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Abstract

Sparse-grid methods have recently gained interest in reducing the computational cost of solving high-
dimensional kinetic equations. In this paper, we construct adaptive and hybrid sparse-grid methods for
the Vlasov–Poisson–Lenard–Bernstein (VPLB) model. This model has applications to plasma physics and
is simulated in two reduced geometries: a 0x3v space homogeneous geometry and a 1x3v slab geometry.
We use the discontinuous Galerkin (DG) method as a base discretization due to its high-order accuracy and
ability to preserve important structural properties of partial differential equations. We utilize a multiwavelet
basis expansion to determine the sparse-grid basis and the adaptive mesh criteria. We analyze the proposed
sparse-grid methods on a suite of three test problems by computing the savings afforded by sparse-grids in
comparison to standard solutions of the DG method. The results are obtained using the adaptive sparse-grid
discretization library ASGarD.
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1. Introduction1

In this paper, we investigate sparse-grid solutions to kinetic equations with applications in plasma physics.2

In a general setting, equations of this type are defined in terms of a kinetic distribution f that evolves over a3

six-dimensional phase space (three position and three velocity variables). To discretize f in phase-space, we4

work with sparse-grid approximations based on the discontinuous Galerkin (DG) method. First introduced5

for kinetic models of radiation transport [70], the DG method is a finite element method that offers high-6

order accurate solutions to elliptic [71] and hyperbolic partial differential equations (PDEs) [24] with compact7

stencils. In addition to being locally conservative, DG methods are efficient at preserving important physical8

constraints and structural properties inherited from the underlying PDEs that they are used to simulate.9

Such properties include positivity [89], energy conservation [34, 88, 85], asymptotic limits [55, 2, 38, 76, 86,10

82], entropy stability [18, 33, 16, 87, 8], and invariant domains [65, 23, 63]. For these reasons, the DG method11

has become a popular tool in the simulation of kinetic equations [43, 29, 3, 19, 20, 26, 30, 35, 46, 69, 1].12

When applied to high-dimensional PDEs, Eulerian grid-based methods, including DG, suffer from the13

curse of dimensionality [9], where the cost to approximate a general measurable function scales like O(Nd),14

with d the dimension of the domain and N the degrees of freedom in a single dimension. Such a scaling15

in six dimensions makes the standard DG method intractable for approximating general kinetic equations,16

even on leadership class computing facilities [39].17

Particle-based methods, e.g. particle in cell, attempt to mitigate the curse of dimensionality using a18

Lagrangian approach [11, 17, 53, 47, 45, 15]. However, there has been recent interest in reducing the19

computational and memory footprint of Eulerian methods by compressing the full-resolution distribution.20

One popular technique is low-rank approximations where the discretized kinetic distribution is treated as21

a d-mode tensor and compressed using a low-rank factorization. The low-rank decomposition is evolved22

through time using methods such as step-truncation [72, 41] or dynamical low-rank approximation [28, 27].23

Another popular avenue is the sparse-grid method [40, 83, 49] which is the focus of this paper.24

The sparse-grid method [12] is a general technique used for the approximation of high-dimensional25

functions. These methods replace the O(Nd) scaling of tensor-based discretizations to O(N(log N)d−1).26

First developed for the integration of high-dimensional functions [77, 36], current flavors of the sparse-grid27

method are far reaching. Sparse-grid interpolation has been successfully employed in the construction of28

surrogate models [13, 21] including addressing challenges of adaptivity for basis with local support [68, 66,29

67, 58, 52, 79], global support [81, 61, 62, 60], and even discontinuous response surfaces [50, 51, 80].30

Additionally, sparse-grids have gained favor in the approximation of high-dimensional PDEs with exam-31

ples in finite differences [56], finite volumes [44, 59], conforming finite element methods [73, 74, 75, 7] as well32

as the DG method [84, 39]. In the DG context, functions are decomposed in a multiwavelet basis [4] with33

specific basis functions discarded via a sparse-grid selection rule. This multiwavelet decomposition induces34

a decay in the coefficient’s magnitude over finer levels. This decay is utilized to build model-independent35

criteria for adaptively choosing whether to keep or discard basis functions. This is referred to as the adaptive36

sparse-grid DG method and has shown promise in the modelling of kinetic equations [54, 40, 83].37

The main goal of this work is to study the computational savings provided by sparse-grids on the Vlasov–38

Poisson–Lenard–Bernstein (VPLB) model. We measure the savings by the reduction of the total degrees of39

freedom required to accurately represent the solution. The grids of choice are the adaptive sparse-grid DG40

method and a hybrid sparse-grid method, called the mixed-grid method, which is a standard DG grid in41

position space tensored with a sparse-grid in velocity space. Similar hybrid splittings have been studied in42

the context of collisionless kinetic problems [54]. The methods are tested on the following three problems: a43

simple relaxation to a Maxwellian equilibrium, the Sod shock tube problem [78], and an example of collisional44

Landau damping [25, 43, 32]. In each problem, we present the computational savings achieved as well as45

general qualitative performance, such as capturing desired physical features, of the methods presented. In46

general, the adaptive sparse-grid method significantly reduces the storage cost of the distribution while the47

mixed-grid method only provides favorable savings in determining lower-order moments of the distribution.48

We work with the VPLB model on a slab geometry which reduces the problem to a four-dimensional49

1x3v problem (one position dimension, three velocity dimensions). This is done so that the problem size50

is sufficiently small to be run on a single node machine; the Chu reduction method [22] can be utilized to51
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further reduce the problem to a moment model in 1x1v which then allows the creation of fine-resolution52

reference solutions; and, in a slab geometry, the VPLB model can be written as a sum of terms which53

are each tensor products of one-dimensional PDE operators. The latter property, commonly referred to54

as separability, allows efficient evaluations of the model on sparse-grids. We note that recent endeavors,55

e.g. interpolatory wavelets [49], are being researched to bypass the separability condition. Nonetheless, DG56

approximations to the slab problem with sufficient resolution to accurately capture fine-scale features will57

still tax a single node machine and thus will require some sort of compression. Additionally, we are keeping58

three velocity dimensions which we expect to provide the main source of savings captured by the adaptive59

sparse-grid DG method; this is because, locally in space, the collision operator mollifies the distribution in60

the velocity domain, which will in turn cause a rapid decay in the coefficient size when the distribution is61

represented in the multiwavelet DG basis. Moreover, in regimes of high collisionality, where the distribution62

typically approaches a local thermal equilibrium that is very smooth in the velocity variable, the distribution63

in physical space is close to a fluid model which can form shocks and other non-smooth features. Therefore,64

we believe the 1x3v geometry provides an indication of the savings expected in the full 3x3v model, as well65

as clues for constructing hybrid approaches.66

Complementing this work is the development of the adaptive sparse-grid DG codebase ASGarD (Adaptive67

Sparse-Grid Discretization) [37]. The goal of this open-source project is to facilitate and promote the68

use of adaptive sparse-grid methods for the approximation of kinetic models by providing a robust yet69

flexible adaptive sparse-grid library. All sparse-grid results of this work were computed using ASGarD.70

The algorithmic specifics of how ASGarD evaluates PDE operators will be delayed for a future work. This71

manuscript only focuses on the mathematics of the adaptive sparse-grid method and the memory reduction72

realized via its utilization.73

The rest of the paper is organized as follows. In Section 2, we present the VPLB model, as well as the74

Chu reduction method for generating reference solutions and the geometric reductions used to formulate75

the aforementioned test problems. In Section 3, we present the DG method for the VPLB model which76

we refer to as the full-grid method. Section 4 provides an overview to the standard and adaptive sparse-77

grid methods and details the specifics implemented in ASGarD. In Section 5, we analyze the results of the78

adaptive sparse-grid and mixed-grid methods, compared against the full-grid method, for the chosen suite79

of test problems. Finally, Section 6 gives our conclusions and future plans.80

2. The Vlasov–Poisson–Lenard–Bernstein Model81

The Vlasov–Poisson–Lenard–Bernstein (VPLB) model describes the dynamics of charged particles in-82

fluenced by a self-consistent electric field and collisional dynamics. It couples a kinetic equation for the83

phase-space distribution function of charged particles with a Poisson equation for the electrostatic potential.84

Assuming ions of unit mass and charge, the governing kinetic equation is85

∂tf(x, v, t) + v · ∇xf(x, v, t) + E(x, t) · ∇vf(x, v, t) = CLB(f)(x, v, t), (2.1)

where the phase-space distribution function f depends on position x = (x1, x2, x3)⊤ ∈ Ωx ⊆ R3, velocity86

v = (v1, v2, v3)⊤ ∈ R3, and time t ≥ 0. The electric field E = −∇xΦ is obtained from the electrostatic87

potential Φ by solving the Poisson equation88

−∇x · ∇xΦ(x, t) = nf (x, t) − ne, (2.2)

where nf = ⟨f⟩v ≡
∫
R3 f dv is the ion density, and ne is a constant background electron density chosen to89

enforce global charge neutrality: ne =
∫

Ωx
nf (x, t) dx for all t ≥ 0. We assume the physical domain Ωx is90

periodic. The collision operator CLB on the right-hand side of (2.1) is the Lenard–Bernstein (LB) operator91

[57]. It takes the form [43, 32]92

CLB[ρf ](f)(x, v, t) = ν∇v ·
(

(v − uf ) f + θf ∇vf
)
, (2.3)
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where ν ≥ 0 is a collision frequency that is assumed to be a constant independent of v, x, and t. The93

moments of f ,94

ρf = ⟨ef⟩v, where e = (e0, e1, e2)⊤ ≡ (1, v,
1
2 |v|2)⊤, (2.4)

represent the number, momentum, and energy densities, respectively, and the bulk velocity and temperature95

are defined from ρf by96

uf = 1
nf

⟨fv⟩v and θf = 1
3nf

⟨f |v − uf |2⟩v. (2.5)

