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accurately models most of the physics considered important for ion dynamics in core tokamak

turbulence, and is simple enough to be used in high resolution direct numerical simulations.

PACS numbers: 52.65.Tt, 52.35.Qz, 52.55.Fa, 52.35.Ra



I. Introduction

Fluid equations have long been used to provide a reduced description of plasma dynamics
and to carry out paradigm studies of plasma turbulence which have provided much insight.!™* This
paper builds on previous fluid descriptions by including important kinetic effects necessary for more
realistic simulations of plasma turbulence, especially “toroidal” effects arising from variations in the
strength of the magnetic field. These toroidal gyrofluid (or gyro—La;.nda.u fluid) c'equa.tions describe
the time evolution of a few moments of the gyrokinetic equation. We will concentrate on a set of
six guiding center moments: the guiding center density, n, parallel velocity, u, parallel pressure,
py, perpendicular pressure, p,, and the parallel fluxes of parallel and perpendicular heat, g; and g¢,.
The moment hierarchy is closed by approximations which modsl the kinetic effects of collisionless
phase mixing from parallel free streaming®® and toroidal VB and curvature drifts,”® and finite
Larmor radius (FLR) effects.® The toroidal gyrofluid equations presented here incorporate reliable
models of most of the physics considered important for electrostatic ion dynamics in tokamak
turbulence. This reduced set of nonlinear fluid equations is simple, yet accurate enough to be used
in three-dimensional high resolution direct numerical simulations of tokamak turbulence.”*® This
paper presents the ﬁrsf. detailed derivation of the governing equations used in the toroidal gyroﬂuid

simulations of Refs. 11, 12, and 13.

The inclusion of VB and curvature drift effects is an important destabilization mechanism
for tokamak microinstabilities. The growth rates for the toroidal ion temperature gradient (ITG)
driven mode are typically two to three times higher than the growth rates of the slab ITG mode,
and toroidicity changes the character of the instability: in a sheared slab the instability is a modified
ion sound wave, in a torus it is more interchange-like. In addition, nonlinear simulations of toroidal
ITG turbulence find much larger fluctuation and transport levels than sheared slab simulations
for the same parameters, bringing the predicted ion heat flux up to experimentally measured

levels.”'0 Thus, incorporating toroidal effects is essential. The key difficulty here is closing the



higher moments introduced by the velocity dependence of the toroidal VB and curvature drifts.
We close these terms with closure approximations similar in spirit to Ref. 8, but here we use a
more rigorous procedure to find our closure coefficients, providing significantly improved accuracy.
The derivation presented here is valid for finite k;, while Ref. 8 focused on the purely toroidal
(ky = 0) limit and a term to remove a singularity for finite k; was added a posteriori. In addition
to presenting a four moment model (four moments were used in Ref. 8), we have extended our model
to evolve six moments, which provides significantly improved accuracy. These toroidal gyrofluid
equations also incorporate linear and nonlinear FLR effects as in Ref. 9, although the linea.r’FLR

terms are modified by toroidicity.

Another important toroidal effect is the damping of poloidal flows. Slab%'5 and toroidal!6:!!
gyrofluid simulations revealed that an important nonlinear saturation process for coré tokamak
turbulence is the nonlinear generation and damping of radially sheared “zonal” E x B flows: flows
which cause flux surfaces to rotate. These sheared flows are very weakly damped in a sheared
slab via classical viscosity; the domirant damping mechanisms arise from toroidal effects. The
fluid terms arising from the mirroring b - VB and toroidal drift terms in the gyrokinetic equation
are included to provide accurate models of poloidal flow damping from magnetic pumping. These
mirroring terms also model the effects of trapped ions, extending the validity of these equations
into the trapped ion regime at low kyp;. Finally, a Krook collision operator has been incorporated,
important for poloidal flow damping in the Pfirsch-Schliiter regime, and for collisional effects on
very low frequency modes.

We begin by reducing the toroidal gyrokinetic equation to a convenient form in Sec. II; then
exact moment equations are derived in Sec. III. Finite Larmor radius effects are treated in Sec. IV.
The kinetic linear response function is derived in Sec. V and used to optimize the closure approx-
imations in Sec. VI. The final equations are presented in Sec. VII. A simpler and slightly less
accurate set of equations evolving four moments is given in Sec. VIII. These equations are thor-

oughly tested against fully kinetic linear theory in Sec. IX. Finally, a summary of these results is



given in Sec. X, and we discuss the validity of these equations for nonlinear simulations of tokamak

turbulence.

II. The Toroidal Gyrokinetic Equation

The starting point of the derivation of the toroidal ion gyrofluid equations is the nonlinear
electrostatic gyrokinetic equation in toroidal geometry,!"*® also see Refs. 19-21. Our fluid equations

are therefore based on the usual gyrokinetic ordering;:
~N—r~—=—~—-~negK], k)_PN]-’ (1)

where w is a typical frequency, @ = eB/mc is the cyclotron frequency, kj is a typical parallel
wavenumber, k, is a typical perpendicular wavenumber, p = v;/Q is the gyrora,diils, v?=T/mis
the thermal velocity, and L is a macroscopic equilibrium scale length, e.g. the density scale length
L;1 = —(1/ng)Vng. The equations derived in this paper will apply to any ion species, for which
kip ~ 1 and w ~ w; = vy/qR: main ions, impurities, or a Maxwellian energetic component (e.g.,
beam ions), although we will usually omit the species index. The ordering k,p ~ 1 is a “maximal
ordering” and allows for a subsidiary expansion k,;p < 1 at a later time, although we will assume
that k, isn’t too small, i.e., we will assume k,L > 1. The gyrokinetic equations, at least the
version we are presently using, may need a generalization to be able to handle the plasma edge
where equilibrium gradients may be short enough that k, L ~ 1 and e®/T ~ 1. The gyrokinetic
ordering removes the fast cyclotron time scale, which allows averaging over the gyroangle, reducing
the velocity space dimensions from three to two. It also retains the physics of strong turbulence
even though the fluctuating quantities e®/T and F)/Fp are ordered small, since VF;/VFp ~ 1.
Thus the domina.nt—E x B nonlinearity is retained, and other nonlinearities are O(g) smaller. In

conservative form, the resulting equation is:

o .
2 FB+Y- [FB(oyb + vE +va)



+5%— [FB(——T%B -VJo® - /J,B -VB + v"(f) . Vf)) . VE)] = BC’(F), (2)
i

which is valid up to Of(e). This equation describes the evolution of the gyrophase independent
part of the guiding center distribution function F = F(R, v, p,t), where p = v2/2B, v, is the
parallel guiding center velocity, and R is the guiding center position. This form is valid for a
general magnetic field, and b is f:he unit vector in the direction of the magnetic field, B = Bb. The
combination FB enters because B is the Jacobian of the transformation from (vy,v,) variables
to (v, p). Because finite Larmor radius effects are retained (k p ~ 1), the particles feel the
gyroaveraged E x B drift, vg = (¢/B)b x VJo®, where Jp is the linear operator that carries
out the gyroaveraging of the electrostatic potential. In Fourier space, this operator is the Bessel
function Jo(k v, /), where k, is the perpendicular wavenumber of ®, not of F.

Toroidicity enters in Eq. (2) through the VB and curvature drifts, the v, (b - Vb) - vg toroidal
angular momentum conserving term, through the non-zero divergence of vg in toroidal geometry,
toroidal FLR effects, and the pb-VB mirroring force. All these terms arise because B is not
constant in general, in contrast to a sheared slab model. In Eq. (2), the VB and curvature drifts
have been combined in

Bx(B-VB)-%—%ExVB. (3)

Using the equilibrium relations Vp = (1/¢)J x B and (47/c)J = V x B, and the identity b - Vb =

(V x b) x b, this can be written:

47rv,f

_ vﬁ +uB
- QB2

OB b x Vp, (4)

B xVB+

where the Vp term is negligible for 3 = 8mp/B? « 1. For larger S, or stongly rotating plasmas
where nm;v - Vv is. not ignorable in the equilibrium force balance eduation, one simply needs to
keep the curvature and VB drifts separately. Thus instead of wy in Eq. (10), one would use two
operators: wyp and wx, as in Ref. 22.

For ion species, collisional effects will be modeled with a particle, momentum, and energy



conserving BGK operator?? (ion-electron collisions are negligible):

C(F;) = =Y vir(F; — Fuix), ()
k

where vy, is the collision rate of species j with species k. Collisions between species j and k cause
F; to relax to a shifted Maxwellian, Fas;k, with the appropriate density, velocity, and temperature
to conserve particles, momentum, and energy. Because F is small, Fasjx can be linearized. For a

single ion species plasma, this leads to:

e |y T3
C(F)= u,,{Fl [no+ ”t2 +T0 <2Ut2 2)} Fo}, | (6)

where v? = vﬁ +v? and Ty = (Tjp + 27T11)/3. The generalization for multiple ion species can be
found in Refs. 23 and 24.

