 593 The relative change in the total energy is at the level of GMRES tolerance for the full-grid simulation. For the
 594 adaptive sparse-grid methods, the relative change in the total energy decreases with the size of the threshold
 595 τ used; we expect this trend to continue until the GMRES tolerance pollutes the energy conservation. We
 596 hypothesize the improvement in the relative energy conservation of the adaptive sparse-grid with $\tau = 10^{-8}$
 597 when compared with the full-grid (as seen in Figure 5.4.4b) is due to the multiwavelets not being used in
 598 the Chu reduction discretization.

599 The number of GMRES iterations varies between three and five for the sparse-grid runs.

600 6. Summary and Outlook

601 In this work, we presented an adaptive sparse-grid DG method for the the VPLB model on a slab
 602 geometry. The results of this project utilized the Adaptive Sparse-Grid Discretization (ASGarD) codebase.
 603 As demonstrated in Section 5, the adaptive sparse-grid method significantly decreases the storage cost of
 604 DG numerical approximations without compromising accuracy. Moreover, the adaptive sparse-grid method
 605 was able to capture physically relatively features of the distribution without the use of model specific
 606 error indicators. The results also indicate that standard sparse-grids in velocity space, i.e. the mixed-grid
 607 formulation, accurately captures low-order moments of the distribution, but are only slightly better when
 608 compared asymptotically against the full-grid for higher-order moments. This necessitates further research
 609 into using in a coordinate system that more beneficially captures the radial behavior of the Maxwellian,
 610 e.g. spherical-polar coordinates, or allowing some form of adaptivity in the mixed-grid. Other future plans
 611 include the expansion of the adaptive sparse-grid tests to full $3 \times 3v$ phase-space simulations, efficient imple-
 612 mentations of PDE operators on a sparse-grid basis, implementation of more efficient preconditioners in the
 613 sparse-grid framework, and the preservation of key quantities such as positivity of the discrete distribution
 614 in the multiwavelet basis.

615 References

- 616 [1] Abdelmalik, M., van Brummelen, E., 2016. An entropy stable discontinuous Galerkin finite-element moment method for
 617 the Boltzmann equation. *Computers & Mathematics with Applications* 72, 1988–1999.
- 618 [2] Adams, M.L., 2001. Discontinuous finite element transport solutions in thick diffusive problems. *Nuclear science and
 619 engineering* 137, 298–333.
- 620 [3] Alekseenko, A., Gimelshein, N., Gimelshein, S., 2012. An application of discontinuous Galerkin space and velocity
 621 discretisations to the solution of a model kinetic equation. *International Journal of Computational Fluid Dynamics* 26,
 622 145–161.
- 623 [4] Alpert, B.K., 1993. A class of bases in L^2 for the sparse representation of integral operators. *SIAM journal on Mathematical
 624 Analysis* 24, 246–262.
- 625 [5] Arber, T., Vann, R., 2002. A critical comparison of Eulerian-grid-based Vlasov solvers. *Journal of Computational Physics*
 626 180, 339–357.
- 627 [6] Ascher, U.M., Ruuth, S.J., Spiteri, R.J., 1997. Implicit-explicit Runge-Kutta methods for time-dependent partial differ-
 628 ential equations. *Applied Numerical Mathematics* 25, 151–167.
- 629 [7] Balder, R., Zenger, C., 1996. The solution of multidimensional real Helmholtz equations on sparse grids. *SIAM Journal
 630 on Scientific Computing* 17, 631–646.

631 [8] Barth, T., 2006. On discontinuous Galerkin approximations of Boltzmann moment systems with levermore closure.
 632 Computer methods in applied mechanics and engineering 195, 3311–3330.

633 [9] Bellman, R., Kalaba, R., 1959. On adaptive control processes. IRE Transactions on Automatic Control 4, 1–9.

634 [10] Bennoune, M., Lemou, M., Mieussens, L., 2008. Uniformly stable numerical schemes for the Boltzmann equation preserving
 635 the compressible navier–stokes asymptotics. Journal of Computational Physics 227, 3781–3803.

636 [11] Birdsall, C.K., Langdon, A.B., 2018. Plasma physics via computer simulation. CRC press.

637 [12] Bungartz, H.J., Griebel, M., 2004a. Sparse grids. Acta numerica 13, 147–269.