Direct calculations show that97

ρf =
(

nf , nf uf , nf (1
2 |uf |2 + 3

2θf )
)⊤

. (2.6)

Proposition 1 ([43, 29]). The LB operator satisfies the following properties98

1. Conservation of number, momentum, and energy:99

⟨CLB[ρw](w)e⟩v = 0, ∀w ∈ Dom(CLB). (2.7)

2. Dissipation of entropy:100

⟨CLB[ρw](w) log w⟩v ≤ 0, ∀w ∈ Dom(CLB). (2.8)

3. Characterization of equilibria: For any w ∈ Dom(CLB),101

⟨CLB[ρw](w) log w⟩v = 0 (2.9)

if and only if w is a Maxwellian distribution, i.e.,102

w = Mw := nw

(2πθw)3/2 exp
{ −|v − uw|2

2θw

}
. (2.10)

Proposition 2 ([43, 29]). On a periodic spatial domain Ωx ⊆ R3, the VPLB model satisfies the following103

global conservation laws:104

1. Conservation of number:105

∂t

∫
Ωx

⟨f⟩v dx = 0. (2.11)

2. Conservation of momentum:106

∂t

∫
Ωx

⟨e1f⟩v dx = 0. (2.12)

3. Conservation of energy:107

∂t

∫
Ωx

(⟨e2f⟩v + 1
2 |E|2) dx = 0. (2.13)

2.1. Geometric reductions108

2.1.1. Space homogeneous problem109

To investigate the relaxation induced by the LB collision operator of a velocity distribution to a Maxwellian,110

we consider the equation (2.3) under the assumption that f does not depend on x. In this case, the PDE is111

given by112

∂tf(v, t) = ν CLB(f)(v, t). (2.14)

4



2.1.2. Reduction to slab geometry113

Under the assumption that ∂yf = ∂zf = 0, the VPLB model (2.1) reduces to114

∂tf(x, v, t) + vx∂xf(x, v, t) + E∂vx
f(x, v, t) = CLB(f)(x, v, t), (2.15)

where E := Ex = −∂xΦ and Φ satisfies115

−∂xxΦ(x) = nf (x, t) − ne. (2.16)

Let (vr, ϑ, φ) be a spherical-polar coordinate system in which the x-axis is aligned with the polar direction,116

so that117

vx = vr cos ϑ, vy = vr sin ϑ cos φ, and vz = vr sin ϑ sin φ, (2.17)
where vr = |v|, ϑ is the polar angle, and φ is the azimuthal angle. We assume further that f is independent118

of φ; as a result (uf )y = (uf )z = 0, and by abuse of notation we set119

(uf )x := uf = ⟨fvx⟩v

nf
(2.18)

so that uf = [uf , 0, 0]⊤. The equation (2.15) has a phase space with four total dimensions: one for physical120

space and three for velocity space, i.e., 1x3v.121

2.2. Reduction to 1x1v122

The Chu reduction method is a tool for further reducing the slab geometry problem to 1x1v, at the cost123

of solving an additional equation. It was first developed in [22] for the Bhatnagar–Gross–Krook (BGK)124

equation and is used here to provide reference solutions in Section 5 for sparse-grid simulations when exact125

solutions are not known and full-grid reference calculations are prohibitively expensive.126

To derive the Chu reduction of (2.15), let127

g1(x, vx) =
∫
R2

f(x, v) dvy dvz and g2(x, vx) =
∫
R2

(v2
y + v2

z)f(x, v) dvy dvz, (2.19)

Testing (2.15) by 1 and by v2
y + v2

z , respectively and integrating over dvy dvz yields the following coupled128

system in (x, vx):129

∂tg1 + vx∂xg1 + E∂vx
g1 = ν C1(g1; uf , θf ), (2.20a)

∂tg2 + vx∂xg2 + E∂vx
g2 = ν C1(g2; uf , θf ) + ν ( 4θf g1 − 2g2 ), (2.20b)

where130

C1(g; u, θ) = ∂vx
((vx − u)g + θ∂vx

g), E = −∂xΦ, and − ∂xxΦ = nf − ne, (2.21)
and, importantly, the velocity moments of f can be expressed in terms of g1 and g2:131

nf =
∫
R

g1 dvx, uf =
∫
R g1vx dvx

nf
, and θf = 1

3nf

∫
R

[
g1(vx − uf )2 + g2

]
dvx. (2.22)

The conservation properties of (2.7) are preserved; namely,132 ∫
R

C1(g̃1; uf , θf ) dvx =
∫
R

C1(g̃1; uf , θf )vx dvx = 0, (2.23a)

1
2

∫
R

C1(g̃1; uf , θf )v2
x + C1(g̃2; uf , θf ) + (4θf g̃1 − 2g̃2) dvx = 0, (2.23b)

for any g̃1 and g̃2 such that the fluid variables nf , uf , and θf are built via (2.22) using g̃1 and g̃2.133

Though not required for (2.20), we will, for diagnostic purposes in Section 5, also consider the function134

g3(x, vx) =
∫
R2

(v4
y + v4

z)f(x, v) dvy dvz, (2.24)

which satisfies135

∂tg3 + vx∂xg3 + E∂vx
g3 = ν C1(g3; uf , θf ) + ν ( 12θf g2 − 4g3 ). (2.25)
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3. Notation and the Discontinuous Galerkin Method136

3.1. Notation137

Let ℓx ∈ N0 = {0, 1, 2, . . .}, Ωx = (−Lx, Lx) be an interval in physical space, and Tx,ℓx
be a uniform138

mesh on Ωx with 2ℓx elements. Let Ex,ℓx
be the skeleton of Tx,ℓx

.139

Similarly, let ℓv ∈ N0, Ωv = (−Lv, Lv)3 ⊂ R3, and Tv,ℓv be a uniform cubic mesh on Ωv with 2ℓv elements140

in each dimension. Let E I
v,ℓv

be the interior (i.e., not including boundaries) skeleton on this mesh. We will141

often use ⟨ · ⟩v and ⟨ · ⟩vy,vz
to denote integration in dv and dvy dvz, respectively.142

We let Ω = Ωx × Ωv ⊂ R4, and denote L2(Ω) and Hs(Ω) to be the standard Lebesgue and Sobolev143

spaces on Ω. Let (· , ·) be the L2(Ω)-inner product with norm ∥ · ∥L2(Ω) and let ∥ · ∥Hs(Ω) be the norm on144

Hs(Ω). We denote by L2(D) and (· , ·)D the L2 space with standard inner product on some domain D which145

is typically Ωx or Ωv. Any of the inner products mentioned above can be trivially extended to vector-valued146

functions with the standard Euclidean inner product.147

Denote the discontinuous Galerkin finite element spaces Vx,ℓx
⊂ L2(Ωx) and Vv,ℓv

⊂ L2(Ωv) by148

Vx,ℓx
= {g ∈ L2(Ωx) : g

∣∣
K

= Qk(K) ∀K ∈ Tx,ℓx
}

Vv,ℓv = {g ∈ L2(Ωv) : g
∣∣
K

= Qk(K) ∀K ∈ Tv,ℓv }
(3.1)

where Qk(K) is the set of all polynomials of maximum degree k in any direction on K. We assume k = 2149

unless written otherwise. Let Vℓ = Vx,ℓx
⊗ Vv,ℓv

.150

Given x∗ ∈ Ex,ℓx
, let g be a function with traces g±(x∗) := limx→x±

∗
g(x) well defined. Define the average151

and jump of g in x, respectively, by152

{{g}} = 1
2 (g+ + g−) and [[g]] = g− − g+. (3.2)

We account for the periodic boundary in Ex,ℓx by defining the jumps and averages on the boundary using153

(3.2) with g+ = g(Lx) and g− = g(−Lx). We denote by Sx,ℓx
the intersection of Vx,ℓx

with k = 1 and all154

continuous and periodic functions on the closure of Ωx, i.e. Ωx. The space Sx,ℓx
is used for the discretization155

of (2.16) and uses linear functions so that the electric field E is constant on each element.156

Similarly, consider the edge e ∈ E I
v,ℓv

, where e = ∂K+ ∩ ∂K− and K± ∈ Tv,ℓv
with normal outward157

vector n±
v . Given a scalar and vector valued function g and σ respectively with well defined traces on ∂K±,158

define the average and jump of g and σ in v, respectively, by159

{{g}} = 1
2 (g+ + g−) and [[g]] = g−n−

v + g+n+
v ,

{{σ}} = 1
2 (σ+ + σ−) and [[σ]] = σ− · n−

v + σ+ · n+
v ,

(3.3)

where for any v∗ ∈ e,160

g±(v∗) = lim
v→v∗
v∈K±

g(v) (3.4)

with analogous definition for σ±. While the same notation for average and jumps is used in the physical161

and velocity domains, the domain of integration of the DG formulation provides context to which case is162

used (see (3.6)). Let
〈〈

· , ·
〉〉

e
be the L2 inner product over an edge e and denote

〈〈
· , ·
〉〉

Ex,ℓx
=
∑

e∈Ex,ℓx

〈〈
·, ·
〉〉

e
163

with an analogous definition for
〈〈

·
〉〉

EI
v,ℓv

. For functions g in Vℓ, let ∂x and ∇v represent the piece-wise164

spatial derivative and velocity gradient g.165

Finally, for time integration, let ∆t > 0 be the timestep, assumed for our purposes to be uniform. For166

n ∈ N0 define tn = n∆t and denote fn to be an approximation to f(tn).167

3.2. Discontinuous Galerkin Method168

We first discretize (2.1) in phase space on Vℓ by the following semi-discrete problem: Find fh ∈169

C([0, ∞]; Vℓ) such that170
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(∂tfh, gh) + AVP(fh, gh) = νALB(fh, ρfh
, gh) (3.5)

holds for all gh ∈ Vℓ. The Vlasov–Poisson portion, AVP, is discretized with upwind fluxes; specifically,171

