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Summary

We address the problem of PAC learning functions f : [0,1]¢ — [-K, K] based on an iid sample generated
according to an unknown distribution, by using feedforward sigmoidal networks. We use two basic properties
of the neural networks with bounded weights, namely: (a) they form a Euclidean class, and (b) for hidden
units of the form tanh(7yz) they are Lipschitz functions. Either property yields sample sizes for PAC function
learning under any Lipschitz cost function. The sample size based on the first property is tighter compared to
the known bounds based on VC-dimension. The second estimate yields a sample size that can be conveniently
adjusted by a single parameter, 7, related to the hidden nodes.

1 Introduction

The problem of learning functions in the Probably and Approximately Correct (PAC) learning framework of
Valiant [23] continues to generate significant interest and activity [1, 5, 6, 10, 3]. Initial efforts were focussed
on indicator functions and functions on simpler domains [14] with increasing attention being paid to general
real functions [4, 21]. Recent results establish that a function that achieves small empirical error on an
independently and identically distributed (iid) sample yields a PAC approximation, under the finiteness of
a combinatorial parameter such as the fat-shattering index [5, 2].

In this paper, we employ feedforward neural networks to solve the function estimation problem based
on random samples. Artificial neural networks have been extensively applied to a variety of applications
involving function estimation [19, 8, 20] based on VC-dimension and related parameters. The performance
of neural networks based on other parameters is less clear, and a better understanding of their learning
capabilities is needed for improving their efficiency in applications. The PAC paradigm of Valiant [23] and
the empirical risk minimization method of Vapnik [25] enable us to characterize and quantify the performance
of neural networks as function estimators in terms of more general and/or alternative parameters.

We are given iid points X, Xa,..., X, from [0,1]¢ according to an unknown distribution Px and the
corresponding values of an unknown function f : [0,1]¢ — [~K, K] chosen from a family . Throughout
the paper, X and z denote the random and deterministic variables respectively, and it is assumed that all
functions satisfy the required measurability conditions. We consider the problem of estimating an approx-
imation to f from the class of feedforward neural networks with a single hidden layer of ! sigmoid units.
We assume that each connection weight is chosen from [—A4, A], for finite A > 0. Such assumption is gen-
erally made in nonparametric estimation using feedforward neural networks [26, 27] and is reasonable since
in practical applications the weights are bounded. These neural networks constitute a family of functions
Fu={fu:we[~A, A4}, where f, corresponds to a neural network with a parameter vector w.

Consider a bounded cost function © : F4 — G where G = {g : [0,1]¢ = R}, i. e. for any f, € Fa,
the function O(fy) : [0,1]¢ — R specifies the cost of approximating the unknown f(z) by the estimated
fuw(z) for any z € [0,1]%. For convenience, O(fu)(z) for = € [0,1]¢ will be denoted by O(z, fu(z)) with
an abuse of notation. Note that the well-known square error formulation corresponds to the special case
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O(z, fu(z)) = (f(z) — fuw(z))?. Consider the ezpected cost of approximating f by f,, given by

I(fu) = / O(X, fu(X))dPx.
o1

Let f, € F4 minimize I(.), where f} is called the best ezpected neural networkin 4. Consider the empirical
cost given by

i(fa) = %Z@(Xi,fw(Xi)) .

which is minimized, say, at fw € Fa; fw is called the best empirical neural network in 4. We investigate
the conditions under which, given a sufficiently large sample of size n, we can guarantee that

PRI(fo) = I(f2) > € < 6

for given € > 0 and 0 < § < 1, where P} is the product measure on the set of all n-samples. To this end, we
identify and utilize two basic properties, namely:

(a) Vector Space Property: F4 can be embedded in a vector space, which implies that it forms an
Euclidean class [15]. For these results we only need the boundedness of weights in the output layer
as is commonly assumed for consistency results (Lugosi and Zeger [12]). To simplify the presentation
though, we shall assume that all weights are bounded.