638 [13] Bungartz, H.J., Griebel, M., 2004b. Sparse grids. Acta Numer. 13, 147–269. doi:[10.1017/S0962492904000182](https://doi.org/10.1017/S0962492904000182).

639 [14] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A., 2007. Spectral methods: fundamentals in single domains. Springer
 640 Science & Business Media.

641 [15] Carrillo, J.A., Hu, J., Wang, L., Wu, J., 2020. A particle method for the homogeneous Landau equation. Journal of
 642 Computational Physics: X 7, 100066.

643 [16] Chan, J., Del Rey Fernández, D.C., Carpenter, M.H., 2019. Efficient entropy stable Gauss collocation methods. SIAM
 644 Journal on Scientific Computing 41, A2938–A2966.

645 [17] Chen, G., Chacón, L., Barnes, D.C., 2011. An energy-and charge-conserving, implicit, electrostatic particle-in-cell algo-
 646 rithm. Journal of Computational Physics 230, 7018–7036.

647 [18] Chen, T., Shu, C.W., 2020. Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on
 648 unstructured simplex meshes. SIAM Transactions on Applied Mathematics 1, 1–52.

649 [19] Cheng, Y., Christlieb, A.J., Zhong, X., 2014. Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère
 650 system. Journal of Computational Physics 256, 630–655.

651 [20] Cheng, Y., Gamba, I.M., Majorana, A., Shu, C.W., 2011. A brief survey of the discontinuous Galerkin method for the
 652 Boltzmann–Poisson equations. SeMA Journal 54, 47–64.

653 [21] Chkifa, A., Cohen, A., Schwab, C., 2014. High-dimensional adaptive sparse polynomial interpolation and applications to
 654 parametric PDEs. Found. Comput. Math. 14, 601–633. doi:[10.1007/s10208-013-9154-z](https://doi.org/10.1007/s10208-013-9154-z).

655 [22] Chu, C., 1965. Kinetic-theoretic description of the formation of a shock wave. The Physics of Fluids 8, 12–22.

656 [23] Chu, R., Endeve, E., Hauck, C.D., Mezzacappa, A., 2019. Realizability-preserving DG-IMEX method for the two-moment
 657 model of fermion transport. Journal of Computational Physics 389, 62–93.

658 [24] Cockburn, B., Shu, C.W., 2001. Runge–Kutta Discontinuous Galerkin Methods for Convection–Dominated Problems.
 659 Journal of Scientific Computing 16, 173–261.

660 [25] Crestetto, A., Crouseilles, N., Lemou, M., 2012. Kinetic/fluid micro-macro numerical schemes for Vlasov–Poisson–BGK
 661 equation using particles. Kinetic and Related Models 5, 787.

662 [26] DeCaria, V., Hauck, C., Schnake, S., 2024. Asymptotic preserving discontinuous Galerkin methods for a linear Boltzmann
 663 semiconductor model. SIAM Journal on Numerical Analysis (accepted).

664 [27] Einkemmer, L., Hu, J., Ying, L., 2021. An efficient dynamical low-rank algorithm for the Boltzmann–BGK equation close
 665 to the compressible viscous flow regime. SIAM Journal on Scientific Computing 43, B1057–B1080.

666 [28] Einkemmer, L., Lubich, C., 2018. A low-rank projector-splitting integrator for the Vlasov–Poisson equation. SIAM Journal
 667 on Scientific Computing 40, B1330–B1360.

668 [29] Endeve, E., Hauck, C., 2022. Conservative DG method for the micro-macro decomposition of the Vlasov–Poisson–Lenard–
 669 Bernstein model. Journal of Computational Physics 462, 111227.

670 [30] Endeve, E., Hauck, C.D., Xing, Y., Mezzacappa, A., 2015. Bound-preserving discontinuous Galerkin methods for conser-
 671 vative phase space advection in curvilinear coordinates. Journal of Computational Physics 287, 151–183.

672 [31] Filbet, F., Jin, S., 2010. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff
 673 sources. Journal of Computational Physics 229, 7625–7648.

674 [32] Francisquez, M., Bernard, T.N., Mandell, N.R., Hammatt, G.W., Hakim, A., 2020. Conservative discontinuous Galerkin
 675 scheme of a gyro-averaged Dougherty collision operator. Nuclear Fusion 60, 096021.