AVP(wh, gh) = −(vxwh, ∂xgh) +
〈〈

vx{{wh}} + |vx|
2 [[wh]], [[gh]]

〉〉
Ex,ℓx ×Ωv

− (Ẽhwh, ∇vgh) +
〈〈

{{Ẽhwh}} + |Ẽh·nv|
2 [[wh]], [[gh]]

〉〉
Ωx×EI

v,ℓv

(3.6)

for all wh, gh ∈ Vℓ where Ẽh := (Eh, 0, 0)⊤ and Eh is given by −∂xΦh where Φh ∈ Sx,ℓx
satisfies172

(∂xΦh, ∂xqh)Ωx =
(〈

wh

〉
v

− ne, qh

)
Ωx

(3.7)

for every qh ∈ Sx,ℓx
. The boundary conditions are periodic in x and we impose zero fluxes on the velocity173

boundaries.174

The Lenard–Bernstein portion, ALB, of Equation (3.5) is discretized with the LDG method (e.g., [24]),175

with central fluxes for the diffusion term and a local Lax–Friedrichs flux for the advection term; namely,176

ALB(wh, ρh, gh) = −((v − u)wh, ∂vgh) +
〈〈

{{vwh}} − |v·nv|
2 [[wh]], [[gh]]

〉〉
Ωx×EI

v,ℓv

− (σh, ∇vgh) +
〈〈

{{σh}}, [[gh]]
〉〉

Ωx×EI
v,ℓv

(3.8)

for every wh, gh ∈ Vℓ, where u is determined from ρh ∈ [Vx,ℓx
]3 via formulas in (2.5). Here σh ∈ [Vℓ]3 is the177

approximation to the velocity gradient of wh and is defined by178

(σh, τh) = (θ∇vwh, τh) −
〈〈

θ[[wh]], {{τh}}
〉〉

Ωx×EI
v,ℓv

(3.9)

for every τh ∈ [Vℓ]3, where θ is determined by ρh the relevant formula in (2.5).179

If wh = 0 on ∂Ωv, then it can be shown that ALB(wh, ρwh
, eqh) = 0 for all qh ∈ Vx,ℓx

, which implies that180

the conservation properties in Equation (2.7) hold.181

For brevity, we do not provide the discretization for the Chu reduction (2.20), but we note it is similar182

to the discretizations given above for the slab problem.183

3.3. Time Stepping Method184

We discretize (3.5) in time via Implicit-Explicit (IMEX) Runge–Kutta (RK) methods [6]. Such methods185

are popular time steppers for evolving kinetic models that feature multiple time scales [64, 23, 29]. In186

our case, the Vlasov–Poisson portion AVP will be evolved explicitly and the collision operator ALB will be187

evolved implicitly. We will use IMEX-RK method of [23] which is given by:188

(f (1,∗)
h , gh) = (fn

h , gh) − ∆tAVP(fn
h , gh), (3.10a)

(f (1)
h , gh) = (f (1,∗)

h , gh) + ∆tνALB(f (1)
h , ρ

f
(1∗)
h

, gh), (3.10b)

(f (2,∗)
h , gh) = 1

2 (fn
h , gh) + 1

2
(
(f (1)

h , gh) − ∆tAVP(f (1)
h , gh)

)
, (3.10c)

(f (2)
h , gh) = (f (2,∗)

h , gh) + 1
2 ∆tνALB(f (2)

h , ρ
f

(2∗)
h

, gh), (3.10d)

and fn+1
h := f

(2)
h189

Assuming zero velocity-boundary data, the invariance of the discrete collision operator implies ρ
f

(s,∗)
h

=190

ρ
f

(s)
h

, for s ∈ {1, 2}. Therefore we plug the moments f
(s,∗)
h into the collision operator ALB in (3.10b) and191

(3.10d) for s = 1 and s = 2 respectively. This decouples the moments from the distribution and provides192

a linear solve for f
(s)
h . Both (3.10b) and (3.10d) are solved iteratively using GMRES with the possible193

inclusion of a block-Jacobi preconditioner.194
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4. Sparse-grid Method195

In this section, we describe the sparse-grid DG method and adaptivity procedure used in ASGarD. The196

method, first introduced in [84] (and from which some of the presentation of this section is based), is provided197

here for completeness. We first construct the multiwavelet basis in one dimension, then extend to multiple198

dimensions and introduce the sparse-grid selection rule, and finally discuss the adaptivity procedure.199

4.1. Single Dimension Multiwavelet Basis200

The one-dimensional multiwavelet basis is a hierarchical basis in which additional basis functions for201

resolving fine scale features are introduced using orthogonal complements to current functions in the basis.202

To simplify the presentation, we assume a domain Ω = [0, 1]. Given a level ℓ ∈ {0, . . . , N}, let Tℓ be a203

uniform mesh of Ω with mesh size hℓ = 2−ℓ. The partition of Tℓ is characterized by the union of disjoint204

intervals Iℓ,j := (2−ℓj, 2−ℓ(j + 1)) for j = 0, . . . , 2ℓ − 1. Given this mesh, define the corresponding DG finite205

element space Vℓ by1
206

Vℓ := V k
ℓ =

{
g ∈ L2(Ω) : g

∣∣
Iℓ,j

∈ Pk(Iℓ,j) ∀j = 0, . . . , 2ℓ − 1
}

, (4.1)

where Pk is the space of polynomials of degree up to k. This space has dimension dim(Vℓ) = 2ℓ(k + 1).207

Additionally, due to the uniform partitioning,208

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ VN . (4.2)

Let Wℓ to be the orthogonal complement of Vℓ−1 in Vℓ with respect to the L2(Ω) inner product; that is,209

W0 = V0, while for ℓ ≥ 1,210

Vℓ = Vℓ−1 ⊕ Wℓ and Wℓ ⊥ Vℓ−1, (4.3)

where ⊕ is the direct sum and dim(Wℓ) = max{0, 2ℓ−1(k + 1)}. Then211

VN =
N⊕

ℓ=0
Wℓ. (4.4)

The hierarchical decomposition in (4.4) induces a natural decay in the coefficients for the approximation212

of smooth functions. Specifically, let Qℓ : L2(Ω) → Wℓ be the orthogonal L2 projection onto Wℓ. Then by213

standard polynomial approximation theory (see, e.g., [14, Section 5.4.2] or [71, Theorem 2.6]), there exists214

a constant C > 0, independent of ℓ, such that for any g ∈ Hs(Ω),215

∥Qℓg∥L2(Ω) ≤ Ch
min{s,k+1}
ℓ ∥g∥Hs(Ω). (4.5)

This decay property motivates the adaptive strategy described in Section 4.4.216

A standard choice for the basis of Wℓ for ℓ ≥ 1 are wavelets – functions that are scaled and shifted to217

capture finer-scale features. The prototype wavelet is the piece-wise constant Haar basis [42]. Here we use218

Alpert wavelets [4].219

Definition 1. The Alpert wavelets are a set of a functions {ϕi(y) : i = 1, . . . , k + 1} ⊂ L2(R) with support220

in [−1, 1] and defined such that221

1. ϕi

∣∣
(0,1) ∈ Pk(0, 1).222

2. ϕi(y) = (−1)i+kϕi(−y).223

3.
∫ 1

−1 ϕi(y)yj dy = 0 for all j = 0, 1, . . . , i + k − 1.224

4.
∫ 1

−1 ϕi(y)ϕj(y) dy = δij for all i, j = 1, . . . , k where δij is the Kronecker delta.225

1We will often drop the polynomial degree superscript on V k
ℓ for brevity.
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For a given polynomial degree k, the Alpert wavelets satisfying Definition 1 are unique up to a sign. The226

Alpert basis is not hierarchical in the polynomial degree; thus each wavelet must be reconstructed when k227

is changed. For k = 0, Alpert’s wavelets correspond to the Haar basis. For k = 2, the wavelets are given on228

the interval (0, 1) by229

ϕ1(y) = 1
3

√
1
2 (1 − 24y + 30y2), ϕ2(y) = 1

2

√
3
2 (3 − 16y + 15y2), ϕ3(y) = 1

3

√
5
2 (4 − 15y + 12y2) (4.6)

Construction of the wavelets and examples for other polynomial degrees can be found in [4, Page 5].230

For each ℓ ≥ 0, we use the Alpert wavelets to define a basis set {gi
ℓ,j} of Wℓ. For ℓ = 0, we choose gi

0,0231

to be the shifted Legendre polynomials normalized on L2(Ω). For ℓ ≥ 1, we shift and rescale the Alpert232

wavelets so that for each x ∈ (0, 1),233

gi
ℓ,j(y) = 2(ℓ−1)/2γi(2ℓ−1y − j), where γi(y) :=

√
2ϕi(2y − 1). (4.7)

Here ℓ is the level, j = 0, . . . , 2ℓ−1 − 1 is the level index, and i = 1, . . . , k + 1 is the polynomial index. The234

support of gi
ℓ,j is precisely Iℓ−1,⌊j/2⌋, where ⌊·⌋ is the floor function. Additionally, since every wavelet gi′

ℓ′,j′235

for any i′, j′, and ℓ′ < ℓ is a polynomial on Iℓ−1,⌊j/2⌋, Item 3 of Definition 1 ensures that the wavelet bases236

are all orthonormal; that is,237 ∫ 1

0
gi

ℓ,j(y)gi′

ℓ′,j′(y) dy = δii′δℓℓ′δjj′ . (4.8)

Plots of the wavelets gi
ℓ,j for ℓ = 0, 1, 2, 3 and k = 2 are given in Figure 4.1.1.238

(a) ℓ = 0, j = 0 (b) ℓ = 1, j = 0 (c) ℓ = 2, j = 0 (d) ℓ = 2, j = 1

(e) ℓ = 3, j = 0 (f) ℓ = 3, j = 1 (g) ℓ = 3, j = 2 (h) ℓ = 3, j = 3

Figure 4.1.1: Plots of the wavelet basis gi
ℓ,j , given by (4.7), for k = 2. In each plot, the entire set of wavelet basis functions for

level ℓ = 3 and lower are shown in each plot and are translucent.

