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Abstract

Sparse-grid methods have recently gained interest in reducing the computational cost of solving high-
dimensional kinetic equations. In this paper, we construct adaptive and hybrid sparse-grid methods for
the Vlasov—Poisson—Lenard—Bernstein (VPLB) model. This model has applications to plasma physics and
is simulated in two reduced geometries: a 0x3v space homogeneous geometry and a lz3v slab geometry.
We use the discontinuous Galerkin (DG) method as a base discretization due to its high-order accuracy and
ability to preserve important structural properties of partial differential equations. We utilize a multiwavelet
basis expansion to determine the sparse-grid basis and the adaptive mesh criteria. We analyze the proposed
sparse-grid methods on a suite of three test problems by computing the savings afforded by sparse-grids in
comparison to standard solutions of the DG method. The results are obtained using the adaptive sparse-grid
discretization library ASGarD.
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1. Introduction

In this paper, we investigate sparse-grid solutions to kinetic equations with applications in plasma physics.
In a general setting, equations of this type are defined in terms of a kinetic distribution f that evolves over a
six-dimensional phase space (three position and three velocity variables). To discretize f in phase-space, we
work with sparse-grid approximations based on the discontinuous Galerkin (DG) method. First introduced
for kinetic models of radiation transport [70], the DG method is a finite element method that offers high-
order accurate solutions to elliptic [71] and hyperbolic partial differential equations (PDEs) [24] with compact
stencils. In addition to being locally conservative, DG methods are efficient at preserving important physical
constraints and structural properties inherited from the underlying PDEs that they are used to simulate.
Such properties include positivity [89], energy conservation [34, 88, 85], asymptotic limits [55, 2, 38, 76, 86,
82], entropy stability [18, 33, 16, 87, 8], and invariant domains [65, 23, 63]. For these reasons, the DG method
has become a popular tool in the simulation of kinetic equations [43, 29, 3, 19, 20, 26, 30, 35, 46, 69, 1].

When applied to high-dimensional PDEs, Eulerian grid-based methods, including DG, suffer from the
curse of dimensionality [9], where the cost to approximate a general measurable function scales like O(N9),
with d the dimension of the domain and N the degrees of freedom in a single dimension. Such a scaling
in six dimensions makes the standard DG method intractable for approximating general kinetic equations,
even on leadership class computing facilities [39].

Particle-based methods, e.g. particle in cell, attempt to mitigate the curse of dimensionality using a
Lagrangian approach [11, 17, 53, 47, 45, 15]. However, there has been recent interest in reducing the
computational and memory footprint of Eulerian methods by compressing the full-resolution distribution.
One popular technique is low-rank approximations where the discretized kinetic distribution is treated as
a d-mode tensor and compressed using a low-rank factorization. The low-rank decomposition is evolved
through time using methods such as step-truncation [72, 41] or dynamical low-rank approximation [28, 27].
Another popular avenue is the sparse-grid method [40, 83, 49] which is the focus of this paper.

The sparse-grid method [12] is a general technique used for the approximation of high-dimensional
functions. These methods replace the O(NY) scaling of tensor-based discretizations to O(N (log N)4~1).
First developed for the integration of high-dimensional functions [77, 36], current flavors of the sparse-grid
method are far reaching. Sparse-grid interpolation has been successfully employed in the construction of
surrogate models [13, 21] including addressing challenges of adaptivity for basis with local support [68, 66,
67, 58, 52, 79], global support [81, 61, 62, 60], and even discontinuous response surfaces [50, 51, 80].

Additionally, sparse-grids have gained favor in the approximation of high-dimensional PDEs with exam-
ples in finite differences [56], finite volumes [44, 59], conforming finite element methods [73, 74, 75, 7] as well
as the DG method [84, 39]. In the DG context, functions are decomposed in a multiwavelet basis [4] with
specific basis functions discarded via a sparse-grid selection rule. This multiwavelet decomposition induces
a decay in the coefficient’s magnitude over finer levels. This decay is utilized to build model-independent
criteria for adaptively choosing whether to keep or discard basis functions. This is referred to as the adaptive
sparse-grid DG method and has shown promise in the modelling of kinetic equations [54, 40, 83].

The main goal of this work is to study the computational savings provided by sparse-grids on the Vlasov—
Poisson—Lenard-Bernstein (VPLB) model. We measure the savings by the reduction of the total degrees of
freedom required to accurately represent the solution. The grids of choice are the adaptive sparse-grid DG
method and a hybrid sparse-grid method, called the mixed-grid method, which is a standard DG grid in
position space tensored with a sparse-grid in velocity space. Similar hybrid splittings have been studied in
the context of collisionless kinetic problems [54]. The methods are tested on the following three problems: a
simple relaxation to a Maxwellian equilibrium, the Sod shock tube problem [78], and an example of collisional
Landau damping [25, 43, 32]. In each problem, we present the computational savings achieved as well as
general qualitative performance, such as capturing desired physical features, of the methods presented. In
general, the adaptive sparse-grid method significantly reduces the storage cost of the distribution while the
mixed-grid method only provides favorable savings in determining lower-order moments of the distribution.

We work with the VPLB model on a slab geometry which reduces the problem to a four-dimensional
1z3v problem (one position dimension, three velocity dimensions). This is done so that the problem size
is sufficiently small to be run on a single node machine; the Chu reduction method [22] can be utilized to
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further reduce the problem to a moment model in 1xlv which then allows the creation of fine-resolution
reference solutions; and, in a slab geometry, the VPLB model can be written as a sum of terms which
are each tensor products of one-dimensional PDE operators. The latter property, commonly referred to
as separability, allows efficient evaluations of the model on sparse-grids. We note that recent endeavors,
e.g. interpolatory wavelets [49], are being researched to bypass the separability condition. Nonetheless, DG
approximations to the slab problem with sufficient resolution to accurately capture fine-scale features will
still tax a single node machine and thus will require some sort of compression. Additionally, we are keeping
three velocity dimensions which we expect to provide the main source of savings captured by the adaptive
sparse-grid DG method; this is because, locally in space, the collision operator mollifies the distribution in
the velocity domain, which will in turn cause a rapid decay in the coefficient size when the distribution is
represented in the multiwavelet DG basis. Moreover, in regimes of high collisionality, where the distribution
typically approaches a local thermal equilibrium that is very smooth in the velocity variable, the distribution
in physical space is close to a fluid model which can form shocks and other non-smooth features. Therefore,
we believe the 1z3v geometry provides an indication of the savings expected in the full 3z3v model, as well
as clues for constructing hybrid approaches.

Complementing this work is the development of the adaptive sparse-grid DG codebase ASGarD (Adaptive
Sparse-Grid Discretization) [37]. The goal of this open-source project is to facilitate and promote the
use of adaptive sparse-grid methods for the approximation of kinetic models by providing a robust yet
flexible adaptive sparse-grid library. All sparse-grid results of this work were computed using ASGarD.
The algorithmic specifics of how ASGarD evaluates PDE operators will be delayed for a future work. This
manuscript only focuses on the mathematics of the adaptive sparse-grid method and the memory reduction
realized via its utilization.

The rest of the paper is organized as follows. In Section 2, we present the VPLB model, as well as the
Chu reduction method for generating reference solutions and the geometric reductions used to formulate
the aforementioned test problems. In Section 3, we present the DG method for the VPLB model which
we refer to as the full-grid method. Section 4 provides an overview to the standard and adaptive sparse-
grid methods and details the specifics implemented in ASGarD. In Section 5, we analyze the results of the
adaptive sparse-grid and mixed-grid methods, compared against the full-grid method, for the chosen suite
of test problems. Finally, Section 6 gives our conclusions and future plans.

2. The Vlasov—Poisson—Lenard—Bernstein Model

The Vlasov—Poisson-Lenard-Bernstein (VPLB) model describes the dynamics of charged particles in-
fluenced by a self-consistent electric field and collisional dynamics. It couples a kinetic equation for the
phase-space distribution function of charged particles with a Poisson equation for the electrostatic potential.

