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Turbulence strongly coupled across broad range of scale

* Need tractable models

e Data-Driven Discovery

* Machine Learning inspired
by nature: Eagles' nervous
system learned a model for
controlling turbulent flow.

* Encode physical symmetries
and conservation laws
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PIML models show significant better match and

generalizability error compared to physics blind models.

Example: Learning Lagrangian dynamics using the framework of SPH
(Woodward et al, PRF 2023; Tian et al, PNAS 2023).

* Goal: Build effective Lagrangian models that capture turbulent dynamics on resolved
scales using particle-based methods

* Model: Smooth Particle Hydrodynamics (SPH): Maps a continuous field onto a series of
discrete particles carrying fluid quantities in the Lagrangian frame.

* Approach: Learn (estimate) parameters and functions from turbulence data.

sty NP Hierarchy of reduced order models, show
I A increasingly better match with DNS data and
generalizability error.

Physics-blind: NODE (Neural ODEs)

Replace terms on the right hand side with NNs
Add symmetries

Physics-informed: follow the full structure and
symmetries of SPH model

B wnN =
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The Mori-Zwanzig Formalism can be used as a general structure to

formulate the turbulence closure problem.

Turbulence :
Large range of scales

“

Fully-resolved simulation: Coarse-grained systems:
prohibitively expensive modeling

N,

Data-Driven Models: Traditional turbulence models
Koopman, RNN, LSTM (RANS, LES): moment closure

formal mathematical procedure for

{ Data-Driven
coarse-grained systems

Methods, ML

J Mori-Zwanzig Formalism:




Full order model is described by Direct Numerical Simulations of

Navier-Stokes equations.

du(t
Full order model in semi- ® _ R(u(t)) u(0) = u,

discrete form: dt

uelR’Yy R:RNSRN

For Navier-Stokes equations represented
on a discrete grid with grid point i: u; = (v,p,e, Yl---Ns)i

time_idx = 20




To reduce the dimensionality of the problem, define a reduced set

of “observables.”

Let g(u(ug,t)), g: RY - RP, D<M, be a set of observables at time t.

For example:
Resolved

d R RN Coarse-graining d lf‘—\ b
—Uu = u ’u € — . ~ R ) € R
dt W) RYtoR?,D « N dt 9 (9) +model(g). g

time_idx = 10 time_idx = 20




Mori-Zwanzig formalism, first introduced in statistical mechanics, can be

expressed as an exact framework for reduced order models.

* [Mori65] and [Zwanzig7 3] show that the evolution of coarse-grained/resolved
observables satisfies the Generalized Langevin Equation (GLE):

d t

90,0 = M(g(uo,0) - | K(guo,t = 5),5)ds +
0
|

1 J
I i

Markovian term  Memory kernel

* To define the MZ operators, need to introduce a projection operator P that maps the
full space N onto the reduced space D, i.e. it maps functions f: R¥ - RY onto the

subspace Span{g; (uy) ... gp (uy)}.

e Using P, the operators M, K and F can be expressed based on the initial system, e.g.
M = [PR](u(uy, t)).

e Orthogonal dynamics and memory kernel are related through Generalized
Fluctuation-Dissipation (GFD) relation.

n
* Discrete version (Lin, Tian, Livescu, Anghel 2021): Ini1 = z oW (gn-1) +
=0
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Mori-Zwanzig formalism has an intuitive geometrical representation.

Unresolved

Observables X X X

> In+1?

I h Present

-Q-(O) Markov
» . e

/("l(b\ Memory=1
o D e 8 " :
/ 0@ \ Memory=2
» » » . »
WZ. | \ | Orthogonal
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Mori-Zwanzig formalism is a generalization of the Dynamic Mode

Decomposition ( ).

« Ifthe inner product on full space is used to define the projection operator as

Pf(g(uy)) = X721 < f.9: > [€51ij9;(uo),

where Cylis the inverse of the covariance matrix < g;, g j > (Mori’s finite rank projection),
then the GLE becomes linear:

D D
d t
agi(uo, t) = Z[M]ijgj(uo, t) — JO ;[K(t — $)];79; (g, t) ds +

j=1
 Generalized Fluctuation-Dissipation (GFD) relation: K(s) =—< F(s), F(0)T > C;*

* Learning M and K becomes a convex problem in the Koopman formulation of
dynamical systems and we have devised efficient algorithms for learning them based
on GFD (Lin, Tian, Livescu, Anghel SIADS 2021).

