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Feedback Optimization of Incentives for Distribution Grid Services 
Guido Cavraro Joshua Comden Andrey Bernstein 

Abstract—Energy prices and net power injection limitations 
regulate the operations in distribution grids and typically ensure 
that operational constraints are met. Nevertheless, unexpected or 
prolonged abnormal events could undermine the grid’s function-
ing. During contingencies, customers could contribute effectively 
to sustaining the network by providing services. This paper 
proposes an incentive mechanism that promotes users’ active 
participation by essentially altering the energy pricing rule. The 
incentives are modeled via a linear function whose parameters 
can be computed by the system operator (SO) by solving an 
optimization problem. Feedback-based optimization algorithms 
are then proposed to seek optimal incentives by leveraging mea-
surements from the grid, even in the case when the SO does not 
have a full grid and customer information. Numerical simulations 
on a standard testbed validate the proposed approach. 

Index Terms—Smart grid, Energy systems, Optimization 

I. INTRODUCTION 

The massive deployment of distributed energy resources 
(DERs) is dramatically changing distribution networks (DNs). 
Prosumers, i.e., entities that can be both producers and con-
sumers of energy [1] will populate DNs and could provide 
services, e.g., by contributing to voltage profle improvements. 
Nevertheless, grid instabilities might arise if DERs are not 
properly managed. 

Literature Review: Many works proposing control schemes 
for regulating net power injections in DNs assume that DERs 
apply power setpoints, possibly directly dispatched from the 
SO, aiming at the grid’s well-being. However, prosumers may 
have priorities misaligned with those of the SO and refuse 
to cooperate. The work [2] treated the case in which the 
prosumer compliance is modeled with a Bernoulli distribution. 
SOs could leverage economic incentives like discounts on the 
energy price to encourage rational prosumers, i.e., aiming at 
maximizing their benefts, to provide grid services [3], [4] 
during abnormal operations, e.g., heat or cold waves [5]. 

The work [6] proposes an incentive-based mechanism fa-
cilitating the contribution of local fexible resources to the 
congestion management of DNs, fulflling the SO’s and pro-
sumers’ objectives. Authors of [7] develop an incentive scheme 
in which an aggregator coordinates several prosumers and 
determines the user payments by solving an asymmetric Nash 
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bargaining model. A review of incentive mechanisms for DNs 
is provided in [3]. 

Market-based algorithms to incentivize DERs to provide 
services to the grid while maximizing their objectives and 
economic benefts were designed in the literature [8]–[10]. 
For example, customers may be incentivized to adjust the 
output powers of DERs in real-time to aid voltage regula-
tion [11], control the aggregate network demand [12], and fol-
low regulating signals [13]. The work [14] proposes a pricing 
mechanism for energy communities ensuring that operational 
constraints are satisfed and that the surplus of each community 
member is higher than the one under standalone settings. 
A trading scheme for increasing the exchange of electricity 
from prosumers to a distribution network meeting the network 
constraints is designed in [15]. 

Statement of Contributions: In this paper, we devise an 
incentive mechanism to promote the participation of prosumers 
in providing grid services. We assume that prosumers are 
subject to a Net Energy Metering (NEM) tariff design. NEM is 
a system that allows DERs owners to send excess energy back 
to the grid in exchange for credits on their utility bills. Under 
NEM 1.0, the system’s frst version, homeowners with solar 
panels could send excess energy back to the grid and receive 
credits at the retail rate [16]. The goal of the SO is to design 
optimal incentive functions that promote the satisfaction of 
operational constraints while minimizing the cost for the SO. 
The incentives make rational prosumers change their power 
demand to support grid operations by essentially altering the 
energy price and are designed so that the prosumers are not 
penalized or rewarded if they do not change their behavior. 
When the SO has full grid information, i.e., it knows the 
network topology, the power demands and generations, and 
the prosumer preferences, the incentives can be computed 
by solving an optimization problem. When instead partial 
information is available, we propose a feedback control frame-
work. Power and voltage measurements compensate for the 
lack of information and are used to iteratively update the 
incentives until convergence to the optimal ones. We formally 
characterize the proposed framework under common choices 
of incentives and prosumer preferences, even though our 
approach can be applied when these are general differentiable 
functions, and provide numerical results over the standard 
IEEE 33 bus feeder. 