Assuming ions of unit mass and charge, the governing kinetic equation is

atf(X,V,t) +v- fo(x,wt) + E(Xv t) : va(X,V, t) = CLB(f)(Xa v, t)’ (21)

where the phase-space distribution function f depends on position x = (z1,z2,23)" € Qx C R3, velocity
vV = (’Ul,’UQ,’Ug)T € R3, and time ¢ > 0. The electric field E = —V4® is obtained from the electrostatic
potential ® by solving the Poisson equation

Vs Vy®(x, 1) = np(x, ) — ne, (2.2)

where ny = (f), = fRS fdv is the ion density, and n, is a constant background electron density chosen to
enforce global charge neutrality: n. = fQ ny(x,t)dx for all t > 0. We assume the physical domain ,, is

periodic. The collision operator C; on the right-hand side of (2.1) is the Lenard-Bernstein (LB) operator
[57]. It takes the form [43, 32]

Conlps](F) %,V 8) = vVy - (v —uy) f+ 0,V ), (2.3)



o3 where v > 0 is a collision frequency that is assumed to be a constant independent of v, x, and t. The
o moments of f,

1
pr = (ef),, where e= (eo,el,eQ)T = (1,v, §|v|2)T, (2.4)

os represent the number, momentum, and energy densities, respectively, and the bulk velocity and temperature
s are defined from py by

©

1
uy = n7f<fv>v and 0y = %U\V —uyl?),. (2.5)

7 Direct calculations show that

©

1 3 T
pr = (ns, nyuy, n.f(§\Uf|2 + 59,f)) : (2.6)

s Proposition 1 ([43, 29]). The LB operator satisfies the following properties

9 1. Conservation of number, momentum, and energy:
(Cslpuwl(w)e), =0, Vw € Dom(Cpp). (2.7)
100 2. Dissipation of entropy:
(Cialpw](w)logw), <0, Vw € Dom(Crp). (2.8)
101 3. Characterization of equilibria: For any w € Dom(Cpg),
<CLB [pw](w) log w)v =0 (2.9)
102 if and only if w is a Mazwellian distribution, i.e.,
o Mo T {L‘W} (2.10)
T e, )32 P 20, ' '

w3 Proposition 2 ([43, 29]). On a periodic spatial domain Qyx C R3, the VPLB model satisfies the following
s global conservation laws:

105 1. Conservation of number:

at/ (flvdx=0. (2.11)
Qx
106 2. Conservation of momentum:

at/ (e1f)y dx = 0. (2.12)

107 3. Conservation of energy:

1
0 [ (eahho+ 5B dx =0, (2.13)
Qx

ws  2.1. Geometric reductions

wo  2.1.1. Space homogeneous problem

110 To investigate the relaxation induced by the LB collision operator of a velocity distribution to a Maxwellian,
w we consider the equation (2.3) under the assumption that f does not depend on x. In this case, the PDE is
112 given by

Orf(v,t) = vCis(f)(v,t). (2.14)
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2.1.2. Reduction to slab geometry
Under the assumption that 0, f = 0. f = 0, the VPLB model (2.1) reduces to

8tf(x7 V7 t) —"_ vxal'f(‘r7v’ t) + Eavzf(‘r7v7 t) = CLB(f)(‘T?v’ t)? (2'15)
where F := E, = —0,® and ® satisfies
—02:P(2) = ng(z,t) — Ne. (2.16)

Let (v,,1,¢) be a spherical-polar coordinate system in which the z-axis is aligned with the polar direction,
so that
Vg =vrcost, vy =vpsindcosp, and v, =wv,sindsinp, (2.17)

where v, = |v|, ¥ is the polar angle, and ¢ is the azimuthal angle. We assume further that f is independent
of p; as a result (us), = (uy), = 0, and by abuse of notation we set
v
(uf)e ==up = {Joe)y (2.18)
ny
so that uy = [uy,0,0]T. The equation (2.15) has a phase space with four total dimensions: one for physical
space and three for velocity space, i.e., 1x3v.

2.2. Reduction to 1xlv

The Chu reduction method is a tool for further reducing the slab geometry problem to 1zlv, at the cost
of solving an additional equation. It was first developed in [22] for the Bhatnagar—Gross-Krook (BGK)
equation and is used here to provide reference solutions in Section 5 for sparse-grid simulations when exact

solutions are not known and full-grid reference calculations are prohibitively expensive.
To derive the Chu reduction of (2.15), let

a1 (z,v,) = f(z,v)dvydv, and gg(xmx):/ (vi—i—vg)f(x,v)dvydvz, (2.19)
R2 R2

Testing (2.15) by 1 and by vg + v2, respectively and integrating over dvy dv, yields the following coupled
system in (z,v,):

Oeg1 + V20291 + EOy, g1 = v Ci(g1;uy, 0f), (2.20a)
0¢92 + V20292 + EOy, g2 = v C1(g2;uy,0f) + v (40791 — 292), (2.20b)
where
Ci(g;u,0) = 0y, (Vg —u)g+00,,9), E=-0,P, and — 0,2P=ns—ne, (2.21)
and, importantly, the velocity moments of f can be expressed in terms of ¢g; and gs:
ny = / g1dvg, up= M, and 0f = —/ [gl(vz — Uf)2 —l—gz} dvg. (2.22)
R Tlf 3nf R
The conservation properties of (2.7) are preserved; namely,
/C’l(gl;uf,ﬁf)dfuz = / Ci(gr;ug,0f)vy dvg =0, (2.23a)
R R
1 - - - -
3 / Cl(gl;uf,ef)vg + Ci(Go;uy,0p) + (40461 — 2G2) dvy =0, (2.23Db)
R

for any g and go such that the fluid variables ny, uy, and 6 are built via (2.22) using §; and go.
Though not required for (2.20), we will, for diagnostic purposes in Section 5, also consider the function

g3(x,v,) = /}R2 (vy +v2) f(z,v) dvy, du., (2.24)

which satisfies
0193 + 00,93 + E0,,93 = v Ci(g3;us,0f) + v (120792 — 493 ). (2.25)

5
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3. Notation and the Discontinuous Galerkin Method

3.1. Notation

Let ¢, € No = {0,1,2,...}, Q, = (—Ls, L) be an interval in physical space, and 7T, ¢, be a uniform
mesh on Q, with 2% elements. Let &0, be the skeleton of T, ¢, .

Similarly, let ¢, € No, Q, = (=L, L,)* C R?, and 7, ¢, be a uniform cubic mesh on Q, with 2* elements
in each dimension. Let £} ¢, be the interior (i.e., not including boundaries) skeleton on this mesh. We will
often use (-), and (), », to denote mtegratlon in dv and dv, dv,, respectively.

We let Q = Q, x Q, C R, and denote L?(2) and H*(Q) to be the standard Lebesgue and Sobolev
spaces on €. Let (-,-) be the L?(Q)-inner product with norm || - || 12(q) and let || - || (o) be the norm on
H*(€). We denote by L?(D) and (-,-)p the L? space with standard inner product on some domain D which
is typically Q, or ©,. Any of the inner products mentioned above can be trivially extended to vector-valued
functions with the standard Euclidean inner product.

Denote the discontinuous Galerkin finite element spaces V,, ,, C L*(Q,) and V, 0, C L*(Q,) by

Vee, ={9€ L*(Q%) : 9|, = Qu(K) VK € To0, }

) (3.1)
Ve, ={9 € L*(Q) : 9|, = Qu(K) VK € Ty 0, }

where Q(K) is the set of all polynomials of maximum degree k in any direction on K. We assume k = 2
unless written otherwise. Let Vy =V, 0. @V, 4, .

Given z, € £, 4,, let g be a function with traces g% (z.) := lim, , =+ g(x) well defined. Define the average
and jump of g in z, respectively, by
fo=20"+97) and  [ol=9"—g" (3:2)

We account for the periodic boundary in &, ¢, by defining the jumps and averages on the boundary using
(3.2) with g* = g(L,) and g~ = g(—L,). We denote by S, ¢, the intersection of V, o, with k¥ =1 and all
continuous and periodic functions on the closure of €, i.e. Q,. The space Sgz.e, is used for the discretization
of (2.16) and uses linear functions so that the electric field E is constant on each element.

Similarly7 consider the edge e € £} ¢,» where e = 0K +*NOK~ and K* € T,,, with normal outward
vector ni. Given a scalar and vector valued function g and o respectively with well defined traces on 0K+,
define the average and jump of g and o in v, respectively, by

fod=3"+g7) and [g]=g n, +g"nf 33)
e} =3(ct+07) and [o]=0" -n, +o' n/, '
where for any v, € e,
g (v.) = Jim g(v) (3.4
vek*

with analogous definition for o*. While the same notation for average and jumps is used in the physical
and velocity domains, the domain of integration of the DG formulation provides context to which case is
used (see (3.6)). Let (-, ~>>e be the L? inner product over an edge e and denote (-, '>>Sz,zz = ZeegMI (@ ’>>e

with an analogous definition for << . >> . For functions g in Vy, let 0, and V, represent the piece-wise

€4ty
spatial derivative and velocity gradient g.
Finally, for time integration, let At > 0 be the timestep, assumed for our purposes to be uniform. For

n € Ny define t"* = nAt and denote f" to be an approximation to f(¢").

