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Abstract—Energy prices and net power injection limitations
regulate the operations in distribution grids and typically ensure
that operational constraints are met. Nevertheless, unexpected or
prolonged abnormal events could undermine the grid’s function-
ing. During contingencies, customers could contribute effectively
to sustaining the network by providing services. This paper
proposes an incentive mechanism that promotes users’ active
participation by essentially altering the energy pricing rule. The
incentives are modeled via a linear function whose parameters
can be computed by the system operator (SO) by solving an
optimization problem. Feedback-based optimization algorithms
are then proposed to seek optimal incentives by leveraging mea-
surements from the grid, even in the case when the SO does not
have a full grid and customer information. Numerical simulations
on a standard testbed validate the proposed approach.

Index Terms—Smart grid, Energy systems, Optimization

I. INTRODUCTION

The massive deployment of distributed energy resources
(DERs) is dramatically changing distribution networks (DNs).
Prosumers, i.e., entities that can be both producers and con-
sumers of energy [1] will populate DNs and could provide
services, e.g., by contributing to voltage profile improvements.
Nevertheless, grid instabilities might arise if DERs are not
properly managed.

Literature Review: Many works proposing control schemes
for regulating net power injections in DNs assume that DERs
apply power setpoints, possibly directly dispatched from the
SO, aiming at the grid’s well-being. However, prosumers may
have priorities misaligned with those of the SO and refuse
to cooperate. The work [2] treated the case in which the
prosumer compliance is modeled with a Bernoulli distribution.
SOs could leverage economic incentives like discounts on the
energy price to encourage rational prosumers, i.e., aiming at
maximizing their benefits, to provide grid services [3], [4]
during abnormal operations, e.g., heat or cold waves [5].

The work [6] proposes an incentive-based mechanism fa-
cilitating the contribution of local flexible resources to the
congestion management of DNs, fulfilling the SO’s and pro-
sumers’ objectives. Authors of [7] develop an incentive scheme
in which an aggregator coordinates several prosumers and
determines the user payments by solving an asymmetric Nash
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bargaining model. A review of incentive mechanisms for DNs
is provided in [3].

Market-based algorithms to incentivize DERs to provide
services to the grid while maximizing their objectives and
economic benefits were designed in the literature [8]-[10].
For example, customers may be incentivized to adjust the
output powers of DERs in real-time to aid voltage regula-
tion [11], control the aggregate network demand [12], and fol-
low regulating signals [13]. The work [14] proposes a pricing
mechanism for energy communities ensuring that operational
constraints are satisfied and that the surplus of each community
member is higher than the one under standalone settings.
A trading scheme for increasing the exchange of electricity
from prosumers to a distribution network meeting the network
constraints is designed in [15].

Statement of Contributions: In this paper, we devise an
incentive mechanism to promote the participation of prosumers
in providing grid services. We assume that prosumers are
subject to a Net Energy Metering (NEM) tariff design. NEM is
a system that allows DERs owners to send excess energy back
to the grid in exchange for credits on their utility bills. Under
NEM 1.0, the system’s first version, homeowners with solar
panels could send excess energy back to the grid and receive
credits at the retail rate [16]. The goal of the SO is to design
optimal incentive functions that promote the satisfaction of
operational constraints while minimizing the cost for the SO.
The incentives make rational prosumers change their power
demand to support grid operations by essentially altering the
energy price and are designed so that the prosumers are not
penalized or rewarded if they do not change their behavior.
When the SO has full grid information, i.e., it knows the
network topology, the power demands and generations, and
the prosumer preferences, the incentives can be computed
by solving an optimization problem. When instead partial
information is available, we propose a feedback control frame-
work. Power and voltage measurements compensate for the
lack of information and are used to iteratively update the
incentives until convergence to the optimal ones. We formally
characterize the proposed framework under common choices
of incentives and prosumer preferences, even though our
approach can be applied when these are general differentiable
functions, and provide numerical results over the standard
IEEE 33 bus feeder.