* Keeping only the Markov term recovers the DMD/EDMD formulation.
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Mori-Zwanzig formalism is also a generalization of Higher Order

DMD (HODMD) and can be combined with time delay embedding.

DNS Vorticity (Test Set)

m . : 0'06—

0.05

Relative Generalization Errors

== HODMD
=@ MZMD k
= MZMD k =
= MZMD £k
—F— MZMD k
—@— MZMD k
—0— MZMD £k
— MZMD k =

= O =] O
o =

0.04

MZMD Future State Prediction
0.03

0.02

m » % 4 .

Time Delays




Usual Mori-Zwanzig formalism approaches model the memory kernels, as

it is computationally unfeasible to extract them exactly.

* Summary for the discrete representation:

Gni1 2 KLg =200 Q®og. ,+ W, (Generalized Langevin Equation)
Q@) = PH,L[(1 — P)KA]lY (£ = 0: Markov, £ > 0: memory kernel)
W, =[(1—-P)KA]"*1(g) (orthogonal dynamics, PW,= 0)

Here, K, is the Koopman transfer operator, i.e. %qb = R(¢) = gns1 = Kargn

We have derived computationally efficient recursive relations (using the GFD relation)
to extract the operators Q°, Q.. Q™ .

* For Mort’s linear projection in Lin, Tian, Livescu, Anghel SIADS 2021.
* Reformulating the projection as nonlinear regression (with various regression
bases, including spline and CNNs) in Lin, Tian, Perez, Livescu SIADS 2023.
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We first applied the Mori-Zwanzig decomposition to isotropic turbulence

(

).

Direct Numerical Simulation of incompressible N-S equation on a 128x128x128
mesh, with Taylor Reynolds number ~100.

A long trajectory (1000 integral time scales) of 3D Snapshots (approx. 100,000) with
small time interval dt = 10*Kolmogorov timescale are used for learning

Coarse-graining 1s performed by applying a filter (Gaussian/Box) to the chosen
observable with various filter sizes A;, and then coarsely sampled on a 4x4x4 grid.

Rotational invariance and translation invariance are implemented to impose
symmetries on the learned kernel, and thus reduce the samples size for statistical
convergence.

Different types of observables are selected based on physical intuition and governing
equation.
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First data-driven extraction of memory kernel of homogeneous isotropic

turbulence shows that memory length is finite!

Effects of spatial filters on the memory kernel
* Two filter types: Gaussian, box
* Various filtering length scale A,

Frobenius norm

1074

10—5 4

106

Temporal decorrelation — unfiltered
—-=—=- Gaussian filter Aj=m/32

----- Box filter A;= /32

——- Gaussian filter A;=mn/16
----- Box filter Aj=n/16

- -~ Gaussian filter A;=n/8
ity @ e Box filter A;=n/8

L % —-== Gaussian filter A;=mn/4
L

\‘ e e Box filter Aj=n/4
\ Y L% ]

* Finite memory length: memory
kernel norm drops to 1% within
10% of the integral time scale.

* The filter type does not affect the
memory kernel significantly.

» As the filter size increases, the
memory length also increases.




Finding the optimal observables that represent the dominant/slow dynamics of a

nonlinear system is an important topic in MZ learning.

The types of observables considered:

e Observables set 1: i, U, w
* Observables set 2 (moment closure): 1, u, U, w, titi, VU, ww, Uuv, uw, vw, uu-u,
vo-vv, Ww-ww, uv-iuv, uw-uw, vw-ow )

* Observables set 3 (physical intuition): 1, u, U, W ou o ou, ov ou, oW 6v+

> ax” ay( )’ay ax’dz ox’ oz
ow 0u 617 ou ow 0D ow - -

— T — —,———, uu+ v +ww, S;;S; WW
oy *dy ox’'dz ox’dz ady’ T T Ly

* Observables set 4 (direct equation): 1, i, U, w,

ouu 0vv Ooww o0uv duv Jduw Jduw Ivw Ovw OP 0P OP

ox "0y’ 0z "ox oy  ox ' 9z ' oy’ 0z 'ox’'oy’ oz




Including memory effects and using appropriate observables

can significantly decrease prediction error!