3.2. Discontinuous Galerkin Method

We first discretize (2.1) in phase space on V; by the following semi-discrete problem: Find f, €
C([0, o0]; V¢) such that
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(O fhsgn) + Ave (fn, gn) = VALB(frs Pfns 1) (3.5)

holds for all g, € Vy. The Vlasov—Poisson portion, Ayp, is discretized with upwind fluxes; specifically,

-AVP(whagh) = _(Uzwmawgh) + <<Uw{{wh}} + ‘U;‘ [[wh]]v [[ghﬂ>>£z,lzXQi)

. . 5 (3.6)
— (Buwn, Vogn) + ({Bnwn} + P52 fun], [9n]) g, or
for all wp,, gn € Vi where Ej, := (E,,0,0)" and Ej, is given by —9,®;, where ®;, € S0, satisfies
(axq)ha ath)Qm = <<wh>v — Ne, qh)ﬂz (37)

for every g € Sg,¢,. The boundary conditions are periodic in  and we impose zero fluxes on the velocity
boundaries.

The Lenard—Bernstein portion, Aypg, of Equation (3.5) is discretized with the LDG method (e.g., [24]),
with central fluxes for the diffusion term and a local Lax—Friedrichs flux for the advection term; namely,

Avs(wn, o gn) = =((v = wwn, Bogn) + (fvwnd = 5 fwnl, 0] g er

3.8
_(o-hv vgh <<{o-h}} gh]]>>Q Xgl ( )

for every wp, gn € Ve, where u is determined from pj, € [V, ,]* via formulas in (2.5). Here o), € [Vy]? is the
approximation to the velocity gradient of wj, and is defined by

(O'h,Th) = (evvwh,Th) - <<9[[wh]], {{Th}}>>ﬂmxgi,zv (39)

for every 1, € [V¢]?, where 6 is determined by pj, the relevant formula in (2.5).

If wp, = 0 on 99, then it can be shown that Arpg(wp, puw,,eqn) = 0 for all g, € V¢, which implies that
the conservation properties in Equation (2.7) hold.

For brevity, we do not provide the discretization for the Chu reduction (2.20), but we note it is similar
to the discretizations given above for the slab problem.

3.83. Time Stepping Method
We discretize (3.5) in time via Implicit-Explicit (IMEX) Runge-Kutta (RK) methods [6]. Such methods
are popular time steppers for evolving kinetic models that feature multiple time scales [64, 23, 29]. In

our case, the Vlasov—Poisson portion Ayp will be evolved explicitly and the collision operator Apg will be
evolved implicitly. We will use IMEX-RK method of [23] which is given by:

(S5 gn) = (', gn) — AtAve (FF, gn), (3.10a)
(A an) = (£, gn) + AtvArs (Y 7Pf<1*>,gh) (3.10b)
(th*agh): (fhagh) 5((fh 7gh)_At-AVP(fh 7gh)), (3.10c)
(A7 g0) = (A2 gn) + 380 ALR(f7, Py, 9n), (3.10d)

and fit! = f}(LQ)
Assuming zero velocity-boundary data, the invariance of the discrete collision operator implies p flen =
h
Py for s € {1,2}. Therefore we plug the moments f,gs’*) into the collision operator Arg in (3.10b) and
h

(3.10d) for s = 1 and s = 2 respectively. This decouples the moments from the distribution and provides

a linear solve for f,(ls). Both (3.10b) and (3.10d) are solved iteratively using GMRES with the possible
inclusion of a block-Jacobi preconditioner.
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4. Sparse-grid Method

In this section, we describe the sparse-grid DG method and adaptivity procedure used in ASGarD. The
method, first introduced in [84] (and from which some of the presentation of this section is based), is provided
here for completeness. We first construct the multiwavelet basis in one dimension, then extend to multiple
dimensions and introduce the sparse-grid selection rule, and finally discuss the adaptivity procedure.

4.1. Single Dimension Multiwavelet Basis

The one-dimensional multiwavelet basis is a hierarchical basis in which additional basis functions for
resolving fine scale features are introduced using orthogonal complements to current functions in the basis.
To simplify the presentation, we assume a domain = [0,1]. Given a level £ € {0,..., N}, let Ty be a
uniform mesh of  with mesh size hy = 27¢. The partition of 7 is characterized by the union of disjoint
intervals I, ; := (27%5,27%(j + 1)) for j = 0,...,2¢ — 1. Given this mesh, define the corresponding DG finite
element space V; by!

V= VE = {g € 1A@) 1|, € Pulleg) Vi =0,...,2 =1}, (4.1)

where Py, is the space of polynomials of degree up to k. This space has dimension dim(V;) = 2¢(k + 1).
Additionally, due to the uniform partitioning,

VocVicVoC---CVyn. (4.2)

Let W, to be the orthogonal complement of V;_; in V; with respect to the L?(Q) inner product; that is,
Wy = Vy, while for £ > 1,
Ve=Vi_1®W, and We LVpq, (4.3)

where @ is the direct sum and dim(W;) = max{0,2°"1(k + 1)}. Then

N

Vv = @D W (4.4)

£=0

The hierarchical decomposition in (4.4) induces a natural decay in the coefficients for the approximation
of smooth functions. Specifically, let Q, : L?(Q) — W, be the orthogonal L? projection onto W,. Then by
standard polynomial approximation theory (see, e.g., [14, Section 5.4.2] or [71, Theorem 2.6]), there exists
a constant C' > 0, independent of ¢, such that for any g € H*(Q),

1Qegll 220y < CRF™ gl 1o - (4.5)

This decay property motivates the adaptive strategy described in Section 4.4.

A standard choice for the basis of W, for £ > 1 are wavelets — functions that are scaled and shifted to
capture finer-scale features. The prototype wavelet is the piece-wise constant Haar basis [42]. Here we use
Alpert wavelets [4].

Definition 1. The Alpert wavelets are a set of a functions {¢;(y) :i=1,...,k+ 1} C L*(R) with support
in [—1,1] and defined such that

: ¢i|(0,1) € P,(0,1).

- 6iy) = (1) di(—y).

It 0wy dy =0 for all j =0,1,...i+k—1.

fil ¢i(Y)dj(y)dy = 65 for alli,j =1,...,k where &;; is the Kronecker delta.

oW =

1We will often drop the polynomial degree superscript on V[k for brevity.
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For a given polynomial degree k, the Alpert wavelets satisfying Definition 1 are unique up to a sign. The
Alpert basis is not hierarchical in the polynomial degree; thus each wavelet must be reconstructed when k
is changed. For k = 0, Alpert’s wavelets correspond to the Haar basis. For & = 2, the wavelets are given on
the interval (0,1) by

$1(y) = %\/g(l — 24y +30y°),  ¢a(y) = %\/%(3 — 16y +15y%), ¢3(y) = 31/3(4 — 15y +12¢%)  (4.6)

Construction of the wavelets and examples for other polynomial degrees can be found in [4, Page 5].

For each £ > 0, we use the Alpert wavelets to define a basis set {gj, ;1 of We. For £ =0, we choose 960
to be the shifted Legendre polynomials normalized on L?(f2). For ¢ > 1, we shift and rescale the Alpert
wavelets so that for each x € (0,1),

g i(y) =207 D2, 27y — ) where  vi(y) == V2¢;(2y — 1). (4.7)

Here ¢ is the level, j = 0,...,2/1 — 1 is the level index, and i = 1,...,k 4 1 is the polynomial index. The
support of gz ; 1s precisely I, /2|, where |-] is the floor function. Additionally, since every wavelet g}ﬁz i
for any 4', j', and ¢’ < £ is a polynomial on Iy_; |;/2|, Item 3 of Definition 1 ensures that the wavelet bases
are all orthonormal; that is,

1
/ g (0)gls o+ (4) dy = B30 5¢0: (4.8)
0

Plots of the wavelets gzj for £ =0,1,2,3 and k = 2 are given in Figure 4.1.1.

6 6 6 6

1

3F

1

0
1
,2/
-3
-4
.

0 0.25 0.5 0.75 0.2: 0.5 0. 1

Yy y
(a) £=0,7=0 (b) =1,57=0 (d)e=2,5=1

6 6

4

3 \ / \ /
2

1

0

1

-3

4

B

0 0.25 0. 0. 0.2 0.5 0. 0.2: 0.5 0.7 1

Yy v y y
(e)£=3,j=0 (f)e=3,j=1 (g) £=3,7=2 (h) £=3,57=3

Figure 4.1.1: Plots of the wavelet basis gz I given by (4.7), for kK = 2. In each plot, the entire set of wavelet basis functions for
level £ = 3 and lower are shown in each plot and are translucent.