4.2. Multiwavelet Basis in Higher Dimensions239

A d-dimensional basis is achieved through a tensor product extension. Let Ωd = (0, 1)d with y =240

(y1, . . . , yd) ∈ Ωd. Given a multi-index α = (α1, . . . , αd) ∈ Nd
0, define the norms241

|α|1 =
d∑

m=1
αm and |α|∞ = max

1≤m≤d
αm. (4.9)
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Let ℓ = (ℓ1, . . . , ℓd) be a multi-index level set, where ℓd defines the level for dimension d, and let Tℓ be a242

tensor product mesh with multi-dimensional mesh parameter h := (2−ℓ1 , . . . , 2−ℓd). We label all elements243

in Tℓ by Iℓ,j = {y : ym ∈ (2−ℓmjm, 2−ℓm(jm + 1)} and define the tensor product finite element space by244

Vℓ := V k
ℓ = {g ∈ L2(Ω) : g

∣∣
Iℓ,j

∈ Qk(Iℓ,j), ∀ 0 ≤ jm ≤ 2ℓm − 1, m = 1, . . . , d}, (4.10)

where Qk(Iℓ,j) represents the set of polynomials of degree up to k in each dimension on Iℓ,j . If ℓ =245

(N, . . . , N), then we abbreviate Vℓ by VN .246

Recall the one-dimensional hierarchical decomposition in Section 4.1. Given the complementary sets247

Wℓm
defined in (4.3), let248

Wℓ = Wℓ1 ⊗ Wℓ2 ⊗ · · · ⊗ Wℓd
. (4.11)

Then (4.4) extends to the multidimensional setting:249

Vℓ = Vℓ1 ⊗ · · · ⊗ Vℓd
=

⊕
0≤ℓ′≤ℓ

Wℓ′ . (4.12)

An extension of the coefficient decay result (4.5) also holds. Let Qℓ : L2(Ω) → Wℓ be the orthogonal L2
250

projection onto Wℓ, then251

∥Qℓg∥L2(Ω) = O

(
d∏

m=1
hmin{s,k+1}

m

)
, (4.13)

where s is a regularity parameter tied to a Sobolev-like space including high-order mixed derivative control.252

We refer the reader to [39, (A.8)] and [73, Proposition 5.1] for specifics on (4.13).253

The basis we choose for Wℓ are the multiwavelets which are products of the 1D wavelets in (4.7):254

gi
ℓ,j(y) :=

d∏
m=1

gim

ℓm,jm
(ym), where jm = 0, . . . , max{0, 2ℓm−1 − 1}, im = 1, . . . , k + 1. (4.14)

It follows from repeated application of (4.8) in each dimension that these multiwavelets are orthonormal in255

L2(Ω) .256

4.3. The Sparse-grid Selection Rule257

The spaces Wℓ are used to define the sparse grid. From (4.12) we can rewrite the full-grid as258

VN =
⊕

|ℓ|∞≤N

Wℓ. (4.15)

This space has dimension dim(VN ) = (k+1)d2Nd. The sparse grid is defined via a selection rule that relaxes259

the index norm in (4.15).260

Definition 2 ([84, 13]). The level N sparse grid, V̂N ⊆ VN , is defined by261

V̂N =
⊕

|ℓ|1≤N

Wℓ. (4.16)

By definition, the sparse-grid only includes components Wℓ whose level indices ℓ sum up to N , and262

throws away basis functions deemed too fine to include in multiple dimensions. It was shown in [84, Lemma263

2.3] that264

dim(V̂N ) = Θ((k + 1)d2N Nd−1), (4.17)

which avoids the costly O(2Nd) scaling of the full-grid in (4.15) but still maintains exponential dependence265

on k and on log(N).266
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(a) A heat map for the degrees of freedom of Wℓ for a 2
dimensional problem. The whole rectangle corresponds to
all degrees of freedom for the full-grid V9 while the sparse-
grid V̂9 only contains the spaces on the lower-left portion
divided by the red line.

(b) Plot showing the coverage of sparse-grids in two
dimensions. Each point represents the barycenter of the
support of a wavelet that is in the level 7 sparse-grid.

Figure 4.3.1: Sparse-grid illustrations.

Figure 4.3.1 illustrates which basis functions are kept in the sparse-grid and the reduction in degrees267

of freedom that sparse-grids provide for the case with d = 2. Figure 4.3.1a shows that the dimension of268

the spaces Wℓ being thrown away in the sparse-grid truncation are significantly larger on average than the269

dimension of the spaces that are kept. As a result, there is a reduction in degrees of freedom from the270

full-grid space V9 of size 218 ≈ 2.62 × 105 to the sparse grid space V̂9 of size 2816.2 Figure 4.3.1b shows271

that the basis functions kept in the sparse-grid allow accurate approximations of derivatives in coordinate272

directions while throwing away mixed-derivative data which is assumed to be smaller than the components273

kept by the sparse-grid. It has been shown that V̂N shares similar approximation properties to VN in L2,274

which is O(hk+1), up to a poly-logarithmic factor of | log2 h|d−1 (see [84, Theorem 2.4]). This result holds275

for functions with bounded mixed derivatives of sufficient order.276

4.4. Adaptive Sparse-grids277

The adaptive sparse-grid method uses an adaptive algorithm based on the hierarchical framework of the278

sparse-grid method [40]. The first step is to further decompose the orthogonal complements Wℓ by their279

level ℓ and position j within the level. This position j in the level is based on the multiwavelet basis. Given280

the basis in (4.14), we define the space Wℓ,j ⊂ Wℓ, called a hierarchical element, by281

Wℓ,j = span
1≤im≤k+1

1≤m≤d

{gi
ℓ,j}. (4.18)

This space has dimension dim(Wℓ,j) = (k + 1)d and282

Wℓ =
⊕
j∈Bℓ

Wℓ,j (4.19)

where283

Bℓ := {j = (j1, . . . , jd) : jm = 0, . . . , max{0, 2ℓm−1 − 1}, ∀m = 1, . . . , d}. (4.20)

2Here we use k = 0 to calculate dim(V9) and dim(V̂9).
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The spaces Wℓ,j are deemed hierarchical because they carry a natural parent-child relationship of which the284

details will be postponed (see Definition 4). The full- and sparse-grid spaces, (4.15) and (4.16) respectively,285

can be written as286

VN =
⊕

|ℓ|∞≤N
j∈Bℓ

Wℓ,j and V̂N =
⊕

|ℓ|1≤N
j∈Bℓ

Wℓ,j . (4.21)

For the adaptive sparse-grid algorithm, it is helpful to view the full- and sparse-grid spaces as direct sums of287

the hierarchical elements Wℓ,j . We can now define an adaptive sparse-grid which is an arbitrary collection288

of hierarchical elements.289

Definition 3. Given a max level Nmax ∈ N0 and a level index set {(ℓι, jι)}M
ι=1 such that for all ι = 1, . . . , M ,290

|ℓι|∞ ≤ Nmax and jι ∈ Bℓ, the adaptive sparse-grid V ⊆ VNmax is defined as291

V =
⊕

ι

Wℓι,jι . (4.22)

Here M is said to be the number of active elements of the adaptive sparse-grid V .292

We will often drop the ι superscript in (4.22) and refer to the level index set as {(ℓ, j)}. From (4.21),293

the standard sparse-grid is a specific adaptive sparse-grid where we include all hierarchical elements Wℓ,j294

such that |ℓ|1 ≤ Nmax and j ∈ Bℓ.295

4.4.1. Adaptive Approximation of Initial Data296

Let PV be the L2 projection from L2(Ω) onto V . The main idea of the adaptive sparse-grid is to choose297

a grid V ⊆ VNmax , depending on the distribution w, such that298

1. The relative projection error ∥w − PV w∥L2(Ω)/∥w∥L2(Ω) is small;299

2. dim(V ) is approximately minimal.300

We will first demonstrate this process for an initial condition, and then extend the result to functions301

formulated via a dynamical system.302

For a fixed max level Nmax, choosing V = VNmax would minimize the L2 projection error over all possible303

adaptive sparse-grid spaces, but with significant costs in terms of the number of degrees of freedom. Thus304

we assume w ∈ VNmax is our target; then the coefficient expansion with respect to the multiwavelet basis of305

(4.14) is given by306

w(y) =
∑{

(ℓ,j):
|ℓ|∞≤Nmax,j∈Bℓ

} ∑
1≤im≤k+1

1≤m≤d

wi
ℓ,jgi

ℓ,j(y) where wi
ℓ,j =

∫
Ω

w(y)gi
ℓ,j(y) dy. (4.23)

For simplification, we define wℓ,j to be the multilinear rank-d tensor with k + 1 entries in each dimension,307

defined by308

[wℓ,j ]i = wi
ℓ,j . (4.24)

When taking the norm of wℓ,j , we first flatten the tensor into a vector in R(k+1)d and apply the appropriate309

vector norm in ℓp where 1 ≤ p ≤ ∞. Then the L2-norm of w can be written as310

∥w∥2
L2(Ω) =

∑{
(ℓ,j):

|ℓ|∞≤Nmax,j∈Bℓ

} ∥wℓ,j∥2
2 (4.25)

Additionally, for any adaptive sparse-grid space V with level index set {(ℓ, j)} we have311

PV w =
∑
(ℓ,j)

∑
1≤im≤k+1

1≤m≤d

wi
ℓ,jgi

ℓ,j and ∥PV w∥2
L2(Ω) =

∑
(ℓ,j)