676 [33] Friedrich, L., Schnücke, G., Winters, A.R., Fernández, D.C.D.R., Gassner, G.J., Carpenter, M.H., 2019. Entropy stable
 677 space–time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws. Journal
 678 of Scientific Computing 80, 175–222.

679 [34] Fu, G., Shu, C.W., 2019. Optimal energy-conserving discontinuous Galerkin methods for linear symmetric hyperbolic
 680 systems. Journal of Computational Physics 394, 329–363.

681 [35] Garrett, C.K., Hauck, C.D., 2018. A fast solver for implicit integration of the Vlasov–Poisson system in the Eulerian
 682 framework. SIAM Journal on Scientific Computing 40, B483–B506.

683 [36] Gerstner, T., Griebel, M., 1998. Numerical integration using sparse grids. Numerical algorithms 18, 209–232.

684 [37] Green, D.L., D’azevedo, E., Elwasif, W., Lopez, M., Mu, L., 2019. Adaptive sparse grid discretization (ASGarD).
 685 doi:[10.11578/dc.20201125.5](https://doi.org/10.11578/dc.20201125.5).

686 [38] Guermond, J.L., Kanschat, G., 2010. Asymptotic analysis of upwind discontinuous Galerkin approximation of the radiative
 687 transport equation in the diffusive limit. SIAM Journal on Numerical Analysis 48, 53–78.

688 [39] Guo, W., Cheng, Y., 2016. A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its
 689 application to kinetic simulations. SIAM Journal on Scientific Computing 38, A3381–A3409.

690 [40] Guo, W., Cheng, Y., 2017. An adaptive multiresolution discontinuous Galerkin method for time-dependent transport
 691 equations in multidimensions. SIAM Journal on Scientific Computing 39, A2962–A2992.

692 [41] Guo, W., Qiu, J.M., 2022. A low rank tensor representation of linear transport and nonlinear Vlasov solutions and their
 693 associated flow maps. Journal of Computational Physics 458, 111089.

694 [42] Haar, A., 1909. Zur theorie der orthogonalen funktionensysteme. Georg-August-Universitat, Gottingen.

695 [43] Hakim, A., Francisquez, M., Juno, J., Hammatt, G., 2020. Conservative discontinuous Galerkin schemes for nonlinear

696 Dougherty-Fokker-Planck collision operators. *Journal of Plasma Physics* 86, 905860403.

697 [44] Hemker, P.W., 1995. Sparse-grid finite-volume multigrid for 3d-problems. *Advances in computational mathematics* 4, 698 83–110.

699 [45] Hirvijoki, E., Kraus, M., Burbly, J.W., 2018. Metriplectic particle-in-cell integrators for the Landau collision operator. 700 arXiv preprint arXiv:1802.05263 .

701 [46] Hong, X., Qiu, J.M., 2022. A generalized Eulerian-Lagrangian discontinuous Galerkin method for transport problems. 702 *Journal of Computational Physics* 464, 111160.

703 [47] Hu, G., Krommes, J.A., 1994. Generalized weighting scheme for δf particle-simulation method. *Physics of plasmas* 1, 704 863–874.

705 [48] Huang, J., Cheng, Y., 2020. An adaptive multiresolution discontinuous Galerkin method with artificial viscosity for scalar 706 hyperbolic conservation laws in multidimensions. *SIAM Journal on Scientific Computing* 42, A2943–A2973.

707 [49] Huang, J., Guo, W., Cheng, Y., 2023. Adaptive sparse grid discontinuous Galerkin method: review and software imple- 708 mentation. *Communications on Applied Mathematics and Computation* , 1–32.

709 [50] Jakeman, J.D., Archibald, R., Xiu, D., 2011. Characterization of discontinuities in high-dimensional stochastic problems 710 on adaptive sparse grids. *J. Comput. Phys.* 230, 3977–3997. doi:[10.1016/j.jcp.2011.02.022](https://doi.org/10.1016/j.jcp.2011.02.022).

711 [51] Jakeman, J.D., Narayan, A., Xiu, D., 2013. Minimal multi-element stochastic collocation for uncertainty quantification of 712 discontinuous functions. *J. Comput. Phys.* 242, 790–808. doi:[10.1016/j.jcp.2013.02.035](https://doi.org/10.1016/j.jcp.2013.02.035).

