

LA-UR-24-26605

Approved for public release; distribution is unlimited.

Title: 2024 NMDC Ambassador Training Materials

Author(s): Kelliher, Julia Mae; Rodriguez, Francisca Ester; Johnson, Leah Young Davenport; Prime, Kaelan Jantira; Roux, Simon; Eloe-Fadrosch, Emiley A.; Smith, Montana; Clum, Alicia; De Santiago, Alejandro; Gajigan, Andrian; Maher, Rebecca; Hanson, Buck Timothy; Robinson, Christopher; Betacurt-Anzola, Daniela; Skoog, Emilie; Cirolia, Giana Teresa; Skeen, Heather; Oduwole, Iyanu; Kajihara, Kacie; Pham, Kent; Camuy-Vélez, Lennel; et al.

Intended for: NMDC Ambassador training materials that will receive a DOI

Issued: 2024-07-02

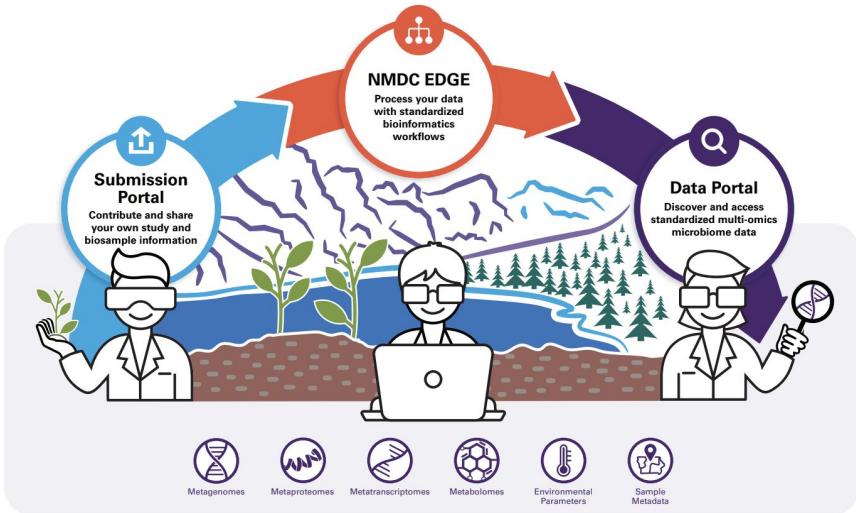
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

nmdc

National Microbiome
Data Collaborative

What is the NMDC?

2024 Ambassador Cohort


What is the NMDC?

The NMDC is a *sustainable data discovery platform* that promotes open science and shared-ownership across a broad and diverse community of researchers, funders, publishers, societies, and other collaborators. The NMDC aims to enable multi-omic microbiome research to accelerate scientific discovery. The NMDC is a Department of Energy funded program that is a collaboration between 3 National Laboratories: Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), and Pacific Northwest National Laboratory (PNNL)

“Enabling inclusive and interdisciplinary environmental microbiome science by connecting data, people, and ideas”

Why we need standards

Synthesizing these to gain insights requires:

- ⇒ *meaningfully FAIR* data
- ⇒ *computable* standards
- ⇒ *community* adoption

Findable
Accessible
Interoperable
Reusable

What role do microbes play in the persistence of soil carbon?



How do microbes and viruses mediate watershed scale nitrogen transformations?

How do microbes impact biogeochemical cycling in deep subsurface environments?

Vision and Mission

Vision

To **connect data, people, and ideas** to advance microbiome innovation and discovery

Mission

To support a FAIR microbiome data sharing network, through **infrastructure, data standards, and community building**, that addresses pressing challenges in environmental sciences

Product Initiatives

Submission Portal

Lower barriers
to collect
study and
biosample
data

NMDC EDGE

Streamline
multi-omics
data
processing

Data Portal & API

Access and
discovery of
microbiome
information

Engagement

User Facilities

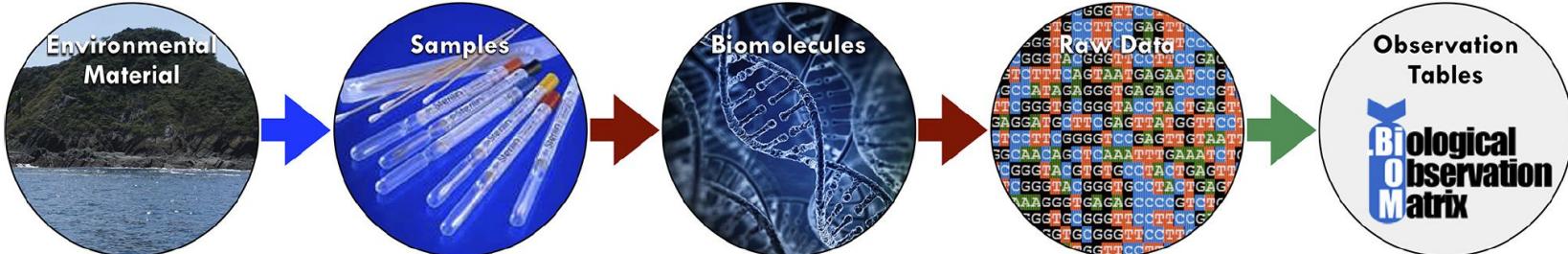
Individuals

The NMDC Champions Program

The NMDC Ambassador Program

Strategic Partners

Metadata Standards


Adopting standards for reporting makes data human and machine readable.

Metadata (data about data):

- Contextual data about your data
- Vital for data
 - Preservation
 - Discovery
 - Access
 - Reuse

Sample metadata includes information about:

- **When** it was collected
- **Where** it was collected
- **What** kind of sample is it
- **Treatment** applied during experimentation
- **Environmental Properties** from which the sample was taken

NMDC Submission Portal

Submission Portal

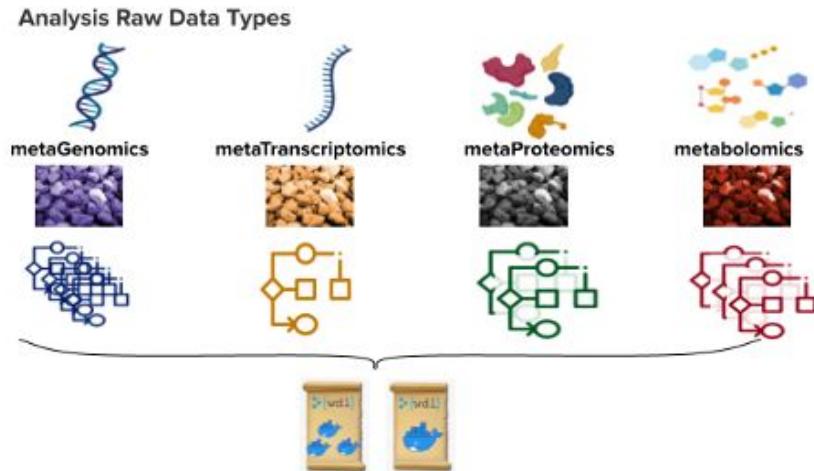
Lower barriers to collect study and biosample data

Upload your data

The screenshot shows the NMDC Submission Portal interface. A TSV file is being uploaded, and the portal displays validation errors (47) in a red box. A column help panel is open, providing guidance for the 'project ID' column. A callout box highlights the 'Receive guidance on how to meet standards' feature. Another callout box highlights the 'Validate your submission against pre-made MIxS templates' feature.

Sample ID	globally unique ID	sample name	analysis/data type	environmental package	sample linkage	broad-scale environmental context
1	UUID:72b8ae3c-f263-11ec-b939-0242ac120002	1	metagenomics;metaproteomics	soil		temperate biome [ENVO:01001831]
2	UUID:7833011e-f263-11ec-b939-0242ac120002	2	natural organic matter			temperate biome
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						

Validate your submission against pre-made MIxS templates


Receive guidance on how to meet standards

Standardized Bioinformatic Workflows

The NMDC has integrated state of the art open-source bioinformatics tools into standardized workflows for processing raw multi-omics data to produce **interoperable** and **reusable** annotated data products

- **NMDC Workflows:**

- Metagenome data
 - ReadsQC
 - Read-based taxonomy classification
 - Assembly
 - Annotation
 - Metagenome assembled genomes (MAGs)
- Metatranscriptome data
- Natural organic matter data
- Metabolome data
- Metaproteome data
- Viruses & Plasmids

NMDC EDGE

NMDC EDGE

Streamline
multi-omics
data
processing

The screenshot shows the NMDC EDGE interface. On the left, a sidebar lists 'Upload Files' and 'Run Multiple Workflows' (both highlighted with red arrows). The main area shows an 'Upload Files' section with a file list and a 'Drag Files or Click to Browse' button. Below it is a 'Run Multiple Workflows' section for 'LA-UR-2' with various configuration fields and a 'Run' button.

The right side of the interface shows a navigation bar with links to 'Tutorial Videos', 'User Guides', 'Guías de Usuario', 'Guides d'Utilisation', and 'Command Line & Additional Documentation'. Below this is a list of scientific domains: Metagenomics, Metatranscriptomics, Organic Matter, Viruses and Plasmids, and Metaproteomics. At the bottom, logos for NIST and ACCESS are visible.

Data Stewardship + FAIR Data

- NMDC is committed to FAIR data principles of making microbiome data Findable, Accessible, Interoperable, and Reusable
- Both raw and processed data should be FAIR
- Processing data in a standardized way makes it increasingly interoperable and reusable

0101

Findable

Ensure all data registered within NMDC are human and machine readable

Accessible

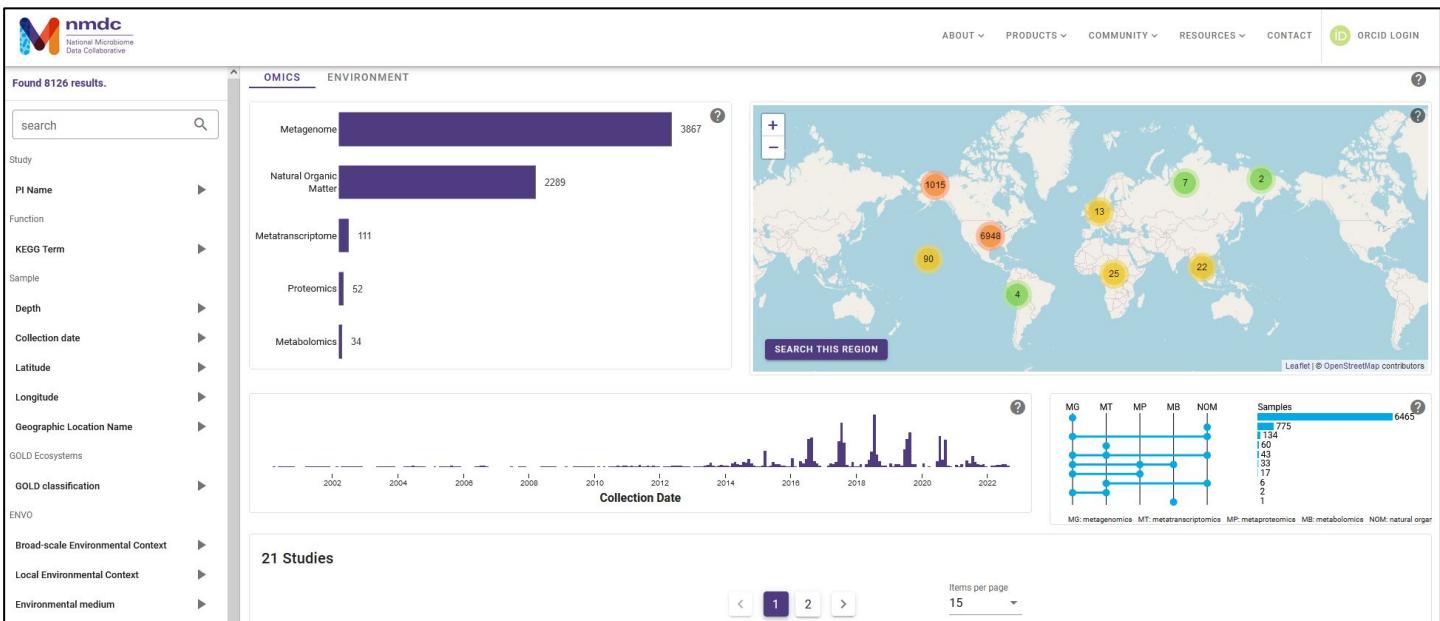
Identify data sets that are available, including any authentication and authorization requirements

Interoperable

Provide provenance, metadata, and uniformly processed data, we are lowering the barriers to making data interoperable

Reusable

Enable download of data, data products, and workflows for external reprocessing


NMDC Data Portal

Data
Portal & API

Access and
discovery of
microbiome
information

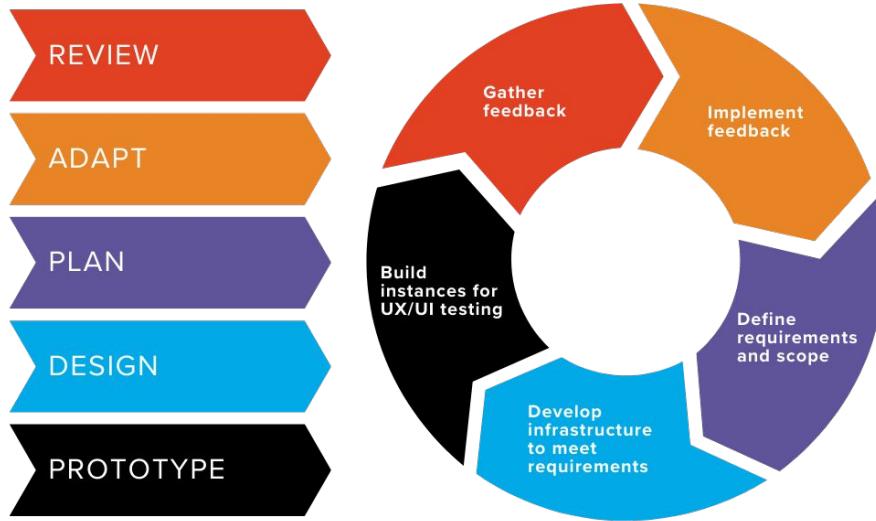
NMDC Engagement

Goal 1: Recognize and support the diverse research needs and perspectives of the microbiome research community

Goal 2: Promote best practices across the microbiome community, from researchers to funders

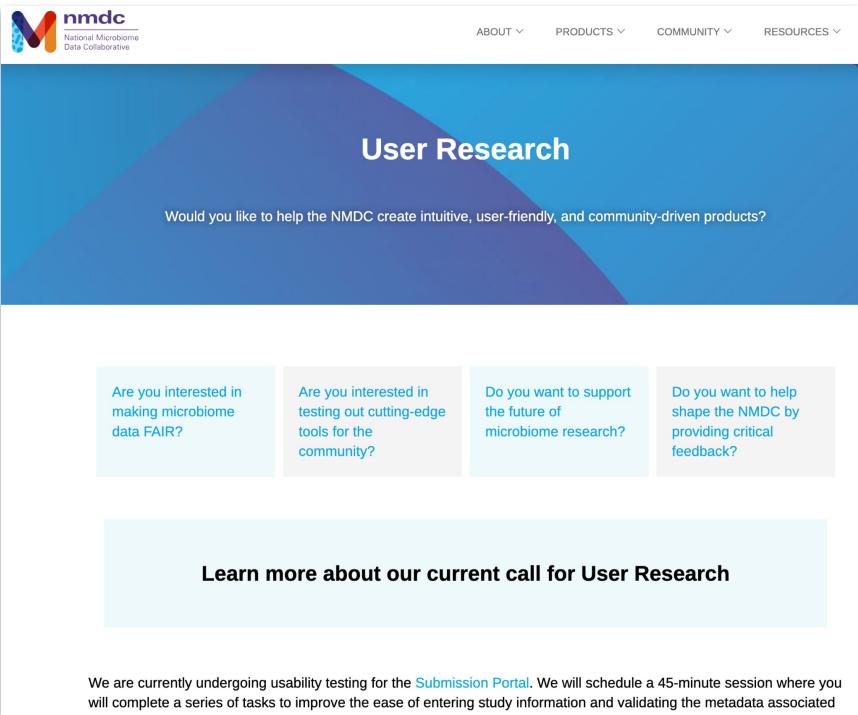
Goal 3: Build a microbiome ecosystem that enables scientific discovery and innovation

	Community	Collaborator	Champion	Ambassador
Works with microbiome data	✓	✓	✓	✓
Contributed or cited NMDC data	+	✓	+	+
Advocates for FAIR microbiome data	+	+	✓	✓
Steward of well-curated data	+	+	✓	✓
Speaks on behalf of the NMDC				✓
Hosts community events				✓


+ Optional

Partnerships

Community-centered design process



2023-2024 User Research

- The NMDC program utilizes a community-centered design approach to its product development process
 - User interviews, usability testing, beta-testing
 - Understand the needs of the community and how researchers use the products
- Workshops and event feedback is critical too
- Want to develop products that are as useful to the community as possible

User Research

The screenshot shows the NMDC User Research landing page. At the top, there is a navigation bar with links for ABOUT, PRODUCTS, COMMUNITY, and RESOURCES. The main heading is 'User Research' with a subtext: 'Would you like to help the NMDC create intuitive, user-friendly, and community-driven products?'. Below this, there are four buttons with text: 'Are you interested in making microbiome data FAIR?', 'Are you interested in testing out cutting-edge tools for the community?', 'Do you want to support the future of microbiome research?', and 'Do you want to help shape the NMDC by providing critical feedback?'. At the bottom, a button reads 'Learn more about our current call for User Research'. A note at the very bottom states: 'We are currently undergoing usability testing for the [Submission Portal](#). We will schedule a 45-minute session where you will complete a series of tasks to improve the ease of entering study information and validating the metadata associated'.

Examples of feedback:

- Updates to interface design, tutorials, and help guidance
- Feature implementation
 - Batch processing in NMDC EDGE
 - Data download updates in the Data Portal
 - Template accessibility updates in the Submission Portal

Volunteer for our user research program!

<https://microbiomedata.org/user-research/>

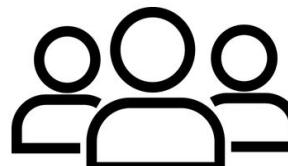
How to talk about the NMDC

What is NMDC?

NMDC is a DOE funded *data discovery platform* that promotes open science for multi-omic microbiome research to accelerate scientific discovery.

What we are NOT

- Primary data repository


FAQs available on the NMDC website

Three NMDC products

The people doing the work:
The NMDC team

The organization:
The NMDC

Annual Reports

Advancing microbiome science for the benefit of all

In January of this year, the White House Office of Science and Technology Policy (OSTP) issued a Year of Open Science with new actions to advance open and equitable science policies across the federal government. The National Microbiome Data Collaborative (NMDC) is committed to open and equitable research in microbiome science. This commitment is the foundation for our infrastructure development activities and has been a prominent driver this past year across our three products: the [Submission Portal](#), [NMDC EDGE](#), and the [Data Portal](#). It has been an exciting and busy time for our team as we work to serve the scientific community in a way that enables microbiome innovation and discovery. I am exceptionally proud of the progress the NMDC team has made this past year in fostering strong community partnerships and advancing our powerful products into tools that drive scientific impact.

We launched the NMDC persistent identifier service in January 2023 and deployed programmatic access to all NMDC data through a public application programming interface ([API](#)). Together, these efforts support a larger findable, accessible, interoperable, and reusable (FAIR) data ecosystem to programmatically exchange and link data across resources. The Data Portal now hosts over 7,700 biosamples with a collective nearly 90 TB of multi-

omic microbiome data and links across complementary data interfaces, including the Integrated Microbial Genomes and Microbiomes (IMG/M) and Genomes OnLine Database (GOLD) of the Joint Genome Institute (JGI), the Department of Energy (DOE) Systems Biology Knowledgebase (KBase), the National Center for Biotechnology Information (NCBI), the Mass Spectrometry Interactive Virtual Environment (MassIVE), the Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE), and the National

Emily Els-Fadrosi
National Microbiome
Data Collaborative Lead

A community-driven data infrastructure

The NMDC is tackling existing gaps in microbiome research by using proven approaches and new innovations in distributed data infrastructure and linked data technologies. Our three products — the [Submission Portal](#), [NMDC EDGE](#), and the [Data Portal](#) — are driven by community needs. They support data, information, knowledge sharing, and access. This past year, we worked closely with the research community to strengthen our existing infrastructure in ways that will catalyze new research. This included launching a new persistent identifier service, supporting programmatic access to NMDC data, expanding the amount of available high-quality data and workflows, and contributing to major updates of community data standards.

NMDC Resources

Website: <https://microbiomedata.org/>

Data Portal: <https://data.microbiomedata.org/>

Submission Portal: <https://data.microbiomedata.org/submission/home>

NMDC EDGE: <https://nmdc-edge.org/home>

Github: <https://github.com/microbiomedata>

Docker Hub: <https://hub.docker.com/u/microbiomedata>

Documentation:

https://nmdc-documentation.readthedocs.io/en/latest/overview/nmdc_overview.html

YouTube: https://www.youtube.com/channel/UCyBqKc46NQZ_YgZIKGYeglw/featured

Get involved!

Sign up for our newsletter

microbiomedata.org

Find us on X/Twitter

@microbiomedata

Find us on Instagram

@microbiomedata

Become a NMDC Champion

bit.ly/championsapp

Find us on LinkedIn

https://bit.ly/NMDC_LinkedIn

**nature
microbiology**

frontiers

**Nucleic Acids
Research**

**nature
REVIEWS
MICROBIOLOGY**

mSystems

Read more about the NMDC

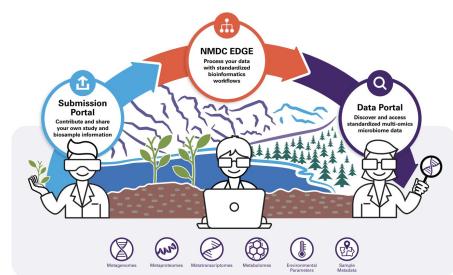
Kelliher JM et al. Cohort-based learning for microbiome research community standards. *Nat Microbiol* (2023). doi.org/10.1038/s41564-023-01361-7.

Hu B, Canon S, Eloe-Fadrosh EA, et al.. Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale. *Front Bioinform*. 1:826370. (2022) doi: 10.3389/fbinf.2021.826370.

Eloe-Fadrosh EA et al. The National Microbiome Data Collaborative Data Portal: an integrated multi-omics microbiome data resource. *Nucleic Acids Res*. 7;60(D1):D828–D836. (2022) doi: 10.1093/nar/gkab990.

Wood-Charlson, E.M., Anubhav, Auberry, D. et al. The National Microbiome Data Collaborative: enabling microbiome science. *Nat Rev Microbiol* **18**, 313–314 (2020). doi.org/10.1038/s41579-020-0377-0

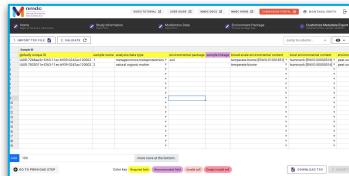
Vangay, P et al. Microbiome metadata standards: Report of the National Microbiome Data Collaborative's workshop and follow-on activities. *mSystems* **6**, e01194-20 (2021). doi.org/10.1128/mSystems.01194-20


‘One Slide on the NMDC’ for Presentations

National Microbiome Data Collaborative

Mission

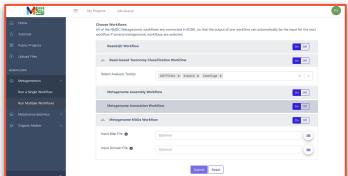
To support a FAIR microbiome data sharing network, through **infrastructure**, **data standards**, and **community building**, that addresses pressing challenges in environmental sciences


Findable
Accessible
Interoperable
Reusable

The NMDC offers 3 Products:

Submission Portal

Lower barriers to collect study and biosample data



Submission Portal

NMDC EDGE

Streamline multi-omics data processing



NMDC EDGE

Data Portal & API

Access and discovery of microbiome information

NMDC Data Portal

Get involved!

Website/newsletter
microbiomedata.org

Find us on X/Twitter
[@microbiomedata](https://twitter.com/microbiomedata)

Find us on Instagram
[@microbiomedata](https://www.instagram.com/microbiomedata)

Become a Champion
bit.ly/champions-program

Find us on LinkedIn
https://bit.ly/NMDC_LinkedIn

Engagement

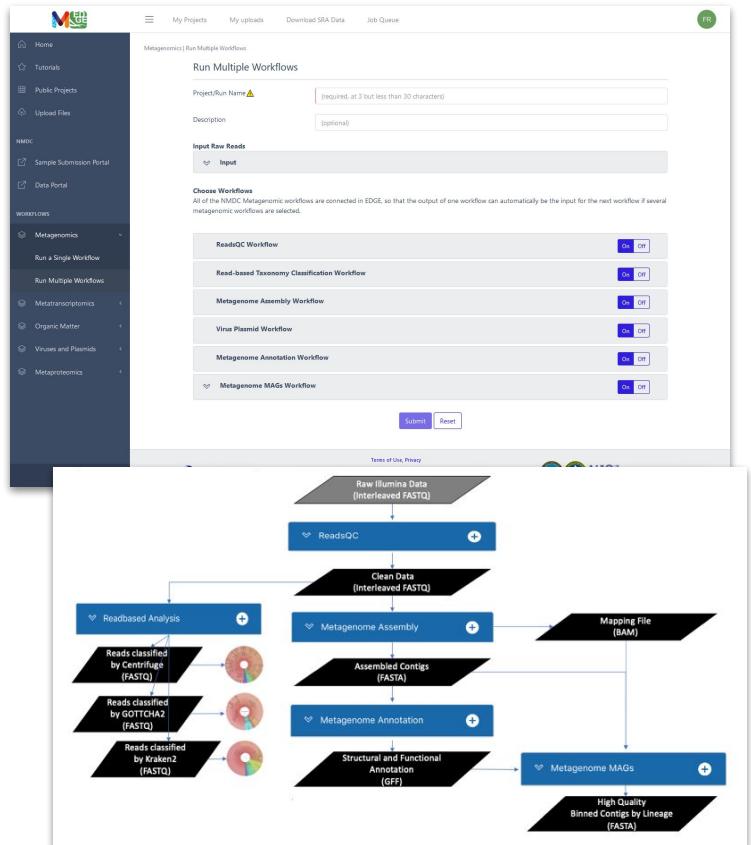
Individuals

The NMDC Champions Program
The NMDC Ambassador Program

User Facilities

Strategic Partners

nmdc


National Microbiome
Data Collaborative

Standardized Workflows and NMDC EDGE
2024 Ambassador Cohort

Purpose of this training

- Provide an overview of the benefits of standardized bioinformatics workflows and how they promote FAIR data
- Discuss the importance and benefits of using standardized workflows for the future of microbiome data
- Provide template slides that anyone can use in their own events
- Introduce audience to NMDC EDGE
 - The hands-on activity can be used (or modified and used) for use in your own events too! You can upload or link your own data

nmdc

National Microbiome
Data Collaborative

Standardized Bioinformatic Workflows

FAIR Data

- NMDC is committed to FAIR data principles of making microbiome data Findable, Accessible, Interoperable, and Reusable
- Raw and **processed** data should be FAIR
- NMDC prioritizes standardization and user-centered design to achieve FAIR and open data

0101

Findable

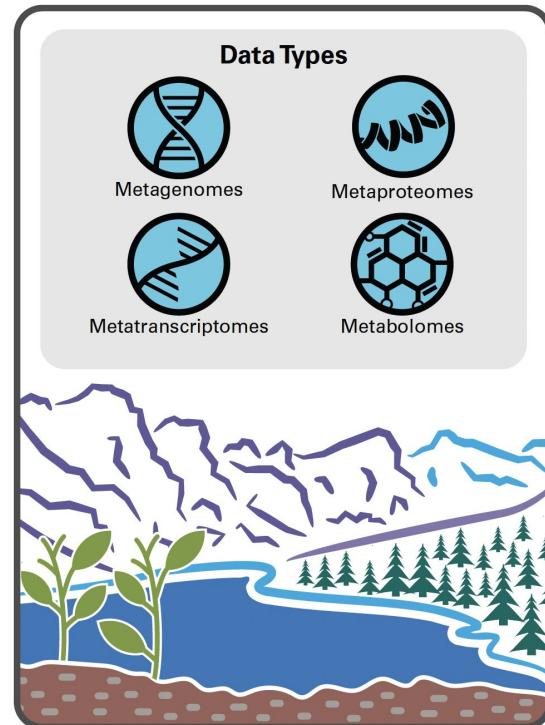
Ensure all data registered within NMDC are human and machine readable

Accessible

Identify data sets that are available, including any authentication and authorization requirements

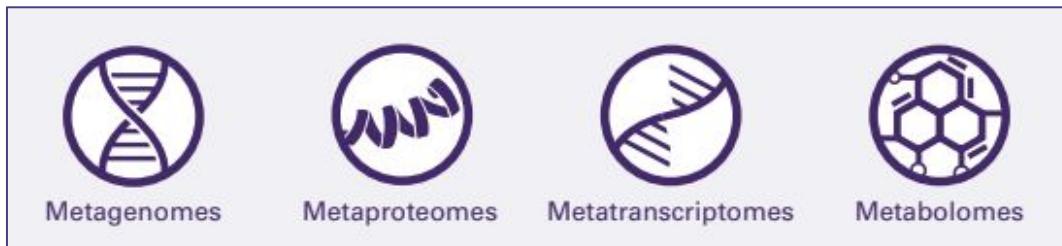
Interoperable

Provide provenance, metadata, and uniformly processed data, we are lowering the barriers to making data interoperable



Reusable

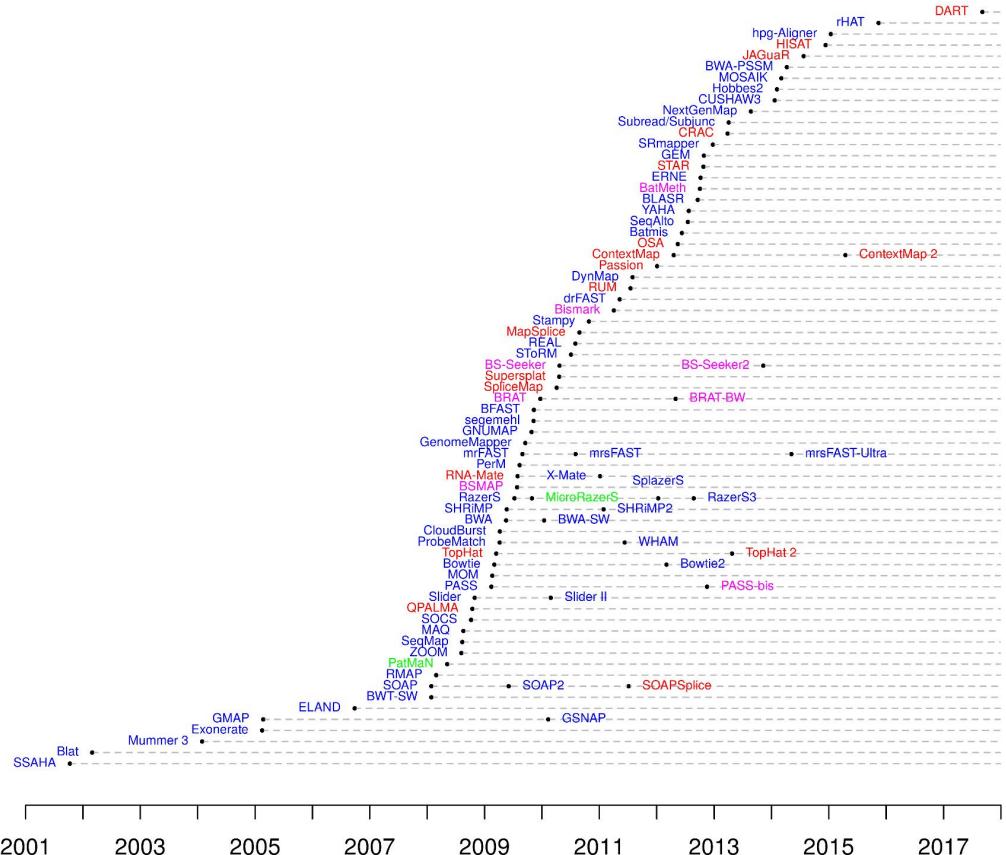
Enable download of data, data products, and workflows for external reprocessing


Intro to multi-omics techniques

- Multi-omics: the integration of data from multiple omics techniques, such as genomics, transcriptomics, proteomics, and metabolomics, to provide a comprehensive assessment of a biological system
- By analyzing various layers of molecular information simultaneously, taxonomic, genetic, and functional information can be used to unravel information about an organism and/or a community

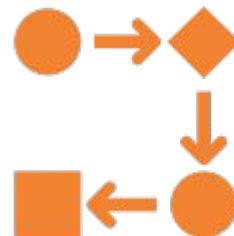
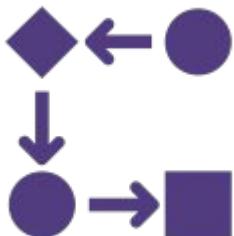
Multi-omics data processing

- Multi-omics data collection is rapidly becoming one of the most effective ways to interrogate microbiomes
 - The infrastructure surrounding these data is not keeping up
 - Large amounts of compute power needed to store and process these data
 - Data not FAIR (not made publicly accessible, not utilizing standards, etc.)
 - Different omics data not connected, data not comparable within an omics type
- Processing these omics data streams is currently very difficult to do in a way that allows for effective cross-study comparisons and data re-use



Bioinformatics explosion

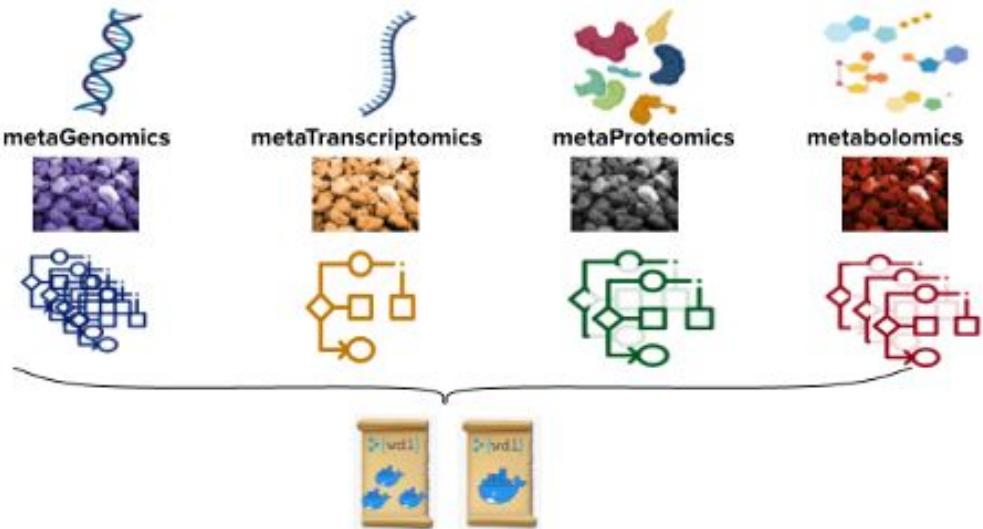
The massive explosion in the number of bioinformatics tools and workflows has led to data being processed in many ways, thus **limiting between-study comparability**



These are **just** mapping tools for genomic data developed between 2001-2018.