Notation: Lower- (upper-) case boldface letters denote col-
umn vectors (matrices). The identity matrix, the vector of all 
ones, and the vector of all zeros are denoted by I, 1, 0; the 
corresponding dimension will be clear from the context. The 
sets of real numbers and nonnegative real numbers are denoted 
as R and R+ , respectively. The two norm of a matrix A isp
defned by ∥A∥ = λmax(A⊤A), where λmax(A

⊤A) is the 
largest eigenvalue of A⊤A. 
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II. GRID MODELING 

We model a low voltage1 DN with N +1 buses with an undi-
rected graph G = (N , E), where nodes N = {0, 1, . . . , N} are 
associated with the electrical buses and whose edges represent 
the electric lines. The substation, labeled as 0, is modeled as an 
ideal voltage generator (the slack bus) imposing the nominal 
voltage of 1 p.u. Each bus, except the substation, is assumed 
to be a prosumer [1]. Prosumer n can generate the active 
power rn ∈ R+ potentially exploiting behind-the-meter DERs. 
Also, prosumer n has an active and reactive power demands 
dn ∈ R+ and qn ∈ R. The net active power injection is 

pn = rn − dn. (1) 

Net powers take positive (negative) values, i.e., pn, qn ≥ 0 
(pn, qn ≤ 0) when they are injected into (absorbed from) the 
grid. When pn ≥ 0, n behaves like a generator; when pn ≤ 0, 
n behaves like a load. Let d ∈ RN and r ∈ RN collect all 
the demands and DER outputs. Potentially, each prosumer n 
may have some fexibility in the net power injection, i.e., 

pn ∈ [p , p ], n = 1, . . . , N. (2)nn 

If n’s power injection is non fexible load, e.g., n hosts 
a critical load, then p = p . The model (2) potentiallynn 
captures load limitations enforced to not compromise the 
network’s operation, e.g., dynamic operating envelopes [17]. 
The limitation (2) is then equivalent to 

∈ Dn = [d ], n = 1, . . . , N. (3)dn n, dn 

Denote by vn ∈ R the voltage magnitude at bus n ∈ N , and 
let the vector v ∈ RN collect the voltage magnitudes of buses 
1, . . . , N . Voltage magnitudes are nonlinear functions of the 
power injections; however frst-order Taylor expansion of the 
power fow equation yields [1] 

v = Rp + Xq + ω (4) 

RN×N RN ×Nwhere R ∈ and X ∈ are symmetric and+ + 
positive defnite matrices [1] and ω ∈ RN . R and X represent+ 
the sensitivity of the voltage magnitudes w.r.t. net power 
injection variations. 

III. INCENTIVES FOR GRID SERVICES 

According to the NEM 1.0, prosumer n net power injection 
is charged following the rule 

γ(pn) = −πpn + π0 

where π > 0 is the retail rate and π0 captures non-volumetric 
surcharges, e.g., the connection charge [16]. When the pro-
sumer net consumes (produces), the frst term in γ(pn) is 
positive (negative), meaning that n is charged (remunerated). 
Without loss of generality, we assume that the coeffcients 
π, π0 are the same for all the prosumers and fxed. Indeed, 
the price coeffcients are defned in the contract between the 
utility and the customers and are usually updated once every 
several months or a few years. 

1The proposed methods are suitable for applications in both low-voltage 
and medium-voltage DNs. However, to keep the notation light, we will focus 
hereafter on single-phase low-voltage networks. 