Since the perturbations of interest satisfy kAp < 1 (Ap < p; for typical tokamak parameters),
we will assume quasineutrality, n. = 3 Z;n;, where n, is the electron density, n; is the ion particle
density (not the guiding center density) of the j’th species, and Zje is the species charge. The ion

particle density is related to the guiding center density by:!%%!

Z;e®

nj = f; — njo(1 —To)

where T'o(b;) = exp(—b;)Io(b;), Io is 2 modified Bessel function, b; = k2v} ;/Q% = k?%p?, and
v},; = Tij/m;. The second term on the right hand side of Eq. (7) arises from the gyrophase
dependent part of the distribution function, and is usually called the polarization density. The
k, in the polarization density term is from ®. The contribution to the particle density from the

gyrophase independent part of the distribution function, #;, is
A = / Pv JoF = / v (Fo + JoFy). (8)

Here J operates on Fi, i.e. k, comes from Fj. For a pure ion-electron plasma, with hydrogenic

ions (Z = 1), the quasineutrality constraint simplifies to:

®
ne = i = nio(1 = To) 7=, (9)
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For simpler notation, in the~ remainder of this paper we we will drop the species index j and set
Z; = 1. To incorporate multiple ion species, one simply evolves the moments for each species
independently. Different species are coupled together through the quasineutrality constraint and
through interspecies collision terms.

We will now manipulate Eq. (2) into a form convenient for deriving fluid equations. All of the

toroidal effects except the ub - VB terms can be written compactly using the notation:
zwd = (vV?/QB)B x VB - V. (10)

Let us first look at the VB and curvature drift terms. For example, pulling (2B%)~'B x VB out

of the divergence:

1

V -[FBv4] = OB?

L BxvB. -V[FB(v? + uB)| + FB(v? + uB)V - [

a5 B x VB]

the second term becomes:

B x VB] ! —VB-VxB~0

v QB2

[QB2
which is small for low 3 since the toroidal component of VB is zero and the current, J, is mostly

toroidal. Thus, for low G:

V - (FBva) = 553B X VB - V[FB(v} + uB)] = (1/v})iwa[FB(v} + pB)]. (11)

QB2

In toroidal geometry, FLR effects are complicated by the fact that the argument of Jo depends
on B. When deriving fluid equations by taking moments of Eq. (2), it is easiest if F' and Jy appear
together, i.e. on the same side of spatial gradient operators. We now manipulate the terms in
Eq. (2) involving Jo® so gradients only act on the combination F.Jy or FJ;. Defining o = k v, /%,

and recalling that the spatial gradients are taken holding v and p fixed, we can write:

VJo@ = JoVP + &V Jp,

Vdolk.v./Q) = Vo(a) = %Va =J; (a)—VB



The E x B term becomes:

V-[FBvg] = V- [FBJog; ° B x V&+ FB3J, —— B x VB].

2B B?

The divergence of the E x B drift can be written in the same form as the VB and curvature drift
terms:

v. [ Z B xVd| = vq> x (V x B) — §(B X V®) - VB =~ 2(e/T)iw ®,

since again, V® is mostly perpendicular, and J is mostly toroidal. Writing v = (¢/B)b x V®, we

have:
kLvL)
2Q 7’

V- [FBvEg) = ve - V(FBJo) + 2FBJo(e/T)iws® + (¢/T)iwa(FBJ, &

The first term on the RHS includes the usual linear w, terms from Fy and the E X B nonlinearity
from Fy, with FLR corrections as discussed in Ref. 9. The linear pieces of the second and third
(toroidal) terms (cx Fp) are of the same order as the slab E x B nonlinearity in the gyrokinetic
ordering (we keep B-'VB ~ Fy!VF;). The nonlinear pieces in the toroidal terms (x F;) are

higher order in the gyrokinetic ordering, and can be ignored.

Performing similar manipulations on the toroidal angular momentum conserving term, using

the identity (b - Vb)-vg = —(c¢/B3)(B x VB) - VJo®, leads to:

9 .
('?v—"[FBvu(b‘Vb)'VE] ~ o (Fv") BszVB VJod

= a (Fv||) < B x VB (JoV®+ J;

0 BVB)

2

The Jp term again has the wy form, and the J; term vanishes leaving:

9 [FBuy(B - VB) - ve] = — 2 (FBJowy) e/ T)itwa.
vy dvy .

Since kyp ~ €, the only contribution from the Ej term is linear, so in this term we only need

Fp. Using the notation V= b- V, and a Maxwellian Fg:

L8] —v2 /202 ~uB[v?
Fop=—————¢ H11°% t, 12
0 (27rvt2)3/2e (12)

8



we have V"|u“'“ B(8Fy/0v)) = (0Fo/0v)B(1 — pB/v?)V)In B, so this term becomes:

0Fy

_—(b VIod) 5, B = —%V"(JOQBGF 0

0F

) + JOQB ( B/vt - l)V" In B.

Combining all these terms, Eq. (2) can be written:

—%FB + BY, F B 4 vy V(FBJo) + 2FBJo(e/T)zwd<I> (13).
+ (e/T)wd(FBJ@kLvL/m) + SHPBO +uB)) - £V, (2B ‘Z,F 5
+ —JoéBg—Z’ (—t- - 1) Vyln B - ,uB—-——(FB)V" In B
- ——?-—(FBJov")(e/T)zwd@ =0.

3 ’U"

This form is messy, but most suited for taking moments, because velocity dependent terms such as

F, Jo, p, etc., are grouped together on the same side of spatial gradient operators.

III. General Toroidal Gyrofluid Equations

We are interested in deriving evolution equations for velocity space moments of Eq. (13), defined

by:
n=[Fd nuy = [ Foyd3
p=m[F(y-w)dv p. = (m/2) [ Fv} d®v
@ =m [ Fv - )°d® q. = (m/2) [ Fv}(v) — u) d®
ry = m J F(oy — uy)* d®v rye = (m/2) [ Fvi (v —v)* v
ry,L = (m/4) [ Fvi d3 sy,1 = (m/4) [ F(vy — uy)vid3v
sy = m [ F(vy — uy)°d®v si,e = (m/2) [ F(vy = wy)°vid®

It will often be convenient to use temperature instead of pressure, where the parallel temperature

is defined by py = nT} and perpendicular temperature by p, = nT,

We now proceed. to derive moment equations by integrating Eq. (13) over velocity space. These
equations express exact conservation laws of the gyrokinetic equation in the collisionless limit:
\

conservation of particles, momentum, etc. However, because of the velocity dependence in the

parallel free streaming term, kyvy, the toroidal drift terms, wa(v? + v%/2), the mirroring terms

v2VIn B, and the FLR terms, Jo(k,v,/Q), higher moments are introduced into each of these

9



equations, leading to the usual problem of the coupled moments hierarchy. These equations are
not useful until closure approximations are made for the highest moments that are not evolved, as
discussed in following sections. Taking integrals of the form f dv,dp ”IJl. pF ... of Eq. (13) leads to

the following exact moment equations, using the notation: n(A4) = [ d*v FA = 2 [ dvydu FBA:

o+ BYy(ou/B) +ve - V(lo) + 20(Jo) e/ T)icusd (14)

+ (¢/T)iwa(®n(J10)/2) + (1/T)iwa(py + pu + nma) =0,

%nuu + BVy(py/m+ nuf)/B + ve - V(n{Jovy)) + 2n({Jovy)(e/T)iws® (15)
+ (¢/T)iwa(@nJyvy@)/2) + (1/T)iwa(gy + s + 3pyuy + povy + nmuy)
+ —%V"n(Jo)(I) + %n(Jo(vi /2v? — 1))V, 1o B + %V" In B
+ n{Jovy)(e/T)iws® =0,
2 (ot rmad) + BYy(gy+ 3pguy + mad)/B +ve - V(oo (16)
+ 2n{Jovi)(e/T)iws® + (e/T)iwa(@n{J1v}c)/2)
+ (1 T)iwa(ryy + ry,e + dgyuy + guuy + 6pyug + poug + nmuy)
+ 2%V"n(Jov“)‘I> + 2%n(.]ov" (v2/2v} - 1))@V, n B
+ 2(qe + pouy)Vyln B + 2n({Jov])(e/T)iws® = 0,
98t BYy(a. +piu)/Bt+ ve - VIR om0y (1)

+ (e/T)iwg(®n(J1v2)/4B) + (1/T)iwa(ry,. + ro,o + qruy+ puud) /B =0,
%(q" + 3pyuy + nmup) + BV (ry, + 4wy + 6pyuj + nmuy)/B (18)
+ vo- V(n(Jovﬁ')) + 2n(Jovi|3) (e/T)iwq® + (e/T)iwd(tI’n(leﬁa) /2)
+ (1/T)iwa(syy + sy« + 5rywy + 3ry,oy + 10gyuf + 10pyuf + pouy + nmuy)
+ 3%v,,n<Jou§)q> + 3%n(Jov§(v3 /2% — 1))V, In B
+ 3(rpe+quy + pluﬁ)V" In B+ 3n(Jovﬁ’)(e/T)iwd<I’ =0,

10



0 g +p.y
ot B

n(Jovyv?)