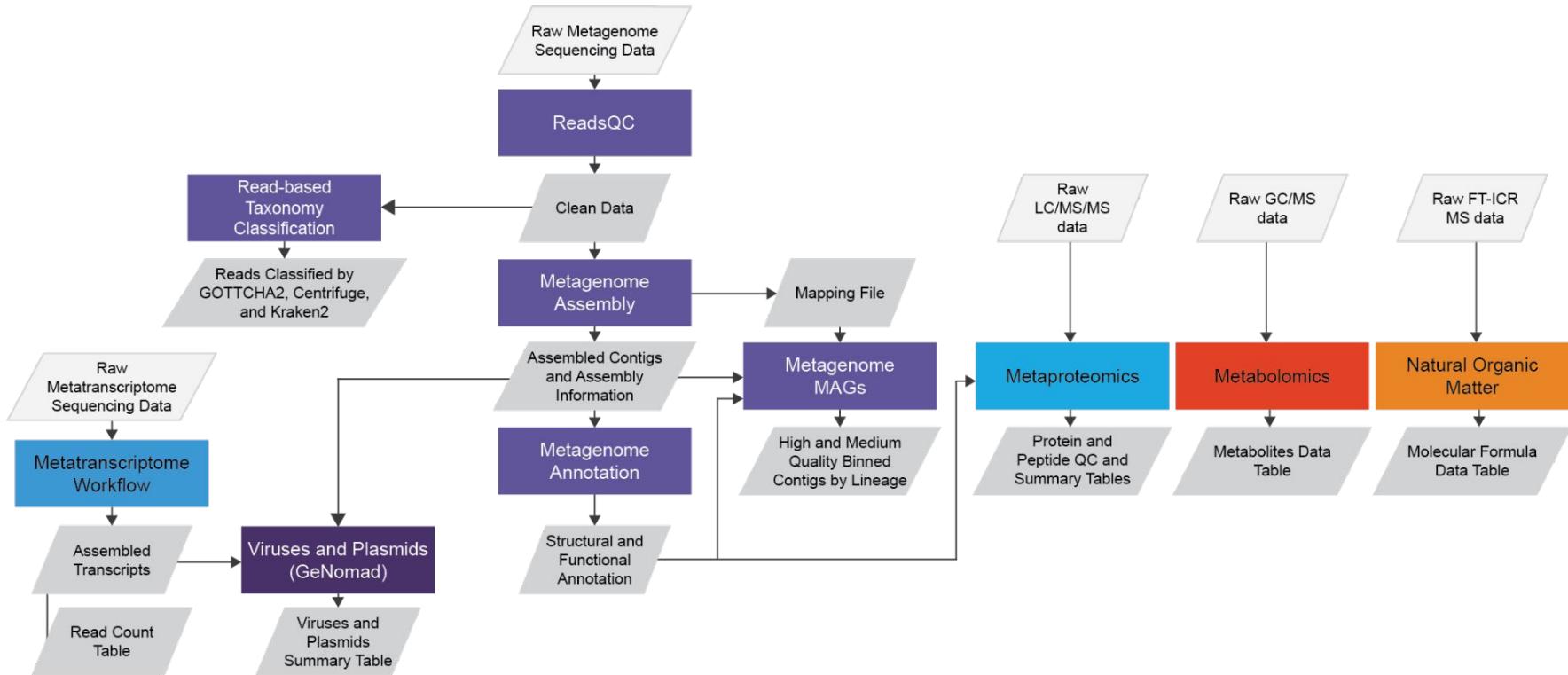
Timeline of NGS read aligners. Image from Nuno Fonseca
<https://www.ecseq.com/support/ngs/what-is-the-best/ngs-alignment-software>

Benefits of standardized workflows

- Help to make data and data products FAIR
- Reproducibility within a lab and between labs
- Better keep track of what was done to data
- Allows for integrations and comparisons with other datasets from other studies
- No need to put together own workflows
 - Existing workflows can include the best tools for omics data processing
 - Saves research, implementation, and testing time

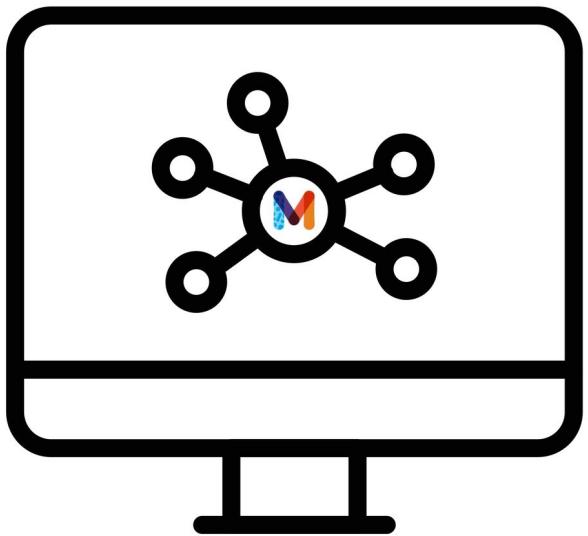


The NMDC has integrated state of the art open-source bioinformatics tools into standardized workflows for processing raw multi-omics data to produce **interoperable** and **reusable** annotated data products.


NMDC Workflows:

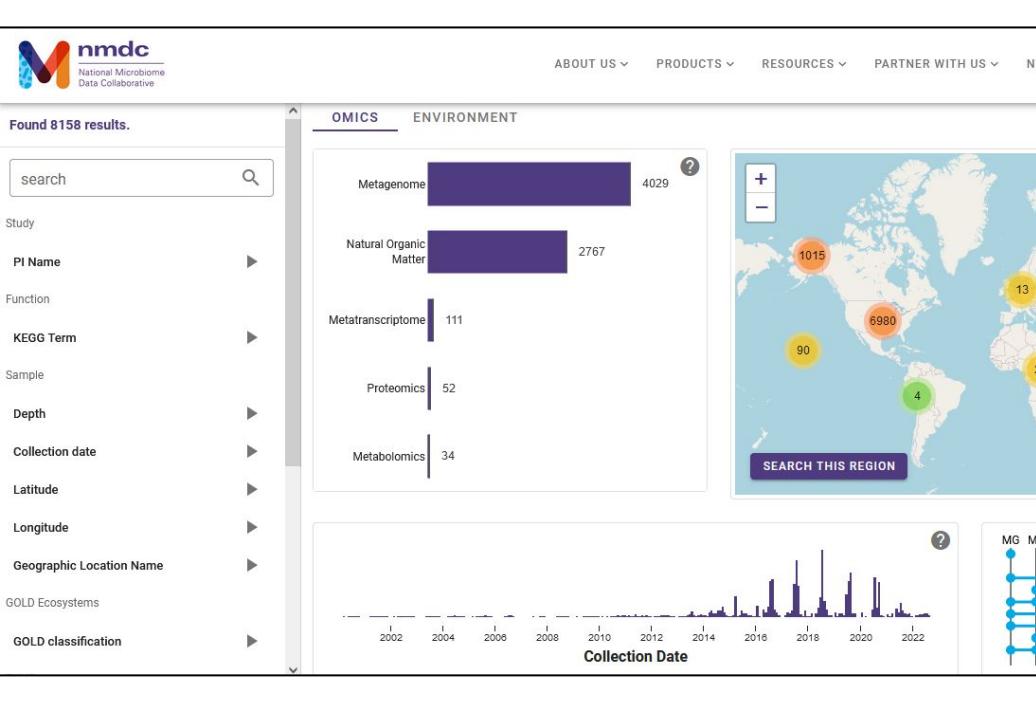
- Metagenome data
 - ReadsQC
 - Read-based taxonomy classification
 - Assembly
 - Annotation
 - Metagenome assembled genomes (MAGs)
- Metatranscriptome data
- Natural organic matter data
- Metabolome data
- Metaproteome data
- Viruses & Plasmids

Analysis Raw Data Types



NMDC Workflows

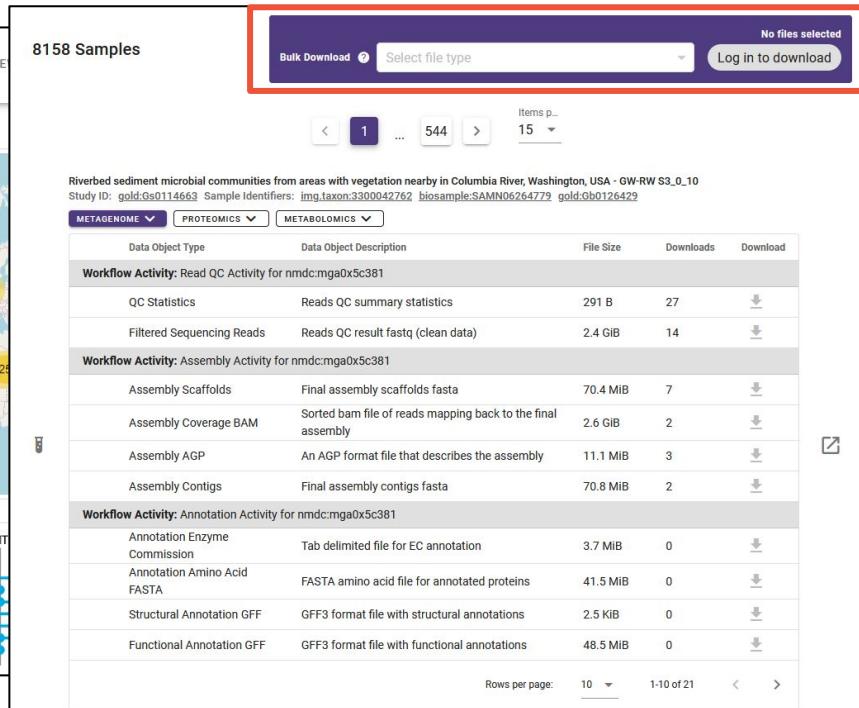
Why the NMDC workflows?


Benefits of using the NMDC workflows:

- Tools were carefully researched, selected, and modified for optimal performance
 - Many tools are the tools are production quality, regularly used to process thousands of datasets from DOE user facilities
- Workflows have been extensively tested on data from dozens of institutions and sample types
- Users are able to run these workflows through shared computing resources
 - Users don't need to download these tools or databases, nor have access to their own computing clusters
- The workflows are offered in a user-friendly interface for users with any level of bioinformatics experience
- Open source platform, extensive documentation

NMDC Data Portal

Processed datasets available on the NMDC Data Portal have all been run through the NMDC workflows allowing for direct comparisons between this data and data processed in NMDC EDGE



Found 8158 results.

OMICS ENVIRONMENT

- Metagenome 4029
- Natural Organic Matter 2767
- Metatranscriptome 111
- Proteomics 52
- Metabolomics 34

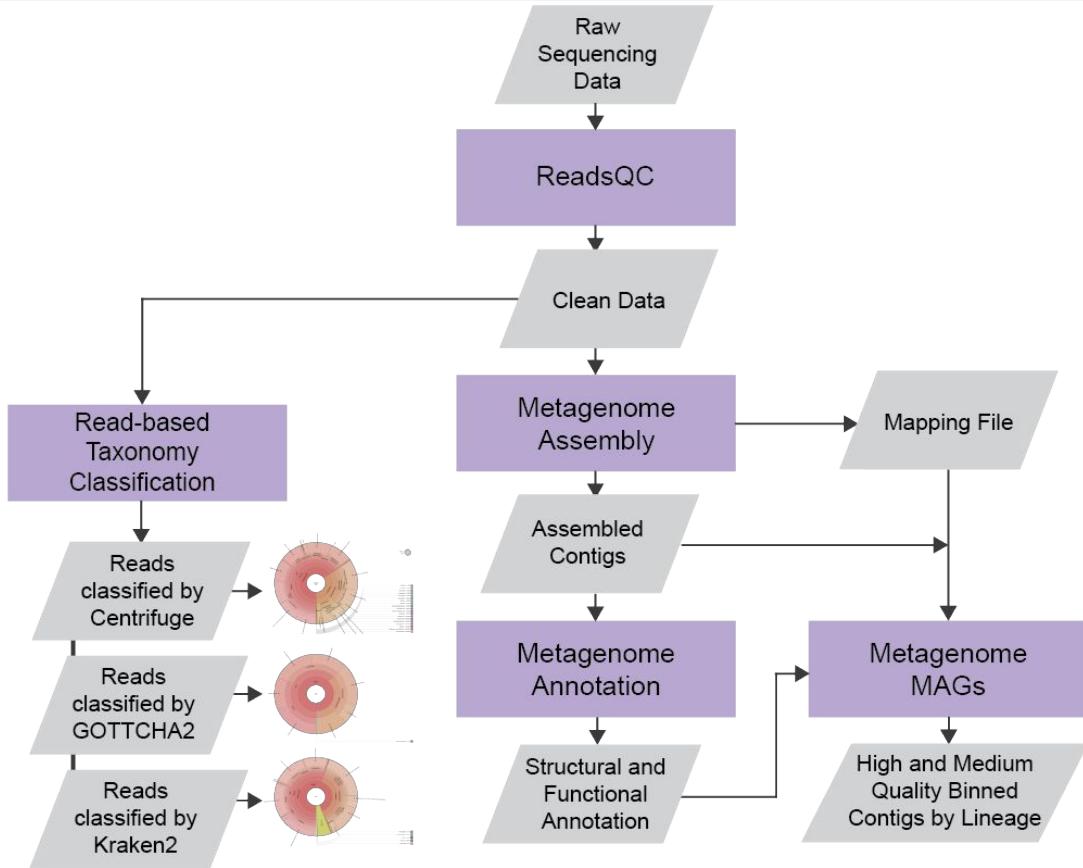
SEARCH THIS REGION

8158 Samples

Bulk Download Select file type Log in to download

Workflow Activity	Data Object Type	Data Object Description	File Size	Downloads	Download
Read QC Activity for nmdc:mga0x5c381	QC Statistics	Reads QC summary statistics	291 B	27	
	Filtered Sequencing Reads	Reads QC result fastq (clean data)	2.4 GiB	14	
Assembly Activity for nmdc:mga0x5c381	Assembly Scaffolds	Final assembly scaffolds fasta	70.4 MiB	7	
	Assembly Coverage BAM	Sorted bam file of reads mapping back to the final assembly	2.6 GiB	2	
	Assembly AGP	An AGP format file that describes the assembly	11.1 MiB	3	
	Assembly Contigs	Final assembly contigs fasta	70.8 MiB	2	
Annotation Activity for nmdc:mga0x5c381	Annotation Enzyme Commission	Tab delimited file for EC annotation	3.7 MiB	0	
	Annotation Amino Acid FASTA	FASTA amino acid file for annotated proteins	41.5 MiB	0	
	Structural Annotation GFF	GFF3 format file with structural annotations	2.5 KiB	0	
	Functional Annotation GFF	GFF3 format file with functional annotations	48.5 MiB	0	

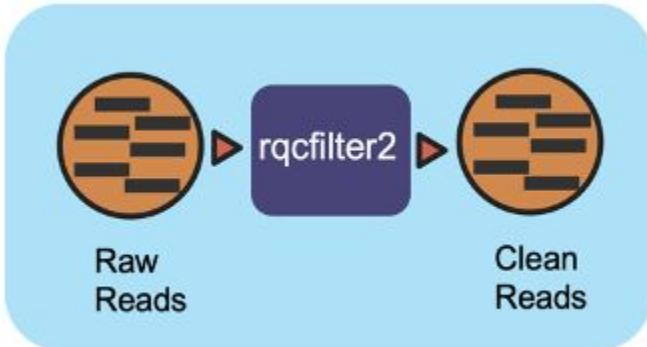
Rows per page: 10 1-10 of 21


nmdc

National Microbiome
Data Collaborative

Metagenome Workflows

NMDC Metagenomic Workflow



Reads QC

Performs quality control on raw metagenome Illumina reads to trim/filter low quality data and to remove artifacts, linkers, adapters, spike-in reads and reads mapping to several hosts and common microbial contaminants.

→ **Input:** Raw Illumina data

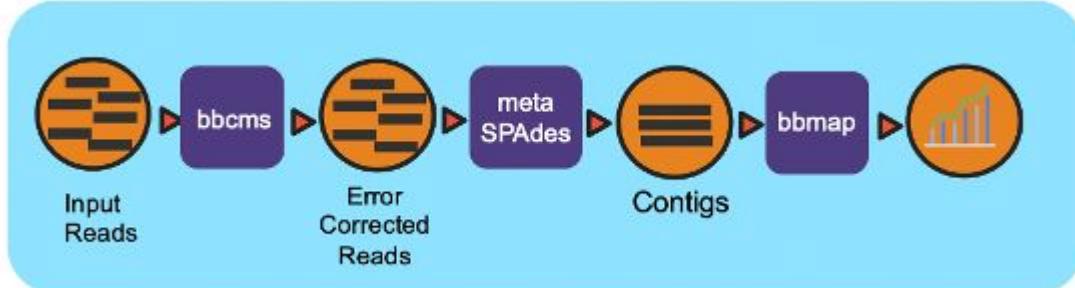
→ **Output:** File of cleaned reads and QC statistics



Read-based Taxonomy Classification

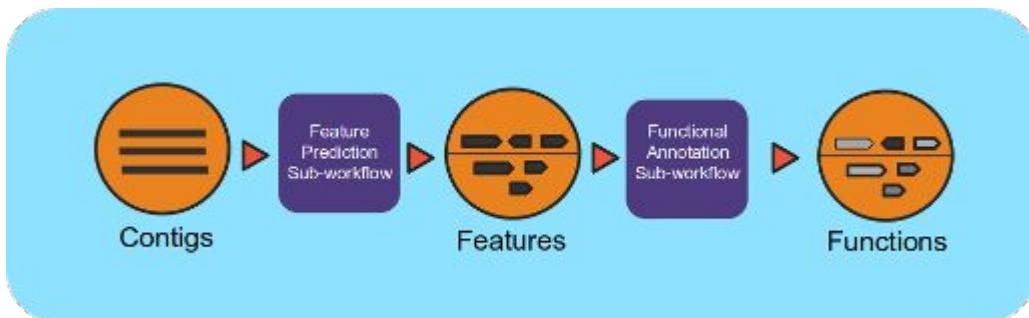
Takes in Illumina sequencing files and profiles the reads using 3 taxonomic classification tools (GOTTCHA2, Kraken2, and Centrifuge) with a range of sensitivity and specificity

 Input: Illumina data: it is highly recommended to input clean reads from the ReadsQC workflow


 Output: Results for each tool at three taxonomic levels (Species, Genus, and Family). Interactive Krona plots are also generated

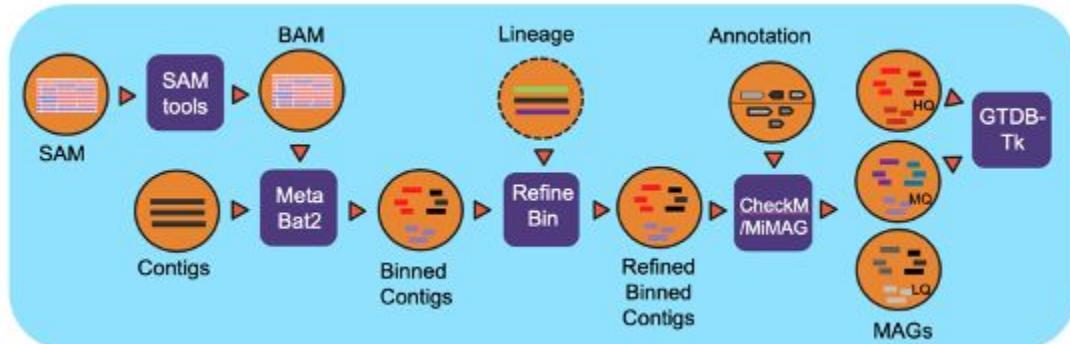
Metagenome Assembly

Takes in Illumina data, runs error correction, assembly, and assembly validation


- **Input:** Illumina data: recommended input is the output from the ReadsQC workflow
- **Output:** File of assembled contigs; assembly statistics

Metagenome Annotation

Takes in assembled metagenomes and generates structural and functional annotations


- **Input:** Assembled contigs: recommended input is the output from the Metagenome Assembly workflow
- **Output:** Structural annotation file, functional annotation file, several summary files

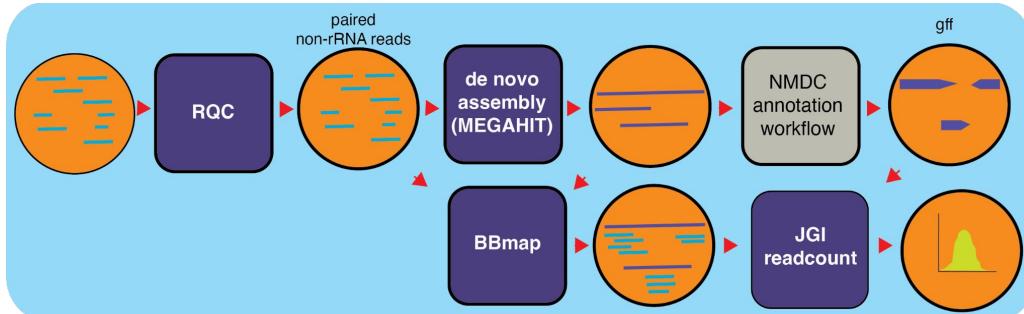
Metagenome Assembled Genomes

Classifies contigs into bins, bins are refined using functional annotation file, bins are evaluated for completeness and contamination. Quality of bins is determined and lineage is assigned

- **Input:** Assembled contigs, read mapping file from the assembly, functional annotation of the assembly
- **Output:** Summary statistics, file of high quality (HQ) and medium quality (MQ) bins

nmdc

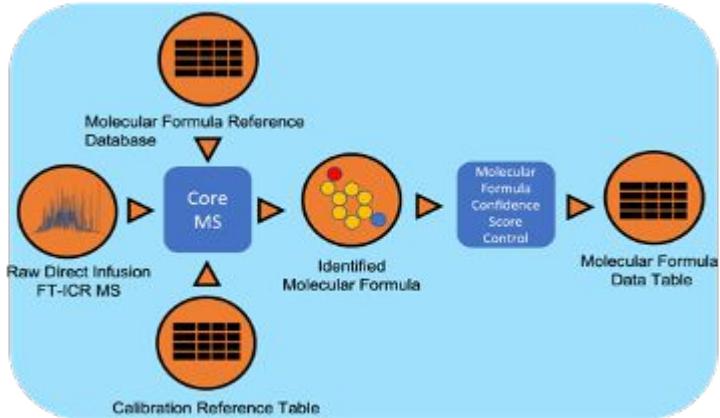
National Microbiome
Data Collaborative


Additional -omics Workflows

Metatranscriptome Workflow

Takes in raw metatranscriptome data, filters data for quality, removes rRNA reads, assembles and annotates the transcripts. Data is mapped back to the genomic features in the transcripts and RPKMs (Reads Per Kilobase of transcript per Million mapped reads) are calculated for each feature in the functional annotation file.

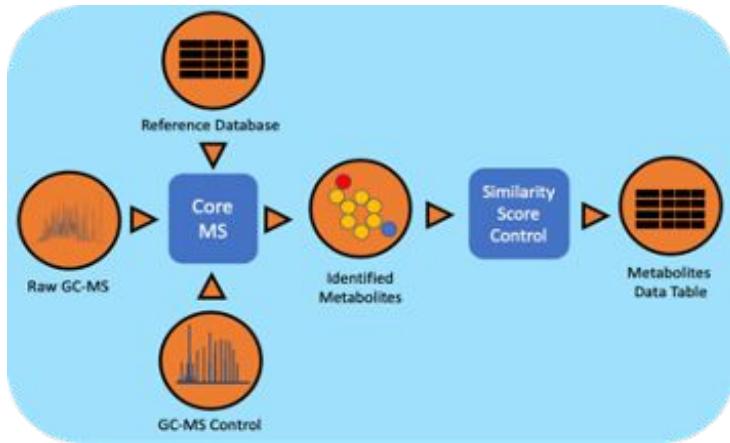
→ **Input:** Illumina data


→ **Output:** Assembled transcripts, annotated features file, annotation files

Natural Organic Matter Workflow

Takes mass spectrometry data collected from organic extracts to determine the molecular formulas of natural organic biomolecules in the input sample.

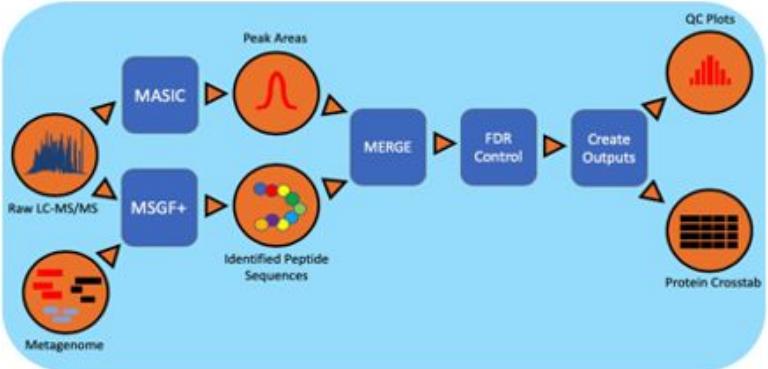
- **Input:** The output from a mass spec experiment; a calibration file of molecular formula references is also required when running via command line
- **Output:** Primary output file is the Molecular Formula Data Table



Metabolome Workflow

The GC-MS based metabolomics workflow leverages PNNL's CoreMS software framework.

→ **Input:** Raw GC-MS data


→ **Output:** Metabolites data table

Metaproteome Workflow

This workflow is an end-to-end data processing workflow for protein identification and characterization using MS/MS data

- **Input:** Raw LC-MS/MS data and an associated metagenome file
- **Output:** Protein crosstab; QC plots

Viruses & Plasmids Workflow

geNomad

is a tool that identifies virus and plasmid genomes from nucleotide sequences. It provides state-of-the-art classification performance and can be used to quickly find mobile genetic elements from genomes, metagenomes, or metatranscriptomes.

Speed

geNomad is significantly faster than similar tools and can be used to process large datasets.

Taxonomic assignment

The identified viruses are assigned to taxonomic lineages that follow the latest [ICTV](#) taxonomy release.

Functional annotation

Genes encoded by viruses and plasmids are functionally annotated using geNomad's marker database.

Workflow Availability

All workflows can be downloaded and run locally on your own computing resources, or can be run through NMDC EDGE

GitHub: <https://github.com/microbiomedata>

Docker Hub: <https://hub.docker.com/u/microbiomedata>

nmdc

National Microbiome
Data Collaborative

Questions?

nmdc

National Microbiome
Data Collaborative

NMDC EDGE

Product Initiatives

Submission Portal

Lower barriers
to collect
study and
biosample
data

NMDC EDGE

Streamline
multi-omics
data
processing

Data Portal & API

Access and
discovery of
microbiome
information

Engagement

User Facilities

Individuals

The NMDC Champions Program

The NMDC Ambassador Program

Strategic Partners

Product Initiatives

Submission Portal

Lower barriers
to collect
study and
biosample
data

NMDC EDGE

Streamline
multi-omics
data
processing

Data Portal & API

Access and
discovery of
microbiome
information

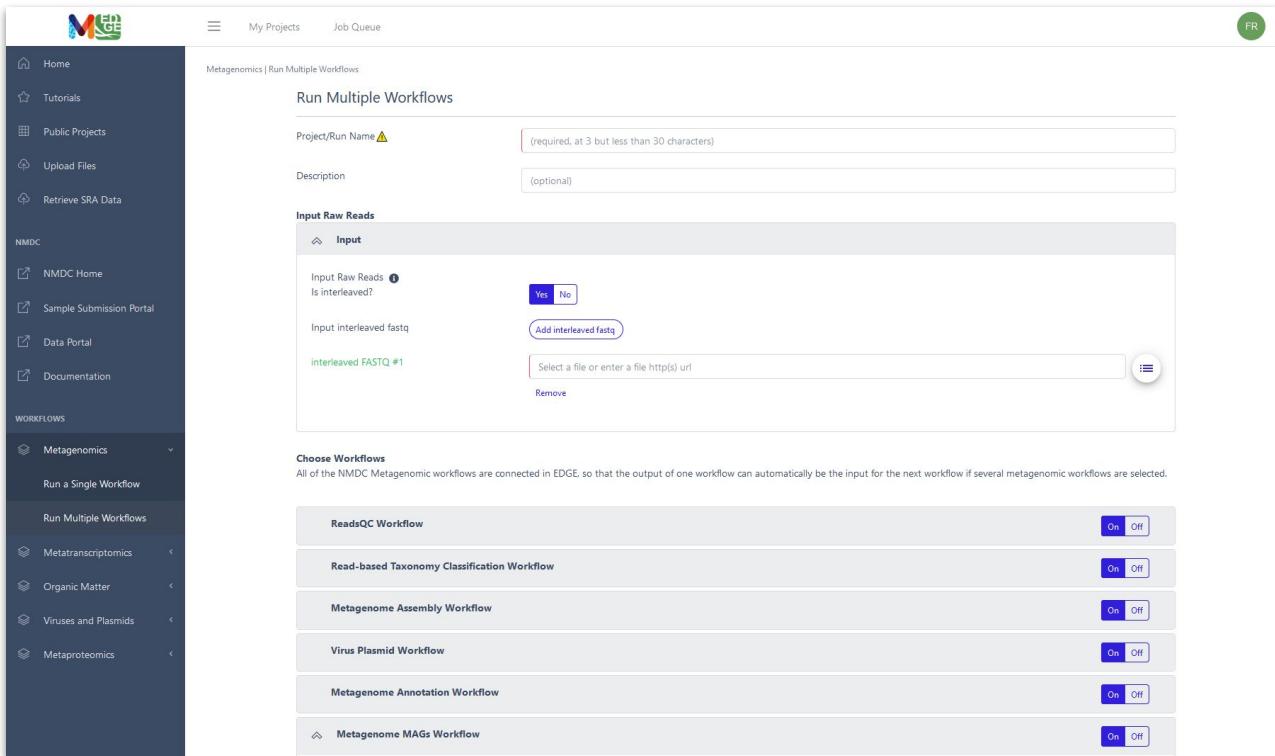
Engagement

User Facilities

Individuals

The NMDC Champions Program

The NMDC Ambassador Program


Strategic Partners

The workflows can be run in a user-friendly interface:

<https://nmdc-edge.org/home>

Designed for bioinformaticians of every level of expertise (including novices)

The screenshot shows the 'Run Multiple Workflows' page. On the left is a sidebar with links to Home, Tutorials, Public Projects, Upload Files, Retrieve SRA Data, NMDC Home, Sample Submission Portal, Data Portal, Documentation, and WORKFLOWS (Metagenomics, Metatranscriptomics, Organic Matter, Viruses and Plasmids, Metaproteomics). The main area has a title 'Run Multiple Workflows' and fields for 'Project/Run Name' (required, 3-30 characters) and 'Description' (optional). Under 'Input Raw Reads', there's a 'Input' section with 'Input Raw Reads' (checkbox, Yes or No, checked), 'Is interleaved?' (checkbox, Yes or No, checked), 'Input interleaved fastq' (button to 'Add interleaved fastq'), and a file selection input. Below that is a 'Choose Workflows' section with a note: 'All of the NMDC Metagenomic workflows are connected in EDGE, so that the output of one workflow can automatically be the input for the next workflow if several metagenomic workflows are selected.' It lists six workflows with 'On/Off' toggle switches: 'ReadsQC Workflow' (On), 'Read-based Taxonomy Classification Workflow' (On), 'Metagenome Assembly Workflow' (On), 'Virus Plasmid Workflow' (On), 'Metagenome Annotation Workflow' (On), and 'Metagenome MAGs Workflow' (On).

NMDC EDGE Walkthrough

The image shows a screenshot of the NMDC EDGE platform interface. The left sidebar is a dark blue navigation menu with a red border around the 'Home' item. The main content area has a white background. At the top, there are navigation links: 'My Projects' and 'Job Queue'. A green circular button with the letters 'FR' is in the top right. The main text area describes the NMDC's mission to support a FAIR microbiome data sharing network and the creation of the NMDC EDGE platform. It mentions a 'Quick Start Guide' and 'User Guides' for workflows, and provides contact information for support. The footer contains logos for Los Alamos National Laboratory, Triad National Security, and the National Nuclear Security Administration, along with the text 'Advancing Innovation'.

The National Microbiome Data Collaborative (NMDC) supports a Findable, Accessible, Interoperable, and Reusable (FAIR) microbiome data sharing network through infrastructure, data standards, and community building to address pressing challenges in environmental sciences. The NMDC EDGE (Empowering the Development of Genomics Expertise) platform was created so that all researchers can access and process their 'omics data using the NMDC standardized bioinformatics workflows, regardless of resource availability or expertise level. All microbiome datasets in the [NMDC Data Portal](#) have been processed using the same workflows as those housed in NMDC EDGE, allowing datasets to be directly compared between the two interfaces.