(b) Smoothness Property: One of the most applied feedforward networks consists of a single hidden
layer of I nodes, each of the form o(z) = tanh(yz), 0 < v < 00, z € R. For these networks we exploit
the (Lipschitz) smoothness properties to obtain sample size estimates. In this case, the sample size
can be adjusted by varying v alone, while all other parameters are fixed.

We estimate the required sample size directly in terms of the parameters of the neural network, namely: (i)
number of parameters, {(d + 2), (ii) the bound on weights, A, (iii) the slope of the sigmoid, v, and (iv) the
Lipschitz constant, Le, of ©(.).

The following aspects distinguish our work from the existing ones:

(a) The general approach of relating algebraic or smoothness properties to the sample sizes for the estima-
tors was proposed in Dudley [7]. Here we illustrate the applicability of these ideas to neural networks
and determine the underlying constants in the sample sizes which were not completely specified in [7].

(b) Sharper bounds are obtained on the sample size by using Euclidean class formulation as opposed to
VC-dimension based estimate [8, 19]. -A similar result was established for the special case F = F4 by
a very different approach by Shawe-Taylor [20]; )

(c) Easier and simpler proofs are provided for finiteness of VC-dimension and Euclidean parameters by
making use of existing results from the empirical processes (Nolan and Pollard [15]). Our sample sizes
are closely related to those by Lugosi and Zeger [12], but our derivation is easier and more direct.
Moreover, it establishes a connection between the underlying computational problem and the lnear
problems studied in the area of information-based complexity (Traub et al. [22]).

(d) The smoothness (Lipschitz) properties of neural networks are utilized to obtain an alternate sample
size estimate. We are unaware of such results in the mainstream PAC literature (e. g. [20]); smoothness
properties, however, have been extensively used in non-parametric estimation to establish asymptotic

results (Prakasa Rao [17]), and more recently in obtaining finite sample results (Rao and Protopopescu
[18]); and

(e) Finite sample results are obtained for a class of Lipschitz cost functions (see Section 4 for a precise
definition), which includes the mean square error.

Preliminaries are presented in Section 2. The basic covering properties of neural networks are presented
in Section 3; two characterizations based on Euclidean class and Lipschitz functions are presented in Sections
3.1 and 3.2, respectively. Sample size estimates for function estimation problem are presented in Section 4.



2 Preliminaries

We consider a feedforward network with a single hidden layer of [ nodes and a single output node. The
output of the jth hidden node is a(b?:c +t;), where z € [0,1]%, b; € R4, t; € R, and the nondecreasing
o : R — [—1,41] is called the activation function. The output of the network corresponding to input z is
given by

I
fu(z)= Z aja(b?m +t;)
j=1
where w = (w1, w2, . .., Wi(4+2)) is the weight vector of the network consisting of ay, as, ..., az, b11, b12, . . ., b14,
biiy...biq, and t1,ta,. .., Let the set of sigmoidal networks with bounded weights be denoted by

Fa={fo:we[-4 A" 0< A< 0} (2.1)

We consider a subclass of 74 where each hidden unit is of the particular form ¢(z) = tanh(yz), for 0 < ¥ < oo,
namely

Fl={fw:we[-4, AJ(4+2), o(z) = tanh(yz)}. (2.2)

Let S be a set equipped with a pseuodometric d. The covering number N (e, d, S) is defined as the smallest
number of closed balls of radius ¢, and centers in S, whose union covers S.
The function class F has an envelope F' if f(z) < F(z) for all f € F. Let p be a probability measure
1/p

on [0,1)¢, X the corresponding random variable, and let p(f?) = ( | IFXP d,u) for finite integer
zefo,1]¢

p > 1 and measurable function f. Now consider a probability measure p such that p(F?) < oo for any finite

integer p > 1. We define the covering number Ny (e, p, F, F') to be the smallest cardinality for a subclass F*

of F such that

i plf = F7F) < €u(F?)

for each f € F.