+ BV (ry,. + quyy + P.L‘Uﬁ)/B2 +ve-V 5B

(19)

o P Jomyvi)

2B
- J : @
(1/T)iwa(sy,o + Su,a + 3ryty + 1wy +piuf)/B+ %V" A ;ZL)

(e/T)iwq® + (e/T)iwa(®n{Jyvv’a)/4B)

%n(Jo(vi /2B)(v2/20% — 1))V, In B

+ 4+ 4+ o+

rgl V,ln B + n{Jov v /B)(e/T)iwa® = 0.

Before proceeding to discuss closure approximations, it is useful to note that many of these terms
are higher order in the gyrokinetic ordering, and can be neglected. By separating the moments
into equilibrium and fluctuating parts the parallel nonlinearities drop out, since they are higher
order in €. For example, we let » = ng + ny, where n; /ng ~ O(g). We retain the dominant E x B
nonlinearities (the vg -V terms), which are leading order. In addition, we assume Fg is an unshifted
Maxwellian, so the equilibrium parts of odd moments are zero, and terms like uﬁ are higher order

in €.

IV. Finite Larmor Radius Effects

In Ref. 9, accurate models of FLR effects were developed by carefully approximating velocity
space averages of Jo which appear in the dynamical equations and in the quasineutrality constraint,
Eq. (9). As in Ref. 9, we choose to evolve moments of the guiding center distribution function, not
real space moments, to provide a better description of linear FLR effects including the “Bakshi-
Linsker” effect,25?6 and additional FLR nonlinearities. For simplicity, we will not incorporate
the nonlinear FLR phase mixing model in Ref. 9, specifically because in our toroidal nonlinear
simulations we do not see large fluctuation levels at high k LPis where these terms become important.
In addition to approximating (Jo), (Jovy), (Jov?), (Jov?), (Jov3), and (Jovyv?), which appear in
the slab limit, we also need to approximate (Jov?), (J1a), (J1v¥e), and (Jyva), which arise from

toroidal terms. Linearly, these terms involve only Fp, and could be evaluated exactly. However, in

11



the quasineutrality constraint we have to approximate #%;, which comes from Fj, see Eq. (8). Fy
is not Maxwellian in general, so the (JoF;) term in #; needs to be approximated. As discussed
in Ref. 9, the best agreement with linear kinetic theory is obtained by approximating both the
(Jo) terms and #;. In the linear kinetic equation, the Jo in Eq. (8) combines with the Jp in
the E x B drifts in the gyrokinetic equation, Eq. (2), so the average of JZ over a Maxwellian
enters the dispersion relation in the slab limit, not the average of Jo. These are quite different,
since (J¢) = I'o(b) and (Jo)? = exp(—b) behave quite differently for large b. This motivated the
(J3) ~ I"(l,/ 2 approximation introduced in Ref. 9, which is more robust and more accurate for linear
dispersion relations. With the inclusion of toroidal effects, the v, in Jo(k, v:/S2) couples with the
v? in the toroidal drifts, so it is no longer simply I'o(b) that enters the linear kinetic equation, see
Eq. (52) and Eq. (58). We have not found a completely satisfying replacement to (Jo) =~ 1"(1,/ 2 for

1/2

the general toroidal case, but {Jg) = I'y’“ continues to work reasonably well. Therefore, we will use

the results of Ref. 9 to approximate:

(Jo) =T5"%, (20)

(Jovy) = veTg/”, (21)

' (Jovd) = oY%, (22)

(Jov?) = 20? ab(brlﬂ)_ v} I+ V2) (23)
(Jovd) = v3Tq/%, (24)
(Jouyol) = 20 o (BT = o202 + ¥2). (25)

The modified Laplacian operators '<7§. and V7 , are defined by:

le, 61‘1/ 2
5ViT =b——0, (26)
Giw= bw(bt‘m)@, (27)

where ¥ = Fl/ 2% is the approximation to the gyroaveraged potential.

12



There are four new terms due to toroidicity that need approximating: (Jovt), (1), (Jivie),
and (J1vZe). Several techniques could be used to approximate these terms; one is to follow the
approach and rationale in Ref. 9. For example, the (J;c) term car be rewritten using the following
trick:

0
Jio) = - —
( la> aﬁ =1

Thus the approximation for (Jp) is the fundamental one, and all other FLR terms can be derived

(Jo(Ba)) . (28)

from it. Using (Jo) = I‘(l,/ ? leads to:

] 00 _ <
(he)m = g5l T(0%) = -2 =58 = V1, (29)
and
1/2 X
<J1v|?a> ~ —2vt2bagb = —v2V2, (30)

For the (Jijv2a) term, we will assume that F is approximately Maxwellian, so that v2F =

2020(T,F) /8T, and:

1/2 .2
2 - (T (o(Be))) = ~4u? (bzag,, )=—4v3vy (31)

<le_2La> ~ - —?—
The final toroidal FLR term is:
N 22
(Jov?) = 4v? [ o —— (T + 27 (bI‘l/ 2)] vt (2r(‘,/ GRS v vL) . (32)

These approximations remain first order accurate in b to those obtained using the Taylor series
expansion Jy =~ 1 — k202 /4Q2.

Now we look at linear FLR effects in the E x B terms. For example, in the density equation,
following Ref. 9:

v - Vn(Jo) = ve - V(nol"é/ %) + nonlinear terms (33)

Since b = k2v? /Q? depends on both B and T, (through v?, = T.o/m), gradients acting on
functions of & (FLR modified terms), introduce pieces proportional to VB and VT'q:

b 2b
Vb= T__LOVT‘LO - -B—VB

13



1/2

VnoF1/2 = F1/2Vno + ng o

3% Vb.

We now introduce the diamagnetic frequency iw, = —(cT/eBng)Vno-b x V, gy = Ly, /Ly, and
Ny = Ln/LT,, where Ly, and Lr, are the equilibrium scale lengths of parallel and perpendicular
temperature, which can be different in general. When they are assumed to be the same, we drop

the subscripts, and write 5. With these definitions, Eq. (33) becomes:

ed ary? . ed ary/? . ed
ve - Vn(Jo) = —nozw,.l"o/ T — NN b—— b zw,,e + 2ngb—— 5% zwde
since vg « (1/B)VB = —iwq(e®/T). For a general function of b,
vg - Vngf(b) = —nof(b)z'w,, e® nonibg‘gw, + 2n, bgzwd

ab
This form will be used to evaluate terms like v - V{nJov?).
In the linear part of the (e/2T)iwy(®n(Ji)) terms, we need to evaluate

9 (J1a)
ab

wq(®n(J1a)) = ng (J1a) we® + Pno wgb + @ (J1a) wano,

The last two terms are higher order in €, so the (Jyc) terms only contribute:

(e/2T)iwq(®n(J1a)) = ing <J1%> wd%—:-f—.

Because the final equations will get rather complicated, for the moment, we will treat the linear
and nonlinear terms separately. We normalize time, parallel lengths, and perpendicular lengths as

tug

(6 b k) = (b Kap), | (34)

and fluctuating quantities as

ed ny u T q r
L3 S U 1 - 1 5), (35)

To’ no’ v, ' nomv?’ nomvd’ nomv}’ nomv;

_'(@ Uy Py, Ty 3) (

where normalized quantities are on the left hand side and dimensional quantities are on the right.