A [Quick Start Guide](#) along with other [Tutorials](#) and [User Guides](#) are available for running workflows in NMDC EDGE. The full [NMDC documentation site](#) provides more specific information about the NMDC workflows and their associated tools and parameters. NMDC EDGE can either be installed locally or the workflows can be run online using shared NMDC computing resources.

We are continuously collecting feedback and information on user experiences with the workflows and the NMDC EDGE platform. Please provide feedback via this [feedback form](#).

For any issues or questions that require support from a team member, please contact nmdc-edge@lanl.gov or open an issue on [GitHub](#).

LA-UR-21-21661

[Terms of Use, Privacy](#)

Managed by Triad National Security, LLC for the U.S. Dept. of Energy's NNSA
© Copyright Triad National Security, LLC. All Rights Reserved.

 NISAC ACCESS | Advancing Innovation

Tutorials, User guides, Information

Home My Projects Job Queue FR

Tutorials

Tutorial Videos **User Guides** **Guías de Usuario** **Guides d'Utilisation** **Command Line & Additional Documentation**

Introduction					
Metagenomics					
Metatranscriptomics					
Organic Matter					
Viruses and Plasmids					
Metaproteomics					

WORKFLOWS

- Metagenomics <
- Metatranscriptomics <
- Organic Matter <
- Viruses and Plasmids <
- Metaproteomics <

Los Alamos NATIONAL LABORATORY

Terms of Use, Privacy
Managed by Triad National Security, LLC for the U.S. Dept. of Energy's NNSA
© Copyright Triad National Security, LLC. All Rights Reserved.

Advancing Innovation

Public Projects

My Projects Job Queue

Home Tutorials Public Projects Upload Files Retrieve SRA Data

NMDC

- NMDC Home
- Sample Submission Portal
- Data Portal
- Documentation

WORKFLOWS

- Metagenomics
- Metatranscriptomics
- Organic Matter
- Viruses and Plasmids
- Metaproteomics

Public Projects

Project	Type	Status	Created	Updated
Holothuria glaberrima - Eviscerated Gut Metagenome	Metagenome Pipeline	Complete	11/12/2023, 8:59:21 PM	4/1/2024, 12:39:16 PM
who_q_trial	virus_plasmid	Complete	3/11/2024, 1:52:41 AM	3/15/2024, 12:19:00 AM
Bostaurus_SRX21999386	Metagenome Pipeline	Complete	2/25/2024, 3:52:06 AM	2/25/2024, 8:34:39 AM
Bostaurus_SRR12936068	Metagenome Pipeline	Complete	2/25/2024, 4:04:00 AM	2/25/2024, 8:29:15 AM
Catfeces23	sra2fastq	Complete	2/24/2024, 10:31:25 PM	2/25/2024, 12:09:06 AM
ARC_test_127	Metagenome Pipeline	Complete	12/11/2023, 5:46:46 PM	1/8/2024, 1:00:20 PM
js5	virus_plasmid	Complete	12/18/2023, 1:02:19 PM	12/20/2023, 5:07:00 PM
MetaG_zymo_community	Metagenome Pipeline	Complete	12/9/2023, 11:24:04 PM	12/10/2023, 8:55:00 AM
Viruses_plasmids_AGU	virus_plasmid	Complete	12/9/2023, 11:32:30 PM	12/9/2023, 11:46:00 PM
OSD-249_NextaFlex_noMAGs	Metagenome Pipeline	Failed	12/6/2023, 3:26:14 PM	12/8/2023, 1:19:49 PM

10 rows | < | < 1-10 of 69 > >|

Terms of Use, Privacy

Managed by Triad National Security, LLC for the U.S. Dept. of Energy's NNSA
© Copyright Triad National Security, LLC. All Rights Reserved.

 Advancing Innovation

Upload Files

ED GE

My Projects Job Queue

FR

Home

Tutorials

Public Projects

Upload Files

Retrieve SRA Data

NMDC

NMDC Home

Sample Submission Portal

Data Portal

Documentation

WORKFLOWS

Metagenomics

Metatranscriptomics

Organic Matter

Viruses and Plasmids

Metaproteomics

Upload Files

Max single file size is 10.0GB. Max server storage space is 150.0GB. Files will be kept for 180 days.
Allowed file extensions are: fastq, fq, faa, fa, fasta, fna, contigs, fastq.gz, fq.gz, fa.gz, fasta.gz, fna.gz, contigs.gz, fa.bz2, fasta.bz2, contigs.bz2, fna.bz2, fa.xz, fasta.xz, contigs.xz, fna.xz, gbk, gff, genbank, gb, xlsx, txt, bed, config, tsv, csv, raw, d, bam, sam

Storage space usage: 0bytes/150.0GB
Uploading size: 0bytes

Drag Files or Click to Browse

My Uploads

Search

No records to display

10 rows ▾ | < | 1-0 of 0 | > | >|

Los Alamos NATIONAL LABORATORY

Terms of Use, Privacy

Managed by Triad National Security, LLC for the U.S. Dept. of Energy's NNSA
© Copyright Triad National Security, LLC. All Rights Reserved.

NISA ACCESS | Advancing Innovation

The screenshot shows the 'Upload Files' page of the NMDC (National Microbiome Data Collaborative) website. The left sidebar contains a navigation menu with links to Home, Tutorials, Public Projects, Upload Files (which is highlighted with a red box), Retrieve SRA Data, NMDC Home, Sample Submission Portal, Data Portal, Documentation, and various WORKFLOWS (Metagenomics, Metatranscriptomics, Organic Matter, Viruses and Plasmids, Metaproteomics). The main content area is titled 'Upload Files' and includes a note about file size and storage, a storage usage summary, and a large 'Drag Files or Click to Browse' input field. Below this is a 'My Uploads' section showing a table with columns for checkbox, File Name, Type, Size, Public, Created, Updated, and Actions. The table currently displays 'No records to display'. At the bottom, there are links for 'Terms of Use, Privacy', 'Managed by Triad National Security, LLC for the U.S. Dept. of Energy's NNSA', and '© Copyright Triad National Security, LLC. All Rights Reserved.' Logos for Los Alamos National Laboratory, NISA, and ACCESS are also present.

Retrieve SRA Data

EDGE

My Projects Job Queue

Home Tutorials Public Projects Upload Files Retrieve SRA Data

NMDC

- NMDC Home
- Sample Submission Portal
- Data Portal
- Documentation

WORKFLOWS

- Metagenomics
- Metatranscriptomics
- Organic Matter
- Viruses and Plasmids
- Metaproteomics

Retrieve SRA Data

This tool retrieves sequence project in FASTQ files from NCBI- SRA / EBI - ENA / DDBJ database. Input accession number supports studies(SRP* / ERP * /DRP*), experiments (SRX* /ERX * /DRX*), samples(SRS * /ERS* /DRS *), runs(SRR * /ERR* /DRR *), or submissions (SRA * /ERA* /DRA *). Learn more

SRA Accession(s) ex: SRR1553609,SRX7852919

⚠ SRA accession(s) required.

Submit

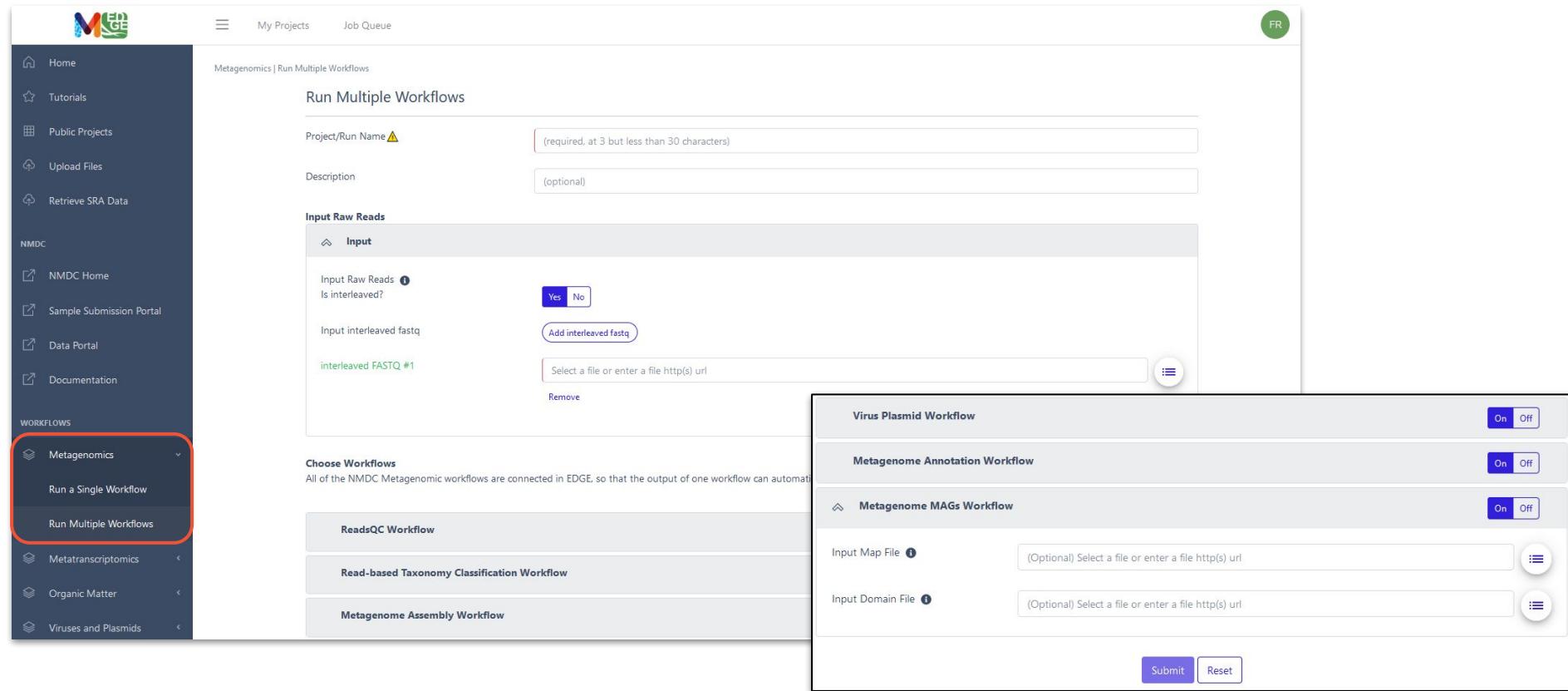
My SRA Data

Search

<input type="checkbox"/> Name	Status	Shared	Public	Created	Updated
No records to display					

10 rows ▾ | < < 1-0 of 0 > > |

Los Alamos NATIONAL LABORATORY


Terms of Use, Privacy

Managed by Triad National Security, LLC for the U.S. Dept. of Energy's NSA

© Copyright Triad National Security, LLC. All Rights Reserved.

NMDC ACCESS | Advancing Innovation

Run Metagenome Pipeline

EDGE

My Projects Job Queue

Home Tutorials Public Projects Upload Files Retrieve SRA Data

NMDC

NMDC Home Sample Submission Portal Data Portal Documentation

WORKFLOWS

- Metagenomics
 - Run a Single Workflow
 - Run Multiple Workflows**
- Metatranscriptomics
- Organic Matter
- Viruses and Plasmids

Metagenomics | Run Multiple Workflows

Run Multiple Workflows

Project/Run Name ⚠ (required, at 3 but less than 30 characters)

Description (optional)

Input Raw Reads

Input

Input Raw Reads ⓘ
Is interleaved? Yes No

Input interleaved fastq Add interleaved fastq

interleaved FASTQ #1 Select a file or enter a file http(s) url Remove

Choose Workflows
All of the NMDC Metagenomic workflows are connected in EDGE, so that the output of one workflow can automatically be used as input for another.

Virus Plasmid Workflow On Off

Metagenome Annotation Workflow On Off

Metagenome MAGs Workflow On Off

ReadsQC Workflow

Read-based Taxonomy Classification Workflow

Metagenome Assembly Workflow

Input Map File ⓘ (Optional) Select a file or enter a file http(s) url

Input Domain File ⓘ (Optional) Select a file or enter a file http(s) url

Submit Reset

Metatranscriptomics Workflow

MEDE

My Projects Job Queue

Home Tutorials Public Projects Upload Files Retrieve SRA Data

NMDC

NMDC Home Sample Submission Portal Data Portal Documentation

WORKFLOWS

Metagenomics

Metatranscriptomics

Organic Matter

Viruses and Plasmids

Metaproteomics

Run a Single Workflow

Metatranscriptomics | Run Single Workflow

Run a Single Workflow

Project/Run Name ⚠ (required, at 3 but less than 30 characters)

Description (optional)

Workflow Metatranscriptome X | v

This workflow is designed to analyze metatranscriptomes. [Learn more](#)

Input

Input Raw Reads i
Is interleaved? Yes No

Input interleaved fastq
interleaved FASTQ #1 Select a file or enter a file http(s) url ≡

Submit

Terms of Use, Privacy
Managed by Triad National Security, LLC for the U.S. Dept. of Energy's NNSA
© Copyright Triad National Security, LLC. All Rights Reserved.

 Los Alamos NATIONAL LABORATORY

 ACCESS | Advancing Innovation

Natural Organic Matter Workflow

MEGE

☰ My Projects Job Queue

Home Tutorials Public Projects Upload Files Retrieve SRA Data

NMDC

NMDC Home Sample Submission Portal Data Portal Documentation

WORKFLOWS

Metagenomics Metatranscriptomics

Organic Matter

Viruses and Plasmids Metaproteomics

Run a Single Workflow

Organic Matter | Run Single Workflow

Run a Single Workflow

Project/Run Name ⚠ (required, at 3 but less than 30 characters)

Description (optional)

Workflow x | v

EnviroMS is a workflow for natural organic matter data processing and annotation [Learn more](#)

Input

Input Data ⚠
mass list file(s) Add file

Input file #1 ≡

Remove

Submit

Terms of Use, Privacy
Managed by Triad National Security, LLC for the U.S. Dept. of Energy's NNSA
© Copyright Triad National Security, LLC. All Rights Reserved.

Advancing Innovation

Viruses & Plasmids Workflow

MGSE

☰ My Projects Job Queue

Home Tutorials Public Projects Upload Files Retrieve SRA Data

NMDC

NMDC Home Sample Submission Portal Data Portal Documentation

WORKFLOWS

Metagenomics Metatranscriptomics Organic Matter **Viruses and Plasmids** Metaproteomics

Run a Single Workflow

Viruses and Plasmids | Run Single Workflow

Run a Single Workflow

Project/Run Name ⚠ (required, at 3 but less than 30 characters)

Description

Workflow X | ▾

This workflow identifies virus and plasmid sequences in assembled scaffolds using [geNomad](#) and estimates the quality of viral genomes with [CheckV](#). [Learn more](#)

Input

Input Assembled Fasta File ⓘ ☰

Run Option

Submit

Los Alamos NATIONAL LABORATORY

Terms of Use, Privacy

Managed by Triad National Security, LLC for the U.S. Dept. of Energy's NNSA

© Copyright Triad National Security, LLC. All Rights Reserved.

NISAC ACCESS Advancing Innovation

Metaproteomics Workflow

MEG

My Projects Job Queue

Home Tutorials Public Projects Upload Files Retrieve SRA Data

NMDC

NMDC Home Sample Submission Portal Data Portal Documentation

WORKFLOWS

Metagenomics Metatranscriptomics Organic Matter Viruses and Plasmids Metaproteomics

Run a Single Workflow

Metaproteomics | Run Single Workflow

Run a Single Workflow

Project/Run Name (required, at 3 but less than 30 characters)

Description (optional)

Workflow Metaproteomics

Metaproteomics workflow/pipeline is an end-to-end data processing and analyzing pipeline for studying proteomes i.e studying protein identification and characterization using MS/MS data. [Learn more](#)

Input

Input Raw File Select a file or enter a file http(s) url

Input Fasta File Select a file or enter a file http(s) url

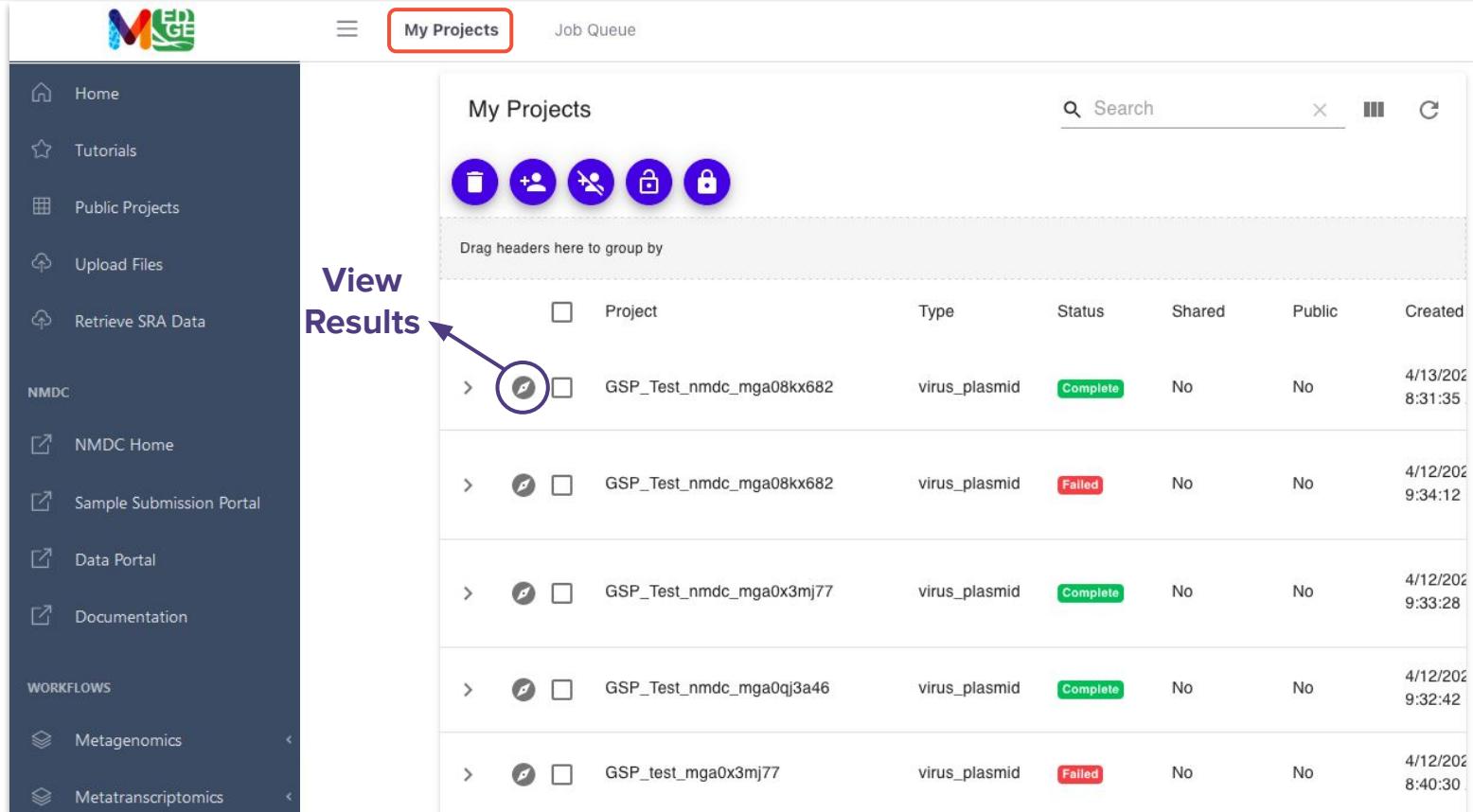
Input GFF File (Refresh input automatically if the 'Input Fasta File' changes)

Thermo Raw? True False

QValue Threshold 0.05

Study

Submit


Terms of Use, Privacy

Managed by Triad National Security, LLC for the U.S. Dept. of Energy's NNSA
© Copyright Triad National Security, LLC. All Rights Reserved.

Los Alamos NATIONAL LABORATORY

NMIS ACCESS Advancing Innovation

My Projects

The screenshot shows the 'My Projects' section of the NMDC interface. On the left is a sidebar with links for Home, Tutorials, Public Projects, Upload Files, Retrieve SRA Data, NMDC Home, Sample Submission Portal, Data Portal, Documentation, Metagenomics, and Metatranscriptomics. The main area has tabs for 'My Projects' (which is selected and highlighted with a red box), 'Job Queue', and a menu icon. The 'My Projects' tab contains a search bar, a toolbar with icons for trash, add, delete, lock, and unlock, and a table with the following data:

Project	Type	Status	Shared	Public	Created
GSP_Test_nmdc_mga08kx682	virus_plasmid	Complete	No	No	4/13/2022 8:31:35
GSP_Test_nmdc_mga08kx682	virus_plasmid	Failed	No	No	4/12/2022 9:34:12
GSP_Test_nmdc_mga0x3mj77	virus_plasmid	Complete	No	No	4/12/2022 9:33:28
GSP_Test_nmdc_mga0qj3a46	virus_plasmid	Complete	No	No	4/12/2022 9:32:42
GSP_test_mga0x3mj77	virus_plasmid	Failed	No	No	4/12/2022 8:40:30

A blue arrow points from the text 'View Results' to the magnifying glass icon in the toolbar of the table header.

View Results

My Projects

Search

Project

Type

Status

Shared

Public

Created

GSP_Test_nmdc_mga08kx682

virus_plasmid

Complete

No

No

4/13/2022 8:31:35

GSP_Test_nmdc_mga08kx682

virus_plasmid

Failed

No

No

4/12/2022 9:34:12

GSP_Test_nmdc_mga0x3mj77

virus_plasmid

Complete

No

No

4/12/2022 9:33:28

GSP_Test_nmdc_mga0qj3a46

virus_plasmid

Complete

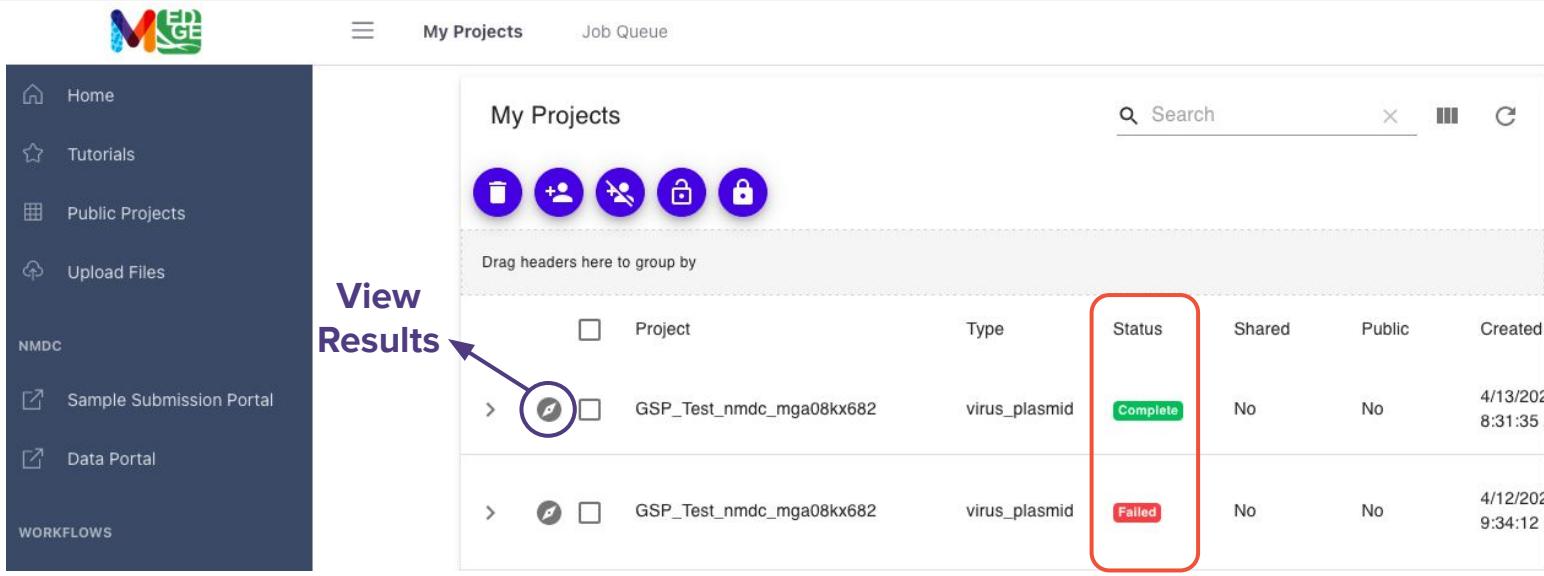
No

No

4/12/2022 9:32:42

GSP_test_mga0x3mj77

virus_plasmid


Failed

No

No

4/12/2022 8:40:30

My Projects: Possible Statuses

View Results

Project	Type	Status	Shared	Public	Created
GSP_Test_nmdc_mga08kx682	virus_plasmid	Complete	No	No	4/13/2023 8:31:35
GSP_Test_nmdc_mga08kx682	virus_plasmid	Failed	No	No	4/12/2023 9:34:12

Submitted

In queue

Running

Complete

Failed

Example Results: Metagenome

Metagenome_pipeline_test

Project Summary:

Description: This is a test of the NMDC metagenome pipeline for training purposes

Owner: jkellher@lanl.gov

Submission Time: Mon Aug 23 2021 09:25:01 GMT-0600

Status: Complete

Type: Metagenome Pipeline

[expand](#) | [close](#) sections

General
ReadsQC Result
Read-based Taxonomy Classification Result
Metagenome Assembly Result
Metagenome Annotation Result
Metagenome MAGs Result
Browser/Download Outputs

General

Workflow	Run	Status	Running Time	Start	End
ReadsQC	On	Done	02:20:44	2021-08-23 15:27:49	2021-08-23 17:48:33
Read-based Taxonomy Classification	On	Done	00:48:35	2021-08-23 17:53:02	2021-08-23 18:41:37
-- gottcha2					
-- kraken2					
-- centrifuge					
Metagenome Assembly	On	Done	01:28:24	2021-08-23 17:48:37	2021-08-23 19:17:01
Metagenome Annotation	On	Done	01:34:23	2021-08-23 19:17:05	2021-08-23 20:51:28
Metagenome MAGs	On	Done	00:43:32	2021-08-23 20:51:32	2021-08-23 21:35:04

Example Results: Metagenome

Metagenome_pipeline_test

Project Summary:

Description: This is a test of the NMDC metagenome pipeline for training purposes
Owner: jkellher@lanl.gov
Submission Time: Mon Aug 23 2021 09:25:01 GMT-0600
Status: Complete
Type: Metagenome Pipeline

[expand](#) | [close](#) sections

- General
- ReadsQC Result
- Read-based Taxonomy Classification Result
- Metagenome Assembly Result
- Metagenome Annotation Result
- Metagenome MAGs Result
- Browser/Download Outputs

ReadsQC Result	
Input	SRR7877884-int
Reads	Status
inputReads	44,943,418
kfilteredBases	14,684,762
qfilteredReads	200,626
ktrimmedReads	6,186,690
outputBases	4,868,925,674
ktrimmedBases	354,478,706
kfilteredReads	100,360
qtrimmedBases	8,690
outputReads	33,510,668
gcPolymerRatio	0.42
inputBases	6,741,512,700
qtrimmedReads	8,583
qfilteredBases	29,786,796

Example Results: Metagenome

Metagenome_pipeline_test

Project Summary:

Description: This is a test of the NMDC metagenome pipeline for training purposes

Owner: ikelliher@lanl.gov

Submission Time: Mon Aug 23 2021 09:25:01 GMT-0600

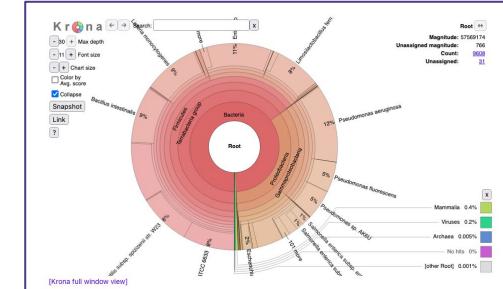
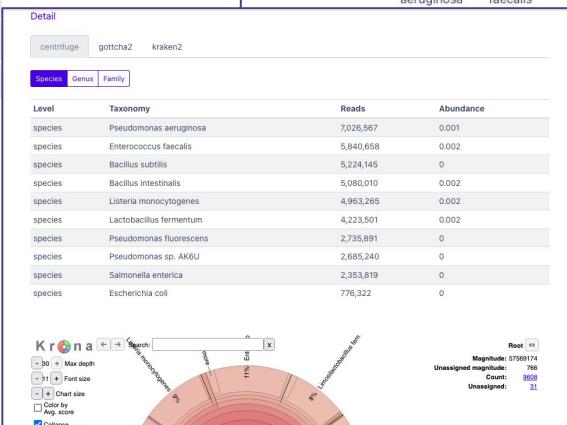
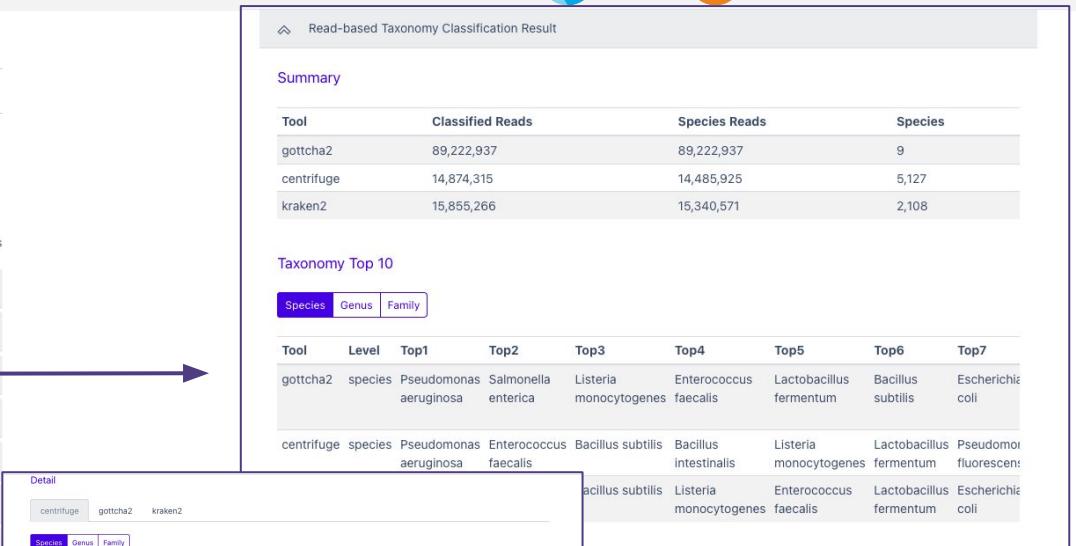
Status: Complete

Type: Metagenome Pipeline

[expand](#) | [close](#) sections

General

ReadsQC Result




❖ Read-based Taxonomy Classification Result

❖ Metagenome Assembly Result

Metagenome Annotation Result

❖ Metagenome MAGs Result

❖ Browser/Download Outputs

Example Results: Metagenome

Metagenome_pipeline_test

Project Summary:

Description: This is a test of the NMDC metagenome pipeline for training purposes

Owner: jkellher@lanl.gov

Submission Time: Mon Aug 23 2021 09:25:01 GMT-0600

Status: Complete

Type: Metagenome Pipeline

[expand](#) | [close](#) sections

General

ReadsQC Result

Read-based Taxonomy Classification Result

Metagenome Assembly Result

Metagenome Annotation Result

Metagenome MAGs Result

Browser/Download Outputs

Metagenome Assembly Result

Name	Status
scaffolds	25,324
contigs	25,726
scaf_bp	52,206,897
contig_bp	52,201,077
gap_pct	0.011
scaf_N50	691
scaf_L50	4,103
ctg_N50	724
ctg_L50	3,971
scaf_N90	14,186
scaf_L90	726
ctg_N90	14,473
ctg_L90	716
scaf_logsum	645,093
scaf_powsum	120,098
ctg_logsum	638,015
ctg_powsum	116,432
asm_score	33.765
scaf_max	1,491,105
ctg_max	859,644

Example Results: Metagenome

Metagenome_pipeline_test

Project Summary:

Description: This is a test of the NMDC metagenome pipeline for training purposes

Owner: jkellher@lanl.gov

Submission Time: Mon Aug 23 2021 09:25:01 GMT-0600

Status: Complete

Type: Metagenome Pipeline

[expand](#) | [close](#) sections

General

ReadsQC Result

Read-based Taxonomy Classification Result

Metagenome Assembly Result

Metagenome Annotation Result

Metagenome MAGs Result

Browser/Download Outputs

Metagenome Annotation Result

Processed Sequences Statistics

Data type	Number of seqs	Number of bps	Median length	Average length	Length shortest seq	Length longest seq	Standard deviation
final_fasta	25,726	52,201,077	818.5	2,029.118	200	859,644	16,939.403
sequences_with_genes	24,248	51,497,305	865	2,123.775	200	859,644	17,443.493
sequences_without_genes	1,478	703,772	404	476.165	203	1,918	217.554

Predicted Genes Statistics

Feature type	Prediction method	Number of seqs	Number of bps	Median length	Average length	Length shortest seq	Length longest seq	Standard deviation	Number of predicted features
CDS	Prodigal v2.6.3	12,478	3,694,932	180	228.831	75	1,935	156.372	16,147
CDS	GeneMark.hmm-2 v1.05	18,576	35,352,681	480	669.267	90	16,545	616.622	52,823
tRNA	tRNAscan-SE v.2.0.7 (Oct 2020)	451	67,404	76	79.486	56	146	10.062	848
misc_feature	INFERNAL 1.1.3 (Nov 4 2019)	1,454	366.5	363.5	349	372	10.408	4	
regulatory	INFERNAL 1.1.3 (Nov 4 2019)	1,454	366.5	363.5	349	372	10.408	4	
ncRNA	INFERNAL 1.1.3 (Nov 4 2019)	1,454	366.5	363.5	349	372	10.408	4	
rRNA	INFERNAL 1.1.3 (Nov 4 2019)	1,454	366.5	363.5	349	372	10.408	4	

Example Results: Metagenome

Metagenome_pipeline_test

Project Summary:

Description: This is a test of the NMDC metagenome pipeline for training purposes

Owner: jkellher@lanl.gov

Submission Time: Mon Aug 23 2021 09:25:01 GMT-0600

Status: Complete

Type: Metagenome Pipeline

[expand](#) | [close](#) sections

General

ReadsQC Result

Read-based Taxonomy Classification Result

Metagenome Assembly Result

Metagenome Annotation Result

Metagenome MAGs Result

Browser/Download Outputs

Metagenome MAGs Result

Summary

Name	Status
input_contig_num	25,726
too_short_contig_num	15,158
lowDepth_contig_num	0
unbinned_contig_num	9,332
binned_contig_num	1,236

MAGs

bin_name	number_of_contig	completeness	contamination	gene_count	bin_quality	num_16s	num_5s	num_23s	num_tRNA
bins.1	63	99.48	0.16	4,826	HQ	1	4	1	76
bins.4	35	99.68	0.61	6,653	MQ	0	0	0	63
bins.6	17	99.45	5.19	3,575	MQ	1	3	0	71
bins.3	30	81.51	0	1,312	MQ	0	1	0	28
bins.5	7	68.97	0	1,819	MQ	0	1	0	24
bins.7	18	62.07	0	3,161	MQ	2	3	2	54

Example Results: Metagenome

Metagenome_pipeline_test

Project Summary:

Description: This is a test of the NMDC metagenome pipeline for training purposes

Owner: jkellher@lanl.gov

Submission Time: Mon Aug 23 2021 09:25:01 GMT-0600

Status: Complete

Type: Metagenome Pipeline

[expand](#) | [close](#) sections

- ▼ General
- ▼ ReadsQC Result
- ▼ Read-based Taxonomy Classification Result
- ▼ Metagenome Assembly Result
- ▼ Metagenome Annotation Result
- ▼ Metagenome MAGs Result
- ▼ Browser/Download Outputs

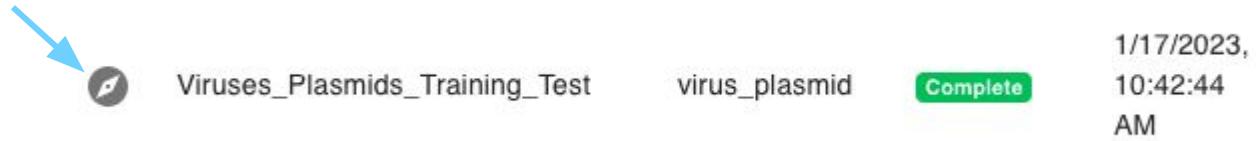
Browser/Download Outputs		
File	Size	Last Modified
MetagenomeAnnotation		
MetagenomeAssembly		
MetagenomeMAGs		
ReadbasedAnalysis		
centrifuge		
gottcha2		
kraken2		
activity.json	919 B	over 1 year ago
data_objects.json	3 kB	over 1 year ago
Metagenome_pipeline_test.json	2.11 MB	over 1 year ago
ReadsQC		

nmdc

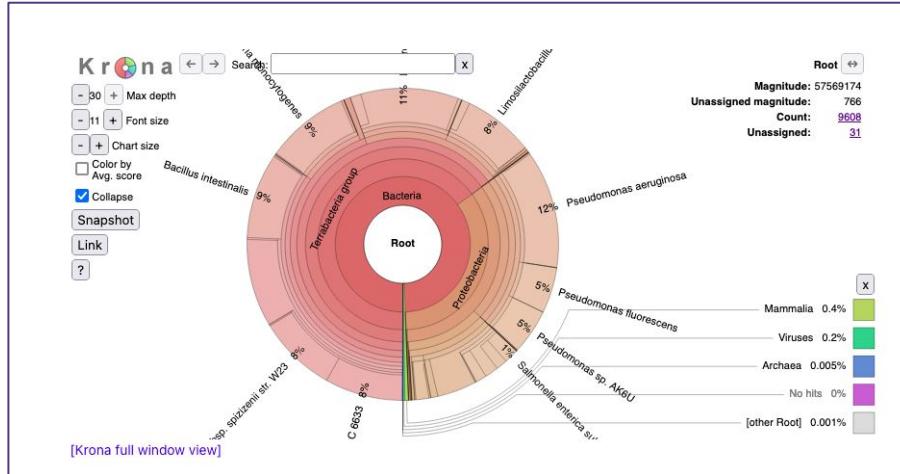
National Microbiome
Data Collaborative

Questions?

