skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of radiation reaction in Lienard-Wiechert description of FEL interaction

Conference ·
;  [1]
  1. Univ. of Central Florida, Orlando, FL (United States)

The most common theoretical analysis of the FEL interaction is based on the set of equations consisting of Lorentz and wave equations. This approach explains most of FEL features and, in particular, works well to describe operation in the amplifier mode. In that approach however, there are some difficulties in describing operation in oscillator mode, as well as self amplified spontaneous emission. In particular, it is not possible to describe the start up stage since there is no wave to start with. It is clear that a different approach is required in such situations. That is why we have pursued the study of the FEL interaction in the framework of Lorentz plus Lienard-Wiechert equations. The Lienard-Wiechert Lorentz equation approach however, presents its own set of problems. Variation in energy of the electrons is given exclusively by the Lorentz equation. Thus, the energy lost due to the radiation process is not properly taken into account. This, of course, is a long standing problem in classical electrodynamics. In order to restore energy conservation radiation reaction has to be incorporated into the framework. The first question in that regard has to do with which form of the radiation reaction equations is the most convenient for computations in the FEL process. This has to do with the fact that historically, radiation reaction has been added in an ad hoc manner instead of being derived from the fundamental equations. Another problem discussed is how to take into account the radiation reaction in a collective manner in the interaction among electrons. Also discussed is the radiation reaction vis a vi the coherence properties of the FEL process.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
OSTI ID:
238700
Report Number(s):
BNL-61982-Absts.; CONF-9508156-Absts.; ON: DE96002729; TRN: 96:013189
Resource Relation:
Journal Volume: 375; Journal Issue: 1-3; Conference: 17. international free electron laser conference, New York, NY (United States), 21-25 Aug 1995; Other Information: PBD: [1995]; Related Information: Is Part Of 17th international free electron laser conference and 2nd international FEL users` workshop. Program and abstracts; PB: 300 p.
Country of Publication:
United States
Language:
English