∥wℓ,j∥2
2. (4.26)
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From (4.23) and (4.26), it is clear that the relative projection error satisfies312

∥w − PV w∥2
L2(Ω)

∥w∥2
L2(Ω)

=
∑

(ℓ,j):Wℓ,j ̸⊆V

∥wℓ,j∥2
2

∥w∥2
L2(Ω)

. (4.27)

Therefore, given τ > 0, called the threshold, we want to keep all hierarchical elements Wℓ,j such that313

∥wℓ,j∥2 ≥ τ∥w∥L2(Ω) (4.28)

lest they contribute to the error in (4.27).314

Refinement. We will now describe how hierarchical elements are added to the adaptive sparse-grid – which315

we call refinement. The primary challenge in building a grid that contains all elements satisfying (4.28) is316

to avoid checking all hierarchical elements in the full-grid – an operation that naively would require O(2Nd)317

operations.318

The refinement process is iterative, where an initial grid is chosen and then added upon. For adapting319

an initial condition, we choose our initial grid as the sparse-grid V = V̂Nmax . Given a current grid V ,320

the coefficients wℓ,j are computed for every hierarchical element in the grid. In order to determine what321

elements to add to the grid, we appeal to the hierarchical representation of the full-grid space which embeds322

the following parent-child relation.323

Definition 4. Let Wℓ,j for (ℓ, j) =
(
(ℓ1, . . . , ℓd), (j1, . . . , jd)

)
be a hierarchical element with max level Nmax.324

The children of Wℓ,j , with up to two per dimension, are defined for each dimension m = 1, . . . , d by the325

following:326

• If ℓm = 0, then Wℓ′,j′ , where327

(ℓ′, j′) =
(
(ℓ1, . . . , ℓm−1, 1, ℓm+1, . . . , ℓd), (j1, . . . , jm−1, 0, jm+1, . . . , jd)

)
, (4.29)

is a child of Wℓ,j .328

• If 0 < ℓm < Nmax, then Wℓ′,j′ , where329

(ℓ′, j′) =
(
(ℓ1, . . . , ℓm−1, ℓm + 1, ℓm+1, . . . , ℓd), (j1, . . . , jm−1, 2jm, jm+1, . . . , jd)

)
and (4.30a)

(ℓ′, j′) =
(
(ℓ1, . . . , ℓm−1, ℓm + 1, ℓm+1, . . . , ℓd), (j1, . . . , jm−1, 2jm + 1, jm+1, . . . , jd)

)
, (4.30b)

are children of Wℓ,j .330

• If ℓm = Nmax, then there are no children of Wℓ,j in dimension m.331

The parents of an element Wℓ,j are all elements Wℓ′,j′ such that Wℓ,j is a child of Wℓ′,j′ .332

It is clear from Definition 4 that each hierarchical element can have up to 2d children and up to d parents.333

To tie Definition 4 to the wavelet representation, for a fixed dimension m ∈ {1, . . . , d}, the children of a334

wavelet given in (4.7) are the up to two wavelets of one greater level whose support is contained in the335

parent. Furthermore, based on the coefficient decay estimate (4.13), if w is sufficiently smooth, then it is336

reasonable to assume that if Wℓ′,j′ is a child of Wℓ,j , then ∥wℓ′,j′∥ ≤ ∥wℓ,j∥. Therefore, if the size of a337

hierarchical element in the grid is small, we assume the size of the children are also small, and we do not338

need to search further along this path. This assumption leads to a stopping mechanism for the refinement339

strategy: Given a grid V with level index set {(ℓ, j)}, if340

∥wℓ,j∥2 ≥ τ
( ∑

(ℓ′,j′)

∥wℓ′,j′∥2
2

) 1
2 = τ∥PV w∥L2(Ω), (4.31)

then we add all children of Wℓ,j to the grid. We repeat this process iteratively until no new children are341

added.342
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Coarsening. The process of removing active elements from the current grid, i.e., coarsening, is achieved by343

simple thresholding of the coefficients. Let 0 < µ < 1 be the coarsening factor. For a given grid V , if Wℓ,j344

is a hierarchical element such that345

∥wℓ,j∥2 ≤ µτ
( ∑

(ℓ′,j′)

∥wℓ′,j′∥2
2

) 1
2 = µτ∥PV w∥L2(Ω), (4.32)

then it is removed from the grid. We acknowledge this coarsening strategy does not preserve structural346

properties like parent completeness, i.e., requiring that all parents of an active element are active (see [79,347

Section 3]), but still yields stable and accurate approximations as evidenced in Section 5.348

While the criteria for refinement (4.31) and coarsening (4.32) are based on ℓ2-type norms, other discrete349

norms can be used. For instance, the ℓ∞ norm can also be used:350

∥wℓ,j∥∞ ≥ τ max
(ℓ′,j′)

∥wℓ′,j′∥∞ (for refinement), (4.33a)

∥wℓ,j∥∞ ≤ µτ max
(ℓ′,j′)

∥wℓ′,j′∥∞ (for coarsening). (4.33b)

The first refinement criterion implemented in ASGarD was (4.33a). Currently both ℓ∞ and ℓ2 strategies are351

supported, but our experiments did not show a significant difference in the accuracy or the degrees of freedom.352

This is in contrast to the L∞ refinement, which has been shown to yield a much denser grid compared to the353

L2 criteria, e.g., see [40]. In the rest of this work, we will use (4.33) as our coarsening/refinement strategy.354

4.4.2. Adaptive sparse-grids of a dynamical system355

Unlike adapting initial conditions, where the coefficients are drawn from analytic or quadrature data, the356

adaptive strategy can also be utilized to create temporally varying grids that dynamically capture features of357

the solution in time. To extend our adaptive strategy to dynamical systems, consider the abstract problem358

(∂tw, g) = A(w, g) ∀g ∈ VNmax (4.34)

where A : VNmax × VNmax → R (c.f. (3.5)). Here A is one of the discretizations in (3.6) or (3.8). For a given359

adaptive sparse-grid V ⊆ VN define the operator R : V → V by360

(RV w, g) = A(w, g) ∀g ∈ V . (4.35)

Then (4.34) can be succinctly written as ∂tw = RVNmax
w.361

Consider a solution wn at timestep tn defined on an adaptive sparse-grid V n. To refine, we first set362

V = V n and advance the abstract problem ∂tw = RV w from tn to tn+1 via a IMEX Runge–Kutta method363

(3.10) to produce wn+1 ∈ V . We then check for elements Wℓ,j of V that satisfy the same refinement364

requirement as the initial condition case, namely, (4.31) for a ℓ2-norm refinement or (4.33a) for a ℓ∞-norm365

refinement. If there are elements satisfying the refinement criterion, then their children are added to V .366

We then go back to time tn and advance ∂tw = RV w from tn to tn+1 with the updated space V . Since367

V n ⊆ V , the coefficients of the state wn can be extended into V by setting wn
ℓ,j = 0 if Wℓ,j ⊆ V but not368

if Wℓ,j ̸⊆ V n. This process is repeated until no new children are added into the grid V – in which case we369

set V n+1 = V . Typically, only one or two refinements are needed per timestep, but more may be needed370

for the first few timesteps due to initial layers. Coarsening after refinement is done in a manner analogous371

to the initial condition case. The procedure for refining and coarsening are summed up in Algorithm 1 and372

Algorithm 2 respectively.373

As visual illustration of the adaptive sparse-grid method is shown in Figure 4.4.1, where it is applied374

to 1x3v Riemann problem in Section 5.3. As seen in Figure 4.4.1b, the adaptive algorithm focuses on375

refinement around the discontinuity in the distribution, plotted in Figure 4.4.1a, while coarsening occurs376

near the velocity boundaries.377
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Algorithm 1: Adaptive refinement using ℓ∞-norm
Input : Adaptive sparse-grid V , threshold τ > 0
Input : Distribution w or dynamical system (w, U) → ∂tw = RU w defined in (4.35) with

coefficients wn
ℓ,j computed for all Wℓ,j ⊂ V

Output: Adaptive sparse-grid V ∗

Output: Coefficients wℓ,j for all Wℓ,j ⊂ V ∗

1 V ∗ := V ;
2 do
3 N := {0};
4 Compute wℓ,j for all Wℓ,j ⊂ V ∗ via w or dynamical system ∂tf = RV ∗f ;
5 for Wℓ,j ⊂ V ∗ do
6 if ∥wℓ,j∥∞ ≥ τ max(ℓ′,j′) ∥wℓ′,j′∥∞ then /* Check if element needs refining */
7 Compute all children Wℓ′,j′ of Wℓ,j using Definition 4;
8 for children Wℓ′,j′ of Wℓ,j do
9 if Wℓ′,j′ ̸⊂ V ∗ and Wℓ′,j′ ̸⊂ N then

10 N := N ⊕ Wℓ′,j′ ; /* Add element */
11 wn

ℓ′,j′ = 0; /* Zero out new element at tn */

12 V ∗ := V ∗ ⊕ N ;
13 while N ̸= {0}; /* Repeat until no children are added. */

Algorithm 2: Adaptive coarsening using ℓ∞-norm
Input : Adaptive sparse-grid V , threshold τ > 0, coarsening factor 0 < µ < 1
Input : Coefficients wℓ,j for all Wℓ,j ⊂ V
Output: Adaptive sparse-grid V ∗

1 V ∗ := {0};
2 for Wℓ,j ⊂ V do
3 if ∥wℓ,j∥∞ > µτ max(ℓ′,j′) ∥wℓ′,j′∥∞ then /* Check if element needs to be removed */
4 V ∗ := V ∗ ⊕ Wℓ,j ;
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(a) Phase space plot of ⟨f⟩vy,vz in (x, vx) where f is the
adaptive sparse-grid distribution.

(b) Plot showing which hierarchical elements are active in
Figure 4.4.1a. The points represent the (x, vx) coordinates
of the barycenter of the support of each active wavelet.