Hands-on Activity


- Navigate to <https://nmvc-edge.org/home>
- Log in using your ORCID
- Select Viruses & Plasmids workflow
 - Select 'Run a single workflow'
- Enter a Project/Run name
 - Example: LastName_geNomad_Test
- Optional: enter a project description
- Select button to the right of 'Select a File' for the Input Assembled Fasta File
- Go to public data → virus_plasmid → you can choose any of the test files here (we recommend one of the ones that says _over5k)
- Run Option: Default
- Select Submit

Results

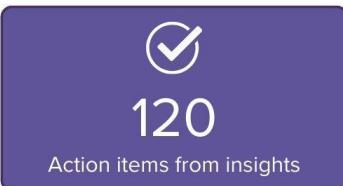

- Go to Public Projects; Select button on corresponding

- General: provides run information
- Explore the virus_plasmid results!
- Browser/Download outputs: Provides downloadable files

Other Runs

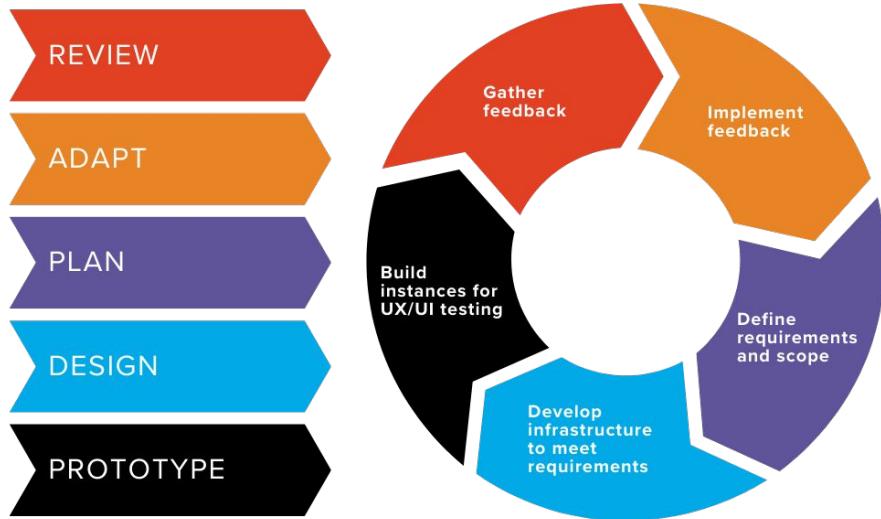
- You can run any of the workflows at any time!
 - Can upload and run your own data
- Feel free to explore other public project results
 - Metagenome_pipeline_test
- Send comments or issues to: nmdc-edge@lanl.gov


nmdc

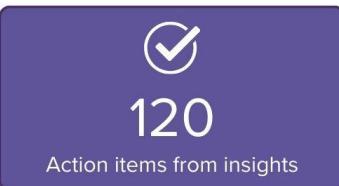

National Microbiome
Data Collaborative

Questions?

Community-centered design process



2023-2024 User Research



- The NMDC program utilizes a community-centered design approach to its product development process
 - User interviews, usability testing, beta-testing
 - Understand the needs of the community and how researchers use the products
- Workshops and event feedback is critical too
- Want to develop products that are as useful to the community as possible

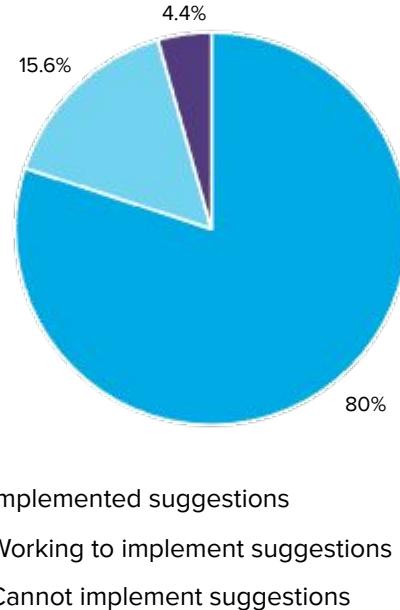
Community-centered design process

2023-2024 User Research

NMDC EDGE Feedback examples

- Data visualization updates
- Support for batch processing
- Updates to how results are displayed and accessed
- Import SRA data easily with SRA accession numbers

NMDC EDGE Beta Testing


NMDC EDGE feedback areas:

- Running the workflows in NMDC EDGE
- NMDC EDGE user interface
- NMDC workflow training materials

Interested in becoming a beta-tester? We will give you credit on the website and through ORCID!

- Volunteer at
<https://microbiomedata.org/user-research/>
- Select “NMDC EDGE” for product interest

Implementation of NMDC EDGE beta-tester feedback

Reporting Mechanisms

- Beta tester form (NMDC EDGE homepage)
 - Specific workflows that you ran
 - Information about file sizes, issues with jobs (killed or errors), etc
- Email: nmdc-edge@lanl.gov
 - Can get troubleshooting help with NMDC EDGE workflows
- General reporting form
 - Did you come across any issues when using an NMDC product?
 - Features feedback
 - <https://forms.gle/yxu9gkbufPigtbrB8>

nmdc

National Microbiome
Data Collaborative

Questions?

NMDC Resources

Website: <https://microbiomedata.org/>

Data Portal: <https://data.microbiomedata.org/>

Submission Portal: <https://data.microbiomedata.org/submission/home>

NMDC EDGE: <https://nmdc-edge.org/home>

Github: <https://github.com/microbiomedata>

Docker Hub: <https://hub.docker.com/u/microbiomedata>

Documentation:

https://nmdc-documentation.readthedocs.io/en/latest/overview/nmdc_overview.html

YouTube: https://www.youtube.com/channel/UCyBqKc46NQZ_YgZIKGYeglw/featured

Get involved!

Sign up for our newsletter

microbiomedata.org

Find us on X/Twitter

@microbiomedata

Find us on Instagram

@microbiomedata

Become a NMDC Champion

bit.ly/champions-program

Find us on LinkedIn

https://bit.ly/NMDC_LinkedIn

**nature
microbiology**

frontiers

**Nucleic Acids
Research**

**nature
REVIEWS
MICROBIOLOGY**

mSystems

Read more about the NMDC

Kelliher JM et al. Cohort-based learning for microbiome research community standards. *Nat Microbiol* (2023). doi.org/10.1038/s41564-023-01361-7.

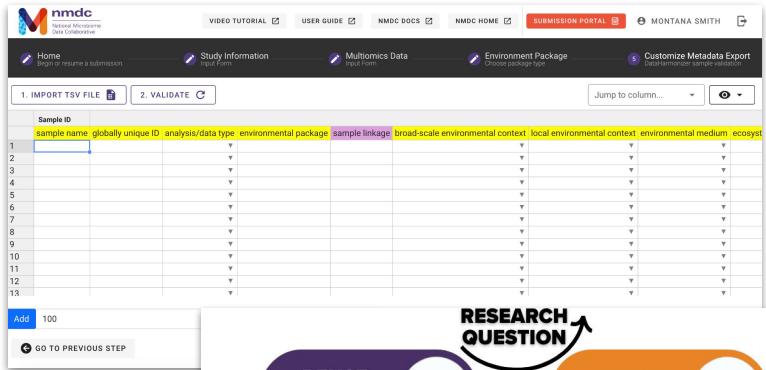
Hu B, Canon S, Eloe-Fadrosh EA, et al.. Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale. *Front Bioinform*. 1:826370. (2022) doi: 10.3389/fbinf.2021.826370.

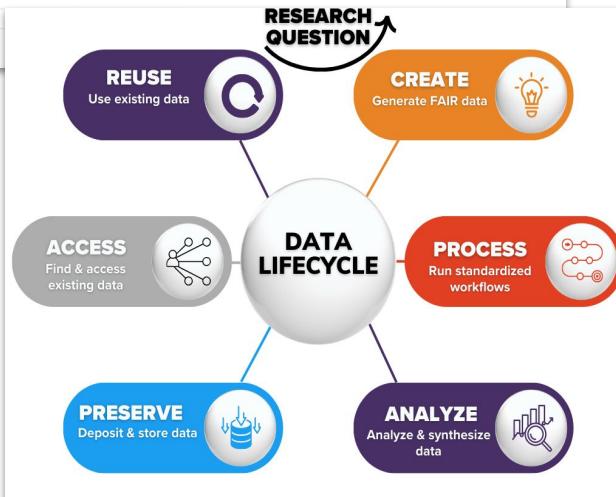
Eloe-Fadrosh EA et al. The National Microbiome Data Collaborative Data Portal: an integrated multi-omics microbiome data resource. *Nucleic Acids Res*. 7;60(D1):D828–D836. (2022) doi: 10.1093/nar/gkab990.

Wood-Charlson, E.M., Anubhav, Auberry, D. et al. The National Microbiome Data Collaborative: enabling microbiome science. *Nat Rev Microbiol* **18**, 313–314 (2020). doi.org/10.1038/s41579-020-0377-0

Vangay, P et al. Microbiome metadata standards: Report of the National Microbiome Data Collaborative's workshop and follow-on activities. *mSystems* **6**, e01194-20 (2021). doi.org/10.1128/mSystems.01194-20

nmdc


National Microbiome
Data Collaborative


Metadata Standards and Submission Portal
2024 Ambassador Cohort

Purpose of this training

- Provide an overview of the benefits of metadata standardization and how this promotes interoperability
- Discuss the importance of metadata standards to enable data reuse
- Provide template slides to use for events
- Introduce audience to the NMDC Submission Portal
 - The hands-on activity can be used (or modified and used) for use in your events too!

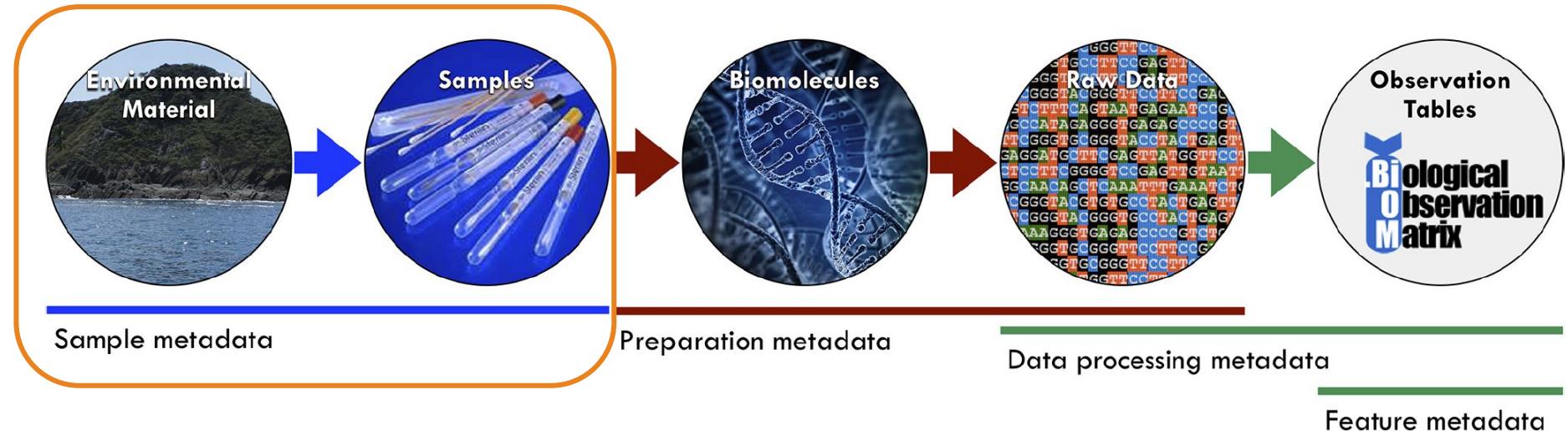
The screenshot shows the NMDC Submission Portal's 'IMPORT TSV FILE' interface. It displays a table with 13 rows, each containing a 'Sample ID' and several metadata fields: 'globally unique ID', 'analysis/data type', 'environmental package', 'sample linkage', 'broad-scale environmental context', 'local environmental context', 'environmental medium', and 'ecosystem'. The 'sample linkage' column is highlighted in purple. At the bottom left, there are buttons for 'Add 100' and 'GO TO PREVIOUS STEP'.

nmdc

National Microbiome
Data Collaborative

What are metadata?

What are Metadata?


Metadata are ...

- Contextual data about your data
- Vital for data
 - Publication & deposition
 - Preservation
 - Discovery
 - Access
 - Reuse

Sample Metadata

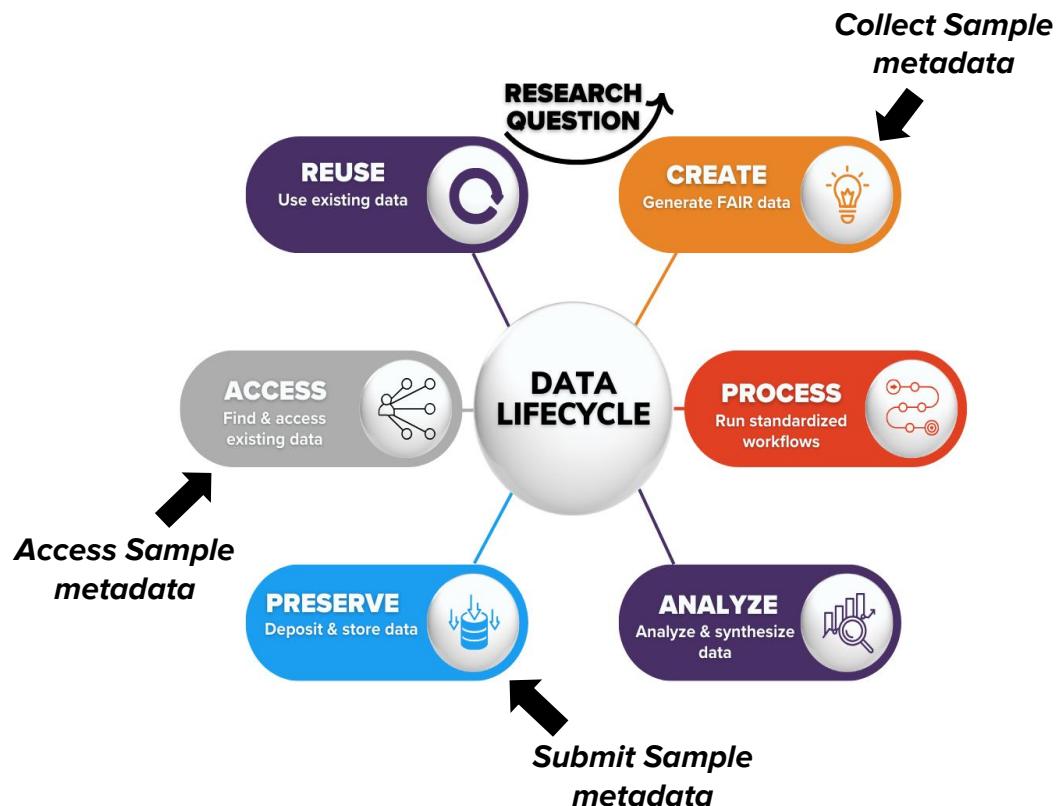
Microbiome Environmental & Sample Metadata

From: **Introduction to Metadata and Ontologies:** Everything You Always Wanted to Know About Metadata and Ontologies (But Were Afraid to Ask) DOI: [10.25979/1607365](https://doi.org/10.25979/1607365)

What are Metadata?

Sample metadata includes

information about:


- **When** it was collected
- **Where** it was collected
- **How** it was collected
- **What** kind of sample is it
- **Treatment** applied during experimentation
- **Environmental Properties** from which the sample was taken

Data Lifecycle and Metadata

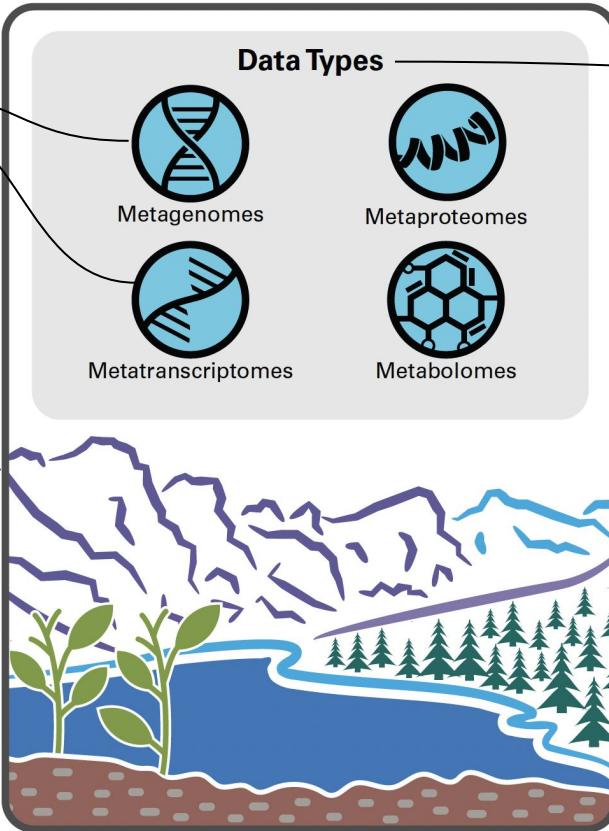
During experimental design:

- Plan for every stage: be intentional about the process of collecting, storing, processing, and protecting (meta)data
- Detail a data management plan that includes metadata for your samples

Breadth of information in microbiome science

Sequencing method

Nucleic acid extraction
Sequencing method


Multiple different
biogeochemical and
environmental parameters

climate
elevation

veg type
plant part

lat/lon
biome
type
material
...

pH
temperature
carbon
nitrogen
depth
soil type
land use
...

Study
information

PI & Contributors
experimental design

Different sample
Treatments and
preparations

Sample collection device
Sample processing

Analysis outputs
assembly statistics
gene function
metabolite and peptide counts
taxon abundance

Valid and complete metadata

Sampling date	04.06.2023
pH	100
Geographic location	n/a
Host	Plant
Elevation	10,000 m
Sequencing technology	

- Lots of samples and studies exist with little to no metadata
- Metadata can be incorrect (e.g. pH of 100) or not usable
- For your own studies, important that you collect valid and complete metadata for data to be FAIR

Real example from NCBI SRA

collection date	not applicable
broad-scale environmental context	not applicable
local-scale environmental context	not applicable
environmental medium	not applicable
geographic location	not applicable
latitude and longitude	not applicable

Valid and complete metadata

Sampling date	04.06.2023
pH	100
Geographic location	n/a
Host	Plant
Elevation	10,000 m
Sequencing technology	

Format not standardized, not ISO compliant

Invalid entry, not in range

Field not filled out

Entry not very specific

Likely incorrect units

Missing fields

Why metadata standards?

Datasets can be difficult to compare and reuse if they lack consistent language and formatting

Why aren't these datasets directly comparable? What isn't standardized?

idNumber	material	sample depth	temperature
3928	soil	0.03 m	23.2 °C
3234	groundwater	1 m	9.02 °C

sampleNum	substance	sample depth	temp
8725	dirt	45 cm	21.1
2312	ground liquid	105 cm	7

Why metadata standards?

Metadata fields and titles can be inconsistent

idNumber	material	sample depth	temperature
3928	soil	0.03 m	23.2 °C
3234	groundwater	1 m	9.02 °C

sampleNum	substance	sample depth	temp
8725	dirt	45 cm	21.1
2312	ground liquid	105 cm	7

Why metadata standards?

The terms used to describe metadata can be different

idNumber	material	sample depth	temperature
3928	soil	0.03 m	23.2 °C
3234	groundwater	1 m	9.02 °C

sampleNum	substance	sample depth	temp
8725	dirt	45 cm	21.1
2312	ground liquid	105 cm	7

Why metadata standards?

The units used can be inconsistent and not directly comparable

idNumber	material	sample depth	temperature
3928	soil	0.03 m	23.2 °C
3234	groundwater	1 m	9.02 °C

sampleNum	substance	sample depth	temp
8725	dirt	45 cm	21.1
2312	ground liquid	105 cm	7

Why metadata standards?

Some metadata may lack units or descriptive information

idNumber	material	sample depth	temperature
3928	soil	0.03 m	23.2 °C
3234	groundwater	1 m	9.02 °C

sampleNum	substance	sample depth	temp
8725	dirt	45 cm	21.1
2312	ground liquid	105 cm	7

Why metadata standards?

Adopting standards for reporting makes data human and machine readable.

idNumber	material	sample depth	temperature
3928	soil	0.03 m	23.2 °C
3234	groundwater	1 m	9.02 °C

idNumber	material	sample depth	temperature
8725	soil	.45 m	21.1 °C
2312	groundwater	1.05 m	7 °C

Why metadata standards?

Adopting standards for reporting makes data human and machine readable.

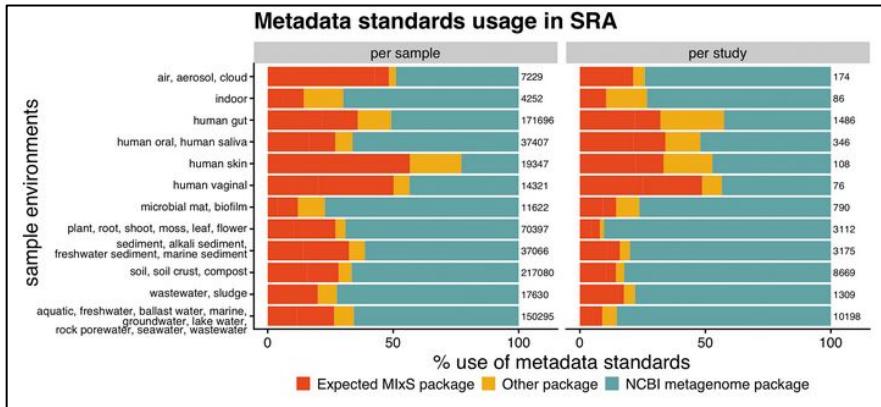
idNumber	material	sample depth	temperature
3928	soil	0.03 m	23.2 °C
3234	groundwater	1 m	9.02 °C

idNumber	material	sample depth	temperature
8725	soil	.45 m	21.1 °C
2312	groundwater	1.05 m	7 °C

Consequences of not standardizing metadata

SINCE EVERYONE SENDS STUFF THIS
WAY ANYWAY, WE SHOULD JUST
FORMALIZE IT AS A STANDARD.

- Can miss critical contextual information when performing analyses
 - May miss other confounding variables
- Data may not be able to be published or deposited into certain repositories
- Limits data comparisons and reuse within a group and beyond
- Prevents reproducibility
- Difficult to search for, difficult to compare with other datasets


nmdc

National Microbiome
Data Collaborative

Metadata Standards

The standards gap

Microbiome Metadata Standards: Report of the National Microbiome Data Collaborative's Workshop and Follow-On Activities

Pajau Vangay ^{1,2}, Josephine Burgin ^{1,3}, Anjanette Johnston⁴, Kristen L. Beck ^{1,4}, Daniel C. Berrios ^{1,5}, Kai Blumberg ^{1,6}, Shane Canon⁸, Patrick Chain⁹, John-Marc Chandonia ^{1,7}, Danielle Christianson², Sylvain V. Costes⁶, Joan Damerow², William D. Duncan⁸, Jose Pablo Dundore-Arias ^{1,8}, Kjersten Fagnan², Jonathan M. Galazka ^{1,9}, Sean M. Gibbons ^{1,10}, David Hays², Judson Hervey ^{1,11}, Bin Hu ^{1,12}, Bonnie L. Hurwitz ^{1,13}, Pankaj Jaiswal ^{1,14}, Marcin P. Joachimiak⁸, Linda Kinkel¹¹, Joshua Ladau², Stanton L. Martin¹¹, Lee Ann McCue ^{1,15}, Kayd Miller ^{1,16}, Nigel Mouncey², Chris Mungall², Evangelos Pafilis ^{1,17}, P. T. B. K. Reddy ^{1,18}, Lorna Richardson ^{1,19}, Simon Roux ^{1,20}, Lynn M. Schriml^{1,21}, Justin P. Shaffer ^{1,22}, Jagadish Chandrabose Sundaramurthi ^{1,23}, Luke R. Thompson ^{1,24,25}, Ruth E. Timme ^{1,26}, Jie Zheng ^{1,27}, Elisha M. Wood-Charlson ^{1,28}, Emiley A. Eloe-Fadrosh ^{1,29}

^aLawrence Berkeley National Laboratory, Berkeley, California, USA

^bEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK

^cNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA

^dIBM Almaden Research Center, San Jose, California, USA

^eNASA Ames Research Center, Moffett Field, California, USA

What we found:

- Lack of awareness of metadata standards, inconsistent usage, lack of training
- Metadata managed as Excel spreadsheets
- Not machine-actionable
- Not following FAIR

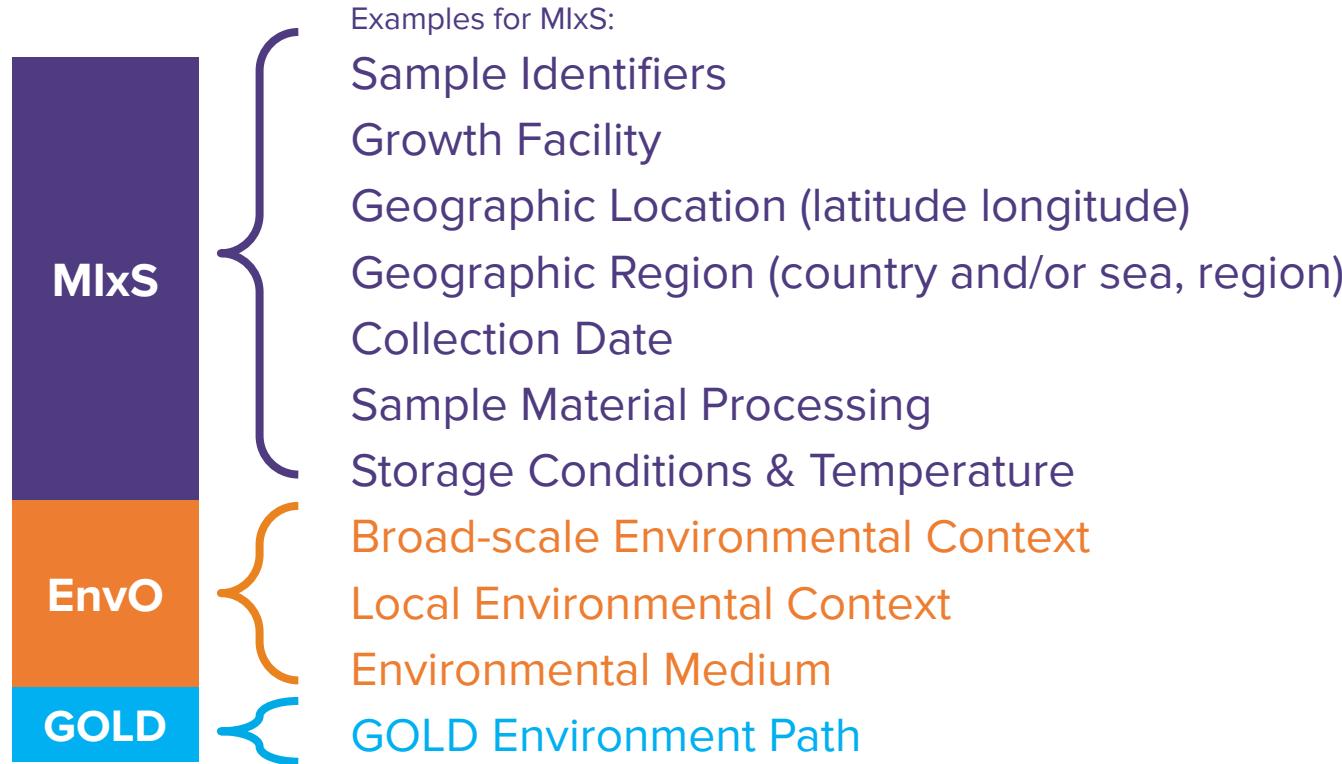
**The NMDC metadata standards utilize and enhance
existing community-driven standards**

1. MIxS: Minimum Information about any (x) Sequence
Genomic Standards Consortium (GSC)
2. [GOLD: Genomes OnLine Database](#)
Joint Genome Institute (JGI)
4. [EnvO: Environment Ontology](#)
Open Biological and Biomedical Ontology (OBO) Foundry

Standards for describing sample context

GSC MIxS

- Minimal Information about any (x) Sequence (MIxS)
- ~600 standardized fields for reporting
 - Different environmental packages
 - Soil
 - Water
 - Sediment
 - Plant-associated
 - ...



Specification projects	MIGS					MIMS	MIMARKS		New checklists
Checklists	EU	BA	P	V	ORG	metagenomes	survey	specimen	e.g., pan-genomes
Shared descriptors	collection date, environmental package, environment (biome), environment (feature), environment (material), geographic location (country and/or sea, region), geographic location (latitude and longitude), investigation type, project name, sequencing method, submitted to INSDC								
Checklist-specific descriptors	assembly, estimated size, finishing strategy, isolation and growth condition, number of replicons, ploidy, propagation, reference for biomaterial			target gene					
Applicable environmental packages (measurements and observations)	Air Host-associated Human-associated		Microbial mat/biofilm Miscellaneous natural or artificial environment Plant-associated		Sediment Soil Wastewater/sludge		Human-oral Human-gut Human-skin Human-vaginal		Water

The NMDC + Community Standards

NMDC derives required metadata from community standards

Genomic Standards Consortium

- MIxS: Environmental Extensions
- System of unified standards for describing microbiome samples from diverse environments (e.g., plant, soil, sediment, water)
- Each package includes a list of ***metadata descriptors*** for each parameter/field
- NMDC leverages MIxS **Mandatory Metadata Fields**

MIxS

EnvO

GOLD

MIxS Environmental Extensions

17 extensions (*currently available in NMDC)

New extensions added with community input

MIxS Environmental Extensions	
*air	*built environment
*host-associated	human-associated
human-gut	human-oral
human-skin	human-vaginal
*hydrocarbon resources-cores	*hydrocarbon resources-fluids/swabs
*microbial mat/biofilm	*miscellaneous natural or artificial environment
*plant associated	*sediment
*soil	wastewater/sludge
*water	agriculture
Pending: food, parasite, etc.	

