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Turbulence strongly coupled across broad range of scale

• Need tractable models

• Data-Driven Discovery
• Machine Learning inspired 

by nature: Eagles' nervous 
system learned a model for 
controlling turbulent flow.

• Encode physical symmetries 
and conservation laws
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PIML models show significant better match and 
generalizability error compared to physics blind models.

Los Alamos National Laboratory

Example: Learning Lagrangian dynamics using the framework of SPH
(Woodward et al, PRF 2023; Tian et al, PNAS 2023).

• Goal: Build effective Lagrangian models that capture turbulent dynamics on resolved 
scales using particle-based methods

• Model: Smooth Particle Hydrodynamics (SPH): Maps a continuous field onto a series of 
discrete particles carrying fluid quantities in the Lagrangian frame. 

• Approach: Learn (estimate) parameters and functions from turbulence data.

Hierarchy of reduced order models, show 
increasingly better match with DNS data and 
generalizability error.

1. Physics-blind: NODE (Neural ODEs)
2. Replace terms on the right hand side with NNs
3. Add symmetries
4. Physics-informed: follow the full structure and 

symmetries of SPH model
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The Mori-Zwanzig Formalism can be used as a general structure to 
formulate the turbulence closure problem.

Turbulence :
Large range of scales

Fully-resolved simulation: 
prohibitively expensive

Coarse-grained systems:
modeling

Data-Driven Models:
Koopman, RNN, LSTM

Traditional turbulence models 
(RANS, LES): moment closure

Mori-Zwanzig Formalism:
formal mathematical procedure for 

coarse-grained systems 

Data-Driven 
Methods, ML
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Full order model in semi-
discrete form:

For Navier-Stokes equations represented 
on a discrete grid with grid point i: 𝒖! = 𝒗, 𝜌, 𝑒, 𝑌𝟏…𝑵𝒔 !

Full order model is described by Direct Numerical Simulations of 
Navier-Stokes equations.

𝑑	𝒖(𝑡)
𝑑	𝑡

= 𝑹 𝒖 𝑡 	 𝒖 0 = 𝒖%

𝒖 ∈ ℝ&	 𝑹: ℝ& → ℝ&
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To reduce the dimensionality of the problem, define a reduced set 
of “observables.” 

Let                                            , D<M, be a set of observables at time t.  𝒈 𝒖(𝒖%, 𝑡) , 𝒈: ℝ& → ℝ'

𝑑
𝑑𝑡
𝒈 ≈ %𝑹(𝒈) +𝑚𝑜𝑑𝑒𝑙(𝒈), 𝒈 ∈ ℝ!

𝑑
𝑑𝑡 𝒖 = 𝑹 𝒖 , 𝒖 ∈ ℝ"

Coarse-graining

ℝ!	to	ℝ" , 𝐷 ≪ 𝑁

Resolved	 Under-resolved
For example:
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• [Mori65]	and	[Zwanzig73]	show	that	the	evolution	of	coarse-grained/resolved	
observables	satisfies	the	Generalized	Langevin	Equation	(GLE):

• To	define	the	MZ	operators,	need	to	introduce	a	projection	operator	P	that	maps	the	
full	space	N	onto	the	reduced	space	D,	i.e.	it		maps	functions	f: ℝ! → ℝ! 	onto	the	
subspace	𝑆𝑝𝑎𝑛{𝑔" 𝑢# … . 𝑔$ 𝑢# }.	

• Using	P,	the	operators	M,	K	and	F	can	be	expressed	based	on	the	initial	system,	e.g.	
𝑴 = [𝑷𝑹](𝒖 𝒖#, 𝑡 ).	

• Orthogonal	dynamics	and	memory	kernel	are	related	through	Generalized	
Fluctuation-Dissipation	(GFD)	relation.

• Discrete	version	(Lin,	Tian,	Livescu,	Anghel	2021):	

Mori-Zwanzig formalism, first introduced in statistical mechanics, can be 
expressed as an exact framework for reduced order models.