Notation: Lower- (upper-) case boldface letters denote col-
umn vectors (matrices). The identity matrix, the vector of all
ones, and the vector of all zeros are denoted by I, 1, 0; the
corresponding dimension will be clear from the context. The
sets of real numbers and nonnegative real numbers are denoted
as R and RY, respectively. The two norm of a matrix A is

defined by ||A|| = /Amax(ATA), where A\ (AT A) is the
largest eigenvalue of AT A.
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II. GRID MODELING

We model a low voltage! DN with N+1 buses with an undi-
rected graph G = (N, ), where nodes N' = {0,1,..., N} are
associated with the electrical buses and whose edges represent
the electric lines. The substation, labeled as 0, is modeled as an
ideal voltage generator (the slack bus) imposing the nominal
voltage of 1 p.u. Each bus, except the substation, is assumed
to be a prosumer [1]. Prosumer n can generate the active
power 1, € Ry potentially exploiting behind-the-meter DERs.
Also, prosumer n has an active and reactive power demands
d, € Ry and g, € R. The net active power injection is

Pn =Tn _dn~ (1)

Net powers take positive (negative) values, i.e., pn,qn > 0
(Pns qn < 0) when they are injected into (absorbed from) the
grid. When p,, > 0, n behaves like a generator; when p,, < 0,
n behaves like a load. Let d € RY and r € RY collect all
the demands and DER outputs. Potentially, each prosumer n
may have some flexibility in the net power injection, i.e.,

pne@n’ﬁn}’ nzl?"'aN- (2)

If n’s power injection is non flexible load, e.g., n hosts
a critical load, then p == p,. The model (2) potentially
captures load limitations enforced to not compromise the
network’s operation, e.g., dynamic operating envelopes [17].
The limitation (2) is then equivalent to

d, €D, =d,,d,, n=1,...,N. 3)

Denote by v, € R the voltage magnitude at bus n € N, and
let the vector v € R collect the voltage magnitudes of buses
1,..., N. Voltage magnitudes are nonlinear functions of the
power injections; however first-order Taylor expansion of the
power flow equation yields [1]

v=Rp+Xq+w 4)

where R € RY*Y and X € RY*M are symmetric and
positive definite matrices [1] and w € Rf . R and X represent
the sensitivity of the voltage magnitudes w.r.t. net power
injection variations.

IIT. INCENTIVES FOR GRID SERVICES

According to the NEM 1.0, prosumer n net power injection
is charged following the rule

Y(pn) = —7pn + o

where 7 > 0 is the retail rate and 7 captures non-volumetric
surcharges, e.g., the connection charge [16]. When the pro-
sumer net consumes (produces), the first term in y(p,) is
positive (negative), meaning that n is charged (remunerated).
Without loss of generality, we assume that the coefficients
m, o are the same for all the prosumers and fixed. Indeed,
the price coefficients are defined in the contract between the
utility and the customers and are usually updated once every
several months or a few years.

IThe proposed methods are suitable for applications in both low-voltage
and medium-voltage DNs. However, to keep the notation light, we will focus
hereafter on single-phase low-voltage networks.

The surplus of customer n is the difference between the
comfort and the payment from consumption

Sn(dn;rn) = Un(dn) —v(pn)
= U,(d,) — 7d,, + 7y, — o 5)

where we used (1). The utility of consumption U, (d,) is
assumed to be strictly concave and continuously differentiable
with a marginal utility function VU,,. We denote the inverse
marginal utility by f,, ;== (VU,)",¥n € N.

We assume that each prosumer n acts rationally, i.e., aims
to maximize its surplus. That is, n sets its power demand as
the solution of the following prosumer optimization problem

d, = arg max Sy (dn, ) (6)

dn €Dy

The optimal demand can be easily computed as
dn = [fa(m)]D,- @

where [|p, denotes the projection onto the set D,,.

Even though (2) typically ensures that the network oper-
ates correctly, unexpected or abnormal events, like sudden
generation drops or heat and cold waves, might affect the
network operations. The SO could then ask the prosumers to
provide grid services to avoid grid damages and instabilities
and compensate them by means of incentives captured by
continuously differentiable functions g,,(d,,, &, ) parameterized
in &,. For each n € N and &,,, the incentive computed at the
nominal consumption dn should be zero, i.e.,

Equation (8) ensures that an agent is not charged or remuner-
ated if it does not provide ancillary services, i.e., if it keeps is
demand at d,,. The function parameters for all the prosumers
are collected in the vector