With these normalizations, the characteristic drift wave time and space scales are O(1), and the
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perturbed quantities will be O(1) at the gyro-Bohm saturation level. In this paper, all equilibrium
quantities are ion parameters, i.e. Tp = T}, v¢ = vy;. For the equilibrium Fp we use a Maxwellian,
so the normalized equilibrium values of the moments are gy =1, pro =1, rg = 3, o = 1,
~and 7y, = 2. With the linear FLR approximations aiscussed above, temporarily ignoring the

nonlinear terms, the moment equations, Eqgs. (14-19), become:

on U - ] 1. ] )
%t BV, é’ (1 + %—*—V'ﬁ) w. ¥ + (2 + Evi) wa¥ + twq(py +pL) =0, (36)
ou | py Pty L2 v, B +i duy) =
5 g TVi¥+ (Pt 5Vi iln B + iwa(qy + qu +4yy) =0, (37)
K 3u N
T+ BV AT o, u Vil B - (1 + 292 ) i (38)
1. ) .
+ (4 + §V2L> wqg¥ + dwy(ryy +ry,0) =0,
dp g +u 1 l- 22\1.
atL + 32V" -LB2 Il e [1 + EVE_ + 4 (1 + §Vi + V.L)} zw,\Il (39)
3 22 .
+ (3 + EV‘ZL + VJ_) wa¥ + zwd(r",L +ry.)=0,
Jqy
& L+ Vy(ry = 3py) + (=7 +3py + 3y, — 3p.)VyIn B (40)
+iwd(syy + sp,. — 3¢y — 3¢, + 6yy) =0,
a‘h | R
TR Vit — o+ §VL‘I’ +(=2r, .+ 1+ —p)Vyln B (41)

22 1. .
+ (VL\II - EV?L\I'> Viln B +iwy(sy,. + 5,0 —qp— g +yy) =0.

If we had evaluated the velocity space averages using a Maxwellian F, giving (Jo) = exp(—b), the
n, vy, py and p, equations above would be equivalent to the electrostatic limit of those derived
in Ref. 22. The q equations would also be equivalent if Ref. 22 had proceeded to higher moment
equations. This equivalence can be verified by replacing I‘(l,/ 2, exp(—b/2) and evaluating the
derivatives with respect to b in Egs. (26) and (27). As discussed in the following sections, these
equations require closure approximations for ryy, ry.1, *1,1y Sps Sp,Lr 20d S0, Which Ref. 22 did

not address.
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For the nonlinear terms, we follow Ref. 9. Thus, to each of Eqgs. (36-41) we add the usual E X B

nonlinearities plus additional FLR nonlinearities, as follows:

0 1.
£-+v\p - Vn+ [5Vive] - VI, +--- (42)
Ou
at" + vy - Vu“ + [ ,LV\I’] . VqJ_ + b (43)
apy + vy - Vpy +[=V -VT 44
ot T VD [ LV‘I’] Pk (AR ( )
dps 22
at + vy - Vp,+ [ V.LV‘I’] Vp,. + [VJ.V‘I'] VT, +--- (45)
0
6qt“ + vy - Vg +- © (46)
at = +vy - Vg, + [ VLVW] Vu, + [V vyl Vg +- (47)

In these terms, vy is the approximation to the E x B drift in the gyroaveraged potential, vy =
(c/B)bx ¥, where ¥ = F(I,/ 2®. There is a typological error in Eq. (59) of Ref. 9, where the nonlinear
term involving ¢, should be dropped.

Now let us return to the quasineutrality constraint, Eq. (9). Here we have to approximate the
real space density. Because of the Jo which acts on Fj, #; will involve the guiding center density
and all higher perpendicular moments, but we only evolve up to T,. Thus we need another closure
approximation which relates #; to n and T,. The approximation for %; in Ref. 9 was tailored to
fit the local kinetic dispersion relation in the slab limit. In the toroidal case, because of the v,
dependence of the toroidal drifts in the resonant denominator of the toroidal response function,

Eq. (52), following such a procedure is more complicated, so we simply use

~ 1 2b
;= 1+b/2n— (2+b)2TL' (48)

This is first order accurate in b for both the n and T, terms, and behaves appropriately (7; — 0) in .
the b — oo limit. The FLR approximations used here and above provide a reasonably accurate fit
to the kinetic FLR behavior in the local kinetic dispersion relation, and continue to perform well

nonlocally, as demonstrated in Section IX. Note that the FLR models described in this section can

16



also be used with a simpler Padé approximation, by substituting I‘(l,/ 2 5 (1+45/2)"! in Egs. (26)
and (27), as discussed in Ref. 9.

V. Local Linear Toroidal Response Function

Our closure approximations for ryy, ry.o, *o 0, Sy Sy,., and s;,,, will be chosen to provide
accurate models of the kinetic effects of parallel and toroidal drift phase mixing. Ultimately, we
choose the closure coefficients to provide an accurate fit to the local linear toroidal response function,

which is derived in this section.

We begin by transforming the linearized gyrokinetic equation to (E,u) variables, so- F =
F(R, E,p), where E = vﬁ/2 + uB. Then breaking F into adiabatic and nonadiabatic pieces,

F = g — FoJoe® /Ty, the equation for the nonadiabatic piece is found to be:

w—-wl ed
g ow - k“U" — Wy JO TO ! ( )

where wg, = wg(vf+pB)/v} and Wl = w.[1+n(v}/2v}+pB/v}—3/2)]. In the local approximation,
we treat wq, wy, and k; as constants, using wy = —kgpv:/R and w, = —kgpvs/Ly, S0 wafw. =
L./R = €,. The total distribution function in guiding center coordinates, f = f(R, E, p) is:

e<I>( x) e<I>(R)
To

f(R)=F+ f=F(R) - = Fy + FoJo—i2 (50)

where F is gyrophase independent, and f is the gyrophase dependent part. The first piece of f
is in real space, x. To obtain the real space ion density (not the density of gyrocenters), only the

parts in guiding center space need to be gyroaveraged {acted on by Jp):

n(x) = / Bof(x) = / Lo [J F(R) - eq’(")F +FJ29%(703—)] (51)

= —noTo +/d3UJog,
since the JoF and FyJE e®/Tp pieces combine to give Jog. Inserting the solution for g, Eq. (49),

the ion density response function is:

n

= SvFy————J2(k Q), 52
E; —noe@/To no/dv w - k"v" W 0( 10./9) (52)
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which is the usual linear form. Trapped particle effects appear in the variation of v, along a
particle’s orbit. We will neglect trapped particle effects in this section, and treat v, as a constant.

For Im(w/wq) > 0, the resonant denominator can be written:

1 i [ P
- = dr etT(w k"u“ Wy )/wa (53)
w—kyyy —way  wa o ’

and now the v; and v, integrals can be evaluated. Normalizing w and kyv; to the toroidal drift
frequency by introducing £ = w/wy and z; = kyve/wy, and using a Maxwellian Fy, Eq. (12), the

response function becomes:

. i [ [ o 1 vi+ovl 3
R;=1+ ,_27“/0 d‘r/0 dvlvlﬁmdv||{z—a[1+n(2—ljg—§)

XeiT a:-z"u"/ug—uﬁ fv? —ui/zu?]e—(vﬁ+u'i)/20? Jg (kLo /)

The v, integrals are:

/0 ™ oy, e~ (HIRI2R 12 (V. ur) = v? e_lbf:) To ( - :_’ir) , (54)
and
/:o dvlvie“(l"""’)”ilz"? JE(Vou, Jv) = (55)
0 ( b ) [ b b L(b/1+ ir)]
(1+i1")2 1+ir 1+ir 144t Ip(b/1+:m)]’

where Iy and I; are modified Bessel functions. The v, dependence in the resonant denominator was
neglected in the numerical evaluation of the v, integrals of Jo in~ Ref. 8 (although it was retained
everywhere else), and thus I and I; had real arguments, instead of the complex arguments in
the expressions above. This produces differences in the local dispersion relations at large b. The
response function in Ref. 27 correctly retains the v, dependence of the resonant denominator
while integrating over v,. The local kinetic response function described here, and the local kinetic
eigenvalues calculated using this response function in Section IX, were carefully checked against

the results of Ref. 27.
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The vy integrals are:

2,2 :
oo _ N2 » e T z"/2(1+2t‘r)
d (1+2t-r)vIl /2vf irz) ) [ve =3 . 56
)y e Ve (56)
and »
0 e 1/2(1+2i7)
. o2 ~(12in)d 20 ~irzup foe
‘/(; dv avye i v/ ve =27 TV} W(l +2r—71 Z") (57)
Putting it all together:
Y e . —r2,2 ir) _ . b z_(l_:}.n‘)/en
Ri=1 / drei™e”T = [2(1+2i7) b/(1+iT) [ ( i ) 2 58
Tl e ° \tva \Trinvizer &
o | 1- o + b)) /o (1.,.,,) _om | 142 -1
€n (1+47)2v/1 4 2i7 €n | 2(1 4 47) (1 + 2i7)5/2