MIxS

EnvO

GOLD

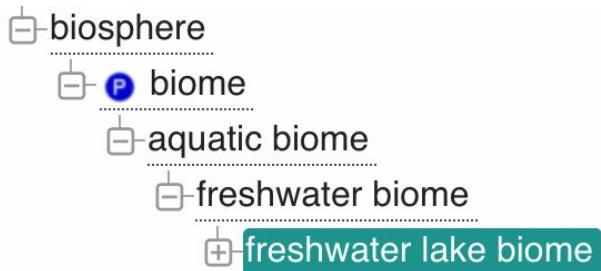
EnvO (Environment Ontology)

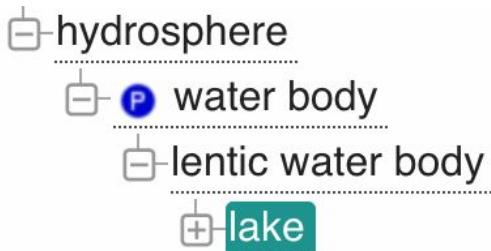
- Dynamic, community resource
- Hierarchical classification of samples by environment
- Mandated by MIxS for environment fields

MIxS

EnvO

GOLD


MIxS requires environment terms


MIxS descriptors specify the ***sample environment***
with the Environment Ontology (EnvO)

broad-scale environmental context

local-scale environmental context

environmental medium

The NMDC + Community Standards

MIxS / EnvO		
Broad-scale environment	Local-scale environment	Environmental Medium
Freshwater lake biome	Lake Shore	Sediment
Freshwater lake biome	Lake	Algal bloom

EnvO & GOLD terms together gives us improved environmental context to the microbiome biosamples!

GOLD Ecosystem classification				
Ecosystem	Ecosystem Category	Ecosystem Type	Specific Ecosystem	Ecosystem Tree
Environment	Aquatic	Freshwater	Lake	Sediment
Environment	Aquatic	Freshwater	Lake	Algal bloom

The Genomes OnLine Database (GOLD)

- Manually curated collection of genome projects and their metadata
- Metadata fields: ~600
- Controlled Vocabulary fields: 76 (3,873 terms)
- Currently contains hundreds of thousands of microbiome biosamples

MIxS

EnvO

GOLD

GOLD - Five-level ecosystem path

GOLD Ecosystem classification

Ecosystem

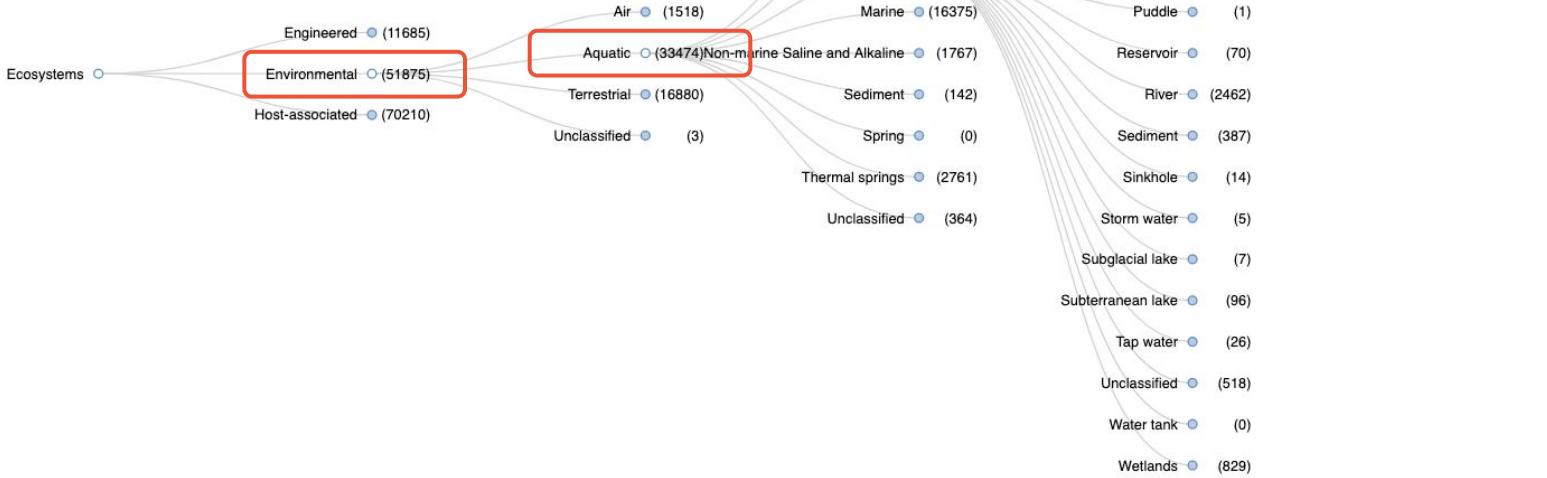
Ecosystem Category

Ecosystem Type

Ecosystem Subtype

Specific Ecosystem

Example: Lake Sediment


Environmental

Aquatic

Freshwater

Lake

Sediment

Activity: Explore the GOLD ecosystem tree viewer to identify your sample metadata path

<https://gold.jgi.doe.gov/ecosystemtree>

Product Initiatives

Submission Portal

Lower barriers
to collect
study and
biosample
data

NMDC EDGE

Streamline
multi-omics
data
processing

Data Portal & API

Access and
discovery of
microbiome
information

Engagement

User Facilities

Individuals

The NMDC Champions Program

The NMDC Ambassador Program

Strategic Partners

Product Initiatives

Submission Portal

Lower barriers
to collect
study and
biosample
data

NMDC EDGE

Streamline
multi-omics
data
processing

Data Portal & API

Access and
discovery of
microbiome
information

Engagement

User Facilities

Individuals

The NMDC Champions Program

The NMDC Ambassador Program

Strategic Partners

nmdc

National Microbiome
Data Collaborative

NMDC Submission Portal

Found 7978 results.

search

Study

PI Name

Function

KEGG Term

Sample

Depth

Collection date

Latitude

Longitude

Geographic Location Name

GOLD Ecosystems

GOLD classification

ENVO

Broad-scale Environmental Context

OMICS

ENVIRONMENT

Metagenome

386

Natural Organic

DATA PORTAL

SUBMISSION PORTAL

NMDC EDGE

<https://data-sandbox.microbiomedata.org/>

For workshops, exploration; submissions deleted
every 7 days on Sundays

Metabolomics

34

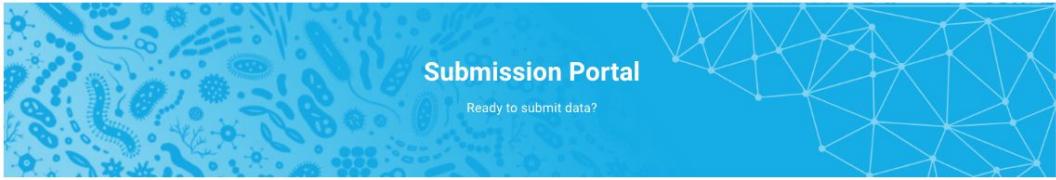
or

SEARCH THIS REGION

Leaflet | © OpenStreetMap contributors

<https://data.microbiomedata.org/>
Navigate to Products → Submission Portal

28 Studies


The NMDC Submission Portal

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾

MONTANA SMITH

- 1 Home
Begin or resume a submission.
- 2 Submission Context
Input form
- 3 Study Information
Input Form
- 4 Multi-omics Data
Input Form
- 5 Environment Package
Choose package type
- 6 Customize Metadata Export
DataHarmonizer sample validation

Quickstart

Tutorial

Reference

Making it easy to follow standards

The Submission Portal is a flexible, template-driven tool designed to lower the barrier to collecting and reporting cohesive, standardized metadata about studies, samples, and assays. The standards we leverage include:

Supporting FAIR data

The Submission Portal leverages validation functions of the [DataHarmonizer](#) tool to check entered metadata values against the standards in the [NMDC schema](#). By following existing community standards like the Minimum Information about any (x) Sequence (MIxS) standard from the Genomic Standards Consortium (GSC), the Submission Portal advances FAIR microbiome data.

Interoperability with DOE User Facilities

We collaborate closely with the JGI and EMSL to support integration of multi-omics data generated across these Facilities. The Submission Portal has been designed to be compliant with both JGI and EMSL sample submission requirements, ensuring study and biosample information is consistently collected to support interoperability and reuse.

The NMDC Submission Portal

nmdc
National Microbiome Data Collaborative

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾ MONTANA SMITH ID E

1 Home Begin or resume a submission. 2 Submission Context Input form 3 Study Information Input Form 4 Multi-omics Data Input Form 5 Environment Package Choose package type 6 Customize Metadata Export DataHarmonizer sample validation

Submission Portal
Ready to submit data?

Quickstart Tutorial Reference

Making it easy to follow standards

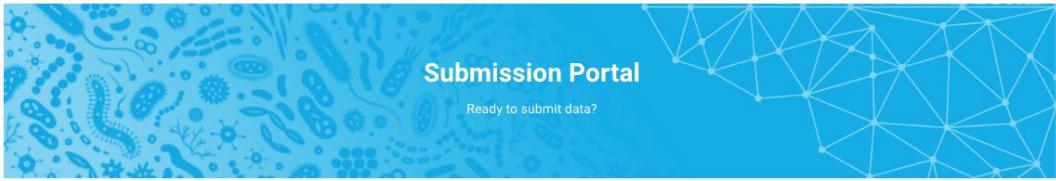
The Submission Portal is a flexible, template-driven tool designed to lower the barrier to collecting and reporting cohesive, standardized metadata about studies, samples, and assays. The standards we leverage include:

Supporting FAIR data

The Submission Portal leverages validation functions of the [DataHarmonizer](#) tool to check entered metadata values against the standards in the [NMDC schema](#). By following existing community standards like the Minimum Information about any (x) Sequence (MIxS) standard from the Genomic Standards Consortium (GSC), the Submission Portal advances FAIR microbiome data.

Interoperability with DOE User Facilities

We collaborate closely with the JGI and EMSL to support integration of multi-omics data generated across these Facilities. The Submission Portal has been designed to be compliant with both JGI and EMSL sample submission requirements, ensuring study and biosample information is consistently collected to support interoperability and reuse.


The NMDC Submission Portal

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾

MONTANA SMITH

- 1 Home
Begin or resume a submission.
- 2 Submission Context
Input form
- 3 Study Information
Input Form
- 4 Multi-omics Data
Input Form
- 5 Environment Package
Choose package type
- 6 Customize Metadata Export
DataHarmonizer sample validation

Quickstart

Tutorial

Reference

Making it easy to follow standards

The Submission Portal is a flexible, template-driven tool designed to lower the barrier to collecting and reporting cohesive, standardized metadata about studies, samples, and assays. The standards we leverage include:

Supporting FAIR data

The Submission Portal leverages validation functions of the [DataHarmonizer](#) tool to check entered metadata values against the standards in the [NMDC schema](#). By following existing community standards like the Minimum Information about any (x) Sequence (MIxS) standard from the Genomic Standards Consortium (GSC), the Submission Portal advances FAIR microbiome data.

Interoperability with DOE User Facilities

We collaborate closely with the JGI and EMSL to support integration of multi-omics data generated across these Facilities. The Submission Portal has been designed to be compliant with both JGI and EMSL sample submission requirements, ensuring study and biosample information is consistently collected to support interoperability and reuse.

The NMDC Submission Portal

nmdc
National Microbiome Data Collaborative

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾ MONTANA SMITH ID E

1 Home Begin or resume a submission. 2 Submission Context Input form 3 Study Information Input Form 4 Multi-omics Data Input Form 5 Environment Package Choose package type 6 Customize Metadata Export DataHarmonizer sample validation

Submission Portal
Ready to submit data?

Quickstart Tutorial Reference Support

Making it easy to follow standards

The Submission Portal is a flexible, template-driven tool designed to lower the barrier to collecting and reporting cohesive, standardized metadata about studies, samples, and assays. The standards we leverage include:

Supporting FAIR data

The Submission Portal leverages validation functions of the [DataHarmonizer](#) tool to check entered metadata values against the standards in the [NMDC schema](#). By following existing community standards like the Minimum Information about any (x) Sequence (MIxS) standard from the Genomic Standards Consortium (GSC), the Submission Portal advances FAIR microbiome data.

Interoperability with DOE User Facilities

We collaborate closely with the JGI and EMSL to support integration of multi-omics data generated across these Facilities. The Submission Portal has been designed to be compliant with both JGI and EMSL sample submission requirements, ensuring study and biosample information is consistently collected to support interoperability and reuse.

The NMDC Submission Portal

+ CREATE NEW SUBMISSION

Past submissions

Pick up where you left off or review a previous submission.

Study Name	Author	Template	Status	Created
No data available				

The NMDC Submission Portal

 Home
Begin or resume a submission.

2 Submission Context
Input Form

3 Study Information
Input Form

4

Submission Context

Data and sample status

Has data already been generated for your study? *

No
 Yes

Data was generated by a DOE user facility

Dataset DOI *
10.46936/10.25585/60000017

DOI associated with the data in this study. This is required when data is already generated.

* indicates required field

Submission Context

- Indicate if data already exists
- Are you using NMDC to complete metadata for samples going to a DOE user facility?

Submission Context

Data and sample status

Have data already been generated for your study? *

No
 Yes

Are you submitting metadata for samples that will be sent to a DOE user facility?

JGI
 EMSL

EMSL Shipping Info *
Shipping information is required

ENTER SHIPPING INFO

▼ Shipper
▼ Sample
▼ Additional Comments

What kind of project have you been awarded? *

CSP ([Community Science Program](#))
 BERSS ([Biological and Environmental Research Support Science](#))
 BRCs ([Bioenergy Research Centers](#))
 FICUS ([Facilities Integrating Collaborations for User Science](#))
 MONet ([Molecular Observation Network](#))
 Other

If submitting to a use facility, this field is required.

* indicates required field

The NMDC Submission Portal

Study Information i

A study summarizes the overall goal of a research initiative and outlines the key objective of its underlying projects.

Study Name *

Name is required

Principal Investigator Name

The Principal Investigator who led the study and/or generated the data.

Principal Investigator Email *

E-mail is required

Principal Investigator ORCID

ORCID iD of the Principal Investigator.

Webpage Links

Link to the Principal Investigator's research lab webpage or the study webpage associated with this collection of samples. Multiple links can be provided.

Study Description

Provide a description of your study. This should include some general context of your research goals and study design. For examples, please see existing study landing pages on the [data portal](#).

Optional Notes

Add any additional notes or comments about this study.

The NMDC Submission Portal

Contributors

Other researchers associated with this study.

Full name *

Contributor's name associated with this study. First name, Middle initial, Last name

ORCID

ORCID iD of the contributor identified.

CRediT Roles *

Identify all [CRediT roles](#) associated with this contributor. [ORCID](#) and [CRediT Information](#).

Permission Level

Level of permissions the contributor has for this submission

[+ ADD CONTRIBUTOR](#)

Contributor Roles & Access Permissions

CRediT Roles : <https://credit.niso.org/>

Permission Levels

- Author/Owner, Editor, Metadata Contributor, Viewer

The NMDC Submission Portal

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾

MONTANA SMITH

 Home
Begin or resume a submission.

 Submission Context
Input form

 Study Information
Input Form

 4 Multi-omics Data
Input Form

 5 Environment Package
Choose package type

 6 Customize Metadata Export
DataHarmonizer sample validation

Multi-omics Data

Information about the type of samples being submitted.

GOLD Study ID

Provide the GOLD study IDs associated with samples for this study.

NCBI BioProject Accession

Provide the NCBI BioProject Accession Number associated with the listed NCBI BioProject Title.

Alternative Names / IDs

Project, study, or sample set names that are also associated with this submission or other names / identifiers for this study.

Data types *

Check all -omics data types associated with samples collected for this study.

Other Non-DOE

- Metagenome
- Metatranscriptome
- Metaproteome
- Metabolome
- Natural Organic Matter (FT-ICR MS)

* indicates required field

 GO TO PREVIOUS STEP

GO TO NEXT STEP

The NMDC Submission Portal

Home
Begin or resume a submission.

Submission Context
Input form

Study Information
Input Form

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾ MONTANA SMITH ID

Multi-omics Data

Information about the type of samples being submitted.

GOLD Study ID

Provide the GOLD study IDs associated with samples for this study.

NCBI BioProject Accession

Provide the NCBI BioProject Accession Number associated with the listed NCBI BioProject Title.

Alternative Names / IDs

Project, study, or sample set names that are also associated with this submission or other names / identifiers for this study.

Data types *

Check all -omics data types associated with samples collected for this study.

Other Non-DOE

- Metagenome
- Metatranscriptome
- Metaproteome
- Metabolome
- Natural Organic Matter (FT-ICR MS)

* indicates required field

GO TO PREVIOUS STEP

Multi-omics Data

Information about the type of samples being submitted.

Data types *

Check all -omics data types associated with samples collected for this study.

Joint Genome Institute (JGI)

- Metagenome
- Metatranscriptome
- Metabolome

Environmental Molecular Science Laboratory (EMSL)

- Metaproteome
- Metabolome
- Natural Organic Matter (FT-ICR MS)

Other Non-DOE

- Metagenome
- Metatranscriptome
- Metaproteome
- Metabolome
- Natural Organic Matter (FT-ICR MS)

* indicates required field

GO TO PREVIOUS STEP

The NMDC Submission Portal

 Home
Begin or resume a submission.

 Submission Context
Input form

 Study Information
Input Form

 Multi-omics Data
Input Form

 Environment Package
Choose package type

 6 Customize Metadata Export
DataHarmonizer sample validation

Environment Package

Choose environment package for your data.

- air
- built environment
- host-associated
- hydrocarbon resources - cores
- hydrocarbon resources - fluids swabs
- microbial mat_biofilm
- miscellaneous natural or artificial environment
- plant-associated
- sediment
- soil
- water

Under development

- human-associated
- human - gut
- human - oral
- human - skin
- human - vaginal

The NMDC Submission Portal

nmdc

National Microbiome
Data Collaborative

nmdc
National Microbiome
Data Collaborative

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾

MONTANA SMITH

Home Begin or resume a submission. Submission Context Input form Study Information Input Form Multi-omics Data Input Form Environment Package Choose package type Customize Metadata Export 6 DataHarmonizer sample validation

1. IMPORT XLSX FILE									2. VALIDATE							
SOIL									Jump to column...				Find <input type="text"/>			
Sample ID		sample name	source material identifier	analysis/data type	sample linkage	broad-scale environmental context	local environmental context	environmental medium	ecosystem	ecosystem context				Find <input type="text"/>		
1	<input type="text"/>															
2																
3																
4																
5																
6																
7																
8																
9																
10																
11																
12																
13																
14																
15																
16																
17																
18																
19																

Add 100

more rows at the bottom.

GO TO PREVIOUS STEP

Color key Required field Recommended field Invalid cell Empty invalid cell

DOWNLOAD XLSX

3. SUBMIT

The NMDC Submission Portal

nmdc
National Microbiome
Data Collaborative

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾

MONTANA SMITH

 Home
Begin or resume a submission.

 Submission Context
Input form

 Study Information
Input Form

 Multi-omics Data
Input Form

 Environment Package
Choose package type

 Customize Metadata Export
DataHarmonizer sample validation

1. IMPORT XLSX FILE

2. VALIDATE

Jump to column...

SOIL

Sample ID	sample name	source material identifier	analysis/data type	sample linkage	broad-scale environmental context	local environmental context	environmental medium	ecosystem	ecosystem	ecosystem	ecosystem
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											

 Find

Column Help

Column: sample name

Description: A local identifier or name that for the material sample collected from the original material collected or derived sub-samples.

Guidance:
It can have any format, but you make it concise, unique within your lab, and as informative as possible.

Each record must have a unique field.

Examples:

- Rock core CB1178(5-6) from NSW

FULL SOIL REFERENCE

Templates are
downloadable if
users prefer to
work in Excel

Add 100

more rows at the bottom.

 GO TO PREVIOUS STEP

Color key Required field Recommended field Invalid cell Empty invalid cell

 DOWNLOAD XLSX

 SUBMIT

The NMDC Submission Portal

nmdc
National Microbiome Data Collaborative

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾ MONTANA SMITH ID

Home Submission Context Study Information Multi-omics Data Environment Package Customize Metadata Export

1. IMPORT XLSX FILE 2. VALIDATE

Jump to column... ⌂ ⌂

Sample ID

	sample ID	sample name	source material identifier	analysis/data type	sample linkage	broad-scale environmental context	local environmental context	environmental medium	ecosystem	ecosystem context
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										

Column Help

Column: sample name

Description: A local identifier or name that for the material, the original source, derived sample.

Guidance: It can have you make within your possible.

Each record field.

Example: • Rock

FULL SOIL REFERENCE

Add 100 more rows at the bottom.

Color key Required field Recommended field Invalid cell Empty invalid cell

GO TO PREVIOUS STEP DOWNLOAD XLSX SUBMIT

The NMDC Submission Portal

nmdc
National Microbiome Data Collaborative

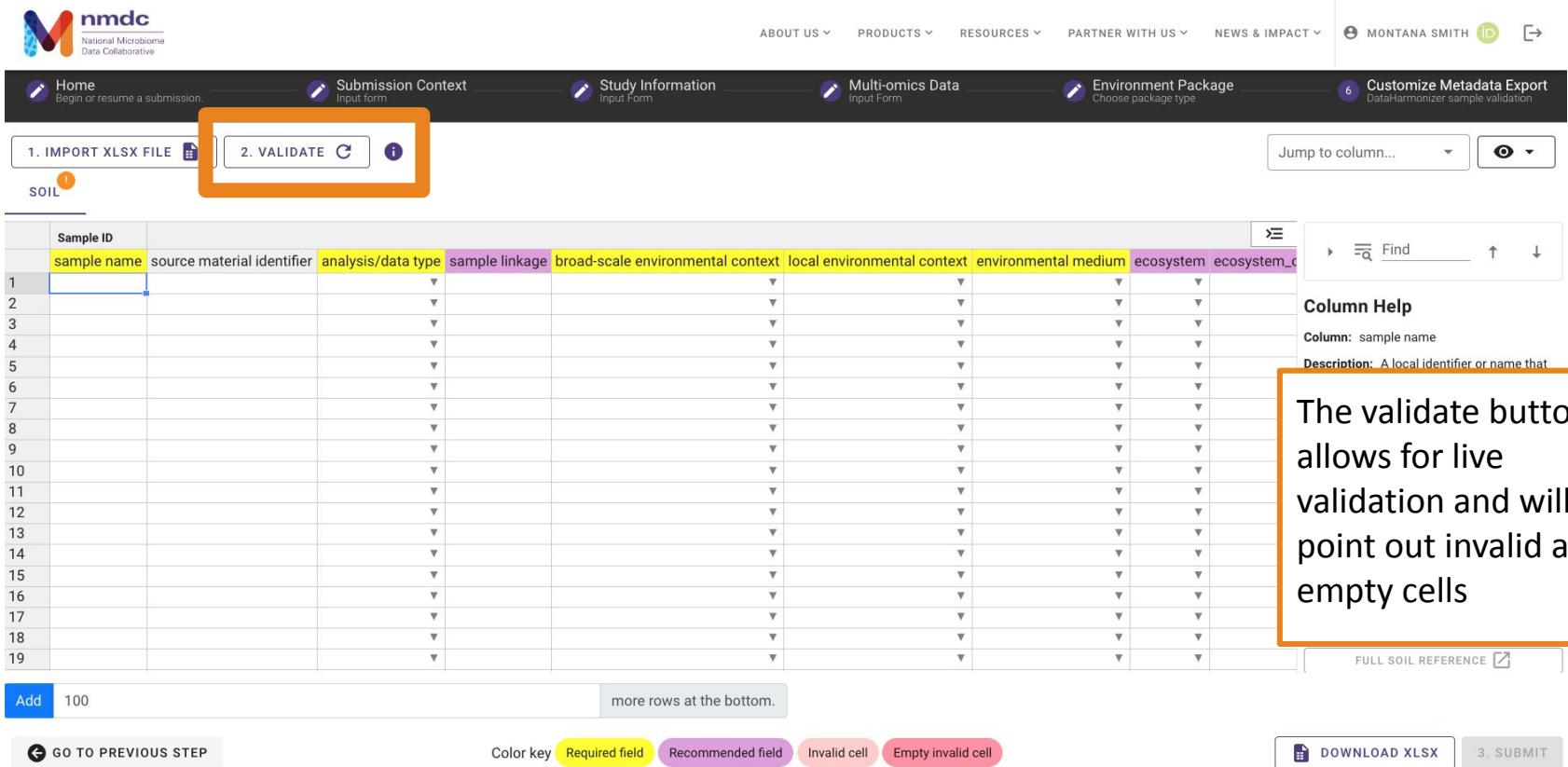
ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾ MONTANA SMITH ID ➔

Home Begin or resume a submission. Submission Context Input form Study Information Input Form Multi-omics Data Input Form Environment Package Choose package type Customize Metadata Export 6 DataHarmonizer sample validation

1. IMPORT XLSX FILE ➔ 2. VALIDATE ➔ ⓘ Jump to column... ⌂ ⓘ

SOIL ⓘ

	Sample ID	source material identifier	analysis/data type	sample linkage	broad-scale environmental context	local environmental context	environmental medium	ecosystem	ecosystem_context
1	sample name								
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									


Add 100 more rows at the bottom.

Color key: Required field, Recommended field, Invalid cell, Empty invalid cell

GO TO PREVIOUS STEP ➔ DOWNLOAD XLSX ➔ 3. SUBMIT

A color key assists researchers in knowing types of errors and required and recommended fields

The NMDC Submission Portal

The screenshot shows the NMDC Submission Portal interface. At the top, there are navigation links: Home, Submission Context, Study Information, Multi-omics Data, Environment Package, and Customize Metadata Export. Below this is a sub-navigation bar with buttons for '1. IMPORT XLSX FILE', '2. VALIDATE', and '3. SUBMIT'. The '2. VALIDATE' button is highlighted with an orange box. The main area is a data entry table with columns: Sample ID, sample name, source material identifier, analysis/data type, sample linkage, broad-scale environmental context, local environmental context, environmental medium, ecosystem, and ecosystem_context. The 'sample name' column is highlighted with a yellow background. A callout box on the right provides a detailed description of the 'VALIDATE' button's function.

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾

MONTANA SMITH

Home Begin or resume a submission. Submission Context Input form Study Information Input Form Multi-omics Data Input Form Environment Package Choose package type Customize Metadata Export 6 DataHarmonizer sample validation

1. IMPORT XLSX FILE 2. VALIDATE

Jump to column...

SOIL

	Sample ID	sample name	source material identifier	analysis/data type	sample linkage	broad-scale environmental context	local environmental context	environmental medium	ecosystem	ecosystem_context
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										

FULL SOIL REFERENCE

Add 100 more rows at the bottom.

Color key

GO TO PREVIOUS STEP DOWNLOAD XLSX 3. SUBMIT

The NMDC Submission Portal

nmdc
National Microbiome
Data Collaborative

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾ MONTANA SMITH ID ↗

Home Submission Context Study Information Multi-omics Data Environment Package Customize Metadata Export

1. IMPORT XLSX FILE All Errors (35) (1/35) RE-VALIDATE

Jump to column...

SOIL 35

	Sample ID	MixS (modified)	growth facility	storage conditions	collection date	geographic location (country and/or sea)	geographic location (latitude and longitude)	elevation, meters	sample storage
1	1	sample name	field	▼	▼ April 23, 2021	USA	▼	▼	▼
2	2		▼	▼	▼	Vancouver, Canada	▼	▼	▼
3	3		▼	▼	▼ 2021-04-23	USA: Washington, Seattle	▼	▼	▼
4			▼	▼	▼	▼	▼	▼	▼
5			▼	▼	▼	▼	▼	▼	▼
6			▼	▼	▼	▼	▼	▼	▼
7			▼	▼	▼	▼	▼	▼	▼
8			▼	▼	▼	▼	▼	▼	▼
18			▼	▼	▼	▼	▼	▼	▼
19			▼	▼	▼	▼	▼	▼	▼

The Column Help window can help users address errors

Find

Column Help

Column: sample name

Description: A local identifier or name for the material sample collected. Refers to the original material collected or to any derived sub-samples.

Guidance:
It can have any format, but we suggest that you make it concise, unique and consistent within your lab, and as informative as possible.

Each record must have a unique value for this field.

Examples:

- Rock core CB1178(5-6) from NSW

FULL SOIL REFERENCE

Add 100 more rows at the bottom.

GO TO PREVIOUS STEP Color key Required field Recommended field Invalid cell Empty invalid cell DOWNLOAD XLSX 3. SUBMIT

The NMDC Submission Portal

nmdc
National Microbiome Data Collaborative

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾

MONTANA SMITH ID ➔

Home Begin or resume a submission. Submission Context Input form Study Information Input Form Multi-omics Data Input Form Environment Package Choose package type Customize Metadata Export 6 DataHarmonizer sample validation

1. IMPORT XLSX FILE All Errors (35) (1/35) RE-VALIDATE

SOIL 35

	Sample ID	MixS (modified)							
	sample name	growth facility	storage conditions	collection date	geographic location (country and/or sea,region)	geographic location (latitude and longitude)	elevation, meters	sample stor	
1	1	field	▼	April 23, 2021	USA				
2	2		▼	▼	Vancouver, Canada				
3	3		▼	2021-04-23	USA: Washington, Seattle				
4		▼	▼	▼					
5		▼	▼	▼					
6		▼	▼	▼					
7		▼	▼	▼					
8		▼	▼	▼					
9		▼	▼	▼					
10		▼	▼	▼					
11		▼	▼	▼					
12		▼	▼	▼					
13		▼	▼	▼					
14		▼	▼	▼					
15		▼	▼	▼					
16		▼	▼	▼					
17		▼	▼	▼					
18		▼	▼	▼					
19		▼	▼	▼					

Users can show/hide certain columns

Jump to column...

Column visibility

All Columns

Required columns

Required and recommended columns

Show section

Sample ID

MixS

MixS (modified)

MixS Inspired

within your lab, and as informative as possible.

Each record must have a unique value for this field.

Examples:

- Rock core CB1178(5-6) from NSW

Add 100 more rows at the bottom.

GO TO PREVIOUS STEP Color key Required field Recommended field Invalid cell Empty invalid cell DOWNLOAD XLSX 3. SUBMIT

The NMDC Submission Portal

nmdc
National Microbiome
Data Collaborative

ABOUT US ▾ PRODUCTS ▾ RESOURCES ▾ PARTNER WITH US ▾ NEWS & IMPACT ▾ MONTANA SMITH ID ↗

Home Begin or resume a submission. Submission Context Input form Study Information Input Form Multi-omics Data Input Form Environment Package Choose package type Customize Metadata Export 6 DataHarmonizer sample validation

1. IMPORT XLSX FILE All Errors (35) (1/35) RE-VALIDATE

SOIL 35

	Sample ID	MixS (modified)					
	sample name	growth facility	storage conditions	collection date	geographic location (country and/or sea,region)	geographic location (latitude and longitude)	elevation, meters
1	1	field	▼	▼ April 23, 2021	USA		
2	2		▼	▼	Vancouver, Canada		
3	3		▼	▼ 2021-04-23	USA: Washington, Seattle		
4		▼	▼	▼			
5		▼	▼	▼			
6		▼	▼	▼			
7		▼	▼	▼			
8		▼	▼	▼			
17		▼	▼	▼			
18		▼	▼	▼			
19		▼	▼	▼			

Add 100 more rows at the bottom.