The class of functions F is Fuclidean for the envelope F if there exist Fuclidean constanis B and V such
that

Nl(eyl‘)]:a F) S BG_V

for 0 < € < 1, whenever 0 < p(F!) < oo [15].
Let Noo(€, F) = N(6,|| - [loos F), where || f(z) |lo= sup |f(z)]. Due to the boundedness of F we have
z€fo,1]¢

Nl(f/I»‘(F),#,-'F,F)S NOO(G):F)

since u(|f — £*17) < (J 1F(X) = X)) <l F = F* lloo -

3 Covering Properties of Neural Networks

We first show that the set of feedforward neural networks constitute a Euclidean class and estimate bounds
for Ny(e, pt, Fa, Fa), where F4(z) = IA for z € [0,1]%. Then we exploit the Lipschitz property of the neural
networks to estimate a bound on Neo (e, 7).

3.1 Euclidean Classes

Finiteness of Euclidean parameters of 4 (and hence the finiteness of VC-dimension of positivity sets of
F4) can be directly concluded from the existing results. For example, the function class {ac(dTz +1) :
a € Rt eR,be R} can be shown to be Euclidean for constant envelope (Lemma 22, Nolan and Pollard

[15)). It follows that the class {Z a;o(bfz + 1) : a; € [-A4, Al t; € ®,b; € R9} is Euclidean for constant

envelope (Lemma 16, Nolan and Pollard [15]). If more general classes of neural networks are considered,



the finiteness of VC-dimension (and hence that of Euclidean parameters [9]) seems difficult to establish
(MaclIntyre and Sontag [13]). In order to estimate reasonable bounds for the sample sizes, however, a more
detailed application of the result of Nolan and Pollard [15] is needed, in addition to the estimation of relevant
parameters for the specific class F4.

For a family {S; }ser, Sr C .5, and for a finite set {sy1,s2,...,5,} C S, we have [24]:

Ogs,3({51,52,.-+,8a}) = {{51,52,.- -, 50} N Sr }rer,
H{s,}(n) = max X |H{S,}({51, $2y.-oySnp)

81,852,048

on fn<k

<152 ifn> k.

The quantity k is called the Vapnik-Chervonenkis (VC) dimension of the family {5, }, denoted by VC({S:}).

The graph of a function f : F + [-K,+K] is defined by Pollard [16] as the subset of E x [—-K, K] given
by

The following identity is established in [24]: {5, }(n) = {

G(f)={(z,t):2 € E,0<t < f(z) or f(z) <t <0}

We now show that F4 forms a Euclidean class by embedding it in a vector space of functions defined on
[0, ]9+

i
Lemma 3.1 Consider the class Fiy = {3} a;0(bTy) : ai,t; € R, b; € R4}, Then VC{G(H)If € Fw}) <
i=1
I(d+2).
Proof: We show that the class Fy can be organized as a vector space of dimension I(d + 2), and then the

result follows from the lemma of Dudley [7] (see also Pollard [16] and Haussler [8]). Indeed, let us define
vector addition & and scalar multiplication ® as follows:

l 4 1
(Sateea) o (Sete(r) = 3tat+ ettt + 0

izl i=1
and . .
c® (Z a,-a'(bg'y)) = Z ca;o(chT y).
i=1 i=1
The additive identity of the vector space is given by a; = 0,%; =0, b;; =0fori=1,2,...,land j = 1,2,...,d.
By noting that @ operates on each of the ! terms of the form ac(bTy) independently, we can construct a

I(d + 2) functions that span {ac(bTy) : a,t € R,b € R4} under the vector space operations & and @.
Consider the functions {o(11y),...,0(1a+1y),o(0)}, where Liy =y;, for i=1,...,d+ 1. Then we have

[co®@a(0)] @i @a(L1y)l ® ... ® [ca+1 @ 6(La41Y)]
=(coter+...+ca+capr)o(cy)

where ¢ = (c1,...,¢a+1)- Then any function ao(bTy) can be generated from the above basis by choosing
c;=b,i=1,...d+landcg=a— (by+...+bgy1). O
The number of subsets, m, of k points (z,y) € [0, 1]¢ x [—k, k] contained in the graphs of Fw is bounded

as follows:

2k if k<i(d+2)

m= W),

< Logggyy Hk>1(d+2)
and thus m is upperbounded by < Cw kHd+2) for some Cyw . We can establish the following result.
Lemma 3.2 For the class of feedforward neural networks F4 of Eq (2.1), we have

N]_(f, H, }-A: FA) < D€—2l(d+2)’

where D = max(C%, ko)(IA)4*+2) and ky is determined by the inequality (1 + 4logk)'(4+2) < kY/2 for all
k> ko.