713 [52] Jakeman, J.D., Roberts, S.G., 2012. Local and dimension adaptive stochastic collocation for uncertainty quantification, 714 in: *Sparse Grids and Applications*. Springer, pp. 181–203. doi:[10.1007/978-3-642-31703-3_9](https://doi.org/10.1007/978-3-642-31703-3_9).

715 [53] Khaziev, R., Curreli, D., 2018. hpic: A scalable electrostatic particle-in-cell for plasma–material interactions. *Computer 716 Physics Communications* 229, 87–98.

717 [54] Kormann, K., Sonnendrücker, E., 2016. Sparse grids for the Vlasov–Poisson equation, in: *Sparse Grids and Applications- 718 Stuttgart 2014*. Springer, pp. 163–190.

719 [55] Larsen, E.W., Morel, J., 1989. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes 720 ii. *Journal of Computational Physics* 83, 212–236.

721 [56] Leentvaar, C., Oosterlee, C.W., 2006. Pricing multi-asset options with sparse grids and fourth order finite differences, in: 722 *Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2005*, the 6th European Conference on 723 Numerical Mathematics and Advanced Applications Santiago de Compostela, Spain, July 2005, Springer. pp. 975–983.

724 [57] Lenard, A., Bernstein, I., 1958. Plasma Oscillations with Diffusion in Velocity Space. *Physical Review* 112, 1456–1459.

725 [58] Ma, X., Zabaras, N., 2009. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic 726 differential equations. *J. Comput. Phys.* 228, 3084–3113. doi:[10.1016/j.jcp.2009.01.006](https://doi.org/10.1016/j.jcp.2009.01.006).

727 [59] Mishra, S., Schwab, C., 2012. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation 728 laws with random initial data. *Mathematics of computation* 81, 1979–2018.

729 [60] Morrow, Z., Stoyanov, M., 2020. A method for dimensionally adaptive sparse trigonometric interpolation of periodic 730 functions. *SIAM Journal on Scientific Computing* 42, A2436–A2460.

731 [61] Narayan, A., Jakeman, J.D., 2014. Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional 732 approximation. *SIAM J. Sci. Comput.* 36, A2952–A2983. doi:[10.1137/140966368](https://doi.org/10.1137/140966368).

733 [62] Nobile, F., Tamellini, L., Tempone, R., 2016. Convergence of quasi-optimal sparse-grid approximation of Hilbert-space- 734 valued functions: application to random elliptic PDEs. *Numer. Math.* 134, 343–388. doi:[10.1007/s00211-015-0773-y](https://doi.org/10.1007/s00211-015-0773-y).

735 [63] Olbrant, E., Hauck, C.D., Frank, M., 2012. A realizability-preserving discontinuous Galerkin method for the M1 model 736 of radiative transfer. *Journal of Computational Physics* 231, 5612–5639.

737 [64] Pareschi, L., Russo, G., 2005. Implicit-Explicit Runge-Kutta Schemes and Application to Hyperbolic Systems with 738 Relaxation. *Journal of Scientific Computing* 25, 129–155.

739 [65] Pazner, W., 2021. Sparse invariant domain preserving discontinuous Galerkin methods with subcell convex limiting. 740 *Computer Methods in Applied Mechanics and Engineering* 382, 113876.

741 [66] Pflüger, D., 2010. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut, München. URL: 742 <http://www5.in.tum.de/pub/pflueger10spatially.pdf>.

743 [67] Pflüger, D., 2012. Spatially adaptive refinement, in: *Sparse Grids and Applications*. Springer, pp. 243–262. doi:[10.1007/978-3-642-31703-3_12](https://doi.org/10.1007/978-3-642-31703-3_12).

744 [68] Pflüger, D., Peherstorfer, B., Bungartz, H.J., 2010. Spatially adaptive sparse grids for high-dimensional data-driven 745 problems. *J. Complexity* 26, 508–522. doi:[10.1016/j.jco.2010.04.001](https://doi.org/10.1016/j.jco.2010.04.001).

746 [69] Qiu, J.M., Shu, C.W., 2011. Positivity preserving semi-lagrangian discontinuous Galerkin formulation: theoretical analysis 747 and application to the Vlasov–Poisson system. *Journal of Computational Physics* 230, 8386–8409.