The surplus of customer n is the difference between the 
comfort and the payment from consumption 

Ŝn(dn, rn) = Un(dn) − γ(pn) 

= Un(dn) − πdn + πrn − π0 (5) 

where we used (1). The utility of consumption Un(dn) is 
assumed to be strictly concave and continuously differentiable 
with a marginal utility function ∇Un. We denote the inverse 
marginal utility by fn := (∇Un)

−1 , ∀n ∈ N . 
We assume that each prosumer n acts rationally, i.e., aims 

to maximize its surplus. That is, n sets its power demand as 
the solution of the following prosumer optimization problem 

d̂  
n = arg max Ŝ 

n(dn, rn) (6)
dn ∈Dn 

The optimal demand can be easily computed as 

d̂  
n = [fn(π)]Dn . (7) 

where [·]Dn denotes the projection onto the set Dn. 
Even though (2) typically ensures that the network oper-

ates correctly, unexpected or abnormal events, like sudden 
generation drops or heat and cold waves, might affect the 
network operations. The SO could then ask the prosumers to 
provide grid services to avoid grid damages and instabilities 
and compensate them by means of incentives captured by 
continuously differentiable functions gn(dn, ξn) parameterized 
in ξn. For each n ∈ N and ξn, the incentive computed at the 
nominal consumption d̂  

n should be zero, i.e., 

gn(d̂  
n, ξn) = 0. (8) 

Equation (8) ensures that an agent is not charged or remuner-
ated if it does not provide ancillary services, i.e., if it keeps is 
demand at d̂  

n. The function parameters for all the prosumers 
are collected in the vector � �⊤ 

ξ = ξ1 . . . ξN . 

The incentive gn(dn, ξn) essentially shapes prosumer n sur-
plus (5), which becomes 

Sn(dn, rn, ξn) = Ŝ 
n(dn, rn) + gn(dn, ξn) (9) 

so that the solution of the new prosumer optimization problem 

d ∗ (ξn) = arg max Sn(dn, rn, ξn) (10)n
dn∈Dn 

is favorable for grid operations, see Figure 1. The SO’s goal 
is to fnd the ξ that minimize the cost of sustaining the 
distribution grid while ensuring that operational constraints 
are met, i.e., to solve the incentive optimization problem2 X 
ξ ∗ := arg min gn(d ∗ (ξn), ξn) − πd ∗ (ξn) − π0 + πrn 

ξ 
n n

n 
(11a) 

s.t. v ≤ v ≤ v (11b) 
p ≤ p0 ≤ p00 

(11c) 

2Though in the following we will consider problem (11), in principle our 
approach is suitable and can be easily extended also when the problem of 
interest include other constraints, e.g., line fow limits. Also, constraints on ξ 
could be added to comply with possible regulatory frameworks. 
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Fig. 1. The incentive function shapes prosumer n surplus. Here, the utility 
of consumption is quadratic and the incentive function is linear. When ξn 
is negative, the demand is reduced, see the left panel. When ξn is positive, 
the demand increases, see the left panel. Heed that gn(d̂  

n, ξn) equals zero, 
meaning that no remuneration is given to n if it does not provide services. 

d ∗ (ξ) ≥ 0 (11d) 

where the vector d∗(ξ) collects all the dn(ξn)’s. The 
constraint (11b) captures voltage operational constraints; 
whereas (11c) enforces the power exchange with the external 
network to be within a desired interval, possibly modeling 
the case in which the grid is required to behave as a Virtual 
Power Plant. Finally, (11d) guarantees that the loads remain 
nonnegative. The interactions between the utility company 
(leader) and prosumers (followers) is a Stackelberg game [18], 
where the players select the optimal strategy by solving the 
optimization problems (10) and (11). 