E=[&a ... &

The incentive g, (d,,&,) essentially shapes prosumer n sur-
plus (5), which becomes

}T

Sn(dnyrnygn) = Sn(dnyrn) + gn(dnagn) 9)

so that the solution of the new prosumer optimization problem

d;(gn) = arg Ilax Sn(d'mrn:gn) (10)
dn€Dy

is favorable for grid operations, see Figure 1. The SO’s goal

is to find the £ that minimize the cost of sustaining the

distribution grid while ensuring that operational constraints

are met, i.e., to solve the incentive optimization problem2

&= arngEinZgn(dfl(fn),ﬁn) - Wd:L(gn) — Mo + 7Ty

(11a)
st. v<v<vy (11b)
P, < Po <Dy (11c)

0

2Though in the following we will consider problem (11), in principle our
approach is suitable and can be easily extended also when the problem of
interest include other constraints, e.g., line flow limits. Also, constraints on &
could be added to comply with possible regulatory frameworks.
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Fig. 1. The incentive function shapes prosumer n surplus. Here, the utility
of consumption is quadratic and the incentive function is linear. When &,
is negative, the demand is reduced, see the left panel. When &n is positive,
the demand increases, see the left panel. Heed that gy, (dn, &n) equals zero,
meaning that no remuneration is given to n if it does not provide services.

da(€) > 0 (11d)

where the vector d*(€) collects all the d,(&,)’s. The
constraint (11b) captures voltage operational constraints;
whereas (11c) enforces the power exchange with the external
network to be within a desired interval, possibly modeling
the case in which the grid is required to behave as a Virtual
Power Plant. Finally, (11d) guarantees that the loads remain
nonnegative. The interactions between the utility company
(leader) and prosumers (followers) is a Stackelberg game [18],
where the players select the optimal strategy by solving the
optimization problems (10) and (11).

IV. FEEDBACK ALGORITHMS FOR THE COMPUTATION OF
THE OPTIMAL INCENTIVES

The optimal incentive £€* can be computed by directly solv-
ing problem (11) when the SO has full network information,
i.e., it knows the grid parameters R, the power demands d
and q, the DER power outputs r, the user preferences U,,’s,
and the incentive functions g,,’s. However, such a scenario of
perfect grid information is unusual in distribution networks,
for instance, because of a lack of real-time metering infrastruc-
ture. Hence, we propose the following feedback optimization
algorithms in which the missing information is compensated
by measurements and problem (11) is solved iteratively. To
that aim, it is convenient to introduce the Lagrangian of (11)

LEXNAV,TL,p) = g(d*(€),6) — 71T d"(€) + ¢
X (v=v) AT (v—v) - d ()
+ B(po — Po) — #(po — py)-

where ¢ = " (nr, —m) and g is the sum of all the g,,.
Collect the Lagrange multipliers in

12)

—T T
0 — [)\ AT 7T T T
1) A Dual Ascent Method and a Primal-Dual Method:
First, consider the case in which the SO does not have available
real-time information about behind-the-meter generation 7,
and reactive power demand ¢,, of prosumers 1,..., N. A dual
ascent algorithm solving (23) reads

£+1) = arg min L(&(t),0()

3N+2
0 cRT.

(13a)

At+1) = [A(t) +e(v(t) — v)]M (13b)
At +1) = [A) + e(v = v(1)) | gx (13¢)
fi(t +1) = [fi(t) + e(po(t) — Po) g, (13d)
pt+1) = [pu(t) +elp, —po(t))]p, (13e)
vt+1) = [p(t) +ed*(t)] z (13f)

The incentive parameters are iteratively updated in (13) until
convergence to their optimum values. The values of v(¢) and
po(t) are directly measured.

If the minimization in (13a) cannot be easily performed, the
next first-order primal-dual method can be pursued

E(t+1) = £(t) — (V" () Vag(d* (1),£(1))
+ Vpolt) (A(t) - p(t)) — V' (tw(t) - 7Va*(6)1)

t)
+ Veg(d*(t),£(t)) + Vv(t) (A(t) — A1) (14a)
(13b) — (13f) (14b)

Note that to implement the primal update (14a), one needs
the measurement of the demand d*(¢), the sensitivity of
the demand to the incentive signal given by the gradient
matrix Vd*(¢), and the sensitivity of the power-flow model
to the incentives given by the gradients Vv (t) and Vpg(t).
These matrices can be computed knowing the prosumer utility
functions (the U,,’s) and the network model, or estimated from
historical data (e.g., from previous demand response events).