Figure 4.4.1: Riemann problem – Section 5.3 – ν = 1: Adaptive Sparse-grid Method at t = 0.04918. The threshold is τ = 10−4

and the adaptive sparse-grid cannot refine past ℓ = (7, 6, 6, 6).

5. Numerical Experiments378

In this section, we present results from various test problems relevant to plasma physics. Our goals are379

to demonstrate the performance of the adaptive sparse-grid and mixed-grid DG methods with IMEX time380

stepping implemented in ASGarD, and investigate the computational benefit of the adaptive sparse-grid381

and mixed-grid methods over the full-grid methods (see Section 5.1 for definitions). In increasing degree of382

complexity, we consider: (i) relaxation to a Maxwellian velocity distribution (Section 5.2); (ii) a Riemann383

problem for two different values of the collision frequency ν (Section 5.3); (iii) and the collisional Landau384

damping problem (Section 5.4), also for two different values of the collision frequency. All the results385

presented in this section were obtained with quadratic polynomials, i.e., k = 2. This choice of k is natural386

considering that the velocity moments with respect to 1, v, and |v|2 compose the important fluid variables.387

5.1. Choice of Grids388

In the simulations presented below we choose to compare results obtained with three types of grids:389

full-grid, mixed-grid, and adaptive sparse-grid. We provide the specifics of each grid in this section.390

Our first choice is the standard full-grid Vℓ, where ℓ = (ℓx, ℓv, ℓv, ℓv). We use the Chu reduction391

method of Section 2.2 in Sections 5.3 and 5.4 with ℓ = (ℓx, ℓv) to build reference solutions and numerical392

approximations with the full-grid. This is because the full-grid space is too large in comparison to the393

other two grids and can easily fill the memory of a single-node machine. When using the Chu reduction,394

the discretization is performed using a local Legendre polynomial basis instead of the multiwavelets. When395

determining the degrees of freedom or number of active elements for a full-grid run, we will always assume396

that the underlying run is 4D, even if the Chu reduction method is used.397

We have found that standard 4D sparse-grids such as V̂ℓ are unstable for the VPLB model in (2.15).398

This is due to both the lack of resolution in x and the lack of regularity of the distribution function in399

physical space. Specifically, the temperature θf becomes negative which causes the solution to blow up. As400

we expect savings to come from the smoothness in velocity space, induced by the LB collision operator, we401

propose a mixed-grid approach for our second choice. The mixed-grid of level ℓ = (ℓx, ℓv, ℓv, ℓv) is defined402

by403

Ṽℓ =
⊕

ℓ′:ℓ′
1≤ℓx,

|(ℓ′
2,ℓ′

3,ℓ′
4)|1≤ℓv

Wℓ′ = Vℓx
⊗ V̂(ℓv,ℓv,ℓv). (5.1)
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The mixed-grid space is a tensor product of a full-grid in physical space and a sparse-grid in velocity space.404

This can be viewed as a sparse-grid in velocity space attached to each degree of freedom in x, and thus405

provides computational savings relative to the full-grid (without the Chu reduction method). The dimension406

of Ṽℓ is O((k + 1)42ℓx+ℓv ℓ2
v). We find this space is sufficient to maintain stability of the DG method for the407

problems considered here.408

Additionally, since 1 and v2
y+v2

z are admissible DG functions that live on level (0, 0) in (vy, vz) when k ≥ 2,409

a 4D full-grid of level (ℓx, ℓv, 0, 0) is sufficient to recover g1 and g2 in a 2D full-grid of level (ℓx, ℓv). Since a410

full-grid of level (ℓx, ℓv, 0, 0) is a subgrid of a mixed-grid with level (ℓx, ℓv, ℓv, ℓv), the reduced moments g1411

and g2 created by the mixed-grid solution will be similar to the full-grid. However, for k ≤ 3, the function412

v4
y + v4

z is not a DG function, and its projection onto the DG space will excite finer level coefficients that413

are better captured by the full-grid than by the mixed-grid for a certain level. We therefore evolve g3 in the414

Chu reduction method in order to better understand differences in accuracy between the mixed-grid and415

full-grid methods.416

Our last grid is the adaptive sparse-grid, V , that is coarsened and refined as detailed in Algorithms 1417

and 2, using ℓ∞-thresholding. The refinement threshold τ will be problem dependent, but we use the418

coarsening factor µ = 0.1, motivated from [40, 48], for all of our examples. Instead of a max level Nmax419

used in Section 4, we will not allow the adaptive sparse-grid to refine above a full-grid of specified level420

ℓ = (ℓx, ℓv, ℓv, ℓv). The number of degrees of freedom, or active elements, presented in the results below will421

be of the adaptive sparse-grid solution after the refinement step but before coarsening.422

It is useful to view each of these grids as a velocity grid attached to each spatial degree of freedom.423

The full-grid attaches a three-dimensional full-velocity grid to every spatial degree of freedom while the424

mixed-grid attaches a sparse-velocity grid. The adaptive sparse-grid attaches a variable velocity grid, with425

possibly zero elements, to each spatial degree of freedom.426

Finally, we will track the number of active elements, see Definition 3, as opposed to degrees of freedom427

in order to more clearly present the advantages of the mixed-grid and adaptive sparse-grid methods.428

5.2. Relaxation Problem429

We first consider the 0x3v problem in (2.14) in order to test the relaxation to equilibrium induced by430

the LB collision operator. In this case f = f(v, t) and the computational domain is truncated so that431

v ∈ (−8, 12)3. The initial condition is given by the sum of three Maxwellians, each sharing nf = 1/3,432

θf = 1/2, but differing in the bulk velocities, which are given by [3, 0, 0], [0, 3, 0], and [0, 0, 3], respectively.433

This initial condition induces the following velocity moments: nf = 1, uf = [1, 1, 1]⊺, and θf = 2.5. By434

the properties of the LB collision operator Proposition 1, these moments are expected to remain constant435

in time and the velocity distribution to relax to the Maxwellian defined by the initial moments.436

For this test, we will use a 3D sparse-grid of level (ℓv, ℓv, ℓv) as a substitute for the mixed-grid. The 4D437

(1x3v) definitions of the full-grid and adaptive sparse-grid naturally carry to the 3D (0x3v) case. We set438

ν = 103, ∆t = 5 × 10−4, and use backward Euler time stepping for this problem, with a tolerance of 10−8
439

for the GMRES implicit solve. Figure 5.2.1 illustrates the initial and final (equilibrium) distributions in the440

(vx, vy)-plane for a full-grid model.441

Figure 5.2.2a plots the change in the fluid variables nf , uf , and θf from their initial values as a function442

of νt, when using the full grid; the figure clearly shows that the loss in conservation of the moments is well443

below the GMRES tolerance. The error profiles for the mixed-grid and adaptive sparse-grid runs are similar,444

but not shown.445

Figure 5.2.2b shows the number of GMRES iterations for each timestep for varying full-grid levels. The446

block-Jacobi preconditioner reduces the number of GMRES iterations for each simulation (dashed lines) and447

overall smoothly decays the iteration count as a function of timestep. However, the constant jump of the448

iteration count, in logarithmic scale, between velocity levels in both the standard GMRES and precondioned449

version shows that the preconditioner does not asymptotically lower the O(4ℓv ) conditioning of the diffusion450

term in the LB operator. We found that the sparse-grid’s iteration count was roughly two-thirds of the451

full-grid for the same level. Additionally, we found that the adaptive sparse-grid method often included452

elements from level 9 grids which caused a significant increase in the number of GMRES iterations in the453
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(a) νt = 0 (b) νt = 20

Figure 5.2.1: Relaxation Problem – Section 5.2: 2D plot of the velocity distribution fh(vx, vy , vz = 0.019) at the start (left)
and end (right) of a relaxation simulation. These results were obtained with a full-grid run with ℓ = (5, 5, 5).

(a) Plots of |nf (t) − nf (0)|, |uf (t) − uf (0)|, and
|θf (t) − θf (0)| versus time where the fluid variables are
approximations with ℓ = (4, 4, 4).

(b) Number of GMRES iterations per timestep with
(dashed) and without (solid) a block-Jacobi preconditioner.
GMRES was restarted every 100 iterations and exited when
the residual norm was less than 1e-8. Instances when GM-
RES exited in zero iterations are not plotted.

Figure 5.2.2: Relaxation Problem – Section 5.2: Plots of interest for full-grid runs with varying levels.

adaptive sparse-grid over full-grid runs with a similar number of active elements. The results of this test454

suggest that better preconditioners, e.g. multigrid type, are needed in order to effectively condition the455

problem. This is especially crucial for the adaptive sparse-grid method as finer level basis functions can be456

active for mild choices of the refinement threshold τ .457

Figure 5.2.3 illustrates the advantages of adaptive sparse-grids over the full- and mixed-grid methods458

for the relaxation problem. The L2 error of the relaxed distribution, relative to the analytic Maxwellian, is459

plotted versus the number of active elements. When plotted against the number of active elements, adaptive460

sparse grids are more accurate and asymptotically superior when compared against the other formulations.461

Additionally, the mixed-grid is comparable to the full-grid with the mixed-grid only gaining an advantage462

when a large number of active elements is used. This is not surprising as the Maxwellian, being radially463

symmetric, has large mixed derivatives and the coefficients to capture mixed derivative information are464
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thrown away in the standard sparse-grid construction. However, adaptive sparse-grids are able to capture465

these mixed-derivative coefficients.466

We lastly explore how the adaptive sparse-grid refinement threshold τ correlates with the relative error of467

the approximation. In this problem the analytic equilibrium has a L2 norm of approximately 7.539 × 10−2.468

Using the L2-errors provided from Figure 5.2.3, the relative L2-error for τ = 10−2 is approximately 0.6τ and469

creeps to 2.03τ when τ = 10−5. Therefore τ provides a good estimate for the relative error of the problem.470

This is in part because the equilibrium is smooth so that the chosen maximum level of 9 is sufficiently large471

to capture the needed coefficient data and achieve the expected errors.472
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Figure 5.2.3: Relaxation Problem – Section 5.2: The L2 error of solution versus the number of active elements used for the
full-grid and adaptive sparse-grid runs. The error is calculated against the analytic equilibrium in (2.10). The full- and mixed-
grid runs were set at ℓ = (ℓv , ℓv , ℓv) where ℓv is the number by the marker. The marker next to the adaptive sparse-grid runs
is the tolerance τ at which the run was set, and the adaptive run was not allowed to exceed a level of ℓ = (9, 9, 9).