Figure 1: Ilustration of cover for d = 1.

Proof: From the proof of Lemma 28 of Pollard [16], we have
VCIG(FA)) < VC({z € [0,1): f(z) > 0}rera) + 1,

by utilizing the symmetry property of 4. From Lemma 3.1 and the proof of the Approximation Lemma of
Pollard ([16], Lemma. 25, p. 27) we have

Ny(epFa, pt, Fa, Fy) < Be=21(3+2)+2

where B = max(C%, ko). Since o(.) is upperbounded by 1, we have f,(z) < z |a;| < lA. The result follows

by noting that Fa(z) <A, pFs <I1A and Nyi(elA, p, Fa, Fa) < Nl(euFA,u,J-'A, F4).0
The above lemma is valid under the slightly weaker condition that only a;’s are chosen from [—A, A],
since o(.) < 1 and the boundedness of a;’s is sufficient to show that the envelope exists.

1(2d+3)+1
Lugosi and Zeger [12] provide an alternative bound namely Ni (e, £, F4, Fa) < (ﬂH'TIM) ( using

a series of lemmas. Our result is more direct and also explicitly specifies the vector space structure of the
neural networks, which could be of independent interest.

3.2 Lipschitz functions

We first estimate a bound for the cover size for a general class of Lipschitz functions.

Lemma 3.3 Let F, = {fi : [0,1]¢ > R} denote a set of Lipschitz functions with Lipschitz constant k,
. d
i. e, for every fu € Fr, we have |[fu(2) — fu(@)| <Ek||z—y||, where|lz—y = r?=ai}c|x,- —y;|- Then

Neo(&, Fr) < %2&[(%"‘)“1“]}.

Proof: Let N (¢, F) be the size of the cover for functions defined on the domain [0, 1] such that N& (¢, F) =
Noo (€, F). We first consider the case d = 1, for which we show that

NL (e, F) < %2"/‘.

Decompose the domain [0, 1] x [k, k] into 2k2/e? cells of size ¢/k X € (see Fig. 1). We generate a function
by following a sequence of diagonals of cells that share endpoints from left to right as illustrated in Fig. 1.
Each such sequence defines a function in Fj defined on [0, 1], and any function f € F; will be within € of
one of the functions constructed above in the || . [0 norm. The number of functions of such kind yields an
upper bound for N1, (¢, Fi) as follows. Let M} (e, Fi) denote the functions defined on the domain [0, ie/k]
such that My, (¢, Fx) = N (¢, Fi). Now note that:



(a) Mi(e,Fr) < 4k/e, since there are at most two functions for each cell; and

(b) M} (e, Fr) < 2M;(e, Fi), since any function on [0, ic/k] can be extended into at most two functions

on [0, (i + 1)¢/k], by selecting the diagonals in (ie/k, (i + 1)e/k) that emanate from the right endpoint
of the function.

The second property yields M}, (e, Fi) < 28 M{ (e, fk) < 22k /e
Now consider the case d = 2: the domain [0 1)? is decomposed into (k/e)? equal-sized cells. Consider
a function employed in d = 1 case along one axis, say z, then place a function from d = 1 in each plane
=1iefk, i =1,2,...,k/e. See Fig. 2 for an illustration. Then place at most two planes in each cell by
choosmg three pomts at a time.
In general, let M] (e, F:) denote the functions defined on the domain [0,4¢/k] x [0,1)~! such that

Mx_-/e(6 Fi) = Ni (e, F), for j = 1,2,...,d. Then we have the following inequalities, for j = 2,3,...,d:
(a) M; : (6 Fr) = k / . (e, F1) since all functions are confined to the (j — 1)-hyperplane; and
(b) Miy, ', (6, Fr) < 2Mi (e, F) since any function on [0, 4e/k] x [0,1]0~1) can be extended into at most two
functions on [0, (i + 1)e/k] x [0,1]¢ 1.