748 [70] Reed, W., Hill, T., 1973. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479. 749 Los Alamos National Laboratory.

750 [71] Rivière, B., 2008. Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. 751 SIAM.

752 [72] Rodgers, A., Venturi, D., 2020. Step-truncation integrators for evolution equations on low-rank tensor manifolds. *CoRR* .

753 [73] Schwab, C., Süli, E., Todor, R.A., 2008. Sparse finite element approximation of high-dimensional transport-dominated 754 diffusion problems. *ESAIM: Mathematical Modelling and Numerical Analysis* 42, 777–819. doi:[10.1051/m2an:2008027](https://doi.org/10.1051/m2an:2008027).

755 [74] Shen, J., Wang, L.L., 2010. Sparse spectral approximations of high-dimensional problems based on hyperbolic cross. *SIAM 756 Journal on Numerical Analysis* 48, 1087–1109.

757 [75] Shen, J., Yu, H., 2010. Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. 758 *SIAM Journal on Scientific Computing* 32, 3228–3250.

759 [76] Sheng, Q., Hauck, C., 2021. Uniform convergence of an upwind discontinuous Galerkin method for solving scaled discrete- 760

761 ordinate radiative transfer equations with isotropic scattering. *Mathematics of Computation* 90, 2645–2669.

762 [77] Smolyak, S.A., 1963. Quadrature and interpolation formulas for tensor products of certain classes of functions, in: *Doklady*
763 *Akademii Nauk, Russian Academy of Sciences*. pp. 1042–1045.

764 [78] Sod, G.A., 1978. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws.
765 *Journal of Computational Physics* 27, 1–31.

766 [79] Stoyanov, M., 2018. Adaptive sparse grid construction in a context of local anisotropy and multiple hierarchical parents,
767 in: *Sparse Grids and Applications – Miami 2016*. Springer, pp. 175–199. doi:[10.1007/978-3-319-75426-0_8](https://doi.org/10.1007/978-3-319-75426-0_8).

768 [80] Stoyanov, M., Seleson, P., Webster, C., 2017. Predicting fracture patterns in simulations of brittle materials under variable
769 load and material strength, in: *19th AIAA Non-Deterministic Approaches Conference*, p. 1326. doi:[10.2514/6.2017-1326](https://doi.org/10.2514/6.2017-1326).

770 [81] Stoyanov, M.K., Webster, C.G., 2016. A dynamically adaptive sparse grids method for quasi-optimal interpolation of
771 multidimensional functions. *Comput. Math. Appl.* 71, 2449–2465. doi:[10.1016/j.camwa.2015.12.045](https://doi.org/10.1016/j.camwa.2015.12.045).

772 [82] Tang, M., Wang, Y., 2017. An asymptotic preserving method for strongly anisotropic diffusion equations based on field
773 line integration. *Journal of Computational Physics* 330, 735–748.

774 [83] Tao, Z., Guo, W., Cheng, Y., 2019. Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system. *Journal*
775 *of Computational Physics: X* 3, 100022.

776 [84] Wang, Z., Tang, Q., Guo, W., Cheng, Y., 2016. Sparse grid discontinuous Galerkin methods for high-dimensional elliptic
777 equations. *Journal of Computational Physics* 314, 244–263.

778 [85] Xing, Y., Chou, C.S., Shu, C.W., 2013. Energy conserving local discontinuous Galerkin methods for wave propagation
779 problems. *Inverse Problems & Imaging* 7.

780 [86] Xiong, T., Jang, J., Li, F., Qiu, J.M., 2015. High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes
781 for the BGK equation. *Journal of Computational Physics* 284, 70–94.

782 [87] Yan, G., Kaur, S., Banks, J.W., Hicken, J.E., 2023. Entropy-stable discontinuous Galerkin difference methods for hyper-
783 bolic conservation laws. *Journal of Computational and Applied Mathematics* 422, 114885.

784 [88] Zhang, W., Xing, Y., Endeve, E., 2022. Energy conserving and well-balanced discontinuous Galerkin methods for the
785 euler–Poisson equations in spherical symmetry. *Monthly Notices of the Royal Astronomical Society* 514, 370–389.

786 [89] Zhang, X., Shu, C.W., 2011. Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation
787 laws: survey and new developments. *Proc. Roy. Soc. London A: Math., Phys. and Eng. Sci.* 467, 2752–2776.