5.3. Riemann Problem473

Next, we consider a problem that includes both phase-space advection and collisions. The Sod shock tube474

problem [78] is a standard test for numerical simulations of kinetic models with collisions (e.g., [10, 31]). For475

this test, the PDE is given by (2.15) We consider two regimes of collisionality: The first is an intermediate476

regime with ν = 1, and the second is a collisional regime with ν = 103. For both problems we fix v ∈ (−6, 6)3
477

and set the initial condition to a Maxwellian with moments given by:478 nf

uf

θf

 =

1
0
1

 if |x| ≥ sinitial;

nf

uf

θf

 =

0.125
0

0.8

 if |x| < sinitial (5.2)

where sinitial is the location of the initial discontinuity. We set the GMRES tolerance to 10−8.479

Figure 5.3.1 shows plots of the distribution in the (x, vx)-plane and plots of the velocity moments versus480

position, as obtained with the full-grid using the Chu reduction technique. We will use these as reference481

solutions when evaluating the performance of the adaptive sparse grid method. For moderate collisionality,482

i.e. ν = 1, the distribution, as shown in Figure 5.3.1a, deviates from the Maxwellian due to the streaming483

and features a discontinuity in the (x, vx) space. Additionally, as seen in Figure 5.3.1c, the streaming effect484

smooths out features of the fluid variables. In the collision dominated regime (ν = 103), the distribution,485
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(a) ⟨f⟩vy,vz – ν = 1 (b) ⟨f⟩vy,vz – ν = 103

(c) Fluid variables – ν = 1 (d) Fluid variables – ν = 103

Figure 5.3.1: Riemann Problem – Section 5.3: Plots of the distribution and fluid variables for the which is computed using the
Chu reduction model in Section 2.2 with (ℓx, ℓv) = (9, 8) for ν = 1 and (ℓx, ℓv) = (8, 8) for ν = 103. The ν = 1 and ν = 103

plots are taken at time t = 0.04918 and t = 0.05 and with sinitial = 0.3 and sinitial = 9/64 respectively.

as seen in Figure 5.3.1b, remains close to a local Maxwellian parameterized by the local fluid variables in486

Figure 5.3.1d.487

When comparing results obtained with different grids, we first consider the case of ν = 1, and we set488

x ∈ (−0.6, 0.6), sinitial = 0.3, final time T = 0.04918, and time step ∆t = 2.3419 × 10−4. Our reference489

solution is the full-grid solution of level ℓ = (9, 8, 8, 8), displayed in the left panels in Figure 5.3.1. Figure 5.3.2490

shows the error versus the number of active elements for g1 and g3 (defined in Section 2.2). It is shown491

in Figure 5.3.2a that the mixed-grid yields the same error as the full-grid – for the same velocity space492

resolution level ℓv. This is because g1 is embedded in the mixed-grid as mentioned in Section 5.1. The493

adaptive sparse-grid error saturates at the level of the mixed-grid error when ℓv = 6, but with about494

50% fewer active elements. The saturation is because the adaptive grid is not allowed to refine past level495

ℓ = (7, 6, 6, 6) in the hierarchy (see Section 5.1) and therefore the associated error will not be significantly496

lower than the full-grid of level ℓ = (7, 6, 6, 6). When viewing the same plot for the higher-order moment497

g3 in Figure 5.3.2b, we see the degradation in the mixed-grid method when compared to the full-grid and498
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adaptive sparse-grid methods. While the slope in the error from the mixed-grid method is steeper than the499

full-grid method, its error constant is significantly larger. Additionally, the adaptive sparse-grid method is500

significantly better than both the mixed-grid and full-grid methods with respect to both the slope and error501

constant.502

3

4

5

6

3

4

5

6

(a)
∥∥〈f
〉

vy,vz
− g1

∥∥
L2

3

4

5

6

3

4

5

6

(b)
∥∥〈f(v4

y + v4
z)
〉

vy,vz
− g3

∥∥
L2

Figure 5.3.2: Riemann Problem – Section 5.3 – ν = 1: Errors of the distribution and fluid variables at t = 0.01 for the 1x3v
Riemann problem in Section 5.3 with ν = 1. All errors are measured against the full-grid solution at level ℓ = (9, 8, 8, 8) (see
Figure 5.3.1a). All adaptive sparse-grid runs are capped at ℓ = (7, 6, 6, 6). The full- and mixed-grid runs use ℓ = (7, ℓv , ℓv , ℓv)
where ℓv is the symbol by each marker. The adaptive sparse-grid method performs well in both cases while the mixed-grid
method is accurate only in the low-order moment.

Figure 5.3.3 shows the particle density nf (left and middle panels) and the pointwise error of the particle503

density (right panel) for a mixed-grid and an adaptive sparse-grid model with a similar number of active504

elements. Figure 5.3.3a shows that the density appears to be relatively constant in x toward the edges of505

the plot. When zooming in on a smaller x-range near the right edge, see Figure 5.3.3b, it becomes clear that506

the density obtained with the adaptive sparse-grid features a discontinuity (around x = −0.15) and exhibits507

more spatial variation when compared to the full-grid and mixed-grid solutions. This is primarily caused by508

the adaptive method uniformly distributing the error across the spatial domain, and this is further evidenced509

in the error plot (see Figure 5.3.3c), where the error in x is much more uniform across the spatial domain510

for the adaptive sparse-grid than it is with the mixed-grid method. In the mixed-grid method, where each511

DOF in x is attached with the same sparse-grid in v, the moment errors are much smaller away from the512

wave regions, i.e., the regions where the moments are constant.513

Next, we consider the case with ν = 103. Here we set x ∈ (−0.25, 0.25), sinitial = 9/64, T = 0.05, and514

∆t = 2 × 10−4. Figure 5.3.4 shows the error of g1 and g3 against the number of active elements. In this515

higher-collisional regime, the distribution is much smoother in velocity, and the L2 error saturates sooner516

than when ν = 1. This saturation is due to the dominant error that appears near the discontinuities in the517

x-domain (see Figures 5.3.1b and 5.3.1d). In Figure 5.3.4a, the mixed-grid and adaptive sparse-grid methods518

are very similar. At saturation, the number of active elements for the mixed-grid and adaptive sparse grid,519

around 214 are approximately 128 times fewer than the number of active elements in the full-grid, which is520

221.521

When looking at the error in the higher-order moments, Figure 5.3.4b, we observe a separation in the522

performance of the mixed-grid and adaptive sparse-grid that is similar to the ν = 1 case. However, in this523

case, the adaptive sparse-grid method has nearly hit saturation while the mixed-grid with ℓv = 6 is still not524

at saturation. In particular, the grouping of the errors for mixed-grid ℓv = 6 and the full-grid ℓv = 3 is525

similar to the grouping in the relaxation case (see Figure 5.2.3). This shows that the dominant error in the526

mixed-grid method is the lack of velocity resolution sufficient to capture the local Maxwellian behavior of527
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(a) nf (b) nf – slice for x ∈ (−0.17, 0) (c) Error – nf

Figure 5.3.3: Riemann Problem – Section 5.3 – ν = 1: Plots of the density and error to the reference density for the
1x3v Riemann problem with ν = 1 and t = 0.04918. The reference density is calculated with the full-grid method at level
ℓ = (9, 8, 8, 8) (see Figure 5.3.1c). The adaptive sparse-grid solution is not allowed to be refined beyond level ℓ = (7, 6, 6, 6).
The adaptive sparse-grid method equally spaces out the error in physical space while the mixed-grid is only accurate in the
constant regions of the density.

the distribution.528

We include a plot of the fourth-order moment g3 in the (x, vx)-plane for each grid type, each having a529

similar number of degrees of freedom, in Figure 5.3.5. The full-grid solution, Figure 5.3.5a, exhibits discon-530

tinuities on element interfaces in the velocity dimension (due the discontinuous basis) while the mixed-grid531

moment, Figure 5.3.5b, is oscillatory in the region immediately left of the contact line, i.e. x ∈ (−0.15, −0.1).532

The solution obtained with the adaptive sparse-grid, Figure 5.3.5c, is the most accurate of the three and533

does not suffer from either of the previously mentioned artifacts.534

2

3

4

5 6

3

4

5 6

(a)
∥∥〈f
〉

vy,vz
− g1

∥∥
L2

2

3

4 5 6

3

4

5

6

(b)
∥∥〈f(v4

y + v4
z)
〉

vy,vz
− g3

∥∥
L2

Figure 5.3.4: Riemann Problem – Section 5.3 – ν = 103: Errors of the distribution at t = 0.05 for the 1x3v Riemann problem
in Section 5.3 with ν = 103. All errors are measured against the full-grid solution at level ℓ = (8, 8, 8, 8) (see Figure 5.3.1b). All
adaptive sparse-grids are capped at level ℓ = (6, 6, 6, 6). The full- and mixed-grid levels are given by ℓ = (6, ℓv , ℓv , ℓv) where
ℓv is the symbol to the lower left of the marker. The quick saturation of the error is due to smoothness in velocity and the
discontinuities in the fluid variables (see Figure 5.3.1d). The adaptive sparse-grid method performs well in both cases while
the mixed-grid method is accurate only in the low-order moment.