Then we have the following inequality
M, (e, Fr) < 28 DM (e, Fe) < 2% ‘1)Md‘1(e Fi)
<2V MI e, F) ... < 25T ML (6, ) < -—2“(( Oy

which proves the theorem. O

Upperbound estimates for log Neo (€, &) in the form Je~%< with unspecified J and « were derived by
Kolmogorov and Tikhomirov [11]. Similar estimates for classes of differentiable functions and sets with
differentiable boundaries were obtained by Dudley ([7], chapter 7). The above estimate yields precise values
of the underlying constants which are required for PAC-style results. In terms of the order, our estimate
is identical with estimate based on a more restrictive property of differentiability; since neural networks
considered here satisfy infinite differentiability, it is an open problem if indeed this property can be exploited
to obtain a cover with lower order.

Lemma 3.4 For the class of feedforward neural networks F of Eq (2.2), we have
2, A21 a-1
Noo(&, FJ) < L= e () :

Proof: Let us expand fy,(z) as Z ajo( 2 bjiz;+t;). The estimate on the Lipschitz constant can be obtained

j=1 i=1
by maximizing the partial derivative 32=%. Since o(z) = tanh(yz), maﬂxﬂaz—l =7, Y= rn Z aio’ (E bjiz: +
t;)bi; < 7A?%l, and the lemma follows. O

4 Function Estimation

We first define the Lipschitz property of ©(.) and consider its impact on the cover size for ©(F,). Consider
F ={f:[0,1] — R}. Given fi, f2 € F, we say that f, < fp if fi(z) < fa(z) for all z € [0, 1}4. And the
function |f; — fo| is defined as |fi(z) — f2(z)| at every = € [0, 1]%. For g1,92 € G the same definitions apply.
The cost function ©(.) defined on F satisfies Lipschitz property if there exists a positive constant Le such

that
|©(f1) — ©(f2)| £ Lelfi — fol

for all fi, fo € F. The main impact of this property is that a cover for F4 can be converted into that for
{0(fw) :we [~ A, AJ(d+2)}.



1-d function along X‘;‘alk

1-d function along X :

1-d function along plane X l=0
Figure 2: Illustration of cover for d = 2.

Lemma 4.1 Let ©(.) be a Lipschitz function defined on a class F = {f : [0,1]¢ ~— R}. Then for the class
of functions O(F) = {O(f) : f € F} we have

Noo(e,(F)) < Noo(e/Lo,F) and Ni(e,p,0(F)) < Ni(e/Lo, p, F).

Proof: We have |0(f1)—0(f2)|(z) < Lo|fi(z)— f2(z)| for all z € [0, 1]¢, which implies || O(f1)—O(f2) |lo<
Lo || f1 — f2 ||eo and p|©(f1) — O(f2)| £ Lop|fi — fo]. Thus an ¢/Le-cover for F constitutes an e-cover for
O(F). O

We first consider the sample size based on the cover of Section 3.1 for neural networks.

Theorem 4.1 Consider the class of feedforward neural networks of Eq (2.1)

!
Fa= {fw(l’) = aio(bTe+t:)ait; €[-A, Al b € [—A,A]d} ;

i=1
and assume that the cost function O(.) is Lipschitz with constant Lo. Given a sample of size at least

2A2 d+ 2)e2 16I{AL
25662 ma.x{ln (%),%,(2I(d+2)+2)log5+2l(d+2)log( 6 < @>}

the empirically best neural network fuw in Fa approzimates the best expected fu in Fa such that
P[1(fo) - I(f3) > ¢ <.
Proof: The sample size estimate is based on utilizing the covering number of Lemma 3.2. By the result of
Vapnik [24] the condition P[I(fy) — I(f%) > €] < & is implied by P [fsgg_ 11(fw) = I(fu)] > 6/2] < 6. By
wEFA

noting that f,,(z) < IA for all w € [—4, A]9+2) and z € [0, 1]%, from Pollard [16], we have