4.2. Multiwavelet Basis in Higher Dimensions

A d-dimensional basis is achieved through a tensor product extension. Let Q¢ = (0,1)? with y =
(Y1, .-, ya) € Q% Given a multi-index & = (o, ..., aq) € N&, define the norms
d
o]y = z:lozm and |at]oo = max o (4.9)
oo
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Let £ = (¢1,...,£4) be a multi-index level set, where ¢; defines the level for dimension d, and let T, be a
tensor product mesh with multi-dimensional mesh parameter h := (2% ,... 27%). We label all elements
in Te by Iej = {y : ym € (275, 275 (jim + 1)} and define the tensor product finite element space by

Vo=V ={ge L*(Q) 9], €Qlle;), VO<jm <2 —1m=1,....d} (4.10)
»J

where Qy (I ;) represents the set of polynomials of degree up to k in each dimension on Ip;. If € =
(N,...,N), then we abbreviate V; by Vy.
Recall the one-dimensional hierarchical decomposition in Section 4.1. Given the complementary sets
Wy, defined in (4.3), let
We=Wy,, @Wp, @@ Wy,. (4.11)

Then (4.4) extends to the multidimensional setting:

Ve=V, @2V, = P W (4.12)

0<er<e

An extension of the coefficient decay result (4.5) also holds. Let Qg : L?(€2) — W, be the orthogonal L?
projection onto Wy, then

d
[Qegllr2() = O (H hﬁin{s’kH}) : (4.13)
m=1

where s is a regularity parameter tied to a Sobolev-like space including high-order mixed derivative control.
We refer the reader to [39, (A.8)] and [73, Proposition 5.1] for specifics on (4.13).
The basis we choose for Wj are the multiwavelets which are products of the 1D wavelets in (4.7):

géﬂ H ggm’jm Ym), where j,, =0,...,max{0,271 —1},4,, =1,...,k+ 1. (4.14)

It follows from repeated application of (4.8) in each dimension that these multiwavelets are orthonormal in
L2() .

4.8. The Sparse-grid Selection Rule
The spaces Wy are used to define the sparse grid. From (4.12) we can rewrite the full-grid as

P w. (4.15)

[£loc <N

This space has dimension dim(Vy) = (k+1)?2V4. The sparse grid is defined via a selection rule that relaxes
the index norm in (4.15).

Definition 2 ([84, 13]). The level N sparse grid, Viy C Vi, is defined by

P w. (4.16)

|1 <N

By definition, the sparse-grid only includes components W, whose level indices £ sum up to NN, and
throws away basis functions deemed too fine to include in multiple dimensions. It was shown in [84, Lemma
2.3] that

dim(Vy) = O((k + 1)42NV Nd=1), (4.17)

which avoids the costly O(2V9) scaling of the full-grid in (4.15) but still maintains exponential dependence
on k and on log(N).
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(a) A heat map for the degrees of freedom of Wy for a 2 (b) Plot showing the coverage of sparse-grids in two
dimensional problem. The whole rectangle corresponds to dimensions. Each point represents the barycenter of the
all degrees of freedom for the full-grid Vo while the sparse- support of a wavelet that is in the level 7 sparse-grid.
grid Vy only contains the spaces on the lower-left portion

divided by the red line.

Figure 4.3.1: Sparse-grid illustrations.

Figure 4.3.1 illustrates which basis functions are kept in the sparse-grid and the reduction in degrees
of freedom that sparse-grids provide for the case with d = 2. Figure 4.3.1a shows that the dimension of
the spaces Wp being thrown away in the sparse-grid truncation are significantly larger on average than the
dimension of the spaces that are kept. As a result, there is a reduction in degrees of freedom from the
full-grid space Vi of size 2!8 &~ 2.62 x 10° to the sparse grid space Vy of size 2816.2 Figure 4.3.1b shows
that the basis functions kept in the sparse-grid allow accurate approximations of derivatives in coordinate
directions while throwing away mixed-derivative data which is assumed to be smaller than the components
kept by the sparse-grid. It has been shown that Vi shares similar approximation properties to Vi in L2,
which is O(h**1), up to a poly-logarithmic factor of |log, h|¢~1 (see [84, Theorem 2.4]). This result holds
for functions with bounded mixed derivatives of sufficient order.

4.4. Adaptive Sparse-grids

The adaptive sparse-grid method uses an adaptive algorithm based on the hierarchical framework of the
sparse-grid method [40]. The first step is to further decompose the orthogonal complements Wy by their
level £ and position j within the level. This position j in the level is based on the multiwavelet basis. Given
the basis in (4.14), we define the space Wp ; C Wy, called a hierarchical element, by

Wej= span  {gj;}. (4.18)
1<im <k+1
1<m<d

This space has dimension dim(Wp,;) = (k + 1)% and

We =P Wi, (4.19)
JEBe
where
Be:=1{j=01,..,Ja): jm =0,...,max{0,2 "1 —1},¥m =1,...,d}. (4.20)

2Here we use k = 0 to calculate dim(Vy) and dim(Vp).
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The spaces Wy ; are deemed hierarchical because they carry a natural parent-child relationship of which the
details will be postponed (see Definition 4). The full- and sparse-grid spaces, (4.15) and (4.16) respectively,
can be written as

VN = @ We,j and VN = @ Wg,j. (4.21)
[£lcc <N |21 <N
JEBe JEBe

For the adaptive sparse-grid algorithm, it is helpful to view the full- and sparse-grid spaces as direct sums of
the hierarchical elements W, ;. We can now define an adaptive sparse-grid which is an arbitrary collection
of hierarchical elements.

Definition 3. Given a maz level Ny € No and a level index set {(€*,5°)}*, such that foralle =1,..., M,
[0 < Nz and 3* € Bg, the adaptive sparse-grid V. C V. is defined as

V=W, (4.22)

Here M s said to be the number of active elements of the adaptive sparse-grid V.

We will often drop the ¢ superscript in (4.22) and refer to the level index set as {(£,7)}. From (4.21),
the standard sparse-grid is a specific adaptive sparse-grid where we include all hierarchical elements Wy ;
such that |£|; < Nyax and j € By.

4.4.1. Adaptive Approzimation of Initial Data
Let Py be the L? projection from L?(€2) onto V. The main idea of the adaptive sparse-grid is to choose
agrid VCVy depending on the distribution w, such that

max ?

1. The relative projection error |[w — Py wl|2(q)/[|w|| L2 is small;
2. dim(V) is approximately minimal.

We will first demonstrate this process for an initial condition, and then extend the result to functions
formulated via a dynamical system.

For a fixed max level Nyay, choosing V' = Vy___ would minimize the L? projection error over all possible
adaptive sparse-grid spaces, but with significant costs in terms of the number of degrees of freedom. Thus
we assume w € Vy___ is our target; then the coeflicient expansion with respect to the multiwavelet basis of
(4.14) is given by

w(y) = Z Z U/zjgzj(y) where wzj :/w(y)giﬂj(y) dy. (4.23)
(£,9): 1<im <k+1 o
{MlooﬁNmaxﬂ'eBe} 1<m<d

For simplification, we define wg ; to be the multilinear rank-d tensor with £ + 1 entries in each dimension,
defined by .
[ij]i = wzﬂ». (424)

When taking the norm of wy ;, we first flatten the tensor into a vector in RE+D? and apply the appropriate
vector norm in /2 where 1 < p < co. Then the L2-norm of w can be written as

Iz = > e 5113 (4.25)
(£.9):
{Il\mSN,gax,jeBz}

Additionally, for any adaptive sparse-grid space V' with level index set {(£,j)} we have

Prw=3Y Y whgh; and |[Pywliag =D llwe;

(£,5) 1<im <k+1 (£,5)
1<m<d

2. (4.26)
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From (4.23) and (4.26), it is clear that the relative projection error satisfies

w — Pyw 2 ill3
[ o) _ > Nweslls (4.27)

2 2
||w||L2(Q) (£.5)We 2V ||w||L2(Q)

Therefore, given 7 > 0, called the threshold, we want to keep all hierarchical elements W, ; such that

wejllz > Tllwl| L2 (0 (4.28)

lest they contribute to the error in (4.27).

Refinement. We will now describe how hierarchical elements are added to the adaptive sparse-grid — which
we call refinement. The primary challenge in building a grid that contains all elements satisfying (4.28) is
to avoid checking all hierarchical elements in the full-grid — an operation that naively would require O(2V%)
operations.