Jump to column... ph

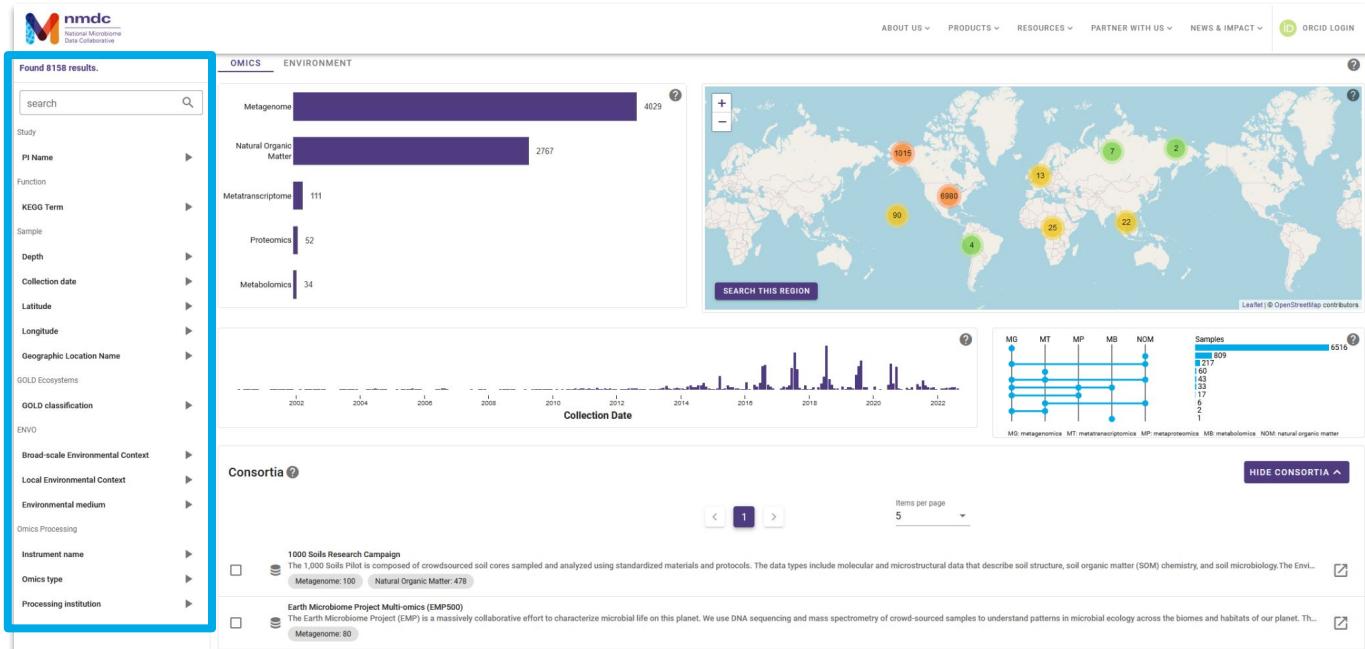
pH method
total phosphorus
phosphate
geographic location (country and/or sea,region)
geographic location (latitude and longitude)
pH

Users can also search for and jump to certain columns

GO TO PREVIOUS STEP DOWNLOAD XLSX 3. SUBMIT

nmdc

National Microbiome
Data Collaborative


NMDC Data Portal

NMDC Data Portal

Data Portal & API

Access and
discovery of
microbiome
information

Filter datasets by standardized metadata terms

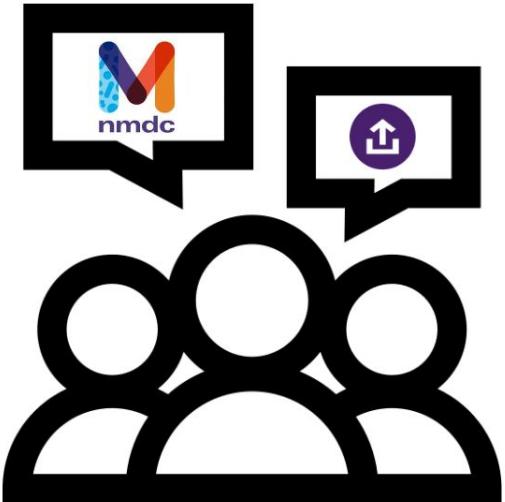
nmdc

National Microbiome
Data Collaborative

Questions?

nmdc

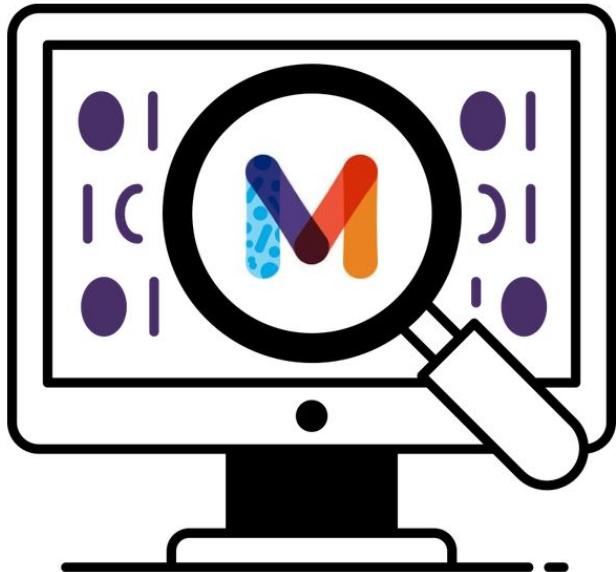
National Microbiome
Data Collaborative


Activities

Submission Portal Activity

- Select ‘Create New Submission’
- For Submission Context, select ‘No’ for if the data has been generated for this study
- Select ‘JGI’ then select ‘Other’ and type something along the lines of ‘test submission’
- Select Go to Next Step
- Name the study: “Ambassador Training: Validation activity”
- Put a fake email address or your own email address into the Principal Investigator Email field
- No need to fill out non-required information on this page
- Select Go to Next Step
- Select metagenome under JGI and type a fake study ID (123456)
- Select Go to Next Step
- Select the Soil Environment Package
- Select Go to Next Step
- **Pause** for discussion
- Upload the xlsx file, select the ‘Validate’ button and try to fix all of the invalid fields!

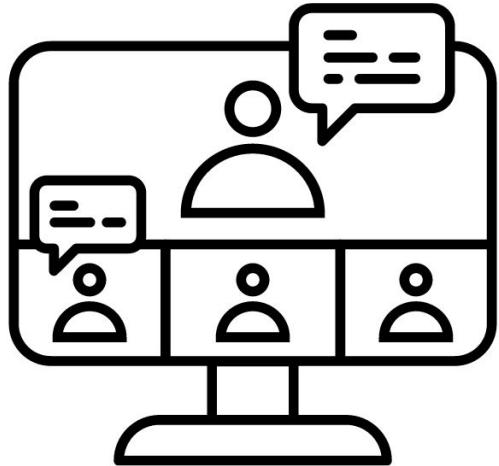
Example Break Out Activity

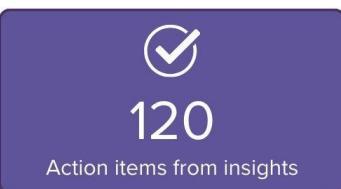
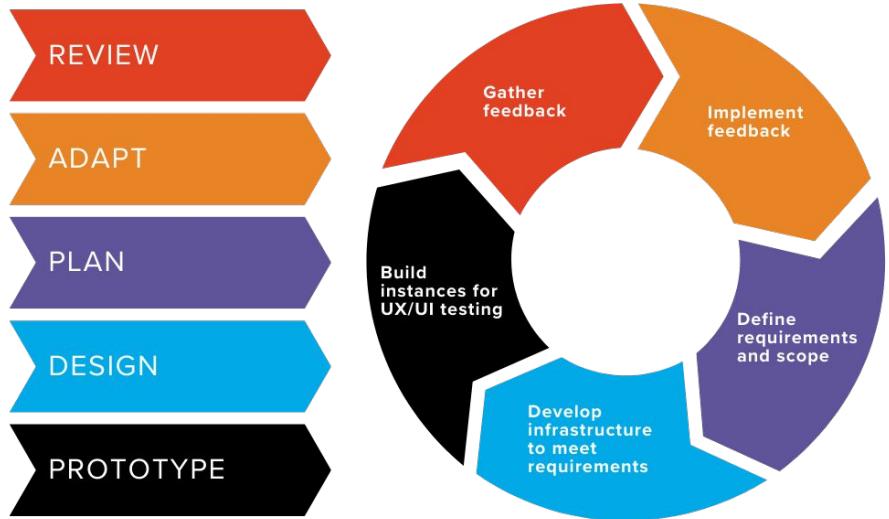


A more challenging example activity

- Complete study and data information using a written study design
 - Ambassadors can write out a paragraph of study design (we have examples you can use)
 - Attendees read the paragraph and identify relevant metadata fields
 - Attendees complete the study and data information sections of the Submission Portal

Discussion





- What do you currently use to track metadata and sample information?
- Which metadata standards or templates (if any) are your group currently using?
- What did you like about the NMDC Submission Portal?
- What could be improved about the Submission Portal?
- Did you encounter any bugs in the Submission Portal?

Submission Portal Experience

- Do you have projects you would like to track in the Submission Portal?
 - Walk through your Submission Portal experience with our team!
 - Please add your name to shared notes to participate
- Live feedback from your workshops
 - Features people like/don't like
 - Things that aren't clear during the workshop
 - Bugs that come up while people are doing activities
- General reporting google form for issues:
<https://forms.gle/yxu9gkbufPigtbrB8>

Community-centered design process

Submission Portal Feedback

- Updates to how the templates are accessed and downloaded
- Feature and UI updates to improve experience with interface
- Help and tutorial guidance updates

nmdc

National Microbiome
Data Collaborative

Questions?

NMDC Resources

Website: <https://microbiomedata.org/>

Data Portal: <https://data.microbiomedata.org/>

Submission Portal: <https://data.microbiomedata.org/submission/home>

NMDC EDGE: <https://nmdc-edge.org/home>

Github: <https://github.com/microbiomedata>

Docker Hub: <https://hub.docker.com/u/microbiomedata>

Documentation:

https://nmdc-documentation.readthedocs.io/en/latest/overview/nmdc_overview.html

YouTube: https://www.youtube.com/channel/UCyBqKc46NQZ_YgZIKGYeglw/featured

Get involved!

Sign up for our newsletter

microbiomedata.org

Find us on X/Twitter

@microbiomedata

Find us on Instagram

@microbiomedata

Become a NMDC Champion

bit.ly/champions-program

Find us on LinkedIn

https://bit.ly/NMDC_LinkedIn

**nature
microbiology**

frontiers

**Nucleic Acids
Research**

**nature
REVIEWS
MICROBIOLOGY**

mSystems

Read more about the NMDC

Kelliher JM et al. Cohort-based learning for microbiome research community standards. *Nat Microbiol* (2023). doi.org/10.1038/s41564-023-01361-7.

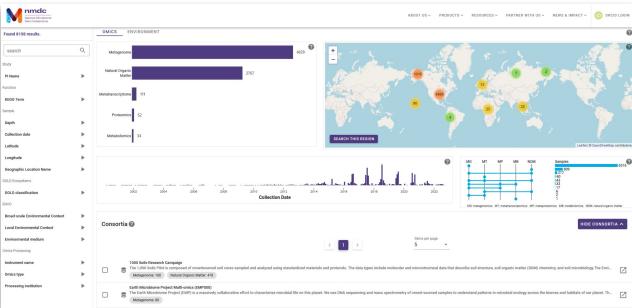
Hu B, Canon S, Eloe-Fadrosh EA, et al.. Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale. *Front Bioinform*. 1:826370. (2022) doi: 10.3389/fbinf.2021.826370.

Eloe-Fadrosh EA et al. The National Microbiome Data Collaborative Data Portal: an integrated multi-omics microbiome data resource. *Nucleic Acids Res*. 7;60(D1):D828–D836. (2022) doi: 10.1093/nar/gkab990.

Wood-Charlson, E.M., Anubhav, Auberry, D. et al. The National Microbiome Data Collaborative: enabling microbiome science. *Nat Rev Microbiol* **18**, 313–314 (2020). doi.org/10.1038/s41579-020-0377-0

Vangay, P et al. Microbiome metadata standards: Report of the National Microbiome Data Collaborative's workshop and follow-on activities. *mSystems* **6**, e01194-20 (2021). doi.org/10.1128/mSystems.01194-20

nmdc



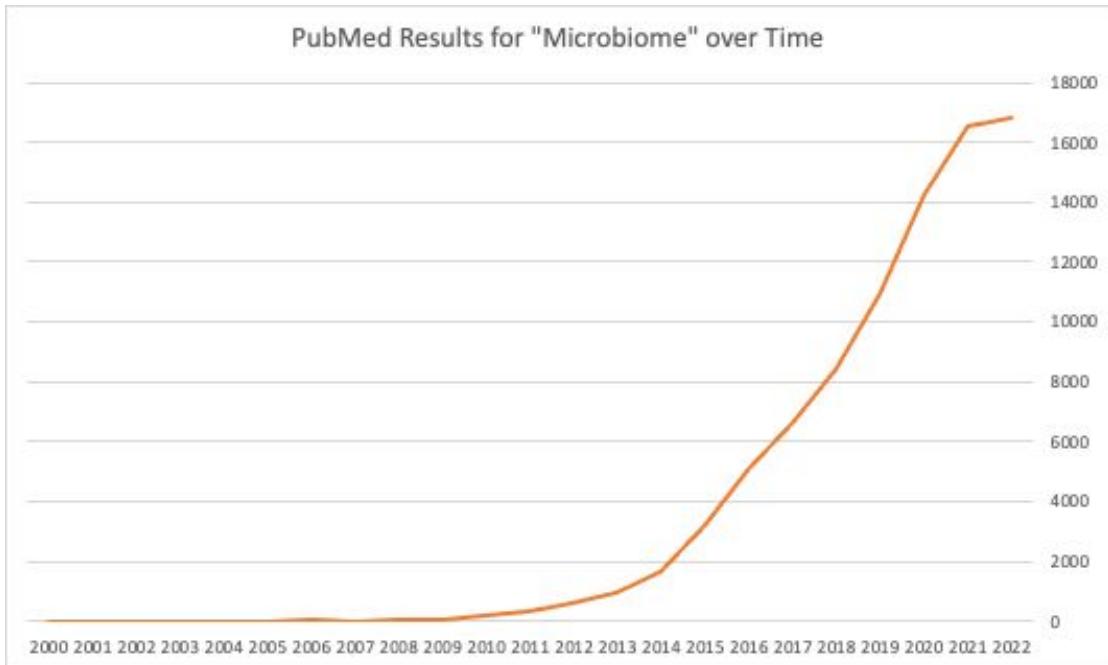
National Microbiome
Data Collaborative

Data Stewardship and NMDC Data Portal
2024 Ambassador Cohort

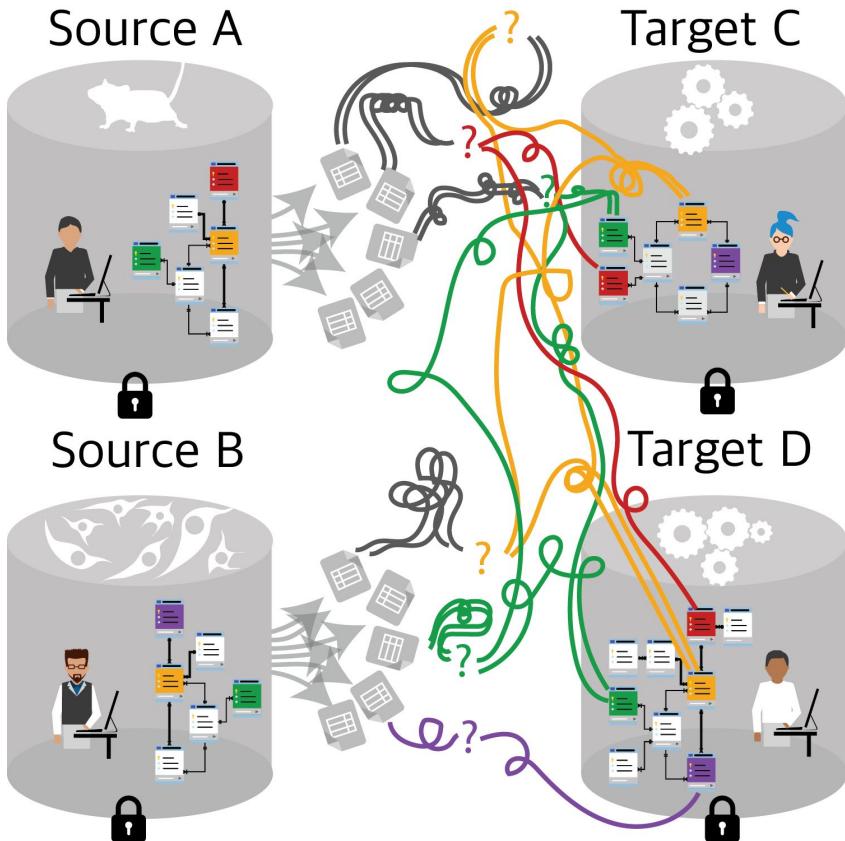
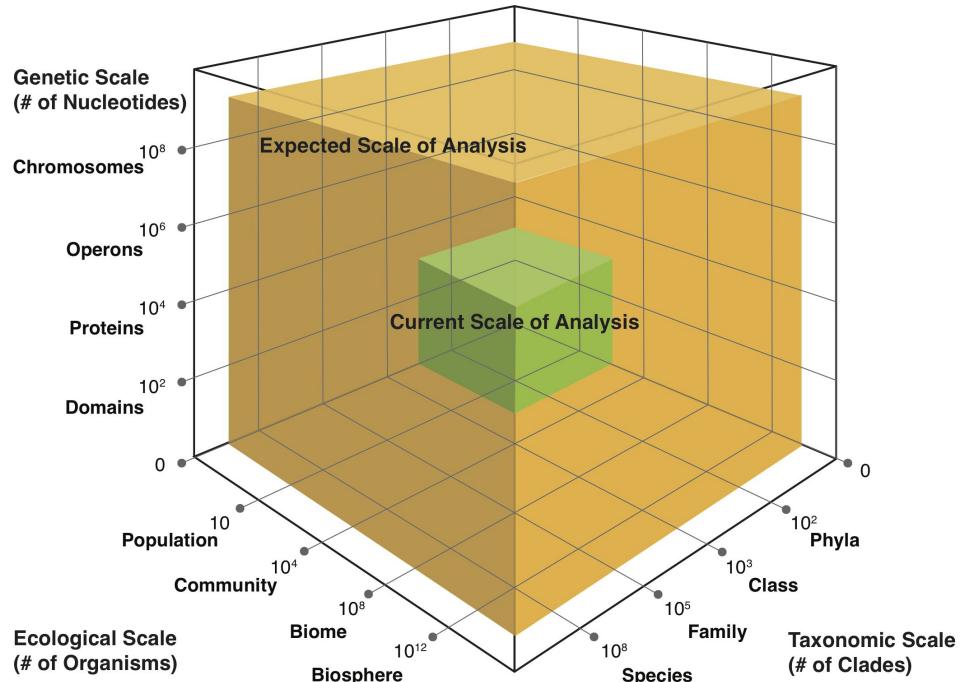
Purpose of this training

- Provide an overview of data stewardship and relevant guiding principles
- Discuss the importance of proper data stewardship for the future of microbiome data
- Provide template slides for events
- Introduce audience to the NMDC Data Portal
 - The hands-on scavenger hunt can be used (or modified and used) for use in your events too!

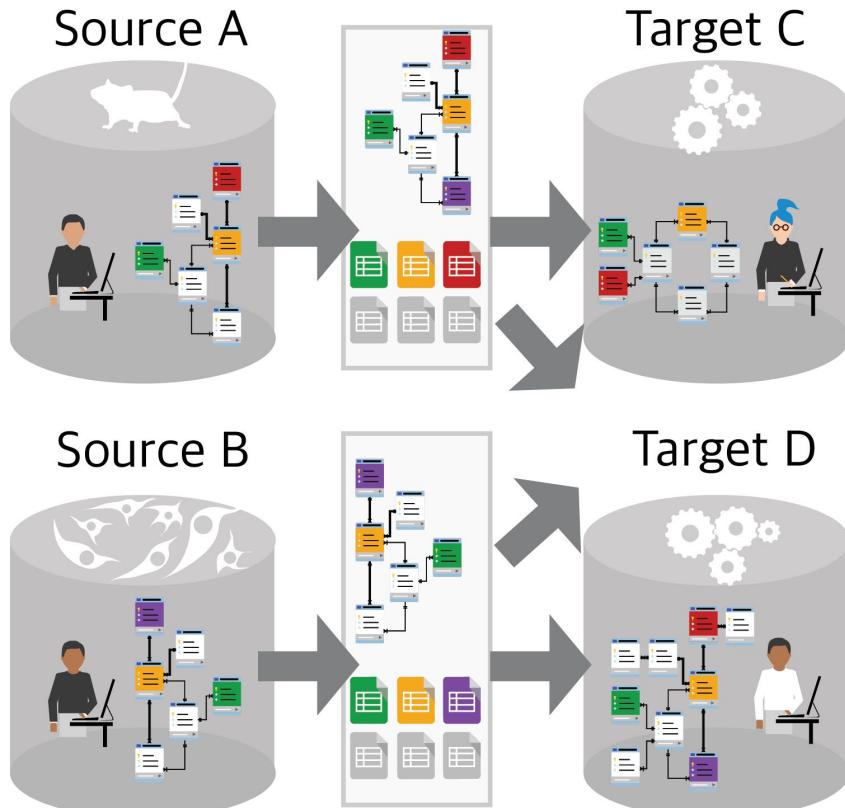
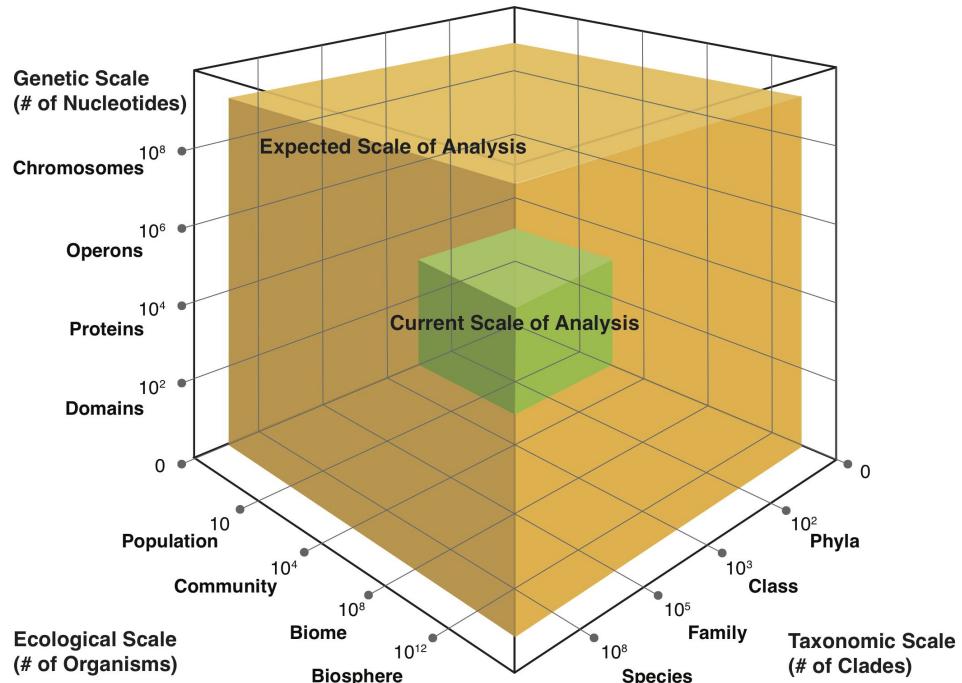
Findable
Accessible
Interoperable
Reusable


nmdc

National Microbiome
Data Collaborative



Data Stewardship & FAIR Data

Microbiome Data



The immense scale of omics data

Advances in sequencing and omics technologies have **far outpaced** data infrastructure

The immense scale of omics data

Advances in sequencing and omics technologies have **far outpaced** data infrastructure

Aspects of data stewardship:

- Data generation and acquisition
- Data storage
- Data processing
- Data publication, release
- Data reuse

Everyone's responsibility to ensure data is properly managed, trustworthy, and FAIR

Accountability in data stewardship

- All researchers
- Funders
- User facilities
- Publishers
- Societies
- Institutions
- Data storage facilities

Important to implement data stewardship best practices as early in the research process as possible

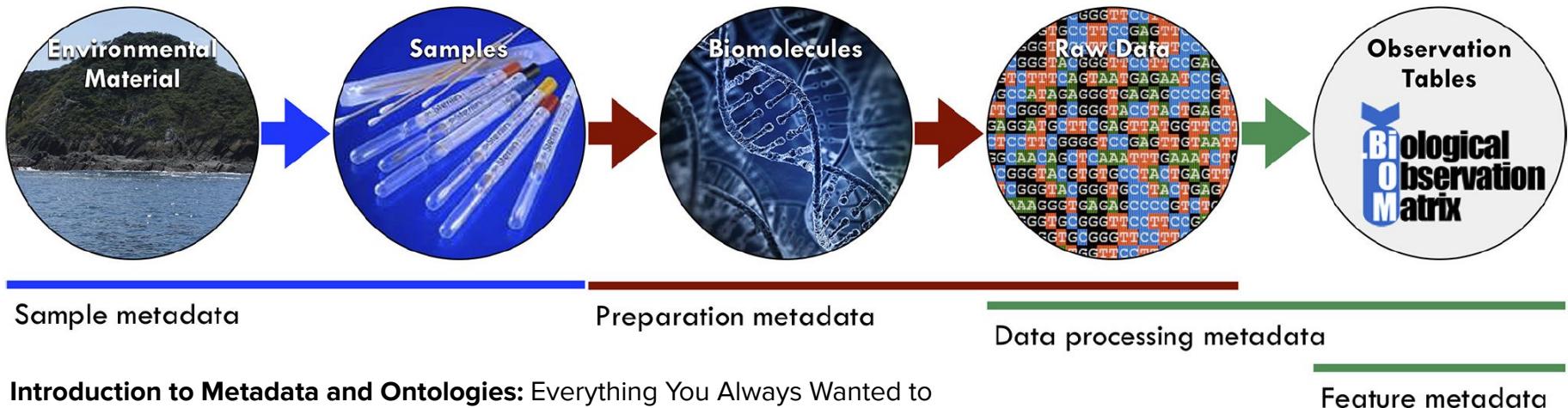
Why should you care about data management and data stewardship?

Streamlines your research process

- Less data loss and waste, easier to find information
- Can answer new scientific questions, easily share data
- Publication of data
- Data preservation in the future

Makes data accessible for others

- Collecting and providing data and metadata allows other researchers to understand your full study context for data reuse
- Increased scientific exposure


Ensures you receive credit for your work

- Datasets can get DOIs, included in publications
- Poorly managed data may not retain provenance or may not be able to be reused, limiting your contributions to your field
- Impact is quantifiable, measurable

Metadata standards

A pillar for data stewardship best practices

Introduction to Metadata and Ontologies: Everything You Always Wanted to Know About Metadata and Ontologies (But Were Afraid to Ask)

DOI: [10.25979/1607365](https://doi.org/10.25979/1607365)

FAIR Data

- FAIR is about:
 - Data and metadata
 - Metadata and metadata standards should be articulated and made publicly available to the greatest extent possible
 - Machine-actionability
 - Relevant on all levels of data aggregation
 - Human and machine readable considerations
 - Controlled data access
 - Explicit, well-defined and readily available terms and conditions under which data will be shared or made accessible

The first step in (re)using data is to find datasets. Metadata and data should be machine-readable and easy to find by the community.

- (Meta)data are assigned a globally unique and persistent identifier
- Data are described with rich metadata
- Metadata clearly and explicitly include the identifier of the data they describe
- (Meta)data are registered or indexed in a searchable resource

Once the user finds the required data, they need to know how the data can be accessed, possibly including authentication and authorization.

- (Meta)data are retrievable by their identifier using a standardized communications protocol
- The protocol is open, free, and universally implementable
- The protocol allows for an authentication and authorization procedure, where necessary
- Metadata are accessible, even when the data are no longer available

Interoperable

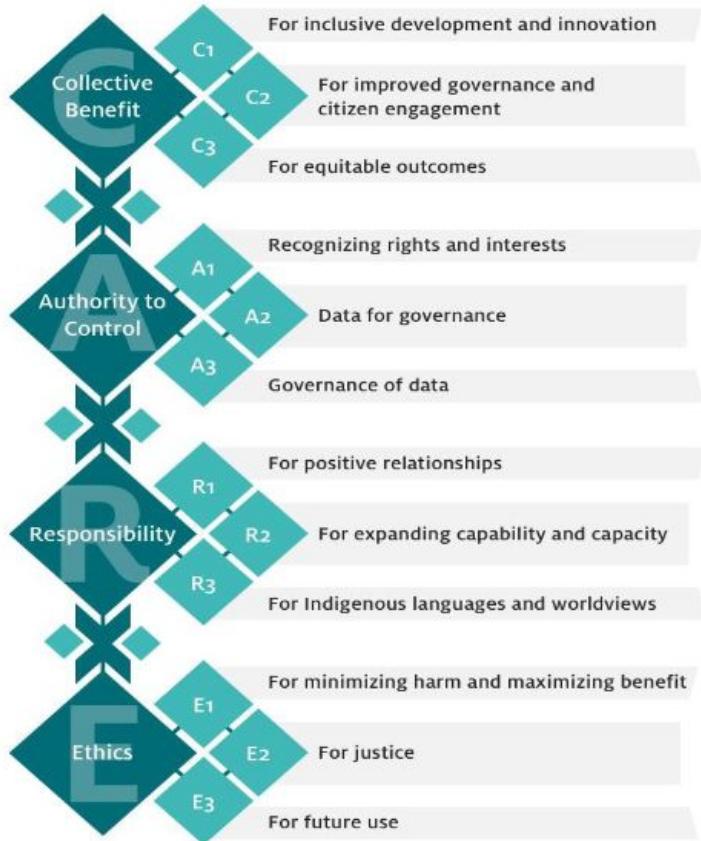
Data usually needs to be integrated with other data. In addition, data needs to interoperate with applications or workflows for analysis, storage, and processing.

- (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- (Meta)data use vocabularies that follow FAIR principles
- (Meta)data include qualified references to other (meta)data

Reusable

The ultimate goal of FAIR is to optimize the reuse of data. To achieve this, metadata and data should be well-described so that they can be replicated and/or combined in different settings.

- (Meta)data are richly described with a plurality of accurate and relevant attributes
- (Meta)data are released with a clear and accessible data usage license
- (Meta)data are associated with detailed provenance
- (Meta)data meet domain-relevant community standards


Open Science & Open Data

Why is openly accessible data important?

- Part of **FAIR** data practices
- Scientific advances can be made by synthesizing new and old studies
- Open data can create new research avenues
- Open data increases accessibility to all researchers

CARE principles

- Indigenous data: “Data generated by Indigenous Peoples or by other governments and institutions on or about Indigenous Peoples and territories”
- CARE principles aim for data stewardship practices that align with Indigenous interests and governance needs
 - Making data FAIR while acknowledging power differentials and historical contexts
 - People- and person-oriented, reflecting the crucial role of data in advancing Indigenous innovation and self-determination

[CARE principles for Indigenous Data Governance](#)

CARE Principles

The CARE Principles are available in Spanish, Vietnamese, Māori, German, and Khmer

[CARE principles for Indigenous Data Governance](#)

Inclusion means creating environments, large and small, that foster welcoming and belonging.

Diversity refers to the variety of backgrounds, cultures, disciplines, approaches, perspectives, and ways in which we solve problems.

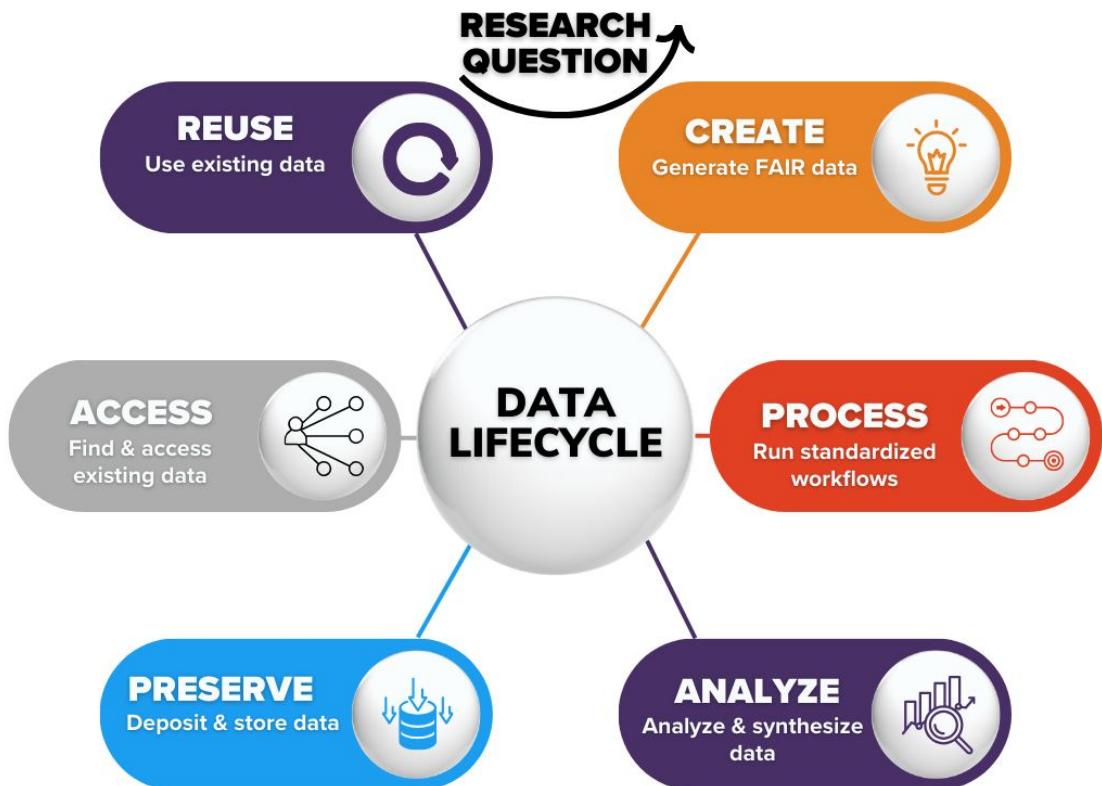
Equity means achieving the aspirational state of 'opportunity parity' for all. To achieve equity, we must increase access to and remove barriers to opportunity, taking into consideration individual needs wherever feasible.

Accountability means taking individual and collective responsibility for our actions, behavior, and impact on others.

How can **data stewardship** incorporate IDEA principles?

- Openly accessible data makes resources more equitable
- Training and educational resources make research more accessible
- From CARE principles - how does your data impact groups involved, who benefits from your data, is anyone excluded who should not be?

<https://diversity.lbl.gov/ideaberkeleylab/>


nmdc

National Microbiome
Data Collaborative

Data Management

Data Lifecycle and Metadata

**Best Practices in
Data Management
support the entire
Data Lifecycle**

Data Management

For research: the *intentional* process of collecting, storing, processing, and protecting data

For data preservation: data are **FAIR** now and into the future

Benefits of good data management:

- Decreased data loss
- Streamlined data deposition and publication
- Work is appropriately credited
- Impact is measurable / quantifiable
- Increased scientific exposure

From: Roche DG, Lanfear R, Binning SA, Haff TM, Schwanz LE, Cain KE, et al. (2014) Troubleshooting Public Data Archiving: Suggestions to Increase Participation. PLoS Biol 12(1): e1001779.
<https://doi.org/10.1371/journal.pbio.1001779>

What is a Data Management Plan?

Required part of any federally funded grant proposal

- How you will collect, categorize, store, and share any data produced during the duration of a grant
- How that data will be preserved and made accessible after the completion of a project

Impact:

- Well-managed data can be published as a product
 - DOIs assigned to datasets
- Data management plans extend beyond the researchers
- Leads to greater re-use of data (internally and externally)

What to include in your DMP?

SAMPLE AND DATA TYPES AND SOURCES

Outlines what kinds of data will be produced throughout the project.

DATA STANDARDS AND FORMATS

Defines all variables of interest and communicates that you are aware of and will abide by community best practices whenever possible.

What goes into a data management plan?

DATA DISSEMINATION & ARCHIVING

Describes what the final data products will be and how you will protect data, if applicable.

POLICIES FOR DATA SHARING, PUBLIC ACCESS, AND RE-USE

Communicates that you understand your funders data sharing policies and that you have a plan to ensure public availability.