....... —_—
0.030
—@— observables 1
CLH 0.025 observables 2
E --@- observables 3
—@ - observables 4
0.020
0.015 ~ . .
e ——.— o — - ———. o — —- - ——— q
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Memory Legnth




Currently applying the approach to better understand and control

boundary layer transition for hypersonic flight (Woodward et al 2023).

Environmental disturbances
entering the boundary layer

UM (BL)

Secondary

Receptivity Primary
mechanisms| |instability| |instability

"primary"
streaks

[C. Hader, H. Fasel JFM 2019]




We introduce Mori-Zwanzig Mode Decomposition, as a

generalization of Dynamic Mode Decomposition.

« Full state GLE: x,41 = Q(()x) Xy F ...+ Q,(cx)  Xn—ks

as a model for: Xn1 = F(x,), x(0)=x,

« Apply SVD to full snapshot time data: X = [xg,...,x;] = U, X, V;
« Define observables using a reduced set of POD modes as: g = U;X

. Reduced GLE: g1 = 2 - gn+...+ Q¥ - gy,

where projected memory kernels are: ﬂ;g) = U;"ngx)Ur Qy Q; ...
I o0 .. 0

« The modes can be found from the companion matrix: C, =




The memory terms in MZMD improve the generalization error

over DMD.

Relative Generalization Errors

Total variation in POD modes
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The memory terms in MZMD improve the representation of

the primary and secondary modes.

MZMD modes DMD modes

Computational Domain f Computa%

L1 SO,
\ ALLLLLLLSSCOON
- - ’ | ..‘.......‘........o'o.-
!\ ‘\ / AL
\ \ \ 0\
\ *.  Fundamental i *.  Fundamental
--— I

A =2.5mm

T |

e
~
/)

A=13mm A=1.3mm

\ \
A A
1 1
v 1
! !

d . d 5
2" Harmonic 2" Harmonic




The memory terms in MZMD improve the representation of

the primary and secondary modes.

Pointwise relative error over time

Computational Domain f

)
—
)

DMD (dominant modes)




The memory terms in MZMD improve the representation of

the primary and secondary modes.

Pointwise relative error over time

Computational Domain

MZMD (all modes)

B —

DMD (all modes)




By including memory effects, MZ can predict the flow longer
than current data driven models

u — component of field : Truth

y/L(wall — normal)

u — component of field : Prediction

y/L(wall — normal)

3
g
8
7
I

3
z

1
>

u — component of field : Prediction

y/L(wall — normal)




MZMD improves mode representation and prediction

compared to DMD with similar compiutational costs.

Memory k=0 k=1 k=2 k=3 k=4 k=5 k=6
MZMD: Learning (ms) 83.5 1124 127.1 1577 198.1 241.0 289.5
MZMD: Future state prediction (s) 2.505 2.502 2.508 2.516 2.525 2.537 2.546

* Learning: MZMD only 0.1% more expensive than DMD
 Prediction: MZMD only 1% more expensive than DMD

« Accuracy: up to 32% relative improvement in accuracy
 Memory: easily portable to existing DMD code

 GFD: Enforces generalized fluctuation dissipation relation




MZ formalism can also be used as ROM for the control

problem.

Define the observables as the pressure values at an array of sensors:

Snapshot unrolled: p
0.004

TR e \ i 0.04
§ 0002 f oo
% 0 wm lmim 0
-0.02
< -0.002 ..“1,,“““ I A -0.04
-0.004 T T i T T T T i
0.25 0.3 0. 35 0.4 0. 45 0.5
KL — Divergence: t,
« Using regression-based projection allows i
NNs to be used to learn MZ operators. £
=
* MZ-NN performs best, LSTM similar results & =—EDMD
(however less formal and interpretable) 102} =AMori: 1
| =117 NN
0 50 100 150 200 250
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