The refinement process is iterative, where an initial grid is chosen and then added upon. For adapting
an initial condition, we choose our initial grid as the sparse-grid V' = VNmax- Given a current grid V,
the coefficients weg j are computed for every hierarchical element in the grid. In order to determine what
elements to add to the grid, we appeal to the hierarchical representation of the full-grid space which embeds
the following parent-child relation.

Definition 4. Let Wy ; for (€,5) = ((61, ey la), (g1, - - ,jd)) be a hierarchical element with mazx level Ny az.

The children of Wy j, with up to two per dimension, are defined for each dimension m = 1,...,d by the
following:
o Ifly,, =0, then Wy j/, where
(Elajl) = ((ela e ag’mfh 1a€’m+la e 7€d)7 (.j17 e 7.7-177/71’ Oaj’m+la e 7jd))a (429)

is a child of Wy ;.
o If0 < {y, < Npag, then Wy i, where

(E/,j/) = ((61,...,€m,1,€m+1,£m+1,...,ﬁd),(jl,...,jm,l,Qjm,ij,...,jd)) and (430&)
€,53") = ((tr, - bl + 1, bt La), (G- Gt 20m + 1y 15 -+ -5 Jd)) s (4.30b)

are children of Wy ;.
o If U, = Npnas, then there are no children of Wy j in dimension m.
The parents of an element Wy ; are all elements Wy ;1 such that Wy ; is a child of Wy ;.

It is clear from Definition 4 that each hierarchical element can have up to 2d children and up to d parents.
To tie Definition 4 to the wavelet representation, for a fixed dimension m € {1,...,d}, the children of a
wavelet given in (4.7) are the up to two wavelets of one greater level whose support is contained in the
parent. Furthermore, based on the coefficient decay estimate (4.13), if w is sufficiently smooth, then it is
reasonable to assume that if Wy ;s is a child of Wy, then ||we j/|| < ||wej]. Therefore, if the size of a
hierarchical element in the grid is small, we assume the size of the children are also small, and we do not
need to search further along this path. This assumption leads to a stopping mechanism for the refinement
strategy: Given a grid V' with level index set {(¢, j)}, if

1
2
lwesllz = 7( Y Jwegl)” =Pyl iz, (4.31)
(.3

then we add all children of W, ; to the grid. We repeat this process iteratively until no new children are
added.
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Coarsening. The process of removing active elements from the current grid, i.e., coarsening, is achieved by
simple thresholding of the coefficients. Let 0 < u < 1 be the coarsening factor. For a given grid V', if W ;
is a hierarchical element such that

1
2
lwesllz < pr( Y wesl3)” = nrlPvwllia, (4.32)
(€.3")

then it is removed from the grid. We acknowledge this coarsening strategy does not preserve structural
properties like parent completeness, i.e., requiring that all parents of an active element are active (see [79,
Section 3]), but still yields stable and accurate approximations as evidenced in Section 5.

While the criteria for refinement (4.31) and coarsening (4.32) are based on £2-type norms, other discrete
norms can be used. For instance, the /°*° norm can also be used:

lwejlloo > T (Iglax) llwer 41|00 (for refinement), (4.33a)
/’j/
lwejlloo < pr (rlpax) lwer 571l o (for coarsening). (4.33b)
/)j/

The first refinement criterion implemented in ASGarD was (4.33a). Currently both > and ¢2 strategies are
supported, but our experiments did not show a significant difference in the accuracy or the degrees of freedom.
This is in contrast to the L* refinement, which has been shown to yield a much denser grid compared to the
L? criteria, e.g., see [40]. In the rest of this work, we will use (4.33) as our coarsening/refinement strategy.

4.4.2. Adaptive sparse-grids of a dynamical system
Unlike adapting initial conditions, where the coefficients are drawn from analytic or quadrature data, the
adaptive strategy can also be utilized to create temporally varying grids that dynamically capture features of
the solution in time. To extend our adaptive strategy to dynamical systems, consider the abstract problem
(Orw, g) = A(w,g) Vg€ Vi,

max

(4.34)

where A: Vy, . xVy_ . — R (c.f. (3.5)). Here A is one of the discretizations in (3.6) or (3.8). For a given

adaptive sparse-grid V' C Vv define the operator R : V. — V by

max

(Rvw,g) = A(w,g) VgeV. (4.35)

Then (4.34) can be succinctly written as dyw = Ry, w.

Consider a solution w" at timestep t" defined on an adaptive sparse-grid V*. To refine, we first set
V = V" and advance the abstract problem d;w = Ryw from " to t"*! via a IMEX Runge-Kutta method
(3.10) to produce w"! € V. We then check for elements Wy of V that satisfy the same refinement
requirement as the initial condition case, namely, (4.31) for a ¢?>-norm refinement or (4.33a) for a £>°-norm
refinement. If there are elements satisfying the refinement criterion, then their children are added to V.
We then go back to time " and advance d;w = Ryw from t" to t"*! with the updated space V. Since
V" C V, the coefficients of the state w"™ can be extended into V' by setting wzj = 0if Wy ; C V but not
if Wy j € V. This process is repeated until no new children are added into the grid V' — in which case we
set V™1 = V. Typically, only one or two refinements are needed per timestep, but more may be needed
for the first few timesteps due to initial layers. Coarsening after refinement is done in a manner analogous
to the initial condition case. The procedure for refining and coarsening are summed up in Algorithm 1 and
Algorithm 2 respectively.

As visual illustration of the adaptive sparse-grid method is shown in Figure 4.4.1, where it is applied
to 1z3v Riemann problem in Section 5.3. As seen in Figure 4.4.1b, the adaptive algorithm focuses on
refinement around the discontinuity in the distribution, plotted in Figure 4.4.1a, while coarsening occurs
near the velocity boundaries.
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Algorithm 1: Adaptive refinement using /°°-norm

Input : Adaptive sparse-grid V', threshold 7 > 0

Input : Distribution w or dynamical system (w,U) — dyw = Ryw defined in (4.35) with
coefficients wy ; computed for all W ; C V

Output: Adaptive sparse-grid V*

Output: Coefficients wg j for all W, ; C V*

1 V=V,

2 do

3 N :={0};

4 Compute wy,j for all Wy ; C V* via w or dynamical system 0, f = Ry~ f;

5 for W, ; C V* do

6 if |lwejlloo > Tmax e jiy |we j oo then /* Check if element needs refining */
7 Compute all children Wy ;. of W, ; using Definition 4;

8 for children Wg@j/ Of WZ,J’ do

9 if Wg/d/ §Z V* and Wl/,j/ ¢ N then

10 N =N & Wy j; /* Add element */
11 L w2,7j, = 0; /* Zero out new element at t" */

12 V*.=V*® N;

13 while N # {0}; /* Repeat until no children are added. */

Algorithm 2: Adaptive coarsening using £°°-norm

Input : Adaptive sparse-grid V', threshold 7 > 0, coarsening factor 0 < u < 1
Input : Coefficients we ; for all Wy ; C V
Output: Adaptive sparse-grid V*
1 V*:={0};
for W, ; C V do
L if |lwejlloo > pT max (g jry |we jo||oc then — /x Check if element needs to be removed */

B W N

L V¥ =V*® W&j;
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of the barycenter of the support of each active wavelet.

Figure 4.4.1: Riemann problem — Section 5.3 — v = 1: Adaptive Sparse-grid Method at t = 0.04918. The threshold is 7 = 104
and the adaptive sparse-grid cannot refine past £ = (7,6, 6, 6).

5. Numerical Experiments

In this section, we present results from various test problems relevant to plasma physics. Our goals are
to demonstrate the performance of the adaptive sparse-grid and mixed-grid DG methods with IMEX time
stepping implemented in ASGarD, and investigate the computational benefit of the adaptive sparse-grid
and mixed-grid methods over the full-grid methods (see Section 5.1 for definitions). In increasing degree of
complexity, we consider: (i) relaxation to a Maxwellian velocity distribution (Section 5.2); (ii) a Riemann
problem for two different values of the collision frequency v (Section 5.3); (iii) and the collisional Landau
damping problem (Section 5.4), also for two different values of the collision frequency. All the results
presented in this section were obtained with quadratic polynomials, i.e., kK = 2. This choice of k is natural
considering that the velocity moments with respect to 1, v, and |v|? compose the important fluid variables.

5.1. Choice of Grids

In the simulations presented below we choose to compare results obtained with three types of grids:
full-grid, mixed-grid, and adaptive sparse-grid. We provide the specifics of each grid in this section.