Thus, the local toroidal response function is a rather complicated function, R; = R;(z, zy, b, €x,
7). We wish to find closure approximations so the response derived from the fluid equations will
closely match this response function. In the form of a one dimensional integral as in Eq. (58),
the response function is easy to evaluate numerically, which we will be forced to do to find the
optimal closure coefficients and to solve the local dispersion relation. The response function can
be factored into three pieces, the first independent of w,, the second proportional to 1/€,, and the
third proportional to 7/¢,. Since we will be interested in matching this kinetic response for all 5

and ¢,, we need to fit each of these pieces independently:
R; = Ro+ R1/€éxn + Ron/en, o (59)

where Ry, R;, and R, are independent of 77 and ¢,:

— L[ itz =722} [214237) ~b/(1+i7) ( b ) z 60
Ry 1+z/(; dr e'™® Iy 7)) \GrimviTon | (60)

— 3 R itz —-‘r 22 [2(14+2i7) _b/(1+”.) ( b ) 1 61
= i
mu=if, Mtra Triviver (61

. o0 ite —'r z 2 /2(1+42i7) —b/(1+rr) ( b ) 3/2 62
= i
B ’/o dre b\t \avovizer (62)
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(1+ir)2/1+ 2ir 2(1 + i7) (1 4 2i7)5/2

The response function of the fluid equations will also naturally factor into these three parts. In the

_ 1- 1+z‘r + 1+tTIl(1+$T)/I0(1-£tT) 1 + 24T — Tzzﬁ }

purely toroidal limit (ky = 0), neglecting FLR (b = 0}, these expressions simplify considerably, and

can be written in terms of the usual plasma dispersion function:?®

R = 1-22(,f%) (63)
R, = —22 (\/_) (64)
o G2 (D5

The resonant denominator in Eq. (52), w — kyvy —wa(vf +v2/2) /v = 0, by completing the square,

can be written:

w | kju} (kuvt vn)2 v?
+ dw? T\ 2wy + v + 202" (66)

The left hand side of Eq. (66) is negative, but the right hand side is positive for all v. Thus along
the real w axis, no particles are in resonance for w < —kj 292 /4wy, and R; is purely real, as shown in
Figs. 1 and 2. As k; = oo, this cutoff frequency moves to —oo, and R; approaches the slab limit

response function.

We will also use the kinetic response function of other moments (not just density), which can

be written in the following compact form in the b = 0 limit:

. ed -
M= [ dofoi(v?/2)* = —now?* 2 it (67)
Mg = M3 + M} fen + Mn/en (68)
Y 2214 (1) J+L ., oi irz
o= X I T 69
Mg = =N+ DNC) +42 /dre x (69)
{[ 1 37 7 k+1] 7. g } p(k+1)e-rzzﬁ/2(1+2£r)
°- 2€, €, 1417 J 142 1+ iT)k+1 1+ 2,’-,-):'-*-1/2
o J/Z J+l/2 1 * y — iT)vs [2vE —iT2Z
I{J 2 (1 ;;ft‘:_)l ﬁ/2(1+2t‘r) -/_oo dv“vﬁe (1+21i7) 121/2 2 yonfve (70)
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For the lowest few j’s, we have:

Ko = 1,

K, = —irz,

K, = 2(1+2ir)— 722,

Ks = rz[-6i(1+2ir) +ir?2d)],

Ky = 12(1+2i)? — 127220 (1 + 2i7) + 742,

The odd K. ;'s are proportional to odd powers of z; (or k), while the even K ;'s are proportional to

even powers of 2. This will guide our choice of closure approximations in the next section.

VI. General Closure

There are three places in the moment equations Eqs. (38)-(41) where closure approximations
are needed, in addition to the FLR closures in Section IV): in the parallel free streaming terms
Vryy and Vyry (; in the toroidal drift terms wq(ryy + ry,c), wa(ry, + r1,0), wa(syy + sy,+), and
wa(Sy,. + 51,1); and in the mirroring terms raVyln B, 7. VyIn B, and r, , VIn B. For each, we
make closure approximations designed to model the physical proéesses these terms represent.

The velocity dependence in the kyvy parallel term introduces parallel phase mixing, leading to

linear Landau damping. Consider a simple 1D kinetic equation with no E field:

of . 9f _
—3—t- + ‘U"$ =0. (71)

The solution is simply f(z,vy,t) = f(z —vyt, vy, t = 0). If we start with a Maxwellian perturbation

in f,

. . n 2 02
fo = eI fop = etz 20 ~vi/ % (72)
2rv?

free streaming will cause moments of f to phase mix away. For example, the density is:

n= /dav f= o /dv" eik"(z—u“t)e—vﬁ/%? = noe’:kllze_klzluftz/z, (73)
2mv?
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To model this process, we need to introduce damping proportional to |ky|v; into our fluid equations.

Thus, for the parallel closures, we choose:5°
r = 3(2pg —n) + BTy — V2 Dul 'lqn’ (74)
e = mtea—n-ivaD ., (75)

where gy = (32— 97) /(3w — 8), Dy = 24/7/(37 — 8), and D, = /w/2. With this closure, the fluid
equations reproduce the linear kinetic behavior quite well in the slab limit, as shown in Refs. 5 and
9.

Similarly, the velocity dependence of the VB and curvature drifts introduces phase mixing.
In this case the damping rate is different, since the toroidal drifts depend on v} and v}/2. Now

consider only the phase mixing due to the toroidal drifts:

af af
hl - = 7
5t + g ay 0, (76)
v2 +v2/2 v
Ud = Ugp 1 vgl/ ) vdo—%

t

The solution is f(y, vy, v.,t) = f(y — vat, vy, vy,t = 0). Starting with a Maxwellian perturbation

in f,

fom ¢ = e T, ()
;) -
free streaming will again cause moments of f to phase mix away. For example, the density is:
- - 2 2
n= / & f— 2)3/227r / du, dv v e vao [V /3~ [20)t] - (v +R) /2
thyy
noeY (78)

= /17 2ikyva0t(1 + ikyvaot)

To capture this toroidal phase mixing, damping proportional to |ky|vgo = |wa| must be introduced
into the fluid equations, but with complex closure coefficients to get the phase shift in Eq. (78).

The toroidal closure terms enter in the combinations ryy + ry,1, 7,0 + o0, Spy + 8,0, 20d

Spoe + S.,1. Expanding the general moment response functions Eq. (69) for small &, all the odd
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J moments have leading order corrections of O(ky), while the even j moments have leading order
corrections of (’)(kﬁ). Thus in our closure approximations for the toroidal terms, we close the even
moments ry 47y, and ry, +r, . in terms of the lower even moments (n, py, and p,), and the odd
moments sy, +sy,. and sy, +5,,, in terms of the lower odd moments (uy, gy, and g ), to preserve
this small k; behavior. At large k; (the slab limit) the response function is primarily determined
by the parallel closures, and the toroidal closure approximations are subdominant. In addition, we
break the r and s closures into dissipative and Maxwellian pieces (the terms that would arise if F
was exactly Maxwellian). The Maxwellian parts are r; = 3p§ [ny ry L =pypL/ny Ty,L = 2p% /0, and
Sy, = Sy,+ = S1,o = 0. Linearizing and normalizing, these become |y = 6p;—3n, r,, = py+pL—n,
and r, ; = 4p, —2n. Guided by the discussion above, we choose dissipative pieces proportional to

|wg|/wq. Thus in the toroidal terms, combining the Maxwellian and dissipative pieces, we choose:

LW,

rtrpe = Ty +pL—4n— 21% (1 Ty + voTy) (79)
LW,

Me+rLe = py+5pL—3n-— 21% (3T + v4T) (80)

AW,
Syt S = -ZL—:I (vsuy + veqy + v7q.) (81)
e |wdl
3,1 +8.,,, = —Zw—d (Vsuu + Vaqy + leQ.L) (82)

Each closure coefficient has both a dissipative and non-dissipative piece, v = v, + iv;|wg|/wq. This
choice is motivated by Ref. 8. Making the dissipative parts of the r closures only depend on T} and
T, ensures that the fluid response will match the kinetic response at w/wg = 0 in the &y = 0 limit.