DATA AND SAMPLE PRESERVATION

Communicates the sustainability plan for your data, showing your funder that the data products will last after the completion of the project.

ROLES AND RESPONSIBILITIES

Shows how your data management plan will be executed and ensures that your team's data management responsibilities are clearly defined.

NMDC DMP Resources

DMPTool Template

Project Details Collaborators Write Plan Research Outputs Download Finalize / Publish

* Project title
NMDC Microbiome Template If applying for funding, state the name exactly as it will appear in the grant proposal. mock project for testing, practice, or educational purposes

Project abstract

Research domain
- Please select one -

Project Start mm/dd/yyyy Project End mm/dd/yyyy

Research outputs may have ethical concerns

Funder
National Microbiome Data Collaborative

Funding status
- Please select one -

Funding Opportunity Number

Grant number/url

Select Guidance
Select up to 6 organizations to see their guidance.
 DMPTool
 Loyola Marymount University (LMU)
Find guidance from additional organizations below
See the full list
Briefly summarize your research project to help others understand the purposes for which the data are being collected or created.

DMP Consultancies

One-on-one guidance on how to make a FAIR Data Management Plan

NMDC team has the expertise to offer guidance on the creation of DMPs for the **Department of Energy Office of Science** proposals

 nmdc
National Microbiome Data Collaborative

ABOUT DATA PRODUCTS COMMUNITY RESOURCES CONTACT

NMDC Data Management Best Practices

Documenting how data is generated, organized, stored, and retrieved is crucial to making data findable, accessible, interoperable, and reusable (FAIR).

What role does data management play in data sharing?

According to the [8 Steps of the Data Life Cycle](#), data management is an iterative step that persists from the beginning to the end of the project. This documentation of how data is generated, organized, stored, and retrieved is crucial to making data findable, accessible, interoperable, and reusable (FAIR). Data and data management plans need to be machine readable to fully abide by FAIR principles. By making data machine readable, it increases the scope and scale of which data can be shared and analyzed. FAIR guiding principles are rooted in the idea that "good data management is not a goal in itself, but rather is the key conduit leading to knowledge discovery and innovation, and to subsequent data and knowledge integration and reuse by the community after the data publication process" (doi.org/10.1038/sdata.2016.18). By having a well defined and well executed data management, the barriers of sharing data are lowered

<https://microbiomedata.org/data-management/>

Tools for Data Management

Raise your hand if you use the following for managing your data:

- Lab notebooks
- Field notes, pieces of paper
- Remembering the information
- Google sheets
- Excel
- Tablet, iPad
- Laboratory Information Management Systems (LIMS) systems
- Online tools, data management plan software
- Post-it notes, paper towels, the back of a glove in the lab

Data Management Reflection

- How do you implement data management best practices in your organization?
 - Is there anything you would add/change to make your data more FAIR?
 - What tools work for you for data management? Are there tools that could improve this process for you?
 - How can we implement the principles we discussed and ensure accountability?
- Are the FAIR principles enough?

nmdc

National Microbiome
Data Collaborative

Questions?

nmdc

National Microbiome
Data Collaborative

NMDC Data Portal

Product Initiatives

Submission Portal

Lower barriers to collect study and biosample data

NMDC EDGE

Streamline multi-omics data processing

Data Portal & API

Access and discovery of microbiome information

Engagement

User Facilities

Individuals

The NMDC Champions Program

The NMDC Ambassador Program

Strategic Partners

Product Initiatives

Submission Portal

Lower barriers to collect study and biosample data

NMDC EDGE

Streamline multi-omics data processing

Data Portal & API

Access and discovery of microbiome information

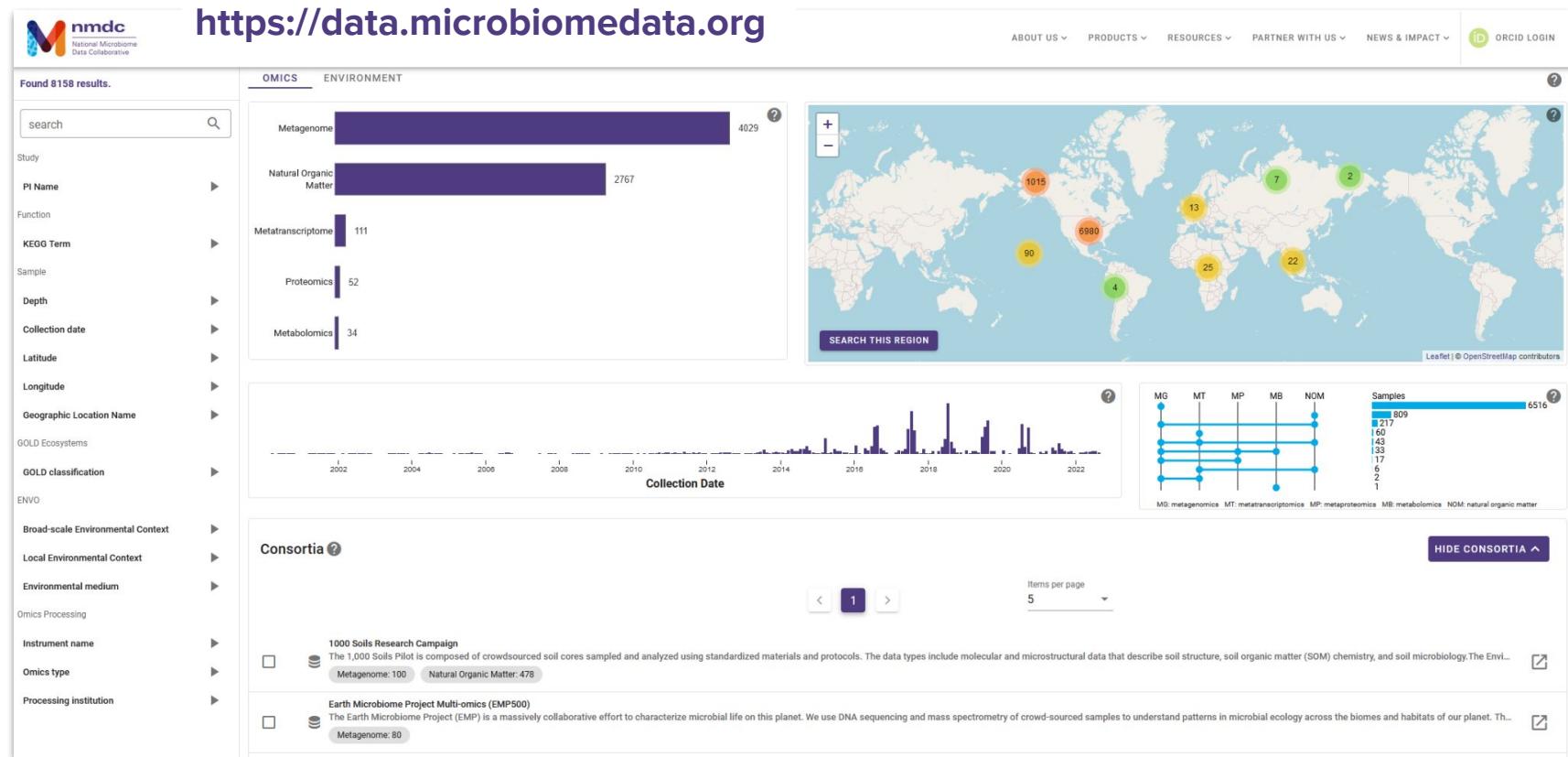
Engagement

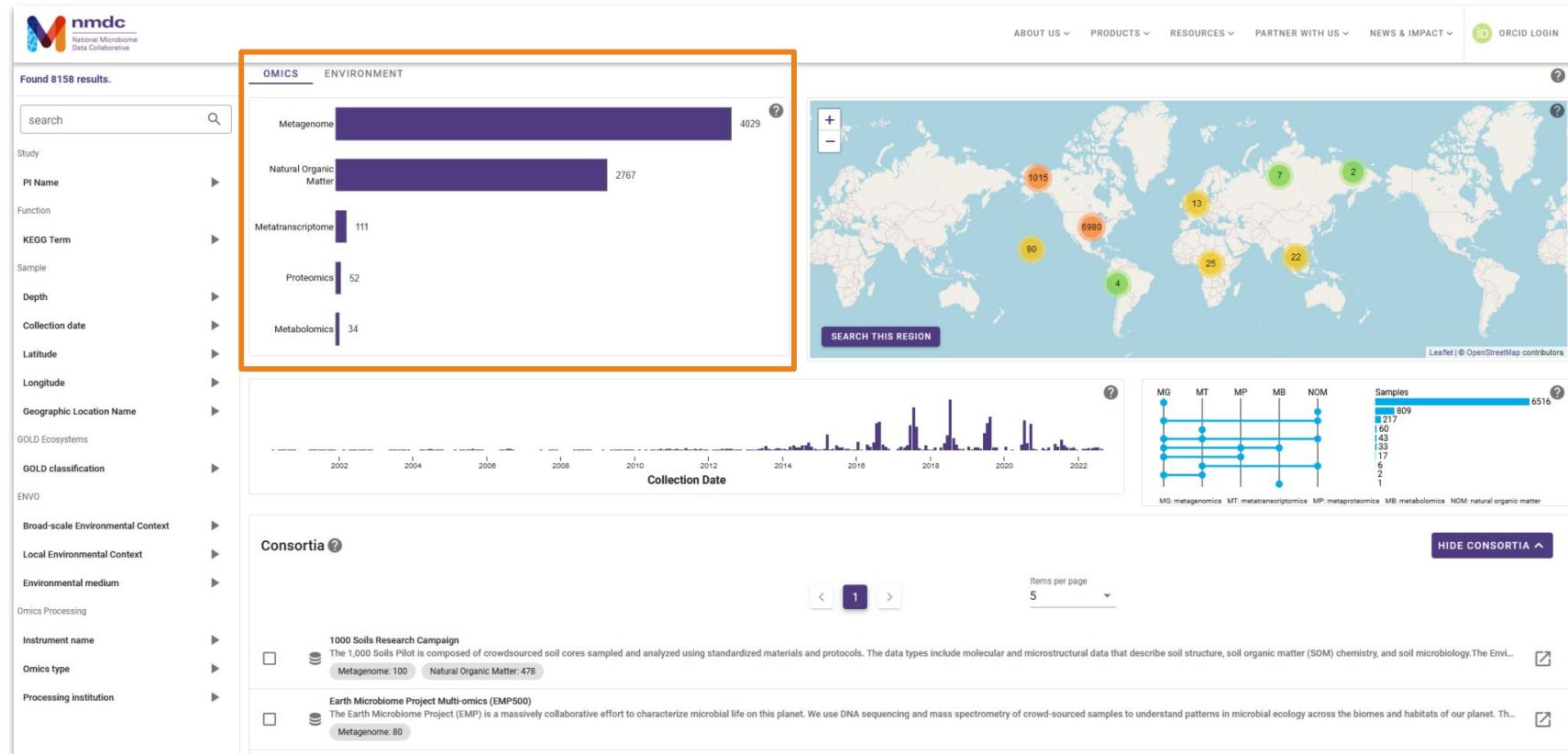
User Facilities

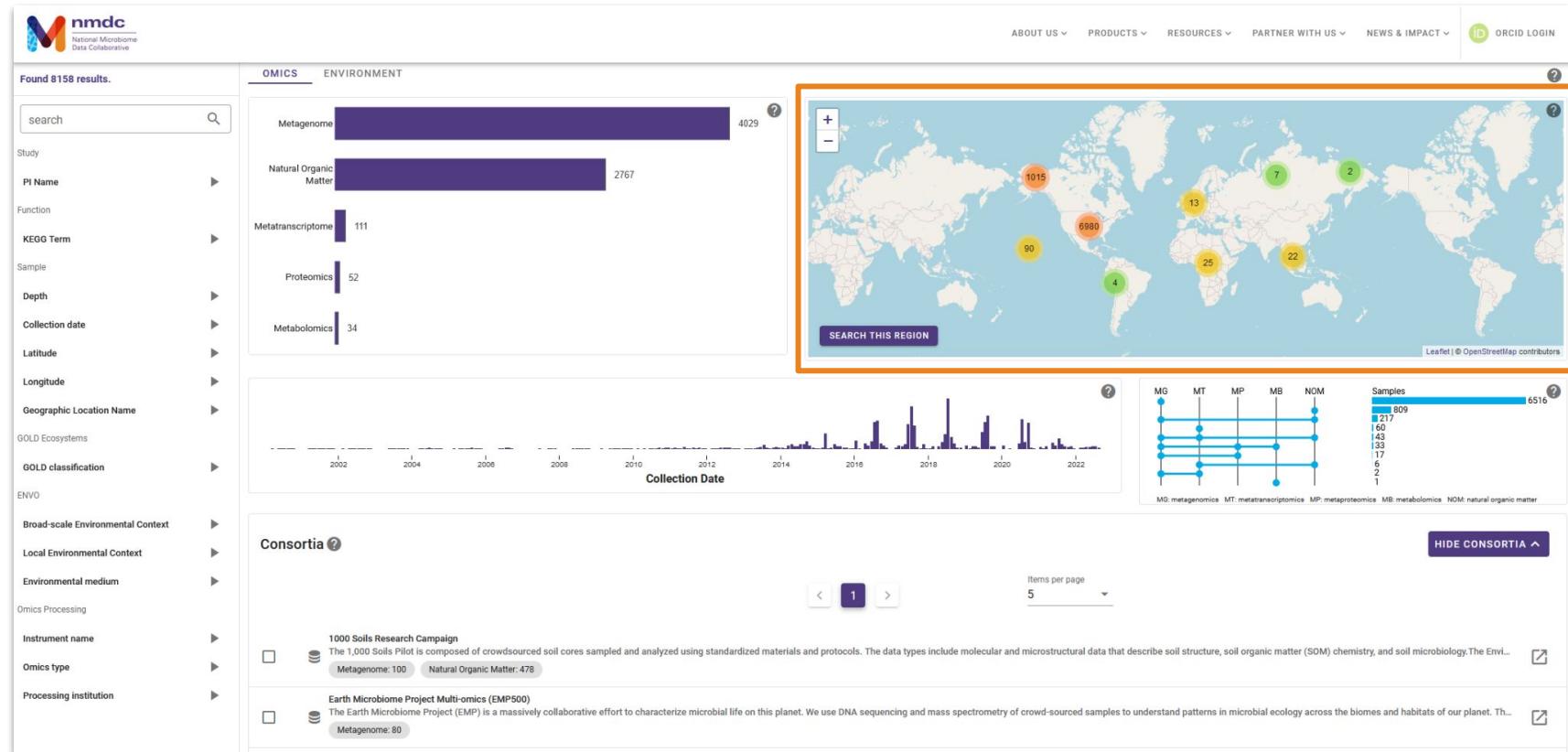
Individuals

The NMDC Champions Program

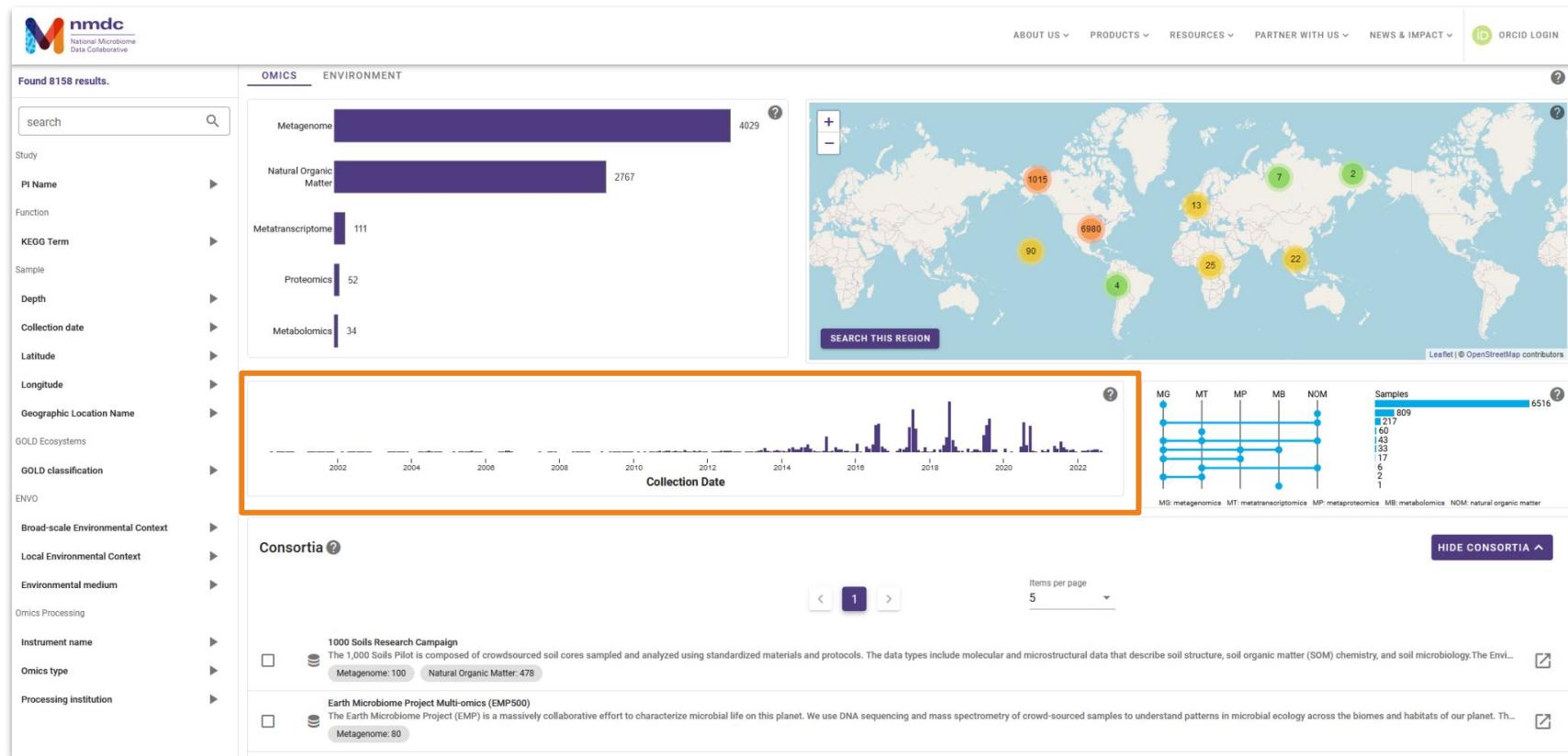
The NMDC Ambassador Program

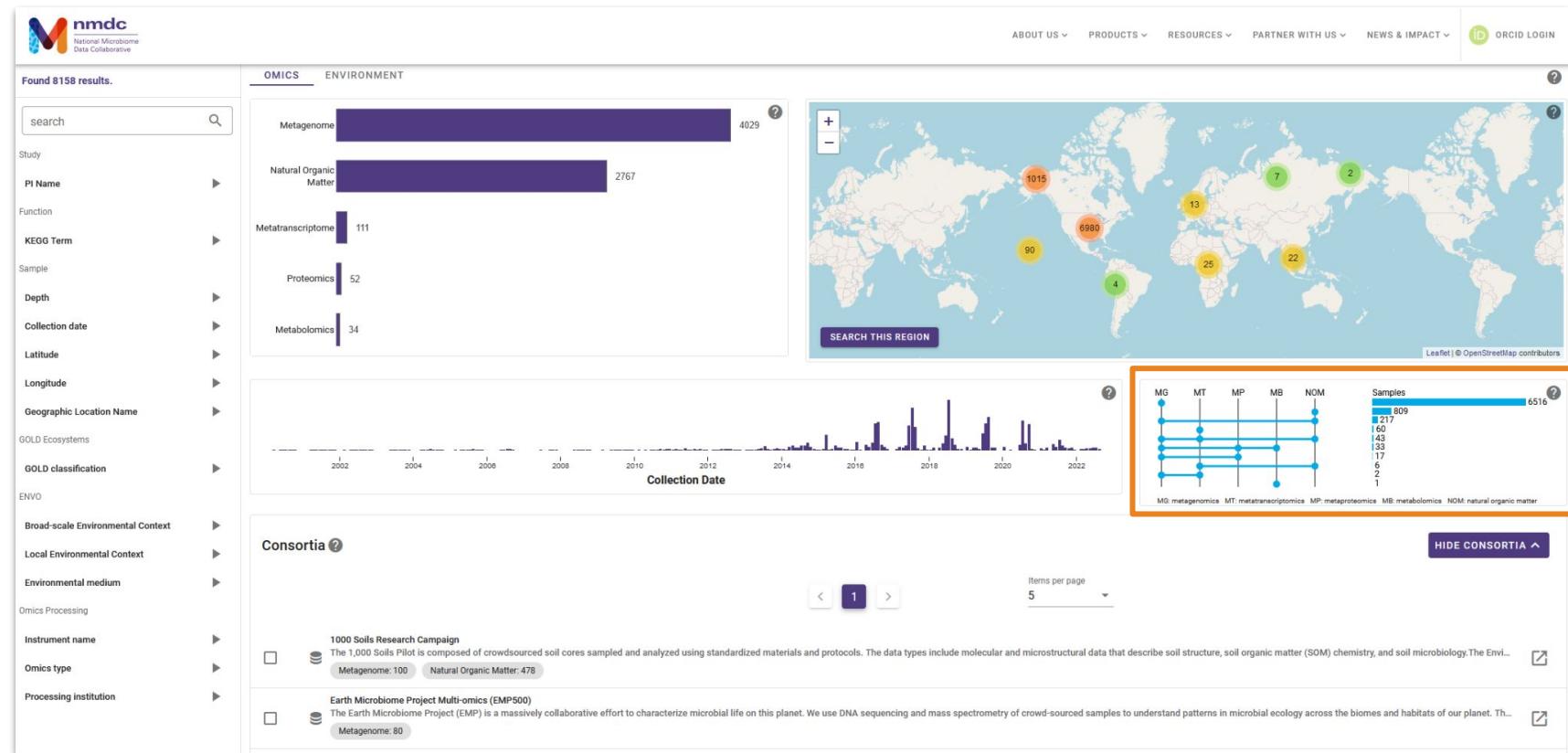

Strategic Partners


NMDC Data Portal


<https://data.microbiomedata.org>

‘Omics Type


Geographic Location


Collection Date

National Microbiome Data Collaborative

Combination of ‘omics types

Consortia and Studies

Found 8158 results.

Study

PI Name

Function

KEGG Term

Sample

Depth

Collection date

Latitude

Longitude

Geographic Location Name

GOLD Ecosystems

GOLD classification

ENVO

Broad-scale Environmental Context

Local Environmental Context

Environmental medium

Omics Processing

Instrument name

Omics type

Processing institution

search

Consortia

1000 Soils Research Campaign
The 1,000 Soils Pilot is composed of crowdsourced soil cores sampled and analyzed using standardized materials and protocols. The data types include molecular and microstructural data that describe soil structure, soil organic matter (SOM) chemistry, and soil microbiology. The Environmental M...
Metagenome: 100 Natural Organic Matter: 478

Earth Microbiome Project Multi-omics (EMP 500)
The Earth Microbiome Project (EMP) is a massively collaborative effort to characterize microbial life on this planet. We use DNA sequencing and mass spectrometry of crowd-sourced samples to understand patterns in microbial ecology across the biomes and habitats of our planet. The EMP is a c...
Metagenome: 80

National Ecological Observatory Network (NEON)
The National Science Foundation's National Ecological Observatory Network (NEON) is a continental-scale observation facility operated by Battelle and designed to collect long-term open access ecological data to better understand how U.S. ecosystems are changing. NEON monitors ecosystems ...
Metagenome: 80

WHONDRS
The Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDRS) is a research consortium that aims to understand coupled hydrologic, biogeochemical, and microbial function within river corridors, with an emphasis on increasing accessibility of resources and k...
Metagenome: 80

Studies

Bio-Scales: Defining plant gene function and its connection to ecosystem nitrogen and carbon cycle
The goal of this Bio-Scales Pilot Project study is to understand how plant traits modify the microbiome and in particular how the coupled plant-soil-microbial system influences nitrogen transformation patterns and fluxes.
Metagenome: 318

Colonization resistance against Candida
Identify metabolic pathways in the microbiota that are linked to colonization resistance against Candida
Metagenome: 61

Coupling spectral techniques; Molecular characterization of dissolved organic matter across the major soils and ecosystems of the United States using fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectroscopy
This User proposal will facilitate the completion of data analysis central to the broader research effort investigating soil organic matter (SOM) stabilization and vulnerability using a multi-scale approach and spanning a broad range of ecological domains, soil types, and land uses in the United State...
Natural Organic Matter: 207

HIDE CONSPIRAZIA

HIDE STUDIES

ABOUT US PRODUCTS RESOURCES PARTNER WITH US NEWS & IMPACT ORCID LOGIN

Samples

Found 8158 results.

The goal of this work is to develop the knowledge necessary to use understudied anaerobes to enhance lignocellulosic biofuel production. In order to accomplish this we look both to identify lignocellulose active enzyme for use in existing systems as well as develop gut fungi and fungal-methanog...

Metagenome: 43 Metatranscriptome: 52

search

Study
PI Name
Function
KEGG Term
Sample
Depth
Collection date
Latitude
Longitude
Geographic Location Name
GOLD Ecosystems
GOLD classification
ENVO
Broad-scale Environmental Context
Local Environmental Context
Environmental medium
Omics Processing
Instrument name
Omics type
Processing institution

8158 Samples

Bulk Download Select file type No files selected Log in to download

1 2 3 ... 542 543 544 > Items per page 15

Riverbed sediment microbial communities from areas with vegetation nearby in Columbia River, Washington, USA - GW-RW S3_0_10
Study ID: gold:Gs0114663 Sample Identifiers: [img.taxon:3300042762](#) biosample:SAMN06264779 gold:Gb0126429
 METAGENOME PROTEOMICS METABOLOMICS

Riverbed sediment microbial communities from areas with vegetation nearby in Columbia River, Washington, USA - GW-RW S1_0_10
Study ID: gold:Gs0114663 Sample Identifiers: [img.taxon:3300042771](#) biosample:SAMN06267123 gold:Gb0126438
 METAGENOME PROTEOMICS METABOLOMICS

Riverbed sediment microbial communities from areas with no vegetation in Columbia River, Washington, USA - GW-RW N3_40_50
Study ID: gold:Gs0114663 Sample Identifiers: [img.taxon:3300042760](#) biosample:SAMN06264429 gold:Gb0126427
 METAGENOME PROTEOMICS METABOLOMICS

Riverbed sediment microbial communities from areas with vegetation nearby in Columbia River, Washington, USA - GW-RW S3_10_20
Study ID: gold:Gs0114663 Sample Identifiers: [img.taxon:3300042763](#) biosample:SAMN06267115 gold:Gb0126430
 METAGENOME PROTEOMICS METABOLOMICS

Riverbed sediment microbial communities from areas with no vegetation in Columbia River, Washington, USA - GW-RW N1_10_20
Study ID: gold:Gs0114663 Sample Identifiers: [img.taxon:3300042769](#) biosample:SAMN06267121 gold:Gb0126436
 METAGENOME PROTEOMICS METABOLOMICS

Riverbed sediment microbial communities from areas with no vegetation in Columbia River, Washington, USA - GW-RW N2_30_40
Study ID: gold:Gs0114663 Sample Identifiers: [img.taxon:3300042770](#) biosample:SAMN06267122 gold:Gb0126437
 METAGENOME PROTEOMICS METABOLOMICS

Riverbed sediment microbial communities from areas with vegetation nearby in Columbia River, Washington, USA - GW-RW S2_20_30
Study ID: gold:Gs0114663 Sample Identifiers: [img.taxon:3300042757](#) biosample:SAMN06266292 gold:Gb0126424
 METAGENOME PROTEOMICS METABOLOMICS

KEGG Term Search

National Microbiome Data Collaborative

Other searchable metadata fields

Found 8158 results.

OMICS ENVIRONMENT

Study PI Name Function KEGG Term Sample Depth Collection date Latitude Longitude Geographic Location Name GOLD Ecosystems GOLD classification ENVO Broad-scale Environmental Context Local Environmental Context Environmental medium Omics Processing Instrument name Omics type Processing institution

Metagenome 4029
Natural Organic Matter 2767
Metatranscriptome 111
Proteomics 52
Metabolomics 34

SEARCH THIS REGION

Collection Date

SEARCH THIS REGION

Leaflet © OpenStreetMap contributors

MG MT MP MB NOM Samples

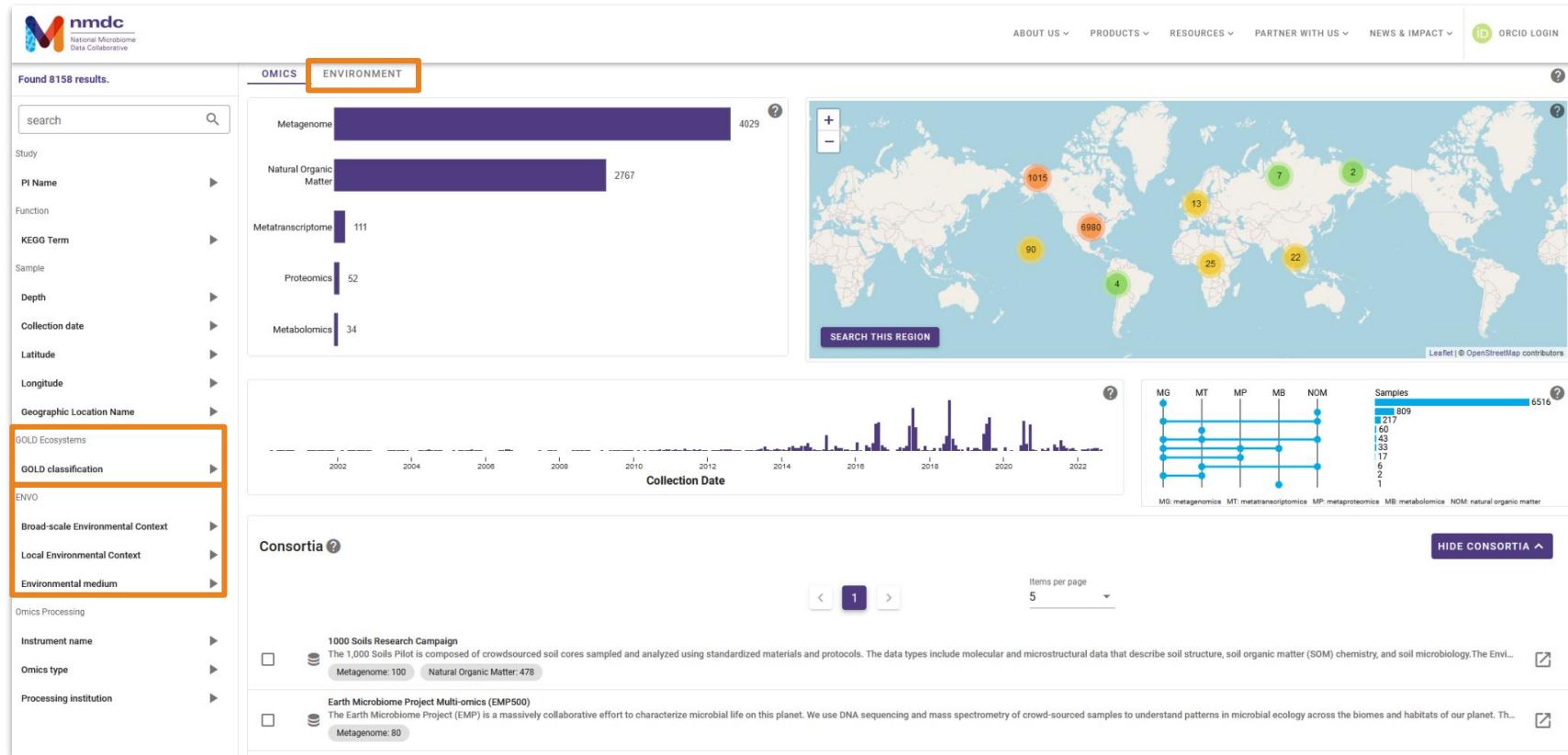
809 217 143 133 17 6 2 1

MG: metagenomics, MT: metatranscriptomics, MP: metaproteomics, MB: metabolomics, NOM: natural organic matter

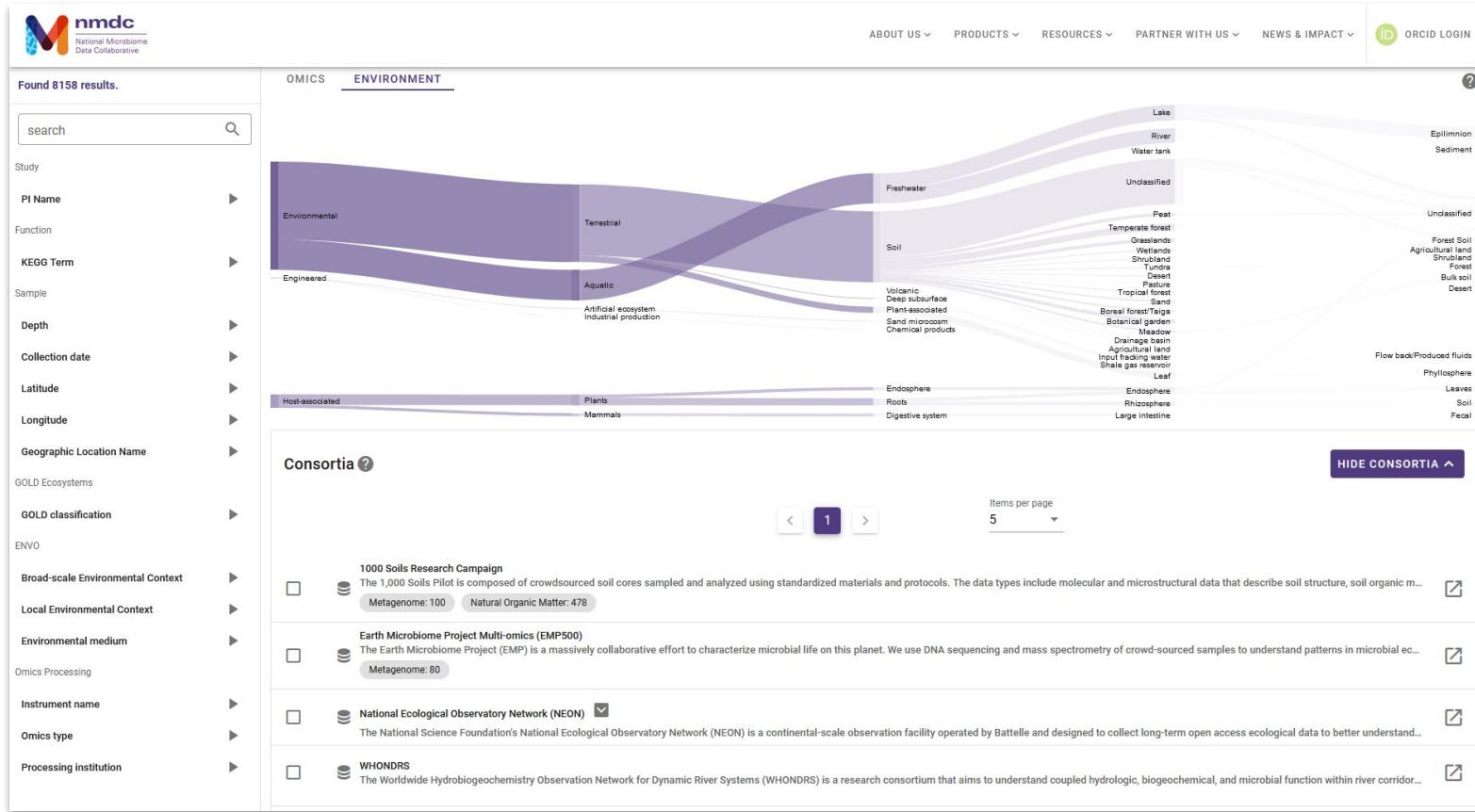
Consortia

1000 Soils Research Campaign

The 1,000 Soils Pilot is composed of crowdsourced soil cores sampled and analyzed using standardized materials and protocols. The data types include molecular and microstructural data that describe soil structure, soil organic matter (SOM) chemistry, and soil microbiology. The Enviro...
Metagenome: 100 Natural Organic Matter: 478


Earth Microbiome Project Multi-omics (EMP500)

The Earth Microbiome Project (EMP) is a massively collaborative effort to characterize microbial life on this planet. We use DNA sequencing and mass spectrometry of crowd-sourced samples to understand patterns in microbial ecology across the biomes and habitats of our planet. Th...
Metagenome: 80


HIDE CONSORTIA ^

Items per page 5

Environmental Metadata

Environment tab

Study Pages

Studies ?