Our first choice is the standard full-grid Vg, where £ = ({,¢,,0,,¢,). We use the Chu reduction
method of Section 2.2 in Sections 5.3 and 5.4 with £ = (¢,,¢,) to build reference solutions and numerical
approximations with the full-grid. This is because the full-grid space is too large in comparison to the
other two grids and can easily fill the memory of a single-node machine. When using the Chu reduction,
the discretization is performed using a local Legendre polynomial basis instead of the multiwavelets. When
determining the degrees of freedom or number of active elements for a full-grid run, we will always assume
that the underlying run is 4D, even if the Chu reduction method is used.

We have found that standard 4D sparse-grids such as Vp are unstable for the VPLB model in (2.15).
This is due to both the lack of resolution in = and the lack of regularity of the distribution function in
physical space. Specifically, the temperature 6; becomes negative which causes the solution to blow up. As
we expect savings to come from the smoothness in velocity space, induced by the LB collision operator, we
propose a mixed-grid approach for our second choice. The mixed-grid of level £ = (¢,,¢,,£,,¢,) is defined
by

Ve = @ Wer = Vi, @ Vig, 0,6, (5.1)
£ <e,,
|(£5,85,€4) L <Ly
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The mixed-grid space is a tensor product of a full-grid in physical space and a sparse-grid in velocity space.
This can be viewed as a sparse-grid in velocity space attached to each degree of freedom in x, and thus
provides computational savings relative to the full-grid (without the Chu reduction method). The dimension
of Vg is O((k + 1)*2%=+t+¢2). We find this space is sufficient to maintain stability of the DG method for the
problems considered here.

Additionally, since 1 and v2+v? are admissible DG functions that live on level (0,0) in (v, v.) when k > 2,
a 4D full-grid of level (¢, ¢,,0,0) is sufficient to recover ¢g; and g2 in a 2D full-grid of level (¢,,¢,). Since a
full-grid of level (£;,4,,0,0) is a subgrid of a mixed-grid with level (¢, £,, ¢y, £, ), the reduced moments g,
and go created by the mixed-grid solution will be similar to the full-grid. However, for k£ < 3, the function
113 + v# is not a DG function, and its projection onto the DG space will excite finer level coefficients that
are better captured by the full-grid than by the mixed-grid for a certain level. We therefore evolve g3 in the
Chu reduction method in order to better understand differences in accuracy between the mixed-grid and
full-grid methods.

Our last grid is the adaptive sparse-grid, V', that is coarsened and refined as detailed in Algorithms 1
and 2, using ¢°°-thresholding. The refinement threshold 7 will be problem dependent, but we use the
coarsening factor u = 0.1, motivated from [40, 48], for all of our examples. Instead of a max level Nyax
used in Section 4, we will not allow the adaptive sparse-grid to refine above a full-grid of specified level
L= (Ly,ly, Ly, L,). The number of degrees of freedom, or active elements, presented in the results below will
be of the adaptive sparse-grid solution after the refinement step but before coarsening.

It is useful to view each of these grids as a velocity grid attached to each spatial degree of freedom.
The full-grid attaches a three-dimensional full-velocity grid to every spatial degree of freedom while the
mixed-grid attaches a sparse-velocity grid. The adaptive sparse-grid attaches a variable velocity grid, with
possibly zero elements, to each spatial degree of freedom.

Finally, we will track the number of active elements, see Definition 3, as opposed to degrees of freedom
in order to more clearly present the advantages of the mixed-grid and adaptive sparse-grid methods.

5.2. Relazxation Problem

We first consider the 0z3v problem in (2.14) in order to test the relaxation to equilibrium induced by
the LB collision operator. In this case f = f(v,t) and the computational domain is truncated so that
v € (—8,12)3. The initial condition is given by the sum of three Maxwellians, each sharing ny = 1/3,
0 = 1/2, but differing in the bulk velocities, which are given by [3,0,0], [0,3,0], and [0, 0, 3], respectively.
This initial condition induces the following velocity moments: ny = 1, uy = [1,1,1]T, and §; = 2.5. By
the properties of the LB collision operator Proposition 1, these moments are expected to remain constant
in time and the velocity distribution to relax to the Maxwellian defined by the initial moments.

For this test, we will use a 3D sparse-grid of level (£, £,,¥,) as a substitute for the mixed-grid. The 4D
(123v) definitions of the full-grid and adaptive sparse-grid naturally carry to the 3D (0z3v) case. We set
v =103, At =5 x 1074, and use backward Euler time stepping for this problem, with a tolerance of 1078
for the GMRES implicit solve. Figure 5.2.1 illustrates the initial and final (equilibrium) distributions in the
(vg, vy)-plane for a full-grid model.

Figure 5.2.2a plots the change in the fluid variables ny, uy, and 7 from their initial values as a function
of vt, when using the full grid; the figure clearly shows that the loss in conservation of the moments is well
below the GMRES tolerance. The error profiles for the mixed-grid and adaptive sparse-grid runs are similar,
but not shown.

Figure 5.2.2b shows the number of GMRES iterations for each timestep for varying full-grid levels. The
block-Jacobi preconditioner reduces the number of GMRES iterations for each simulation (dashed lines) and
overall smoothly decays the iteration count as a function of timestep. However, the constant jump of the
iteration count, in logarithmic scale, between velocity levels in both the standard GMRES and precondioned
version shows that the preconditioner does not asymptotically lower the O(4*) conditioning of the diffusion
term in the LB operator. We found that the sparse-grid’s iteration count was roughly two-thirds of the
full-grid for the same level. Additionally, we found that the adaptive sparse-grid method often included
elements from level 9 grids which caused a significant increase in the number of GMRES iterations in the
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Figure 5.2.1: Relaxation Problem — Section 5.2: 2D plot of the velocity distribution fj, (ve, vy, vz = 0.019) at the start (left)
and end (right) of a relaxation simulation. These results were obtained with a full-grid run with £ = (5,5, 5).
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the residual norm was less than le-8. Instances when GM-
RES exited in zero iterations are not plotted.

Figure 5.2.2: Relaxation Problem — Section 5.2: Plots of interest for full-grid runs with varying levels.

adaptive sparse-grid over full-grid runs with a similar number of active elements. The results of this test
suggest that better preconditioners, e.g. multigrid type, are needed in order to effectively condition the
problem. This is especially crucial for the adaptive sparse-grid method as finer level basis functions can be
active for mild choices of the refinement threshold 7.

Figure 5.2.3 illustrates the advantages of adaptive sparse-grids over the full- and mixed-grid methods
for the relaxation problem. The L? error of the relaxed distribution, relative to the analytic Maxwellian, is
plotted versus the number of active elements. When plotted against the number of active elements, adaptive
sparse grids are more accurate and asymptotically superior when compared against the other formulations.
Additionally, the mixed-grid is comparable to the full-grid with the mixed-grid only gaining an advantage
when a large number of active elements is used. This is not surprising as the Maxwellian, being radially
symmetric, has large mixed derivatives and the coefficients to capture mixed derivative information are
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thrown away in the standard sparse-grid construction. However, adaptive sparse-grids are able to capture
these mixed-derivative coefficients.

We lastly explore how the adaptive sparse-grid refinement threshold 7 correlates with the relative error of
the approximation. In this problem the analytic equilibrium has a L? norm of approximately 7.539 x 1072,
Using the L2-errors provided from Figure 5.2.3, the relative L2-error for 7 = 102 is approximately 0.67 and
creeps to 2.037 when 7 = 107°. Therefore 7 provides a good estimate for the relative error of the problem.
This is in part because the equilibrium is smooth so that the chosen maximum level of 9 is sufficiently large
to capture the needed coeflicient data and achieve the expected errors.

1072 T T T
® Adaptive Sparse-grid
¢3 ¢ Full-grid
Sparse-grid
1072 ¢ |
® 1e-2 ¢4
g
5 1074
Nm ® i1e-3
~
45
107° ¢ ® ie-4 E
» ® 1e-5
10 28 29 210 211 212 213 214 215 216

Active Elements

Figure 5.2.3: Relaxation Problem — Section 5.2: The L? error of solution versus the number of active elements used for the
full-grid and adaptive sparse-grid runs. The error is calculated against the analytic equilibrium in (2.10). The full- and mixed-
grid runs were set at £ = (€y, £y, £y) where £, is the number by the marker. The marker next to the adaptive sparse-grid runs
is the tolerance 7 at which the run was set, and the adaptive run was not allowed to exceed a level of £ = (9,9,9).