The toroidal closure coefficients vy — 19 in Eqgs. (79-80) are chosen so the response function
of the fluid equations closely approximates kinetic response function, Eq. (58). In the local limit
with 6 = 0 and V| B = 0, and inserting the closure approximations above, the fluid equations

Egs. (36-41) can be written in matrix form, using ¢ = wy/w = 1/z and k = ky/w, and assuming
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wq > 0 to simplify notation:

[ 1 -k -9 -9
0 1—4g —k 0
M= g(4 — 2ivy — 2i,) -3k 1—-g(7—2i1) —g(1-2ivy)
9(3 — 2iv3 — 2ivy) -k —g(1—2iv3) 1—g(5— 2ivy)
B+DH)k —-g(6-ivs) —(3+B)k o -
R k —g(l - ng) 0 -k
0 0 i
-9 -9
—k 0
0 -k
1+i\/§D“k+g(3+iV6) 9(3 + ivr)
g(1+ivg) 14+4v2D,k + g(1+ ivy0) |
[ 7 ] [ 2 ] [ =17 [ 0 7]
uy k/g 0 . 0
A P T D P T e b (83)
g 0 0 0
L dL | . 0 [ 0 ] [ 0

Thus, the response functions of the fluid equations also naturally factor into the form Eq. (59).
Because this set of equations is rather complicated, to determine the toroidal fluid response func-
tions we solve for n and p, by numerically row reducing the matrix M. In Ref. 8, the fluid and
kinetic response functions were compared only in the w, = 0 and 77 = 0 limit. In the slab limit,
determining the closure coefficients in the w. = 0 and 5 = 0 limit (Rp) also gave an equally good
fit for the w, and 7 pieces (R; and R3), but in the toroidal case this is not automatic. In addition,
in Ref. 8 the toroidal closure coefficients were matched at ky = 0, and good agreement for k; # 0
is not guaranteed (although as ky — co the slab limit is recovered and the agreement will again be
good). In fact, if the toroidal terms are closed in the purely toroidal limit (ky = 0), the toroidal
closure terms in the odd moment equations drop out. This led to singular behavior of the response-
function for the closure in Ref. 8 at some non-zero ky, since the wy(gy + ¢) term in the parallel

velocity equation was dropped. This was corrected in the addendum to that paper.

Therefore, special care must be taken find toroidal closure coefficients which simultaneously
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provide a good fit to the kinetic response function for all three parts of the response function,
for all k. Because both fluid and kinetic response functions are complicated with finite ky, we
choose the closure coefficients numerically, by minimizing the difference between the kinetic and
fluid response functions over a range of ky’s simultaneously, but in the b = 0 limit. We use an
efficient multidimensional minimization technique, Powell’s method,?® to adjust the coefficients
vy — vy until the error between the kinetic and fluid response functions along the real z axis is
minimized. If R has no poles in the upper-half z plane, matching along the real axis guarantees
that the fluid R will also match the kinetic R in the upper-half z plane. Since we are primarily
interested in accurately modeling the growth rates of unstable modes, the errors in the lower half
plane are probably not important, as long as we do have damped modes in the system. The best fit
between the kinetic and fluid R’s was found using 12 k;’s evenly spaced from z; = 0 to 4.2, over the
range of z where the kinetic response function is changing most rapidly, —8 < z < 16 at z; = 0 and
—14 < z < 22 at z; = 4.2, with 100 grid points in z. To the error in the density response function,
we also add 1/100 the error between the kinetic and fluid p, responses, since n is most important
for the local dispersion relation, but p, enters the linear dispersion relation from FLR effects.
While an excellent fit to n is obtained, it is difficult to simultaneously match the p, response
for intermediate k)’s. We find »; = (2.019, -1.620), v = (0.433,1.018), v3 = (—0.256, 1.487),
vg = (—0.070,-1.382), vs = (—8.927,12.649), vg = (8.094,12.638), v; = (13.720,5.139), vg =
(3.368, —8.110), v = (1.974, —1.984), and vyo = (8.269, 2.060). These are an improvement over the
closure coefficients in Ref. 11. The fit between the kinetic and fluid response functions is excellent,
as shown in Figs. 1 and 2. The fluid equations give a rational approximation to the kinetic response
function, and cannot capture the branch cut at w/wa = —kv?/4w} exactly (see Eq. (66)), but this
set of closure a.ppro;(imations provides a reasonable fit to this sharp tr;msition.

Finally, we have to close the mirroring terms, introduced by the ub - VB terms in the gyrokinetic
equation. These terms incorporate trapped particle effects, reproducing the CGL3C pressure balance

equation. They are also important to model the damping of poloidal flows by magnetic pumping.
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Since these terms introduce no new dissipative processes, we take Maxwellian closures:

i = 6py—3n, (84)
e = PytpL—mn, (85)
ryo = 4p_!_ — 2n. (86)

While this is not the ultimate set of closure approximations, the resulting fluid equations provide
a very accurate model of the physics underlying ion dynamics in toroidal plasmas. This set of
closures provides excellent agreement with linear kinetic calculations, as shown in Sec. IX, as
long as one is not too close to marginal stability. A set of closures which is more accurate n;ear
marginal stability is under development and will be reported in the future. More complicated closure
approximations could certainly be found, or the set of equations used here could be extended
to higher moments, but the relative simplicity of the closures used here afford a tractable and

sufficiently accurate model for most applications.

VII. Final Equations

We arrive at the six moment toroidal gyrofluid equations by inserting the closures discussed
in the previous section into the moment equations, Egs. (36)-(41), with the nonlinear terms given
by Egs. (42)-(47). Specifically, we use the parallel phase mixing closures in Egs. (74)-(75), the
toroidal phasé mixing closures in Egs. (79)-(82), and Maxwellian closures for the mirroring terms,
Egs. (84)-(86). In addition, we add the collision terms obtained by integrating Eq. (6) over velocity
space. We will also refer to this set of equations as the “4+2” model, since it evolves 4 parallel

moments and 2 perpendicular moments.

d 1. 2\ -
Efti + [EViV\n] VT, + BVH% - (1 + %Vi) w, ¥ (87)
j . .
+ (2459 il iwaloy + 1) =0,
d 1. ' le
——:t" + [5Vivel Ve + BVH% + V¥ + (p.!. + EV?L‘I’) Vyln B (88)
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+  dwa(gy + q. +4yy) =0,

dpy

1. +3
o+ Vivel VI + BV A o(g, +u)Vyn B (89)

2o\ . leo) . .
- (1 + 4+ %Vf_) w, U + (4 + §V2*) wa¥ + twy(Tpy + po. — 4n)

2
+ 2wa|(n Ty + veT,) = ——Vii(Pu —P1)s

%‘L— + [;Viv\v] -VpL+[V iv‘l’] VT, + B2V, &t gzu" (90)

| - [1 + -2-61 +1 (1 + 5@3 + 6L>] iw, T + (3 + gﬁi + %i) iwg¥
+  wa(5py + py — 3n} + 2wq|(vsTy + vaTy) = %V;;(pu —P1)s

% + (3+8)VyTy+ V2Dylkylqy + iwa(-3qy — 3¢, + 6uy) (91)
+  |wal(vsuy + veqy + v7g.) = —viiqy,

% + [; 2ve] - Vy + [ Jb\'q,] Vg, +V, (TL + V2 ‘I!) (92)
+ V2D, |kylq, + (pL -py+ vqu - 56&@) V,ln B

+  wa(—qy — g1 + uy) + |wa|(vsyy + vogy + v104L) = —viig..

The main E X B nonlinearities have been absorbed in the total time derivative d/dt = 8/0t+vy-V.
In the slab limit (wg = Vln B = 0) these equations reduce to Egs. (56)-(61) of Ref. 9. The

quasineutrality constraint is:

n bT,
= - 3
"= Tro/z 2tz T Lo D (93)
When the electrons are assumed to be adiabatic,
ne =7(® - (®)), (94)

where 7 = Tjo/Teo and (®) is a flux surface average.
This constitutes a fairly complicated set of fluid equations compared to those usually used in
plasma physics. A somewhat simpler four moment model is described below, and it is worth jus-

tifying the complication of the six moment model. In principle, the six moment model is more
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appealing because as more moments are retained, more details of the distribution function are
accurately described. On more pragmatic grounds, the six moment model provides a significantly
improved fit to the kinetic response function, and is necessary for quantitative accuracy in linear
growth rates and mode structures. The six moment model is also required to capture the destabi-
lization from trapped ion effects, which become important in the long wavelength regime. Finally,
six moments may be required to obtain accurate damping rates of poloidal flows from magnetic
pumping. Magnetic pumping arises from parallel flow damping, and since no closure approxima-
tions appear in Eq. (88), the uy equation is an exact moment of the gyrokinetic equation to O(b).
This is not the case for the simpler four moment model discussed below. Magnetic pumping rates
from this six moment model are calculated in Ref. 7.

A variation of these equations was used in Ref. 11 where |kj|gy in Eq. (91) was replaced by
Blky|(qy/B) and where |kylg, in Eq. (92) was replaced by B2|k;|(q./B?), i.e. |ky] acted on ¢,/B?,
not just ¢,. However, it was found that this leads to a weakly growing mode even in the wy = w, =
7 = 0 limit which should be stable (a bumpy cylinder limit). Switching to the present form of the

parallel closures removed this spurious instability.