Los Alamos National Laboratory

𝑑
𝑑𝑡 𝒈 𝒖#, 𝑡 = 𝑴 𝒈 𝒖#, 𝑡 − 4

#

$
𝑲 𝒈 𝒖#, 𝑡 − 𝑠 , 𝑠 𝑑𝑠 + 𝐹(𝒖#, 𝑡)

Markovian	term Memory	kernel Orthogonal	dynamics

𝒈%&' =;
𝒍)𝟎

𝒏

𝛀 , 𝒈%-, +𝑾%
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Mori-Zwanzig formalism has an intuitive geometrical representation.

Los Alamos National Laboratory

Observables

Unresolved

=
Markov

Present

Memory=1

𝒈!"#?

+

+

Memory=2

Orthogonal

+

𝛀(#)

𝛀(")

𝛀(')

𝑾' 
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Mori-Zwanzig formalism is a generalization of the Dynamic Mode 
Decomposition (Lin,	Tian,	Livescu,	Anghel	SIADS	2021).

Los Alamos National Laboratory

• If	the	inner	product	on	full	space	is	used	to	define	the	projection	operator	as

	𝑷𝑓 𝒈 𝒖# ≡ ∑.,0)'" < 𝑓, 𝑔. > 𝑪#-' .0𝑔0(𝑢#),	

where	𝑪#-'is	the	inverse	of	the	covariance	matrix	< 𝑔. , 𝑔0 >	(Mori’s	finite	rank	projection),	
then	the	GLE	becomes	linear:	

• Generalized	Fluctuation-Dissipation	(GFD)	relation:

• Learning	M	and	K	becomes	a	convex	problem	in	the	Koopman	formulation	of	
dynamical	systems	and	we	have	devised	efficient	algorithms	for	learning	them	based	
on	GFD	(Lin,	Tian,	Livescu,	Anghel	SIADS	2021).	

• Keeping	only	the	Markov	term	recovers	the	DMD/EDMD	formulation.

𝑑
𝑑𝑡 𝑔. 𝒖#, 𝑡 = ;

0)'

"

[𝑴].0𝑔0 𝒖#, 𝑡 − 4
#

$
;
0)'

"

[𝑲(𝑡 − 𝑠)].0𝑔0 𝒖#, 𝑡 𝑑𝑠 + 𝐹(𝒖#, 𝑡)

𝑲 𝑠 =−< 𝑭 𝑠 , 𝑭(0)1 > 𝑪#-'
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Mori-Zwanzig formalism is also a generalization of Higher Order 
DMD (HODMD) and can be combined with time delay embedding.
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Usual Mori-Zwanzig formalism approaches model the memory kernels, as 
it is computationally unfeasible to extract them exactly. 

Los Alamos National Laboratory

Here, 𝒦2 is the Koopman transfer operator, i.e. 3
3$
𝜙 = 𝑅 𝜙 ⇒ 𝒈%&' = 𝒦2𝒈%

𝒈%&' ≜ 𝒦2
%𝒈 = ∑ℓ)#% 𝛀 ℓ ∘ 𝒈%-ℓ +𝑾%		(Generalized	Langevin	Equation)

𝛀 ℓ ≔ 𝒫𝒦2 1 − 𝒫 𝒦2
, 	 (ℓ = 0:	Markov,	ℓ > 0: 	memory	kernel)	

𝑾% ≔ 1 − 𝒫 𝒦2
%&'(𝒈)	 (orthogonal	dynamics, 	𝒫𝑾%= 0)

We have derived computationally efficient recursive relations (using the GFD relation) 
to extract the operators 𝛀#, 	𝛀 𝟏 , … , 𝛀 𝒏 	:

• For Mori’s linear projection in Lin,	Tian,	Livescu,	Anghel	SIADS	2021.
• Reformulating	the	projection	as	nonlinear	regression	(with	various	regression	
bases,	including	spline	and	CNNs)	in	Lin,	Tian,	Perez,	Livescu	SIADS	2023.

• Summary for the discrete representation:
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We first applied the Mori-Zwanzig decomposition to isotropic turbulence
(Tian,	Lin,	Anghel,	Livescu	POF	2021).