IV. FEEDBACK ALGORITHMS FOR THE COMPUTATION OF 
THE OPTIMAL INCENTIVES 

The optimal incentive ξ ∗ can be computed by directly solv-
ing problem (11) when the SO has full network information, 
i.e., it knows the grid parameters R, the power demands d 
and q, the DER power outputs r, the user preferences Un’s, 
and the incentive functions gn’s. However, such a scenario of 
perfect grid information is unusual in distribution networks, 
for instance, because of a lack of real-time metering infrastruc-
ture. Hence, we propose the following feedback optimization 
algorithms in which the missing information is compensated 
by measurements and problem (11) is solved iteratively. To 
that aim, it is convenient to introduce the Lagrangian of (11) 

′ L(ξ,λ, λ, ν, µ, µ) = g(d ∗ (ξ), ξ) − π1⊤d ∗ (ξ) + c 
⊤ 

+ λ (v − v) − λ⊤(v − v) − ν⊤d ∗ (ξ) 

+ µ(p0 − p0) − µ(p0 − p ). (12) P 
0 

′where c = (πrn − π0) and g is the sum of all the gn. n 
Collect the Lagrange multipliers in h i⊤⊤ 

θ ∈ R3N+2
λ⊤ ⊤ ⊤θ := λ µ µ ν⊤ , .+ 

1) A Dual Ascent Method and a Primal-Dual Method: 
First, consider the case in which the SO does not have available 
real-time information about behind-the-meter generation rn 

and reactive power demand qn of prosumers 1, . . . , N . A dual 
ascent algorithm solving (23) reads 

ξ(t + 1) = arg min L(ξ(t), θ(t) (13a)
ξ 

� � 
λ(t + 1) = λ(t) + ϵ(v(t) − v) RN (13b) 

+� � 
λ(t + 1) = λ(t) + ϵ(v − v(t)) RN (13c) 

+� � 
µ(t + 1) = µ(t) + ϵ(p0(t) − p0) R+ 

(13d)� � 
µ(t + 1) = µ(t) + ϵ(p

0 
− p0(t)) R+ 

(13e)� � 
ν(t + 1) = ν(t) + ϵd ∗ (t) (13f)RN 

+ 

The incentive parameters are iteratively updated in (13) until 
convergence to their optimum values. The values of v(t) and 
p0(t) are directly measured. 

If the minimization in (13a) cannot be easily performed, the 
next frst-order primal-dual method can be pursued � 

ξ(t + 1) = ξ(t) − ϵ ∇d ∗ (t)∇dg(d ∗ (t), ξ(t)) �� � 
+ ∇p0(t) µ(t) − µ(t) −∇d ∗ (t)ν(t) − π∇d ∗ (t)1 � � 
+ ∇ξg(d ∗ (t), ξ(t)) + ∇v(t) λ(t) − λ(t) (14a) 
(13b) − (13f) (14b) 

Note that to implement the primal update (14a), one needs 
the measurement of the demand d∗(t), the sensitivity of 
the demand to the incentive signal given by the gradient 
matrix ∇d∗(t), and the sensitivity of the power-fow model 
to the incentives given by the gradients ∇v(t) and ∇p0(t). 
These matrices can be computed knowing the prosumer utility 
functions (the Un’s) and the network model, or estimated from 
historical data (e.g., from previous demand response events). 

2) A Zero-Order Feedback-Based Methods: Second, con-
sider the most extreme case when also the sensitivity matrices 
above are unknown and the SO has available only demand and 
voltage measurements. We propose to use a zero-order method 
to seek saddle points of (12) similar to, e.g., [19]. In particular, 
we employ a double-evaluation approach for approximating 
the gradient of the Lagrangian: h � � � � i ζ(t)b b b∇L(t) := L ξ+(t), θ(t) − L ξ−(t), θ(t) (15)

2σ 

where perturbed incentives bξ+(t) and bξ−(t) are applied to the 
system with bξ±(t) := ξ(t)±σζ(t). Here, σ > 0 is a parameter 
that controls the magnitude of perturbation, and ζ(t) ∈ RN is 
a perturbation signal which can be either chosen as a random 
or deterministic process. In Section VI, we show an application 
in which ζ(t) is a random signal. With approximation (15) at 
hand, the zero-order method is 

ξ(t + 1) = ξ(t) − ϵ b (16a)∇L(t) 
(13b) − (13f). (16b) 

Observe that (16a) can be implemented in a complete model-
free fashion provided that the measurements of demand, 
voltages, and aggregate power are available. 