VIII. Four Moment Model

We present here a simpler and slightly less accurate gyrofluid model which only evolves four
moments: 7, uy, Py, and p,. We will also refer to this set of equations as the “3+1” model, since
it evolves three parallel moments and one perpendicular moment. In this case, since we are not
evolving g, and q,, instead of closing the toroidal s terms with Eqs. (81) and (82), we need to close

the wy(qy + ¢.) term in the parallel velocity equation:
. {Wd

q+aq.= —21—l lusu". (95)
wq

We still use the toroidal r closures in Eqs. (79) and (80), but with new closure coefficients. In

addition, we use the parallel closures of Ref. 5 and 9, extended to include collisions as well as
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collisionless phase mixing:

3+ 6y )
—_— ik Ty - 96
g 3Dyl + v 1 (96)
1 1. .
= —— kT —V2‘If) 97
o \/§DL|kn|+Vﬁz "( tTgVe 97

These are essentially the high k; and/or high v;; limits of Eqs. (91) and (92), keeping only the slab
terms. .

We again use the method described in Section VI to minimize the error between the fluid and
kinetic local response functions to determine the toroidal closure coefficients v; — v5. The best
fit is 1y = (1.232,0.437), v, = (—0.912,0.362), v3 = (—1.164,0.294), vs = (0.478, —1.926), and
vs = (0.515, —0.958).

Inserting these g closures into Eqs. (36)-(39), using the nonlinear FLR terms in Eqgs. (42)-(45)
without the g, part of Eq. (43), and dropping the g; and g, mirroring terms (g, = g, = 0 for a

Maxwellian), the dynamical equations are:

-, [ V2vy]- VT, + BV, L (1 + ”—*ﬁi) iw, T (98)
dt B 2
1-5\. .
+ (2 + §Vi) wg¥ + iwq(py + pL) =0,
d 1-
-é:l + BV,2 T (P; +5V3 ‘I’) Viln B + diwquy (99)
+ 2|(dd|1/5u" = 0, -
dp" lag (3 + 'B")kﬁT."
Py ) VT, + —— MU ey gy — 4,V In B : 100
el [2 1ve]- VT, + VDl +vi +3Vyuy — g Vyln (100)

2o\ . 1en) . .
- (1 +m+ %Vf_) w, U + (4 + —2-Vi> iwg¥ + iwy(Tp + pr — 4n)

2
+ 2wa|(n Ty + veT)) = —gVii(Pu —Pu),
dpy k2 le

== 2 v -VT T v2 G
dt + [ VJ_V'I’] p.L+ [ J_V\I’] .L+ \/—D_lenl +l/"( .L+ )
+ BWH% - [1 + -2-61 +7 (1 + EV"; + VJ] iw, ¥ (101)

3. 22 . .
+ (3 + EV"J’_ + VJ_) wa¥ + iwq(5p, + py — 3n) + 2|wa| (vaTy + vaTy)
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The quasineutrality constraint, Eq. (93), is unchanged for this model.

IX. Linear Benchmarks

In this section the accuracy of the toroidal gyrofluid equations is demonstrated by comparing
with linear kinetic theory, using adiabatic electrons. We first test the toroidal gyrofluid equations
against kinetic theory in the local limit, where ky and wy are treated as constants. The eigenfre-
quencies are determined by finding roc;ts of the local dispersion relation with adiabatic electrons,
R; = —7, where the kinetic R; is calculated b}; numerically evaluating the integrals Eq. (59) and the
fluid R; is calculated by numerically row reducing the matrix equation in Eq. (83), with additional
FLR terms on the right hand side if b is non-zero. In the local limit, we ignore the V| In B terms
in the gyrofluid equations and ignore the modulation of vy along a particle’s orbit in the kinetic
response.

Fig. 3 shows the kinetic and gyrofluid growth rates in the purely toroidal limit (k; = 0), with
b = 0, for the parameters of Fig. 5a of Ref. 8, where 7 = 1, 7; = 1, 1.5, 2, and 3, varying €,.
The four moment model in Section VIII reproduces the stable low €, regime better than the four
moment model presented in Ref. 8 (which used different closure coefficients). The six moment
equations provide much better agreement with kinetic theory, but are slightly off for low 7;, near
marginal stability.

Fig. 4 shows a comparison in the local limit for ky # 0, the mixed toroidal/slab limit. We use the
parameters of Fig. 3 of Ref. 31, where 7; = 1.5,2, 3, ¢, = 0.2, and we choose kyL, = L,/qR = 0.1,
using the normal connection length for the mode width Ly ~ gR, and ¢ = 2. The linear growth
rates from the six moment toroidal gyrofiuid model and kinetic theory are shown vs. kgp;. The six
moment toroidal gyrofluid equations provide an accurate description of the full kinetic behavior.

Both the growth rate and real frequency of the toroidal ITG mode vary roughly as 7, w, < kgp; at
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long wavelengths. As kgp; decreases, |w| = /72 + wZ decreases, and the stabilizing effect of parallel
Landau damping becomes more important. When |w| ~ kv, the mode is stabilized, producing
the long wavelength cutoff at kgp; ~ kL, ~ L,/qR. This local estimate suggests that the inverse
q dependence of this long wavelength cutoff can introduce confinement degradation with increasing
g, since the longest wavelengths cause the most transport. .

Now we move on to nonlocal comparisons with kinetic theory using the ballooning representation
in circular flux surface geometry, as in Ref. 31 and 32. In these nonlocal calculations, we find the
eigenmode structure along the field line coordinate, 8, also called the “extended ballooning angle.”
The 6 dependence of terms in the equations couples different kj’s; this coupling is ignored in the
local approximation. For example, both wy and &, vary along the field line: the # dependence of
wq describes the effects of the good and bad curvature regions, and the 8 dependence of k, comes
from the fact that as one moves along the field line, the mode twists, and %k, increases. For the
comparison with Ref. 31, we neglect trapped particle effects by turning off the VIn B terms. In
circular flux surface geometry, B = BoRo/R = Bo/(1+¢€cosf), so setting € = 0 removes the VIn B
mirroring terms. As in Ref. 31, we also neglect collisions and assume adiabatic electrons. All of the
results compared in this section will only look at modes with 8y = 0, i.e. those centered in the bad
curvature region, since they are typically the most unstable and most linear calculations only focus
on these modes. The growth rate spectrum for 8y # 0 has important implications for the anisotropic
ﬂu‘ctua,tion spectra seen in our nonlinear simulations and in experimental fluctuation measurements
in tokamaks, as discussed in Ref. 7. Fig. 5 shows the eigenfunction from the fully kinetic integral
calculation of Ref. 31 and from the 442 toroidal gyrofluid equations for the parameters in Fig. 2(c)
of Ref. 31, 7, =3, €n=102,9=2,5=1, kgp; = 0.53, and 7 = 1. The “ballooning” mode structure
along the field line shown in Fig. 5 is determined by the 8 dependence of both ws and k,. The
mode is primarily localized near § = 0 in the bad curvature region. Landau damping is strongly
stabilizing for high kj, so the the most unstable modes have broad mode structures along the field

line. Minimizing k; while simultaneously localizing the modes in the bad curvature region leads to
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mode structures with ky ~ 1/¢R, with large amplitude at the outer midplane and smaller amplitude
at the inner midplane. Further along the field line (i.e. away from @ = 0), magnetic shear causes
k, to increase, whichllea,ds to FLR stabilization at large 6 — 6. This magnetic shear stabilization
through FLR effects keeps the mode amplitude small in bad curvature regions further along the
field line, e.g. at § = 2. When 3 or kgp; are small, this magnetic shear effect is weaker, and the

eigenfunctions become more extended in 4.

Fig. 6 compares the kinetic and fluid growth rates-and real frequencies for the parameters of
Fig. 3 in Ref. 31: 7; =1.5,2, and 3, ¢, =0.2,¢g=2,3=1, and 7 = 1. The agreement between the
442 gyrofluid equations and kinetic theory is quite satisfactory, especially for kgp; < 0.5 where our
models of FLR effects are very accurate. This level of agreement is a substantial improvement over
previous fluid theories, and is more accurate than the four moment gyrofluid model of Ref. 8. As
kgp;i decreases, the mode width increases and k; becomes smaller. This shifts the long wavelength
cutoff to lower kgp; than in the local limit, where ky is held fixed. In other respects the fully

nonlocal results seem to follow the local trends fairly closely.