Los Alamos National Laboratory

• Direct Numerical Simulation of incompressible N-S equation on a 128x128x128 
mesh, with Taylor Reynolds number ≈100.

• A long trajectory (1000 integral time scales) of 3D Snapshots (approx. 100,000) with 
small time interval d𝑡	 ≈ 10*Kolmogorov timescale are used for learning

• Coarse-graining is performed by applying a filter (Gaussian/Box) to the chosen 
observable with various filter sizes Δ,, and then coarsely sampled on a 4x4x4 grid. 

• Rotational invariance and translation invariance are implemented to impose 
symmetries on the learned kernel, and thus reduce the samples size for statistical 
convergence.

• Different types of observables are selected based on physical intuition and governing 
equation.
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First data-driven extraction of memory kernel of homogeneous isotropic 
turbulence shows that memory length is finite!

• Finite memory length: memory 
kernel norm drops to 1% within 
10% of the integral time scale.

• The filter type does not affect the 
memory kernel significantly.

• As the filter size increases, the 
memory length also increases.

Effects of spatial filters on the memory kernel
• Two filter types: Gaussian, box
• Various filtering length scale Δ!

Temporal decorrelation
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Finding the optimal observables that represent the dominant/slow dynamics of a 
nonlinear system is an important topic in MZ learning. 

The types of observables considered:

• Observables set 1: g𝑢, g𝑣, i𝑤
• Observables set 2 (moment closure): 1,	 g𝑢, g𝑣, i𝑤, g𝑢 g𝑢, g𝑣 g𝑣, i𝑤i𝑤, g𝑢 g𝑣, g𝑢i𝑤, g𝑣i𝑤, k𝑢𝑢-g𝑢 g𝑢, 
k𝑣𝑣- g𝑣 g𝑣, k𝑤𝑤-i𝑤i𝑤, k𝑢𝑣-g𝑢 g𝑣, k𝑢𝑤-g𝑢i𝑤, k𝑣𝑤- g𝑣i𝑤 )

• Observables set 3 (physical intuition): 1, g𝑢, g𝑣, i𝑤, 678
69

, 6:;
6<

, (6 7=
6>
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6<

+ 6:;
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6>
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• Observables set 4 (direct equation): 1, g𝑢, g𝑣, i𝑤, 
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Including memory effects and using appropriate observables 
can significantly decrease prediction error!
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Currently applying the approach to better understand and control 
boundary layer transition for hypersonic flight (Woodward et al 2023).

[C. Hader,  H. Fasel JFM 2019]
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• Full state GLE:                                                   

as a model for:

• Apply  SVD to full snapshot time data:

• Define observables using a reduced set of POD modes as:

• Reduced GLE:
               
where projected memory kernels are: 

• The modes can be found from the companion matrix:

We introduce Mori-Zwanzig Mode Decomposition, as a 
generalization of Dynamic Mode Decomposition.

𝒈 = 𝑼B∗𝑿
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The memory terms in MZMD improve the generalization error 
over DMD.
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The memory terms in MZMD improve the representation of 
the primary and secondary modes.

MZMD modes DMD modes
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The memory terms in MZMD improve the representation of 
the primary and secondary modes.

Pointwise relative error over time
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The memory terms in MZMD improve the representation of 
the primary and secondary modes.

Pointwise relative error over time
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By including memory effects, MZ can predict the flow longer 
than current data driven models (Woodward et al, AIAA 2023) 

MZ

DMD

GT

GT
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MZMD improves mode representation and prediction 
compared to DMD with similar compiutational costs.

• Learning: MZMD only 0.1% more expensive than DMD
• Prediction: MZMD only 1% more expensive than DMD
• Accuracy: up to 32% relative improvement in accuracy
• Memory: easily portable to existing DMD code
• GFD: Enforces generalized fluctuation dissipation relation
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MZ formalism can also be used as ROM for the control 
problem.

Define the observables as the pressure values at an array of sensors:

• Using regression-based projection allows 
NNs to be used to learn MZ operators.

• MZ-NN performs best, LSTM similar results 
(however less formal and interpretable)
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Mori-Zwanzig dimensionality reduction for turbulent flows

DNS

MZ