HIDE STUDIES ▾

Items ...

1 2 3 4 5

Bio-Scales: Defining plant gene function and its connection to ecosystem nitrogen and carbon cycle

The goal of this Bio-Scales Pilot Project study is to understand how plant traits modify the microbiome and in particular how the cou...

Metagenome: 318

Colonization resistance against Candida

Identify metabolic pathways in the microbiota that are linked to colonization resistance against Candida

Metagenome: 61

Coupling spectral techniques; Molecular characterization of dissolved organic matter across the major soils and ecosystems of the

This User proposal will facilitate the completion of data analysis central to the broader research effort investigating soil organic ma

Natural Organic Matter: 207

 Bio-Scales: Defining plant gene function and its connection to ecosystem nitrogen and carbon cycle

Description The goal of this Bio-Scales Pilot Project study is to understand how plant traits modify the microbiome and in particular how the coupled plant-soil-microbial system influences nitrogen transformation patterns and fluxes.

Metagenome: 318

Mitchel J. Doktycz

Principal investigator

ID [0000-0003-4856-8343](#)

Team

Mitchel J. Doktycz, Joseph C. Ellis, Daniel Jacobson, Stanton Martin, Melanie Mayes, Julie Mitchell, Wellington Muchero, Christopher Schadt, David Weston

Funding Sources

U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (BER) under contract DE-AC05-00OR22725; Project Number (FWP): ERKPA12

Award DOIs

Doktycz, M. (2020) BioScales - Defining plant gene function and its connection to ecosystem nitrogen and carbon cycling [Data set]. DOE Joint Genome Institute. <https://doi.org/10.46936/10.25585/60000017>

Provider: JGI

Data DOIs

Doktycz, M. J. (2022). MassIVE MSV000090886 - Metabolomics study of root, rhizosphere and leaf samples from a Populus Trichocarpa common garden [Data set]. MassIVE. <https://doi.org/10.25345/C58K7520G>

Provider: MASSIVE

Data Download

Need to log in with ORCiD to download data

Can directly download all files from the processed multi-omics data

Riverbed sediment microbial communities from areas with vegetation nearby in Columbia River, Washington, USA - GW-RW S1_20_30				
Study ID: gold:Gs0114663 Sample Identifiers: img:taxon:3300042765 biosample:SAMN06267117 gold:Gb0126432				
DATA OBJECT TYPE	DATA OBJECT DESCRIPTION	FILE SIZE	DOWNLOADS	DOWNLOAD
Workflow Activity: Read QC Activity for nmdc:mga0jx8k09				
Filtered Sequencing Reads	Reads QC result fastq (clean data)	1.9 GiB	14	Download
QC Statistics	Reads QC summary statistics	284 B	28	Download
Workflow Activity: Assembly Activity for nmdc:mga0jx8k09				
Assembly Coverage BAM	Sorted bam file of reads mapping back to the final assembly	2.1 GiB	1	Download
Assembly Contigs	Final assembly contigs fasta	122.8 MiB	1	Download
Assembly AGP	An AGP format file that describes the assembly	16.8 MiB	4	Download
Assembly Scaffolds	Final assembly scaffolds fasta	122.1 MiB	1	Download
Workflow Activity: Annotation Activity for nmdc:mga0jx8k09				
Annotation KEGG Orthology	Tab delimited file for KO annotation	8.6 MiB	0	Download
Functional Annotation GFF	GFF3 format file with functional annotations	78.1 MiB	0	Download
Annotation Amino Acid FASTA	FASTA amino acid file for annotated proteins	69.6 MiB	0	Download
Annotation Enzyme Commission	Tab delimited file for EC annotation	5.6 MiB	0	Download
ROWS PER PAGE:		10	1-10 of 21	< >

Instructional Content

Data Portal User Guide:

https://nmdc-documentation.readthedocs.io/en/latest/howto_guides/portal_guide.html

Data Portal Tutorial Video:

https://nmdc-documentation.readthedocs.io/en/latest/tutorials/nav_data_portal.html

Data Portal Documentation:

https://nmdc-documentation.readthedocs.io/en/latest/reference/data_portal.html

More information found by clicking the “?”s

The NMDC API

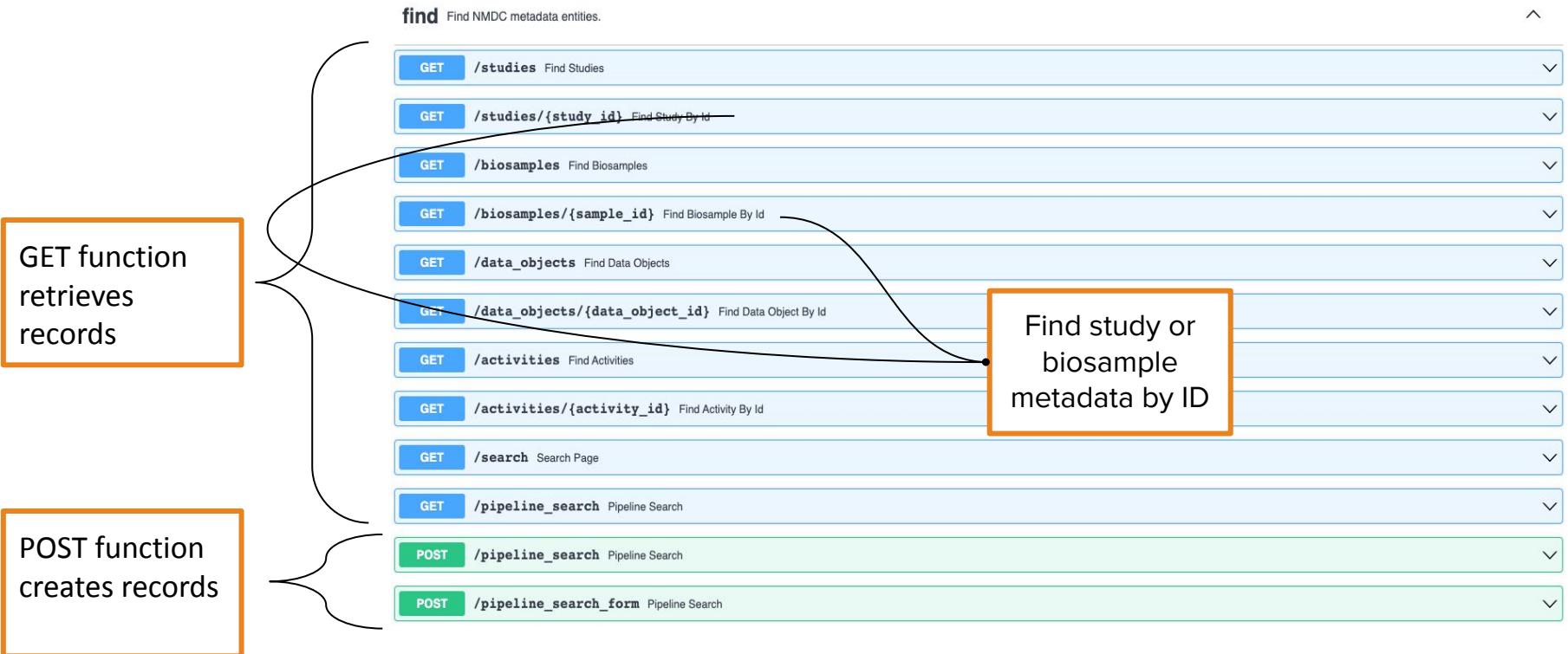
- Auto-generated documentation at and UI at <https://api.microbiomedata.org/docs#>
- User friendly detailed documentation

A site corresponds to a physical place that may participate in job execution.

sites

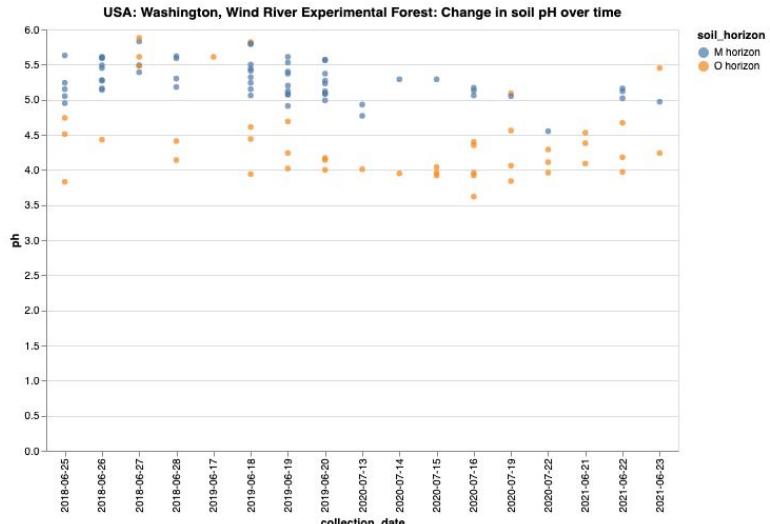
A site may register data objects and capabilities with NMDC. It may claim jobs to execute, and it may update job operations with execution info.

A site must be able to service requests for any data objects it has registered.


A site may expose a "put object" custom method for authorized users. This method facilitates an operation to upload an object to the site and have the site register that object with the runtime system.

Method	Endpoint	Description	Actions
GET	/sites	List Sites	▼
POST	/sites	Create Site	▼
GET	/sites/{site_id}	Get Site	▼
GET	/sites/{site_id}/capabilities	List Site Capabilities	▼
PUT	/sites/{site_id}/capabilities	Replace Site Capabilities	▼

Endpoints are color coded based on function.


The NMDC API

Available Jupyter notebooks

The NMDC has several publicly available Jupyter notebooks that researchers can explore, use, and modify

https://github.com/microbiomedata/notebook_hackathons/tree/main

nmdc

National Microbiome
Data Collaborative

Questions?

nmdc

National Microbiome
Data Collaborative

Data Portal Walkthrough

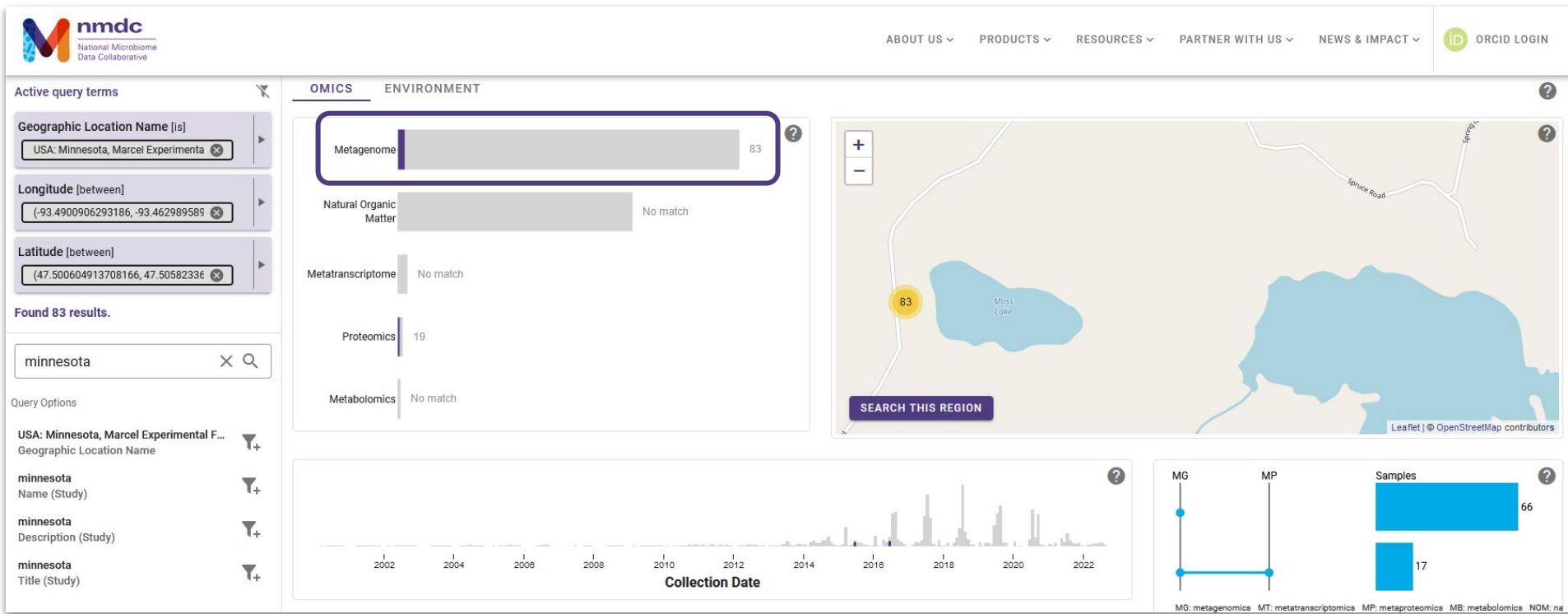
Adding Data

- Do you have data you'd like to add to the data portal?
- We are accepting environmental microbiome omics data with sufficient metadata
- NMDC team can process for you and upload to the Portal
- Why add your data?
 - Increased citations, increased visibility, inclusion in meta-analyses, comparisons with other datasets in the portal, ethical benefits

nmdc

National Microbiome
Data Collaborative

Scavenger Hunt


Scavenger Hunt

How many metagenome samples were collected next to Moss Lake, Minnesota?

Scavenger Hunt

How many metagenome samples were collected next to Moss Lake, Minnesota?

How many metagenome samples were collected next to Moss Lake, Minnesota?

- Find where to download the metagenome Reads QC statistics file from the first resulting sample
- Find the link to the data in IMG

Scavenger Hunt

How many metagenome samples were collected next to Moss Lake, Minnesota?

- Find where to download the metagenome Reads QC statistics file from the first resulting sample

Peatland microbial communities from SPRUCE experiment site at the Marcell Experimental Forest, Minnesota, USA - June2016WEW_6_40				
Study ID: gold:Gs0110138 Sample Identifiers: img:taxon:3300054088 biosample:SAMN08779013				
METAGENOME	PROTEOMICS			
Workflow Activity: Read QC Activity for nmdc:mga0rt44				
QC Statistics	Reads QC summary statistics	293 B	18	Download
Filtered Sequencing Reads	Reads QC result fastq (clean data)	6.5 GiB	7	Download
Workflow Activity: Assembly Activity for nmdc:mga0rt44				
Assembly Coverage BAM	Sorted bam file of reads mapping back to the final assembly	7.7 GiB	1	Download
Assembly AGP	An AGP format file describes the assembly	45.5 MiB	1	Download

Scavenger Hunt

How many metagenome samples were collected from peatland soil in 2016?

- Find the link to the data in IMG

Peatland microbial communities from SPRUCE experiment site at the Marcell Experimental Forest, Minnesota, USA - June2016WEW_6_40
Study ID: gold:Gs0110138 Sample Identifiers: [img:taxon:3300054088](#) [biosample:SAMN08779013](#)

METAGENOME PROTEOMICS

Data Object Type	Data Object Description	File Size	Downloads
Workflow Activity: Read QC Activity for nmdc:mga0rt44			
QC Statistics	Reads QC summary statistics	293 B	18
Filtered Sequencing Reads	Reads QC result fastq (clean data)	6.5 GiB	7
Workflow Activity: Assembly Activity for nmdc:mga0rt44			
Assembly Coverage BAM	Sorted bam file of reads mapping back to the final assembly	7.7 GiB	1
Assembly AGP	An AGP format file describes the assembly	45.5 MiB	1

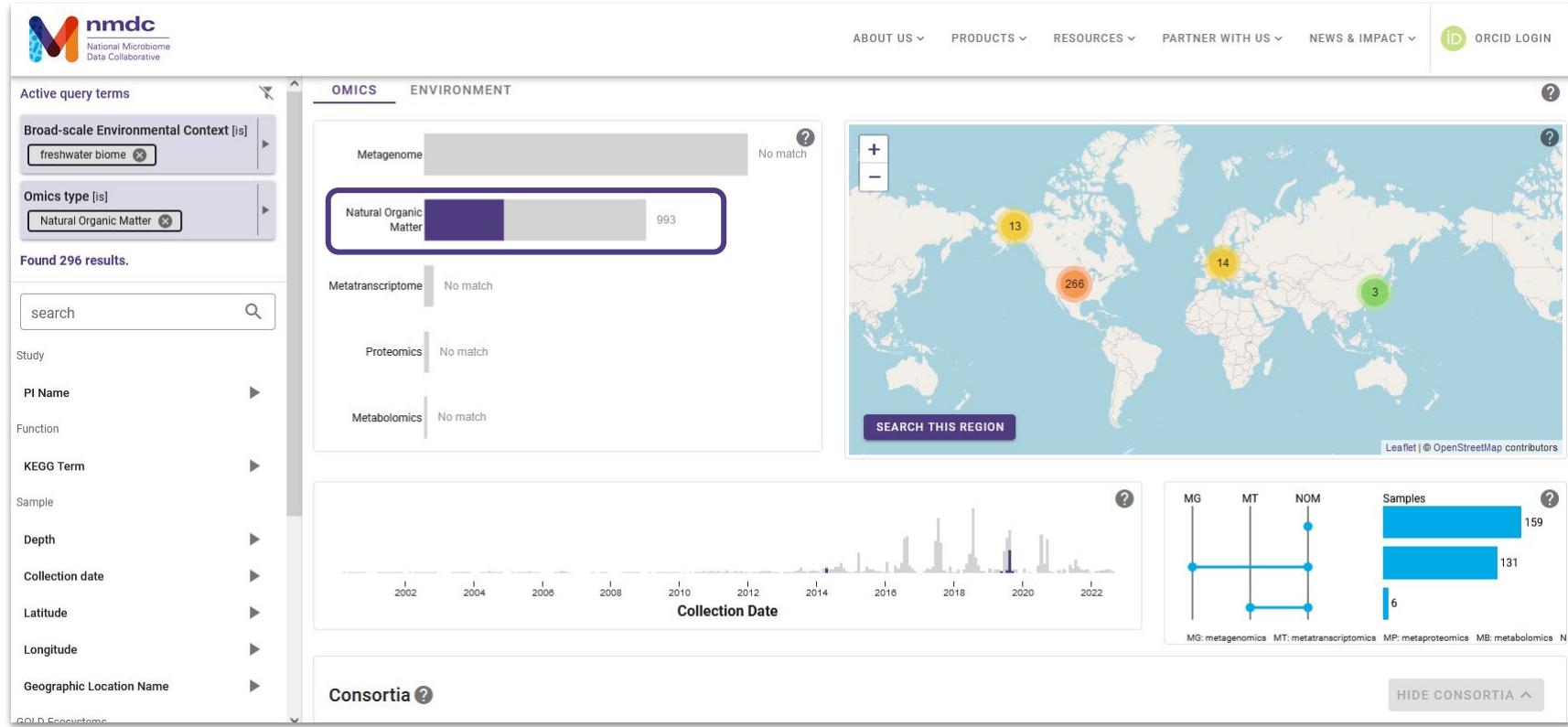
Microbiome Details (Assembled Data)

Add to Genome Cart [Browse Genome](#) [ATC ATC BLAST Genome](#) [Download Data](#)

April 9, 2021: Statement on the Use of Genomics Data Read more at [IMG Help](#)

Overview Statistics Explore

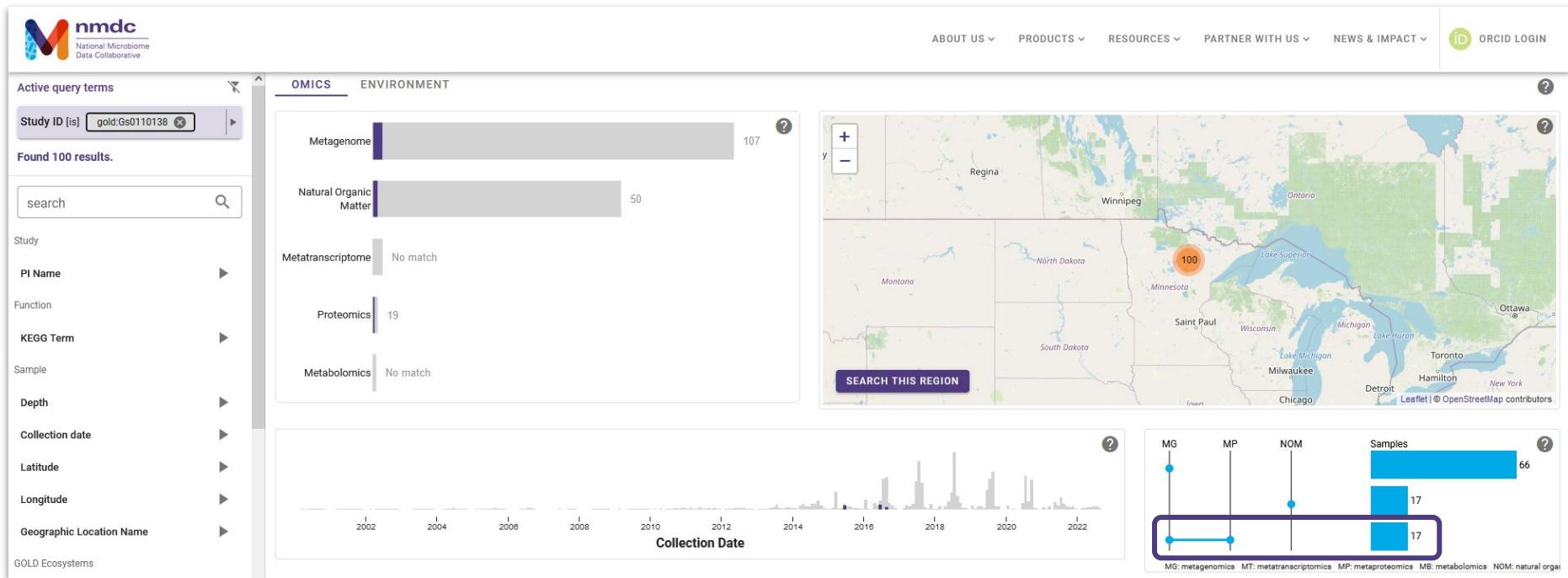
Study Name (Proposal Name)	Peatland microbial communities from Minnesota, USA, analyzing carbon cycling and trace gas fluxes
Sample Name	Peatland microbial communities from SPRUCE experiment site at the Marcell Experimental Forest, Minnesota, USA - June2016WEW_6_40 re-annotation
Taxon Object ID	3300054088
IMG Submission ID	273211
GOLD IDs in IMG Database	Study ID: Gs0110138 Project ID: Gp021336 Analysis ID: Ga0562273
GOLD Analysis Project Type	Metagenome Analysis
Submission Type	Reanalysis
JGI Analysis Project Type	Metagenome Analysis
SRA Run	n/a
JGI Data Utilization Status	n/a
Is Public	Yes
Dataset Source	NMDC (nmdc:mga0rt44)
NMDC ID	nmdc:mga0rt44
NMDC Analysis	Centrifuge Plot Gottcha2 Plot Kraken2 Plot
Sequencing Status	Permanent Draft
Sequencing Center	DOE Joint Genome Institute (JGI)
IMG Release/Pipeline Version	NMDC version of IMG Annotation Pipeline v.5.0.25
Comment	
Release Date	2022-07-12


Scavenger Hunt

How many Natural Organic Matter samples are from Freshwater biomes?

Scavenger Hunt

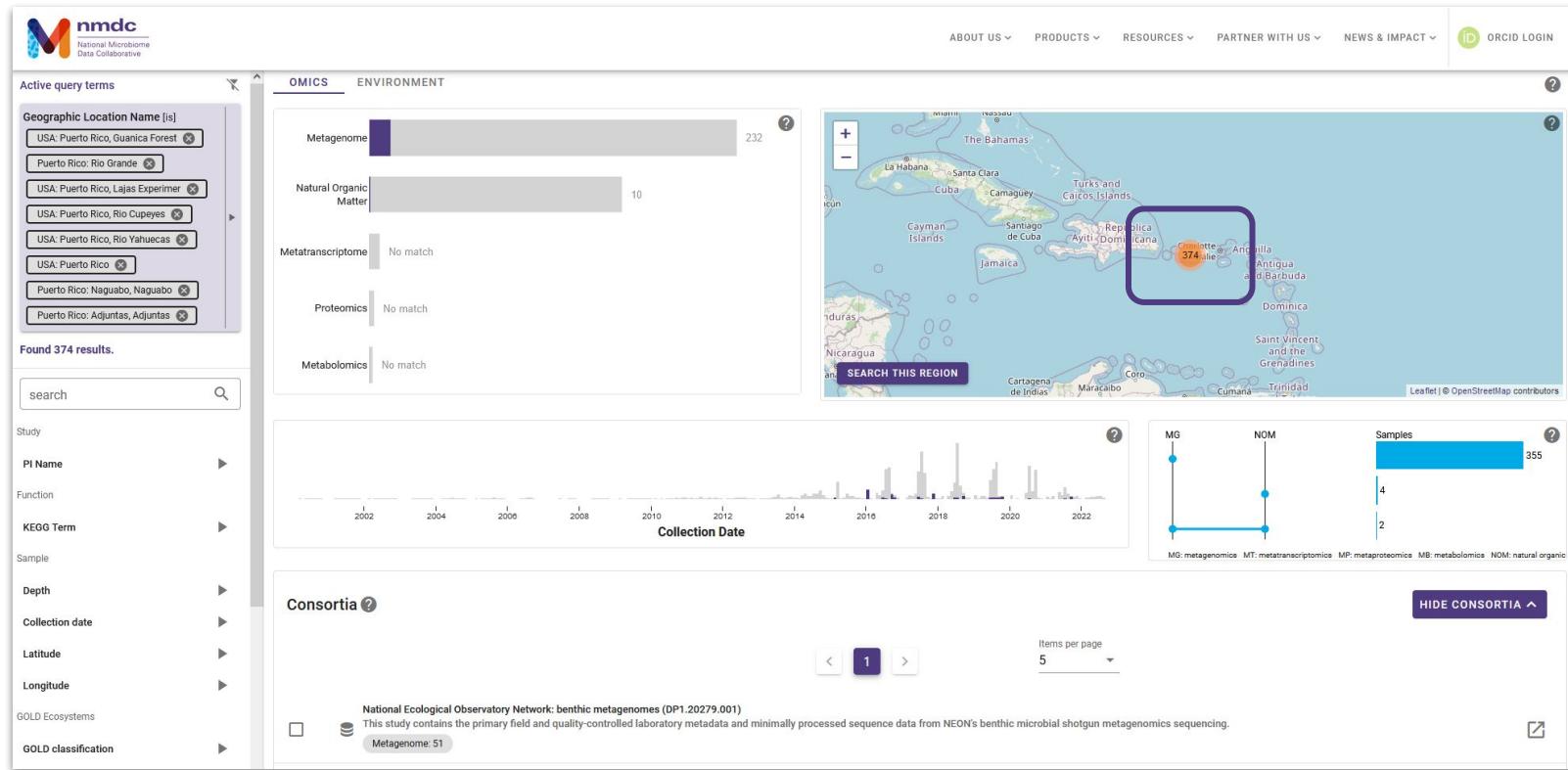
How many Natural Organic Matter samples are from Freshwater Biomes?


Scavenger Hunt

How many SPRUCE biosamples have been characterized by both metagenomics and metaproteomics?

Scavenger Hunt

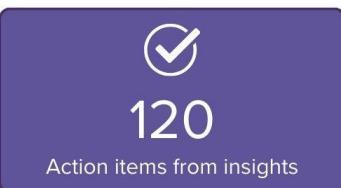
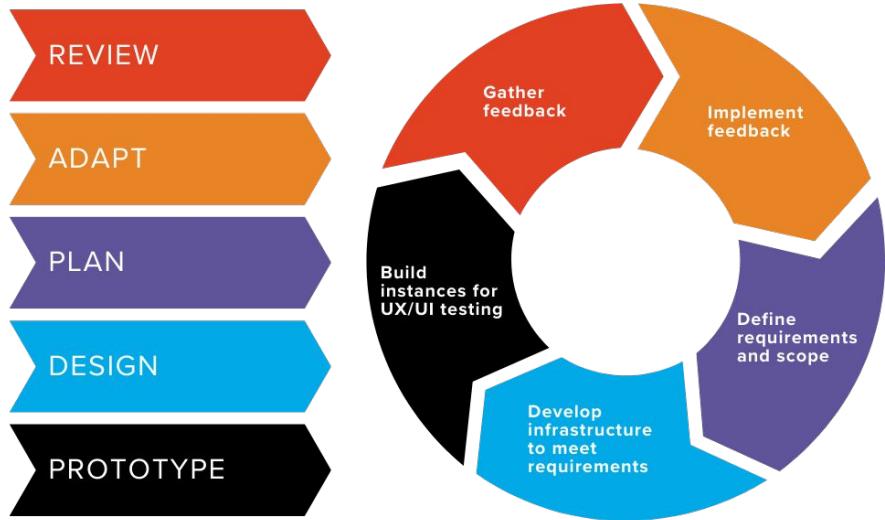
How many SPRUCE biosamples have been characterized by both metagenomics and metaproteomics?


Scavenger Hunt

How many samples are from Puerto Rico?

Scavenger Hunt

How many samples are from Puerto Rico?

Data Portal Feedback

- Were the metadata search fields comprehensive? Are there any other metadata terms you would want to search or sort by?
- Favorite feature(s)? Least favorite?
- Was the Data Portal intuitive to use?
- What did you look for? What were you hoping to find? Could you always find what you were looking for?
- Any sticking points?
- Other datasets or data types you'd like to see?
- Other questions?

Community-centered design process

Data Portal Feedback

- Bulk data download updates
- Visualization updates - map, upset plot
- Implementing taxonomy-based search
- Improved search and filtering

nmdc

National Microbiome
Data Collaborative

Questions?

NMDC Resources

Website: <https://microbiomedata.org/>

Data Portal: <https://data.microbiomedata.org/>

Submission Portal: <https://data.microbiomedata.org/submission/home>

NMDC EDGE: <https://nmdc-edge.org/home>

Github: <https://github.com/microbiomedata>

Docker Hub: <https://hub.docker.com/u/microbiomedata>

Documentation:

https://nmdc-documentation.readthedocs.io/en/latest/overview/nmdc_overview.html

YouTube: https://www.youtube.com/channel/UCyBqKc46NQZ_YgZIKGYeglw/featured

Get involved!

Sign up for our newsletter

microbiomedata.org

Find us on X/Twitter

@microbiomedata

Find us on Instagram

@microbiomedata

Become a NMDC Champion

bit.ly/champions-program

Find us on LinkedIn

https://bit.ly/NMDC_LinkedIn

**nature
microbiology**

frontiers

**Nucleic Acids
Research**

**nature
REVIEWS
MICROBIOLOGY**

mSystems

Read more about the NMDC

Kelliher JM et al. Cohort-based learning for microbiome research community standards. *Nat Microbiol* (2023). doi.org/10.1038/s41564-023-01361-7.

Hu B, Canon S, Eloe-Fadrosh EA, et al.. Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale. *Front Bioinform*. 1:826370. (2022) doi: 10.3389/fbinf.2021.826370.

Eloe-Fadrosh EA et al. The National Microbiome Data Collaborative Data Portal: an integrated multi-omics microbiome data resource. *Nucleic Acids Res*. 7;60(D1):D828–D836. (2022) doi: 10.1093/nar/gkab990.

Wood-Charlson, E.M., Anubhav, Auberry, D. et al. The National Microbiome Data Collaborative: enabling microbiome science. *Nat Rev Microbiol* **18**, 313–314 (2020). doi.org/10.1038/s41579-020-0377-0

Vangay, P et al. Microbiome metadata standards: Report of the National Microbiome Data Collaborative's workshop and follow-on activities. *mSystems* **6**, e01194-20 (2021). doi.org/10.1128/mSystems.01194-20