Remark 1. Algorithms (13), (14), and (16) have a feedback 
control implementation. Indeed, voltage and power measure-
ments enable the Lagrange multipliers updates (13b)–(13f) 
when the values of v and p0 cannot be directly computed 
via the power fow equations because of lack of information. 
A schematic representation of the overall closed-loop system 
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Fig. 2. Block scheme representation of the feedback control system. 

is given in Figure 2. In our setup, the system’s state consists of 
the primal and the dual variables; the renewable generations, 
the prosumer utility functions Un’s, and the reactive power 
demand act as a system’s input. 

V. CONVEXIFICATION OF THE INCENTIVE OPTIMIZATION 
PROBLEM AND STABILITY ANALYSIS 

An SO can use the methods described in Section IV to 
solve the incentive problem (11), which is possibly nonconvex. 
In the following, we introduce commonly adopted choices of 
functions and parameters resulting in a convex problem that 
allows for explicit algorithm formulation and stability analysis. 

a) Quadratic utility functions: similar to what is com-
monly done in the literature, e.g., see [18], [20], consider the 
quadratic prosumer utility functions 

αn
Un(dn) = − d2 + βndn, αn ∈ R+, βn ≥ π. (17)n2 

b) Unbounded power demand: the prosumers can choose 
the dn’s to be an arbitrary nonnegative number, i.e., we 
disregard (2). The projection in (7) would just complicate the 
notation hereafter without adding anything conceptually and 
can be performed easily in practical applications. 

c) Linear incentive functions: we consider linear incen-
tive functions of the form [21] 

gn(dn, ξn) = ξn(dn − d̂  
n) 

Heed that a prosumer is not charged or remunerated if it does 
not change its power demand, i.e., gn(d̂  

n, ξn) = 0. 
d) Approximated power exchange: We consider the lin-

earized power fow equation (4). Also we neglect the power 
losses and approximate the power delivered to the distribution 
network through the substation as X 

p0 = − pn = 1⊤(d − r). 
n 

Together with the approximation (4), the former equation 
yields the convex optimization problem reported in the follow-
ing. The SO could however in principle solve an optimization 
problem considering the true power fow equations. 

The former choices yield the next quantities. The nominal 
(i.e., the one in the absence of incentives) demand and the 
net power injection for prosumer n obtained by solving the 
prosumer optimization problem can be written as 

βn − πˆ − ˆdn := , p̂n := rn dn. 
αn 

It is clear that the demand is a decreasing function of the 
energy price. The surplus (9) becomes 

αn
Sn(dn, ξn, rn) = − d2 + βndn − πdn + πrnn2 

− π0 + ξn(dn − d̂  
n) 

and the optimal consumption (7) for prosumer n is 

βn − π + ξn ξn
d ∗ ˆ(ξn) = = dn + .n αn αn 

The new surplus maximizer is a linear perturbation of the one 
without incentives. Collect all the optimal consumptions with 
or without incentives in the vectors d∗(ξ) and d̂. Then, 

d̂ = Aβ − πA1 (18) 

d ∗ (ξ) = d̂+ Aξ (19) � �⊤1 1with A := diag(a), a := . . . , A positive α1 αN 

defnite. Constraint (11d) can be reformulated in terms of ξ as � �⊤ 
ξ ≥ π1 − β, β := β1 β2 . . . βN . (20) 

Under d∗(ξ), the power delivered to the DN is 

p0(ξ, r) = 1⊤Aξ + 1⊤d̂ − 1⊤ r. (21) 