2) A Zero-Order Feedback-Based Methods: Second, con-
sider the most extreme case when also the sensitivity matrices
above are unknown and the SO has available only demand and
voltage measurements. We propose to use a zero-order method
to seek saddle points of (12) similar to, e.g., [19]. In particular,
we employ a double-evaluation approach for approximating
the gradient of the Lagrangian:

W e(Ew.em)-c(emem)] as)

VL(t) = o
where perturbed incentives £ 4 (t) and £ (t) are applied to the
system with Ei(t) = &(t)+0¢(t). Here, o > 0 is a parameter
that controls the magnitude of perturbation, and ¢(t) € RY is
a perturbation signal which can be either chosen as a random
or deterministic process. In Section VI, we show an application
in which ¢(t) is a random signal. With approximation (15) at
hand, the zero-order method is

E(t+1) = &(t) — eVL(t)
(13b) — (13f).

(16a)
(16b)

Observe that (16a) can be implemented in a complete model-
free fashion provided that the measurements of demand,
voltages, and aggregate power are available.

Remark 1. Algorithms (13), (14), and (16) have a feedback
control implementation. Indeed, voltage and power measure-
ments enable the Lagrange multipliers updates (13b)—(13f)
when the values of v and py cannot be directly computed
via the power flow equations because of lack of information.
A schematic representation of the overall closed-loop system
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Fig. 2. Block scheme representation of the feedback control system.

is given in Figure 2. In our setup, the system’s state consists of
the primal and the dual variables; the renewable generations,
the prosumer utility functions U, ’s, and the reactive power
demand act as a system’s input.

V. CONVEXIFICATION OF THE INCENTIVE OPTIMIZATION
PROBLEM AND STABILITY ANALYSIS

An SO can use the methods described in Section IV to
solve the incentive problem (11), which is possibly nonconvex.
In the following, we introduce commonly adopted choices of
functions and parameters resulting in a convex problem that
allows for explicit algorithm formulation and stability analysis.

a) Quadratic utility functions: similar to what is com-
monly done in the literature, e.g., see [18], [20], consider the
quadratic prosumer utility functions

Un(dy) = —%di ¥ Budn, an €RY, By >7. (17)

b) Unbounded power demand: the prosumers can choose
the d,’s to be an arbitrary nonnegative number, i.e., we
disregard (2). The projection in (7) would just complicate the
notation hereafter without adding anything conceptually and
can be performed easily in practical applications.

c) Linear incentive functions: we consider linear incen-
tive functions of the form [21]

Heed that a prosumer is not charged or remunerated if it does
not change its power demand, i.e., g, (dn, &) =0.

d) Approximated power exchange: We consider the lin-
earized power flow equation (4). Also we neglect the power
losses and approximate the power delivered to the distribution
network through the substation as

po=-> pn=17(d-r).

Together with the approximation (4), the former equation
yields the convex optimization problem reported in the follow-
ing. The SO could however in principle solve an optimization
problem considering the true power flow equations.

The former choices yield the next quantities. The nominal
(i.e., the one in the absence of incentives) demand and the
net power injection for prosumer n obtained by solving the
prosumer optimization problem can be written as

~ /Bn — T N ~

dy = s Pn i=1Tn — dn.
o7

It is clear that the demand is a decreasing function of the
energy price. The surplus (9) becomes

Sn(dna §n, Tn) = _i;dgl + Bnd, — wdy + 7Ty

— 7o + fn(dn - dAn)
and the optimal consumption (7) for prosumer n is
* —7m+&n 7
dn(gn) = ﬁn fl = dn + 57”
Qn Qn

The new surplus maximizer is a linear perturbation of the one
without incentives. Collect all the optimal consumptions with
or without incentives in the vectors d*(£) and d. Then,

d=AB-rAl
d* (&) =d + A¢

(18)
19)