Fig. 7 shows a comparison with Fig. 4 of Ref. 31, using the parameters: 7; = 2.5, ¢, = 0.2, 0.3,
0.45, ¢ = 1.5, and § = 0.1 X g/€,. The toroidal gyrofluid and kinetic results are not in terribly good
agreement near marginal stability (¢, = 0.45), but for the agreement is satisfactory for ¢, = 0.2

and 0.3.

To test of our models of trapped ion effects, we compare with the linear gyrokinetic particle
simulations of Ref. 32, and the gyrokinetic “Vlasov” simulations of Ref. 33 which both include
trapped ion effects. Fig. 8 shows a comparison of nonlocal linear eigenfrequencies from all three
approaches, in the flat density limit, 7; — co. The other parameters are: Ly/R = 0.1, ¢ = 2,
§=1,7 =1, and € = 0.3, in the collisionless limit, as in Fig. 6 of Ref. 32. All three calculations
assumed adiabatic electrons. The gyrofluid and Vlasov results are shown both with (¢ = 0.3) and
without (¢ = 0) trapped ion effects, to show the destabilizing effect of the trapped ions for very

long wavelengths. Since the VIn B mirroring terms are proportional to ¢, setting ¢ = 0 turns
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off these terms. Without the mirroring terms, all modes are stable below kgp; =~ 0.04. With the
mirroring terms, the toroidal ITG mode gradually evolves into a trapped ion mode. Trapped ion
effects become important when the mode tim;a scales are comparable to or less than the ion bounce
frequency, |w| S g = Vevsi/qR. For these parameters wy; L1 /vy = \/eLT/qR = 0.03, so trapped
jon effects become significant for kgp; ~ 0.1. The six moment toroidal gyrofluid equations model
this effect with reasonable accuracy. In particular, the gyrofluid model shows that trapped ions
can remove the long wavelength cutoff which exists when trapped ions are ignored, in agreement

with fully kinetic theory.

In Fig. 9 we show the same results as in Fig. 8, but now normalized to vs;/Lt, which is
indepentient of kg, and is thps proportional to the growth rate in physical units. This demonstrates
more clearly than in Fig. 8 that the growth rates of the trapped ion modes are much less than those
of the fastest growing modes near kgp; ~ 1/2, and suggests that our models of trapped ion effects
are probably adequate.

For the measured parameters used in Ref. 32, p; = 0.13cm and r¢ = 50cm; so kgp; = 0.01 =
ng/rq implies n = 2, where n is the toroidal mode number. Thus, the ballooning approximation is
definitely breaking down at these very long wavelengths, and radial variations in the equilibrium

will affect the mode structures and growth rates.

X. Summary and Discussion

In summary, we have derived toroidal ion gyrofiuid equations with improved models of the
important kinetic effects associated with toroidicity. Special care was taken to derive closure ap-
proximations which, though similar to those of Ref. 8, are well behaved in the mixed limit where
both toroidal drifts and parallel free streaming are important, i.e. where both k; and wy are non-
zero. This work also extends the four moment toroidal gyrofiuid model of Ref. 8 to six moments,
including the ;LB - VB mirroring terms. By evolving six moments, no approximations are made

to the parallel velocity equation, important for accurate poloidal flow damping rates. Including
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the ub - VB terms also incorporates trapped ion effects to some extent; the growth rate in the
very low kgp; trapped ion mode regime is within a factor of two of fully kinetic calculations. The
gyrofluid trapped ion results are in closer agreement with kinetic theory if we compare the diffusion
(< k% D) required to stabilize the long wavelength trapped ion modes.3* New toroidal FLR terms
are treated which arise from the variation of B (in the argument of Jp) with major radius, and
generalize the FLR model of Ref. 9 to toroidal geometry. An improved four moment model is also
presented, which is simpler and numerically less demanding than the six moment model. Impu-
rity and Maxwellian-model energetic particle dynamics are equally well described by these toroidal

gyrofluid equations.

Although electrostatic turbulence effectively describes many experimental regimes, the electro-
static assumption is a limitation of the toroidal ion gyrofluid equations presented here. Recent work
has begun including electromagnetic effects.3336 The main difficulty here is that magnetic fluctua-
tions are driven by parallel current fluctuations, and since trapped particles do not carry current,
passing electrons can no longer be considered adiabatic, and need to be evolved. Resolving the fast
electron parallel motion seriously slows down the numerical calculations. Some trick analogous to

7

bounce averaging, which is quite successful in simplifying the trapped electron dynamics,” would

be useful for the passing electrons.

We conclude by discussing the validity of gyrofluid equations for plasma turbulence. These
gyrofluid equations are an approximation to the full nonlinear gyrokinetic equation, and break
down in some regimes. For example, in the slab limit, the weak turbulence wave-kinetic equation
derived from the gyrofluid equations successfully reproduces the gyrokinetic wave-kinetic equation
in the limit w > kyvs;, but fails to recover the ion-Compton scattering rate very near marginal
stability, in the limit ¥ < w < kyv4.3"1® The nonlinear validity of the gyrofluid equations in strong
turbulence regimes has not yet been unambiguously verified on fundamental grounds. However,
gyrofluid simulations have been compared against full gyrokinetic particle simulations, finding

similar behavior full 3D sheared slab simulations and in three mode coupling test problems.1%:38
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Toroidal simulations have also been benchmarked with toroidal gyrokinetic particle simulations,
though not as extensively as the sheared slab simulations, and find reasonable agreement.3® Very
recently, the toroidal gyrokinetic particle simulations of Ref. 39 appear to predict lower transport
by about a factor of 2. While in principle gyrokinetic simulations are more accurate, since they
solve the gyrokinetic equation directly, there are a number of issues which need investigation:
particle noise, particle filtering, resolution, and geometry (we implement field-line coordinates in
a somewhat different way than Ref. 39, which tends to emphasize resolution in different parts of
k-space). We have done some simulations with exactly the same particle filtering and box size as
in Ref. 39, without magnetic shear (§ = 0) where our coordinate system and Ref. 39’s coordinate
system become identical. We then find that the gyrofluid simulation reproduces the gyrokinetic x;
to within 20%. Turning off the particle ﬁltering then causes x; to rise by a factor of 1.3, and our
gene\ra.l experience is that increasing the box length in the parallel direction beyond 27 typically
increases x; by a factor of 1.4. These resolution issues, and not intrinsic differences between the
gyrofluid and gyrokinetic equations, thus appear to account for most of the differences seen so far,

though more extensive comparisons would be worthy of eventual further study.
Another way to address the nonlinear accuracy of the linear closures is to consider a simple an-

alytic model of the nonlinear terms, by using the renormalized kinetic equation. Here the nonlinear

vg - V f1 term in the linear kinetic equation is replaced by Awpnry, fi:
(—iw + tkyvy + twg + Awng) fi = (tkyvye®/T — vE - V) fo.

This can now be integrated over velocity space to find a renormalized dispersion relation. If Awnr,
is independent of velocity, this will be identical to the linear dispersion relation with w replaced
by w 4+ iAwpnr. This is sometimes used to determine a saturation level for the turbulence by
requiring that Awyy, balance the linear growth rate. Closing the fluid hierarchy with linear closure
approximations naively appears to neglect Awyy in the resonant denominator and appears to

introduce an error of O(Awpng/kyvei), which is typically O(1). However, the gyrofluid equations do
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much better than this. If we similarly renormalize the E x B nonlinearity in each gyrofluid equation
and solve for the renormalized gyrofluid dispersion relation, we will obtain the three or four pole
linear dispersion relation with w again replaced by w + {Awpnr. Thus the renormalized gyrofluid
dispersion relation is just as good an approximation to the renormalized gyrokinetic dispersion
relation as it was in the linear case. Of course there are many nonlinear processes which are not
captured by this simple renormalized dispersion relation approximation, so this is not a proof that
the gyrofiuid closures always work nonlinearly.

More generally, each gyrofluid equation, as a moment of the gyrokinetic equation, is an exact
nonlinear conservation law: closure approximations are introduced into higher moment equz;.tions
in a way which preserves the conservative form the equations. Our equations retain the dominant
(E x B) nonlinearities and provide accurate physics based models of the linear drive and dissipation
mechanisms. As more moments are retained, more details of the underlying distribution function
are accurately described. In fact, Smith has demonstrated convergence in the number of moments
for the nonlinear plasma echo problem,!! though it required many moments in that case. In the
strong turbulence limit, it seems unlikely that many moments need to be kept, since the broad
spectrum of modes should average out sharp velocity space variations in the distribution function.
Future work should continue to test the validity of the gyrofluid approximation, both through

comparisons with kinetic simulations and through purely theoretical simplified problems.
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