Also, the remuneration due to the prosumers, i.e., the sum of 
the incentives, for their services is quadratic in ξ. Indeed: X 

gn(d ∗ (ξn), ξn) − πd ∗ (ξn) + πrn − π0 = n n 
n X ξ2 

n = − 
π

ξn − γ(p̂n) = ξ⊤Aξ + b⊤ξ + c 
αn αn n P 

where b := −πA1, c := − γ(p̂n). Using (4) and (19),n 
the voltage magnitudes become a function of the incentive 

v(ξ, r) = −RAξ + Rr + v̂ (22) 

with v̂ := Xq − Rd̂+ ω. Equations (18) – (22) can be used 
to approximate (11) with the strictly convex problem 

ξ ∗ = arg min ξ⊤Aξ + b⊤ξ + c (23a)
ξ 

s.t. (20) − (21) − (22) 
v ≤ v ≤ v (23b) 
p ≤ p0 ≤ p0 (23c)
0 

We will hereafter assume that the feasible set described by 
equations (20), (21), (22), (23b), and (23c) is non empty. 
Hence, problem (23) admits a unique minimizer. Defning � �⊤ 

, Φ ∈ R(3N+2)×NΦ := −AR AR A1 −A1 −I � 
ϕ = (v̂ − v)⊤ (v − v̂)⊤ d̂⊤1 − p0�⊤ 

ϕ ∈ R3N+2 p − d̂⊤1 π1⊤ − β ,
0 

problem (23) can be rewritten as 

ξ ∗ = arg min ξ⊤Aξ + b⊤ξ + c (24a)
ξ 

s.t. Φξ + ϕ ≤ 0 (24b) 

and its Lagrangian (cf. (12)) is 

L(ξ, θ) = ξ⊤Aξ + b⊤ξ + c + θ⊤(Φξ + ϕ). (25) 
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We can use (25) to derive the equations of the dual ascent 
algorithm (13) or the primal-dual strategy (14) under the 
assumpion introduced earlier. The next result provides a condi-
tion for the convergence of algorithm (13) for the special case 
in which the renewable generation r is constant. The stability 
characterization of the primal-dual algorithm (14) and of the 
zero-order method (16) is left to future research. 

Proposition 1. The dual ascent control scheme (13) is globally 
uniformly asymptotically stable if 

ϵ < 4∥Φ⊤A−1Φ∥−1 . (26) 

Proof: The minimizer w.r.t. the primal variable of the 
Lagrangian (25), which is 

A−1 

ξ(θ) = − (b + Φ⊤θ)
2 

can be used to obtain the dual problem 

max h(θ) 
θ∈R3N +2 

+ 

where � �ΦA−1b − θ⊤ ΦA−1Φ⊤ b⊤A−1b 
h(θ) = θ⊤ ϕ − θ − . 

2 4 4 

The former problem has zero duality gap with (23) because 
the Slater’s conditions hold true [22]. The gradient of h is � �ΦA−1Φ⊤ ΦA−1b ∇h(θ) = θ − − ϕ 

2 2 

and the dual ascent algorithm (13) becomes � � 
θ(t + 1) = f(θ(t)), f(θ) = θ + ϵ∇h(θ) R3N +2 . 

+ 

By recalling that the projection is a nonexpansive operator, the 
map f is a contraction under condition (26). Indeed, 

∥f(θ) − f (θ ′ )∥ = � � � � 
= θ + ϵ∇h(θ) R3N+2 − θ ′ + ϵ∇h(θ ′ ) R3N +2 � 

+ � 
+ 

ΦA−1Φ⊤ 

≤ I − ϵ (θ − θ ′ )
2 

ΦA−1Φ⊤ 

≤ I − ϵ ∥θ − θ ′ ∥ 
2 

Now, we need to show that ∃k ∈ ]0, 1[ such that 

ΦA−1Φ⊤ 

I − ϵ ≤ 1 − k (27)
2 

Denote by λmin and λmax the minimum and the maximum 
eigenvalues of ΦA−1Φ⊤ . We have that λmax = ΦA−1Φ⊤ . 
Being A positive defnite, ΦA−1Φ⊤ is positive semidefnite. 
Also, since Φ is full column rank, ΦA−1Φ⊤ is full rank 

Φ⊤and λmin > 0. Noting that I − ϵ ΦA−1 
= max{1 −2 

ϵ ϵλmin, λmax − 1}, equation (27) is equivalent to the system 2 2 ( 
k ≤ ϵ λmin 

2 (28)
k ≤ 2 − ϵ λmax 

2 . 