5.3. Riemann Problem

Next, we consider a problem that includes both phase-space advection and collisions. The Sod shock tube
problem [78] is a standard test for numerical simulations of kinetic models with collisions (e.g., [10, 31]). For
this test, the PDE is given by (2.15) We consider two regimes of collisionality: The first is an intermediate
regime with v = 1, and the second is a collisional regime with v = 10%. For both problems we fix v € (-6, 6)>
and set the initial condition to a Maxwellian with moments given by:

Tlf 1 nf 0.125
us| = |0 if |33| > Sinitial; uys| = 0 if |Z‘| < Sinitial (5.2)
9f 1 9f 0.8

where Sinitia1 is the location of the initial discontinuity. We set the GMRES tolerance to 1078,

Figure 5.3.1 shows plots of the distribution in the (x, v, )-plane and plots of the velocity moments versus
position, as obtained with the full-grid using the Chu reduction technique. We will use these as reference
solutions when evaluating the performance of the adaptive sparse grid method. For moderate collisionality,
i.e. v = 1, the distribution, as shown in Figure 5.3.1a, deviates from the Maxwellian due to the streaming
and features a discontinuity in the (z,v,) space. Additionally, as seen in Figure 5.3.1c, the streaming effect
smooths out features of the fluid variables. In the collision dominated regime (v = 10%), the distribution,
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Figure 5.3.1: Riemann Problem — Section 5.3: Plots of the distribution and fluid variables for the which is computed using the
Chu reduction model in Section 2.2 with (£z,£,) = (9,8) for v = 1 and (€;,4£,) = (8,8) for v = 103. The v = 1 and v = 103
plots are taken at time ¢ = 0.04918 and ¢ = 0.05 and with sjpitia1 = 0.3 and sinitia] = 9/64 respectively.

as seen in Figure 5.3.1b, remains close to a local Maxwellian parameterized by the local fluid variables in
Figure 5.3.1d.

When comparing results obtained with different grids, we first consider the case of v = 1, and we set
x € (—0.6,0.6), Sinitiar = 0.3, final time 7" = 0.04918, and time step At = 2.3419 x 10~%. Our reference
solution is the full-grid solution of level £ = (9, 8, 8, 8), displayed in the left panels in Figure 5.3.1. Figure 5.3.2
shows the error versus the number of active elements for g; and gs (defined in Section 2.2). It is shown
in Figure 5.3.2a that the mixed-grid yields the same error as the full-grid — for the same velocity space
resolution level ¢,. This is because g; is embedded in the mixed-grid as mentioned in Section 5.1. The
adaptive sparse-grid error saturates at the level of the mixed-grid error when ¢, = 6, but with about
50% fewer active elements. The saturation is because the adaptive grid is not allowed to refine past level
£ = (7,6,6,6) in the hierarchy (see Section 5.1) and therefore the associated error will not be significantly
lower than the full-grid of level £ = (7,6,6,6). When viewing the same plot for the higher-order moment
g3 in Figure 5.3.2b, we see the degradation in the mixed-grid method when compared to the full-grid and
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adaptive sparse-grid methods. While the slope in the error from the mixed-grid method is steeper than the
full-grid method, its error constant is significantly larger. Additionally, the adaptive sparse-grid method is
significantly better than both the mixed-grid and full-grid methods with respect to both the slope and error
constant.
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Figure 5.3.2: Riemann Problem — Section 5.3 — v = 1: Errors of the distribution and fluid variables at ¢ = 0.01 for the 1z3v
Riemann problem in Section 5.3 with v = 1. All errors are measured against the full-grid solution at level £ = (9, 8, 8,8) (see
Figure 5.3.1a). All adaptive sparse-grid runs are capped at £ = (7,6,6,6). The full- and mixed-grid runs use £ = (7, €y, £y, {y)
where ¢, is the symbol by each marker. The adaptive sparse-grid method performs well in both cases while the mixed-grid
method is accurate only in the low-order moment.

Figure 5.3.3 shows the particle density n; (left and middle panels) and the pointwise error of the particle
density (right panel) for a mixed-grid and an adaptive sparse-grid model with a similar number of active
elements. Figure 5.3.3a shows that the density appears to be relatively constant in = toward the edges of
the plot. When zooming in on a smaller z-range near the right edge, see Figure 5.3.3b, it becomes clear that
the density obtained with the adaptive sparse-grid features a discontinuity (around 2 = —0.15) and exhibits
more spatial variation when compared to the full-grid and mixed-grid solutions. This is primarily caused by
the adaptive method uniformly distributing the error across the spatial domain, and this is further evidenced
in the error plot (see Figure 5.3.3¢), where the error in x is much more uniform across the spatial domain
for the adaptive sparse-grid than it is with the mixed-grid method. In the mixed-grid method, where each
DOF in z is attached with the same sparse-grid in v, the moment errors are much smaller away from the
wave regions, i.e., the regions where the moments are constant.

Next, we consider the case with v = 103. Here we set x € (—0.25,0.25), Sinitial = 2/64, T = 0.05, and
At = 2 x 1074, Figure 5.3.4 shows the error of g; and g3 against the number of active elements. In this
higher-collisional regime, the distribution is much smoother in velocity, and the L? error saturates sooner
than when v = 1. This saturation is due to the dominant error that appears near the discontinuities in the
a-domain (see Figures 5.3.1b and 5.3.1d). In Figure 5.3.4a, the mixed-grid and adaptive sparse-grid methods
are very similar. At saturation, the number of active elements for the mixed-grid and adaptive sparse grid,
around 2'* are approximately 128 times fewer than the number of active elements in the full-grid, which is
221,

When looking at the error in the higher-order moments, Figure 5.3.4b, we observe a separation in the
performance of the mixed-grid and adaptive sparse-grid that is similar to the v = 1 case. However, in this
case, the adaptive sparse-grid method has nearly hit saturation while the mixed-grid with ¢, = 6 is still not
at saturation. In particular, the grouping of the errors for mixed-grid ¢, = 6 and the full-grid ¢, = 3 is
similar to the grouping in the relaxation case (see Figure 5.2.3). This shows that the dominant error in the
mixed-grid method is the lack of velocity resolution sufficient to capture the local Maxwellian behavior of
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Figure 5.3.3: Riemann Problem — Section 5.3 — v = 1: Plots of the density and error to the reference density for the
12z3v Riemann problem with v = 1 and ¢ = 0.04918. The reference density is calculated with the full-grid method at level
£ =(9,8,8,8) (see Figure 5.3.1c). The adaptive sparse-grid solution is not allowed to be refined beyond level £ = (7,6,6,6).
The adaptive sparse-grid method equally spaces out the error in physical space while the mixed-grid is only accurate in the
constant regions of the density.

the distribution.

We include a plot of the fourth-order moment g5 in the (z,v,)-plane for each grid type, each having a
similar number of degrees of freedom, in Figure 5.3.5. The full-grid solution, Figure 5.3.5a, exhibits discon-
tinuities on element interfaces in the velocity dimension (due the discontinuous basis) while the mixed-grid
moment, Figure 5.3.5b, is oscillatory in the region immediately left of the contact line, i.e. z € (—0.15,—0.1).
The solution obtained with the adaptive sparse-grid, Figure 5.3.5¢c, is the most accurate of the three and
does not suffer from either of the previously mentioned artifacts.
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Figure 5.3.4: Riemann Problem — Section 5.3 — v = 103: Errors of the distribution at ¢ = 0.05 for the 1z3v Riemann problem
in Section 5.3 with v = 103. All errors are measured against the full-grid solution at level £ = (8,8, 8, 8) (see Figure 5.3.1b). All
adaptive sparse-grids are capped at level £ = (6,6,6,6). The full- and mixed-grid levels are given by £ = (6, £y, v, {,) where
£, is the symbol to the lower left of the marker. The quick saturation of the error is due to smoothness in velocity and the
discontinuities in the fluid variables (see Figure 5.3.1d). The adaptive sparse-grid method performs well in both cases while
the mixed-grid method is accurate only in the low-order moment.

5.4. Collisional Landauw Damping
Finally, we consider a version of the collisional Landau damping test (e.g., [25, 43, 32]), which involves
phase-space advection of charged particles, influenced by a self-consistent electric field and particle collisions.
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level £ = (6,6,6,6). The artifacts seen in the full-grid and mixed-grid solutions are not found in the adaptive- sparse grid
solution.

The PDEs solved in this test are given by the VPLB system in (2.15) and (2.16).

The 123v phase-space domain is given by x € (=27, 27) and v € (—6,6)3, and the model is evolved to
the final time 7" = 50. The initial condition is set as Maxwellian with a small spatial perturbation so that
the velocity moments are ny = 1+ 1074 cos(5), us =0, fy = 1. The timestep taken depends on the spatial
resolution and max |v,|, and is taken as At = &5 Az, where Az = 7.