5.4. Collisional Landau Damping535

Finally, we consider a version of the collisional Landau damping test (e.g., [25, 43, 32]), which involves536

phase-space advection of charged particles, influenced by a self-consistent electric field and particle collisions.537
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(a) Full-grid ℓ = (6, 3, 3, 3) (b) Mixed-grid ℓ = (6, 6, 6, 6) (c) Adaptive Sparse-Grid τ = 5 × 10−5

Figure 5.3.5: Riemann Problem – Section 5.3 – ν = 103: Plots of ⟨f(v4
y +v4

z)⟩vy,vz for the 1x3v Riemann Problem with ν = 103

and t = 0.05 in the (x, vx) plane for x ∈ (−0.25, 0) and vx ∈ (−6, 6). The adaptive sparse-grid was not allowed to refine past
level ℓ = (6, 6, 6, 6). The artifacts seen in the full-grid and mixed-grid solutions are not found in the adaptive- sparse grid
solution.

The PDEs solved in this test are given by the VPLB system in (2.15) and (2.16).538

The 1x3v phase-space domain is given by x ∈ (−2π, 2π) and v ∈ (−6, 6)3, and the model is evolved to539

the final time T = 50. The initial condition is set as Maxwellian with a small spatial perturbation so that540

the velocity moments are nf = 1 + 10−4 cos( x
2 ), uf = 0, θf = 1. The timestep taken depends on the spatial541

resolution and max |vx|, and is taken as ∆t = 0.75
30 ∆x, where ∆x = 4π

2ℓx
.542

(a) The electric potential energy versus
time for two collision frequencies ν.

(b) Exponential decay rate γ for the po-
tential energy as a function of ν. The
dashed line corresponds to γ = 0.307.

(c) Plot of the electric potential for ν =
10−2 and velocity resolutions ℓv = 4 and
ℓv = 5.

Figure 5.4.1: Collisional Landau Problem – Section 5.4: Plots demonstrating collisional Landau damping. All runs use the
Chu reduction method of Section 2.2. The levels set are ℓx = 5 and ℓv = 6 except in Figure 5.4.1c.

In the collisionless case, the Landau damping problem is characterized by exponential decay of the543
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potential energy with time, EPot(t) = 1
2
∫

Ωx
E2 dx ∝ exp(−γt), where the damping rate is γ ≈ 0.307544

[5]. Moreover, with evolving time, the solution will exhibit increasingly smaller-scale structures about the545

Maxwellian that eventually become unresolved with fixed or finite resolution (see [29]). With collisions,546

the damping rate decreases with increasing collision frequency (e.g., [25, 43]), tending to zero in the Euler–547

Poisson limit (ν → ∞).548

Figure 5.4.1a shows the potential energy versus time, as obtained with the full-grid method, for ν = 10−2
549

(blue) and ν = 1 (red). Figure 5.4.1b shows numerically determined damping rates as a function of collision550

frequency. These results were obtained with the full-grid method using the Chu reduction technique. The551

damping rate is determined by a least squares fit using the local maxima of the potential energy. For small552

collision frequencies, the damping rate tends to the expected result in the collisionless limit indicated by553

the horizontal dashed line. The damping rate drops rapidly for ν ≳ 0.3, and has dropped to about 0.01554

for ν = 10. Figure 5.4.1c compares the evolution of the potential energy versus time for the ν = 10−2 case555

with two different velocity resolutions; ℓv = 4 (blue) and ℓv = 5 (red). For the simulation with the coarser556

velocity resolution, the damping rate is consistent with the analytic prediction until t ≈ 10. For t ≳ 10,557

the potential energy increases briefly with time before decreasing again with a modified damping rate. For558

the finer velocity resolution, the damping rate stays constant at the correct value for all times. Based on559

this observation, we consider ℓv = 5 the minimum resolution needed to perform satisfactory on this test560

when ν = 10−2. We performed a similar comparison with ν = 1, which revealed that ℓv = 4 is sufficient for561

this case. In the following, we consider the two cases: ν = 10−2 (low collisionality) and ν = 1 (moderate562

collisionality), in more detail to compare the adaptive sparse-grid method against the full-grid method. Due563

to the embedding of the 1x1v full-grid into the 1x3v mixed-grid as discussed in Section 5.1, the electric564

field E is similar for the full- and mixed-grids of the same level. For this reason, the mixed-grid results are565

omitted.566

Figure 5.4.2: Collisional Landau Problem – Section 5.4: Plot of the potential energy with ν = 10−2. The adaptive sparse grid
is not allowed to refine past level ℓ = (4, 5, 5, 5), and the GMRES tolerance is set to 10−14. A tolerance of τ = 10−6 is not
sufficient to capture the proper decay. The tolerance of τ = 10−8 agrees quite well with the full-grid solution except for a slight
deviation at longer times.

Figure 5.4.2 compares adaptive sparse-grid against full-grid for the low collisionality case by plotting567

the potential energy versus time. The full-grid run with ℓ = (4, 5, 5, 5), used as reference in Figure 5.4.2,568

is in close agreement with the full-grid run with ℓ = (5, 5, 5, 5) plotted in the right panel of Figure 5.4.1c.569

When the tolerance for refinement is τ = 10−6, the adaptive results agree with the full-grid results up to570

about t = 10. For later times, the resolution allowed by the threshold is not sufficient to capture the correct571
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damping of the potential energy. Past t = 35, the solution coarsens to only global elements in x, i.e. ℓx = 0,572

which forces the electric field to zero before refinement, and causes unreliable behavior in the potential573

energy. When the tolerance is reduced to τ = 10−8, the adaptive sparse-grid is in better agreement with the574

full-grid throughout the simulation, although some deviations near the end are observed. For the τ = 10−6
575

case, the number of active elements stays around 1.1 × 104 throughout, while for the τ = 10−8 case the576

number of active elements starts out around 3 × 104, which drops steadily to about 2.5 × 104 at the end577

of the simulation. In comparison, the full-grid with ℓ = (4, 5, 5, 5), the maximum allowed for the adaptive578

spares-grid, consists of about 5.2 × 105 elements. Thus, the adaptive grid provides significant savings in579

terms of the number of degrees of freedom.580

Figure 5.4.3: Collisional Landau Problem – Section 5.4: Plot of the potential energy with ν = 1. The adaptive sparse grid
is not allowed to refine past level ℓ = (5, 4, 4, 4), and the GMRES tolerance is set to 10−11. A tolerance of τ = 10−6 is not
sufficient to capture the proper decay. The tolerance of τ = 10−8 agrees quite well with the full-grid solution at all times
plotted.

(a) ν = 10−2. The GMRES tolerance is set to 10−14 (b) ν = 1. The GMRES tolerance is set to 10−11

Figure 5.4.4: Collisional Landau Problem – Section 5.4: Top: Relative change in total energy versus time. Bottom: Deviation
of the potential, kinetic, and total energy from the initial condition for the adaptive sparse-grid method with τ = 10−8.
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Figure 5.4.3 compares adaptive sparse-grid against full-grid for the moderate collisionality case, where581

we plot the same quantities as in Figure 5.4.2. For this collisionality, we have determined that a full-grid582

resolution of ℓ = (5, 4, 4, 4) is sufficient to accurately capture the evolution of the potential energy. Similar583

to the low collisionality case, the potential energy evolution obtained with adaptivity threshold τ = 10−6
584

is not in satisfactory agreement with the full-grid and analytic results. However, we find that the adaptive585

spare-grid and full-grid results are indistinguishable when the adaptivity threshold is reduced to τ = 10−8.586

For τ = 10−6, the number of active elements stays roughly constant at about 4.8 × 103, while for the case587

with τ = 10−8, the number of active elements starts out around 1.1 × 104, and decreases to about 7 × 103
588

at the end of the simulation. For comparison, the full-grid with ℓ = (5, 4, 4, 4) consists of about 1.3 × 105
589

elements. Thus, the adaptive sparse-grid with τ = 10−8 is as accurate as the full-grid solution, but with590

substantially fewer degrees of freedom.591

In Figure 5.4.4 we plot the the relative change in total energy for both collisionalities discussed above.592

The relative change in the total energy is at the level of GMRES tolerance for the full-grid simulation. For the593

adaptive sparse-grid methods, the relative change in the total energy decreases with the size of the threshold594

τ used; we expect this trend to continue until the GMRES tolerance pollutes the energy conservation. We595

hypothesize the improvement in the relative energy conservation of the adaptive sparse-grid with τ = 10−8
596

when compared with the full-grid (as seen in Figure 5.4.4b) is due to the multiwavelets not being used in597

the Chu reduction discretization.598

The number of GMRES iterations varies between three and five for the sparse-grid runs.599

6. Summary and Outlook600

In this work, we presented an adaptive sparse-grid DG method for the the VPLB model on a slab ge-601

ometry. The results of this project utilized the Adaptive Sparse-Grid Discretization (ASGarD) codebase.602

As demonstrated in Section 5, the adaptive sparse-grid method significantly decreases the storage cost of603

DG numerical approximations without compromising accuracy. Moreover, the adaptive sparse-grid method604

was able to capture physically relatively features of the distribution without the use of model specific er-605

ror indicators. The results also indicate that standard sparse-grids in velocity space, i.e. the mixed-grid606

formulation, accurately captures low-order moments of the distribution, but are only slightly better when607

compared asymptotically against the full-grid for higher-order moments. This necessitates further research608

into using in a coordinate system that more beneficially captures the radial behavior of the Maxwellian,609

e.g. spherical-polar coordinates, or allowing some form of adaptivity in the mixed-grid. Other future plans610

include the expansion of the adaptive sparse-grid tests to full 3x3v phase-space simulations, efficient imple-611

mentations of PDE operators on a sparse-grid basis, implementation of more efficient preconditioners in the612

sparse-grid framework, and the preservation of key quantities such as positivity of the discrete distribution613

in the multiwavelet basis.614
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