If (26) holds true, (27) is satisfed with k > 0 and meeting (28). 
The global asymptotic stability then follows. 

Fig. 3. Total incentive of customers vs. the number of iterations. 

Fig. 4. Minimum nodal voltage magnitude vs. the number of iterations. 

VI. NUMERICAL ILLUSTRATION 

Here, we validate the incentive mechanism and the 
feedback-based optimization algorithms from Section IV on 
a realistic distribution feeder. The IEEE 33-bus radial distri-
bution network [23] was simulated using PandaPower with 32 
loads chosen randomly from 114 apartments sourced from the 
UMass Trace Repository [24] to be placed at each of the 32 
load nodes. A normalized retail price π was set at 1.0 and 
the prosumer quadratic utility function coeffcients αn were 
chosen uniformly at random between 0.3 and 3.0. A solar farm 
was connected to bus 31 with a capacity of 6 times its default 
node load size. The voltages are required to be in the range 
[0.95 p.u., 1.05 p.u.]. Virtual power plant bounds of ±0.2 MW 
were placed around the power going into the feeder. 

In the frst set of numerical simulations, we considered a 
static case in which the utility function parameters, the reactive 
power demands, and the generations were fxed. The solar 
farm was disconnected causing some of the nodal voltage 
magnitudes to drop below 0.95 p.u. and initiating the incentive 
mechanism. The parameters of the algorithms were set to: ϵ = 
0.5 for the dual ascent; ϵ = 0.3 for the frst-order algorithm; 
σ = 0.02 and ϵ = 0.05 for the zero-order method. A vector of 
uniform random variables between -1 and 1 was chosen for 
ζ(t). The proposed algorithms are compared by showing their 
total incentive, minimum nodal voltage magnitude, and feeder 
power versus the number of iterations, in Figures 3, 4, and 
5, respectively. As expected, the more information we have 
about the prosumers, the faster we can approach an optimal 
ξ. Dual ascent utilizes complete knowledge of the prosumer 
utility functions to converge the fastest, while the frst-order 
algorithm utilizes only the prosumer sensitivities to incentives 
to converge at a slightly slower rate. However, the zero-order 
algorithm has no knowledge of the prosumers and requires 
exploration to slowly fnd effective values of ξ with respect 
to the voltage and virtual power plant bounds. 

In the second set of simulations, we tested the algorithms in 
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Fig. 5. Feeder power vs. the number of iterations. 

Fig. 6. Total incentive of customers vs. the number of iterations in the time-
varying case. 

a time-varying setting. The solar farm output is chosen accord-
ing to the ISO New England aggregated solar production in the 
Western Massachusetts Zone on 9/19/2016 [25]. The incentive 
mechanism makes the prosumers adapt to the solar farm’s 
volatility and ensures the fulfllment of the voltage and power 
constraints. Figure 6 shows the total incentive trajectories. The 
algorithms track the optimal incentives. Again, the dual ascent 
provides the best performance, followed by the primal-dual 
and then by the zero-order method. 

VII. CONCLUSION 

We have presented an incentive mechanism that, by essen-
tially changing the energy price, makes rational users change 
their demand and provide grid services, e.g., voltage and 
power regulation. The incentives are described here with affne 
functions. The function parameters that achieve the desired 
grid performance and minimize the cost for the SO can be 
computed by solving an optimization problem. When the 
problem cannot be directly solved because some grid/customer 
information is not available, we devised feedback control algo-
rithms that iteratively update the incentives until convergence 
to the optimum. Future research directions include studying 
the convergence properties of our algorithms in time-varying 
cases and considering nonlinear incentive functions. 
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