- —ne? 2
P Sup lI(fw) - I(fw)l > € S Sem + P [logNl(e/IG, Pn, e(}-) 2 n€2 2] )
JukZa 256124

By Lemma 3.2 and 4.1, we have
Ni(e/16, Py, O(Fw)) < Ee~2d+2)



where E = max(C%,ko)(16/ALe)?(4+2). The second term in the above equation can be made zero by
choosing n such that

n!2
97561 AT 2 E€—21(d+2)

or equivalently

25612 A2
2 (In E + 21(d + 2) log(1/¢)).

n—

From Vapnik [24] we have Cw = (—,(% for n > I(d +2). Now we can show that for k& > 52/(d+2)+2 we

have the condition (1 4-4logk)"4+2?) < +/k satisfied. To see this notice first that this condition is satisfied if
(5log k) d4+2) < \/k for k > 2; this condition is in turn satisfied if 5 (4+2 k1/= < k1/2 since logy < y!/* where
z is a finite integer. The bound then follows by choosing = 3. Using this value in place of kg we obtain

log E = (2I(d + 2) + 2) log 5 + 2I(d + 2) log(16!ALe).

—nc’
Then the condition 8ezse?a% = § is ensured by choosing n > ﬁgﬁi In(8/6). O

Remark: By using the result of Lugosi and Zeger [12], we can show that

128e(l + 1)lALe ) H(2d+3)+1 eﬁg
€

PU(F) — I(f*) > ] < 4 (

which yields the following sample size

25’2+21% <1n(4/6) +(I(2d+3)+1)In (

128e(l + 1)lALe ))
- .

We now consider the sample size for empirical estimation based on the results of Section 3.2.
Theorem 4.2 Consider the class of feedforward neural networks of Eq (2.2)
!
Fy= {Z aio(b¥ = + ;) : a;,t; € [—A4, A), b; € [~4, Al%, 0(2) = tanh(y2),0 < ¥ < oo} ,
i=1

and assume that the cost function ©(.) is Lipschitz with constant Le. Given a sample of size at least

2 4272 32712 37272 31272 d-1
12816,;1 I3 lln (27A ! Le> il (SIAEL@) L TAPLY ((7A 12L2 _1) +1>

€b € € !

the empirically best neural network f,, in F), approzimates the best expected f} in F) such that

PRII(fu) = I(£3) > ] < 6.

Proof: The sample size estimate is based on utilizing the covering number Ny, (e, F}) of Lemma 3.4. First
note by Lemma 4.1 that

2y AL {ﬂﬁ[ ke H+1]}
Neo (6, 0(F) = T2 ( ) :

From Vapnik [24] (page 190), we have

P[ sup |I(fuw) — I(fu)| > IAL@e] < 18Ny, (6, O(FY)) net /4

Jw€F)

where O(fy)(z) < LolA for all z € [0, 1]¢. Thus we have

—e2n

P [I(fw) - I(f3) > e] < 18Ny (ﬁ@(;&)) ne@ALSY |



For neural networks, we have

A%2L2 | fva%2L2 -1
N (o e(ﬁ))—we{?“ [( =-1) “]}
®\2la> "N AT € )

The sample size is obtained by noting that the general form § > ane~%" is ensured by choosing n > % In(a/b%6)
as follows. First note that above condition is implied by

n>1/b 1:4%) +1/bIn(b*n).

Since In z < 4/z, this condition is ensured by n > 1/b1n(33;) ++/n. Now the condition n > \/n+c is ensured
by choosing n > 2¢ for ¢ > 2. To see this first note that n — /n is an increasing function, and hence if
ng > 4/ng + ¢ for some ng then n > /n + ¢ for all n > ng. Let ng = 2¢, then ng > ¢+ v2¢ for ¢ > 2; thus
ng > y/np +¢. Thus for the general form we have n = %ln(ﬁ?) and the theorem follows by substituting the
appropriate quantities. O
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