10°° T T T T —— Full-grid ¢ = (5,4,4,4)

— =12 —— Full-grid ¢ = (5,5,5,5)
v =1e0 0.3
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10-20

(a) The electric potential energy versus (b) Exponential decay rate v for the po- (c) Plot of the electric potential for v =
time for two collision frequencies v. tential energy as a function of v. The 10~2 and velocity resolutions £, = 4 and
dashed line corresponds to v = 0.307. Ly, = 5.

Figure 5.4.1: Collisional Landau Problem — Section 5.4: Plots demonstrating collisional Landau damping. All runs use the
Chu reduction method of Section 2.2. The levels set are ¢, = 5 and ¢, = 6 except in Figure 5.4.1c.

In the collisionless case, the Landau damping problem is characterized by exponential decay of the
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potential energy with time, Epo(t) = %fﬂm E?dx o exp(—~t), where the damping rate is v ~ 0.307
[5]. Moreover, with evolving time, the solution will exhibit increasingly smaller-scale structures about the
Maxwellian that eventually become unresolved with fixed or finite resolution (see [29]). With collisions,
the damping rate decreases with increasing collision frequency (e.g., [25, 43]), tending to zero in the Euler—
Poisson limit (v — 00).

Figure 5.4.1a shows the potential energy versus time, as obtained with the full-grid method, for v = 1072
(blue) and v =1 (red). Figure 5.4.1b shows numerically determined damping rates as a function of collision
frequency. These results were obtained with the full-grid method using the Chu reduction technique. The
damping rate is determined by a least squares fit using the local maxima of the potential energy. For small
collision frequencies, the damping rate tends to the expected result in the collisionless limit indicated by
the horizontal dashed line. The damping rate drops rapidly for v 2 0.3, and has dropped to about 0.01
for v = 10. Figure 5.4.1c compares the evolution of the potential energy versus time for the v = 1072 case
with two different velocity resolutions; ¢, = 4 (blue) and £, = 5 (red). For the simulation with the coarser
velocity resolution, the damping rate is consistent with the analytic prediction until ¢ ~ 10. For ¢ > 10,
the potential energy increases briefly with time before decreasing again with a modified damping rate. For
the finer velocity resolution, the damping rate stays constant at the correct value for all times. Based on
this observation, we consider ¢, = 5 the minimum resolution needed to perform satisfactory on this test
when v = 1072, We performed a similar comparison with v = 1, which revealed that ¢, = 4 is sufficient for
this case. In the following, we consider the two cases: v = 1072 (low collisionality) and v = 1 (moderate
collisionality), in more detail to compare the adaptive sparse-grid method against the full-grid method. Due
to the embedding of the lxlv full-grid into the 1x3v mixed-grid as discussed in Section 5.1, the electric
field FE is similar for the full- and mixed-grids of the same level. For this reason, the mixed-grid results are
omitted.

1078 LYV A ]
J \
{0 [’} A
ol 1V
80107 10L %,\ 1
g . /\
=] 4
s B
2 1012] i N 3
Q I ‘ ~
bS] AVl
= |
?

L,
& \R
107 ML \ ( \
—8— Full-grid ¢ = (4,5,5,5) ‘

—6— Adaptive Sparse-grid 7 = le-6
Adaptive Sparse-grid 7 = le-8 \

10*16 I I I I

0 10 20 30 40 50

t

Figure 5.4.2: Collisional Landau Problem — Section 5.4: Plot of the potential energy with v = 10~2. The adaptive sparse grid
is not allowed to refine past level £ = (4,5, 5,5), and the GMRES tolerance is set to 10714, A tolerance of 7 = 10~% is not
sufficient to capture the proper decay. The tolerance of 7 = 10~8 agrees quite well with the full-grid solution except for a slight
deviation at longer times.

Figure 5.4.2 compares adaptive sparse-grid against full-grid for the low collisionality case by plotting
the potential energy versus time. The full-grid run with £ = (4,5,5,5), used as reference in Figure 5.4.2,
is in close agreement with the full-grid run with £ = (5,5,5,5) plotted in the right panel of Figure 5.4.1c.
When the tolerance for refinement is 7 = 1079, the adaptive results agree with the full-grid results up to
about ¢ = 10. For later times, the resolution allowed by the threshold is not sufficient to capture the correct

24



572

573

574

575

576

577

578

579

580

damping of the potential energy. Past t = 35, the solution coarsens to only global elements in z, i.e. £, = 0,
which forces the electric field to zero before refinement, and causes unreliable behavior in the potential
energy. When the tolerance is reduced to 7 = 1078, the adaptive sparse-grid is in better agreement with the
full-grid throughout the simulation, although some deviations near the end are observed. For the 7 = 10~¢
case, the number of active elements stays around 1.1 x 10* throughout, while for the 7 = 108 case the
number of active elements starts out around 3 x 10%, which drops steadily to about 2.5 x 10* at the end
of the simulation. In comparison, the full-grid with £ = (4,5,5,5), the maximum allowed for the adaptive
spares-grid, consists of about 5.2 x 10° elements. Thus, the adaptive grid provides significant savings in
terms of the number of degrees of freedom.
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Figure 5.4.3: Collisional Landau Problem — Section 5.4: Plot of the potential energy with v = 1. The adaptive sparse grid
is not allowed to refine past level £ = (5,4,4,4), and the GMRES tolerance is set to 10711. A tolerance of 7 = 1076 is not
sufficient to capture the proper decay. The tolerance of 7 = 10~8 agrees quite well with the full-grid solution at all times
plotted.
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Figure 5.4.4: Collisional Landau Problem — Section 5.4: Top: Relative change in total energy versus time. Bottom: Deviation
of the potential, kinetic, and total energy from the initial condition for the adaptive sparse-grid method with 7 = 10~8.
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Figure 5.4.3 compares adaptive sparse-grid against full-grid for the moderate collisionality case, where
we plot the same quantities as in Figure 5.4.2. For this collisionality, we have determined that a full-grid
resolution of £ = (5,4, 4,4) is sufficient to accurately capture the evolution of the potential energy. Similar
to the low collisionality case, the potential energy evolution obtained with adaptivity threshold 7 = 1076
is not in satisfactory agreement with the full-grid and analytic results. However, we find that the adaptive
spare-grid and full-grid results are indistinguishable when the adaptivity threshold is reduced to 7 = 10~%.
For 7 = 1079, the number of active elements stays roughly constant at about 4.8 x 103, while for the case
with 7 = 1078, the number of active elements starts out around 1.1 x 10, and decreases to about 7 x 103
at the end of the simulation. For comparison, the full-grid with £ = (5,4,4,4) consists of about 1.3 x 10°
elements. Thus, the adaptive sparse-grid with 7 = 1078 is as accurate as the full-grid solution, but with
substantially fewer degrees of freedom.

In Figure 5.4.4 we plot the the relative change in total energy for both collisionalities discussed above.
The relative change in the total energy is at the level of GMRES tolerance for the full-grid simulation. For the
adaptive sparse-grid methods, the relative change in the total energy decreases with the size of the threshold
T used; we expect this trend to continue until the GMRES tolerance pollutes the energy conservation. We
hypothesize the improvement in the relative energy conservation of the adaptive sparse-grid with 7 = 1078
when compared with the full-grid (as seen in Figure 5.4.4b) is due to the multiwavelets not being used in
the Chu reduction discretization.

The number of GMRES iterations varies between three and five for the sparse-grid runs.

6. Summary and Outlook

In this work, we presented an adaptive sparse-grid DG method for the the VPLB model on a slab ge-
ometry. The results of this project utilized the Adaptive Sparse-Grid Discretization (ASGarD) codebase.
As demonstrated in Section 5, the adaptive sparse-grid method significantly decreases the storage cost of
DG numerical approximations without compromising accuracy. Moreover, the adaptive sparse-grid method
was able to capture physically relatively features of the distribution without the use of model specific er-
ror indicators. The results also indicate that standard sparse-grids in velocity space, i.e. the mixed-grid
formulation, accurately captures low-order moments of the distribution, but are only slightly better when
compared asymptotically against the full-grid for higher-order moments. This necessitates further research
into using in a coordinate system that more beneficially captures the radial behavior of the Maxwellian,
e.g. spherical-polar coordinates, or allowing some form of adaptivity in the mixed-grid. Other future plans
include the expansion of the adaptive sparse-grid tests to full 3x3v phase-space simulations, efficient imple-
mentations of PDE operators on a sparse-grid basis, implementation of more efficient preconditioners in the
sparse-grid framework, and the preservation of key quantities such as positivity of the discrete distribution
in the multiwavelet basis.
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