1 1

with A = diag(a), a = [ ... L], A positive

definite. Constraint (11d) can be reformulated in terms of £ as

-

£>7l1-4, B:=[p P2 Bn] - (20)
Under d*(&), the power delivered to the DN is

po(é,r)=1TAE+1"7d—1"r. Q21

Also, the remuneration due to the prosumers, i.e., the sum of
the incentives, for their services is quadratic in &. Indeed:

D 9n(d1(6n): §n) = 7, (&) + 71 — 0 =

2 0
Sy T () =€ AE b E

where b := —7A1l, c:= - ~(pn). Using (4) and (19),
the voltage magnitudes become a function of the incentive

v(igr)=—-RAE+Rr+v (22)

with v := Xq — Rd + w. Equations (18) — (22) can be used
to approximate (11) with the strictly convex problem

s*za@ngn£TA£+st+c (23a)
s.t. (20) — (21) — (22)

v<v<Vv (23b)

Py < Po = Do (230)

We will hereafter assume that the feasible set described by
equations (20), (21), (22), (23b), and (23c) is non empty.
Hence, problem (23) admits a unique minimizer. Defining

$:— [-AR AR Al -Al -I]', &cRON+XN
p=[(v-9)" (v-¥9)7 d"1-7
Bo_&Tl ﬂ_lT_ﬁ]T’ ¢ER3N+2

problem (23) can be rewritten as

£ =arg min ETAE+Db e+ (24a)
st. PE+ <0 (24b)

and its Lagrangian (cf. (12)) is
L£,60)=¢"AE+Db"E+c+0" (BE+ ). (25)
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We can use (25) to derive the equations of the dual ascent
algorithm (13) or the primal-dual strategy (14) under the
assumpion introduced earlier. The next result provides a condi-
tion for the convergence of algorithm (13) for the special case
in which the renewable generation r is constant. The stability
characterization of the primal-dual algorithm (14) and of the
zero-order method (16) is left to future research.

Proposition 1. The dual ascent control scheme (13) is globally

uniformly asymptotically stable if
e<4|@"A L (26)

Proof: The minimizer w.r.t. the primal variable of the
Lagrangian (25), which is

)= -2 braTo)
can be used to obtain the dual problem
aerﬂrzg%?“ h(6)
where
h(6) = 0T(¢— <I’A2—1b) o7 tI>A;1<I:T9_ bﬂz—lb.

The former problem has zero duality gap with (23) because
the Slater’s conditions hold true [22]. The gradient of h is

PA DT -1

_ 0 <<I>A b B ¢)
2 2

and the dual ascent algorithm (13) becomes

O(t+1)=1£(6(t), f£(O)=][0+ th(e)}RiM.

Vh(8)

By recalling that the projection is a nonexpansive operator, the
map f is a contraction under condition (26). Indeed,

I1£(8) — £(6")]| =
[9 + th(e)]]RiJ\Hz - [9/ + th(G’)]RiN”

PAIPT
< (I - 67)(0 —9)
PA DT
< I-e——5— 69
2
Now, we need to show that 3k € ]0, 1] such that
PA DT
I- ef <1l-k 27

Denote by Apin and Apax the minimum and the maximum
eigenvalues of ®A~1® . We have that Ay, = PA 1P,
Being A positive definite, ®A~1® " is positive semidefinite.
Also, since @ is full column rank, ®A1®" is full rank
and Ap;, > 0. Noting that T — c2ART max{l —
1}, equation (27) is equivalent to the system

Amin
k < eduin
k<2 el

If (26) holds true, (27) is satisfied with £ > 0 and meeting (28).
The global asymptotic stability then follows. ]

€ €
b )\minu 2 )\max -

(28)
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Fig. 4. Minimum nodal voltage magnitude vs. the number of iterations.

VI. NUMERICAL ILLUSTRATION

Here, we validate the incentive mechanism and the
feedback-based optimization algorithms from Section IV on
a realistic distribution feeder. The IEEE 33-bus radial distri-
bution network [23] was simulated using PandaPower with 32
loads chosen randomly from 114 apartments sourced from the
UMass Trace Repository [24] to be placed at each of the 32
load nodes. A normalized retail price m was set at 1.0 and
the prosumer quadratic utility function coefficients «,, were
chosen uniformly at random between 0.3 and 3.0. A solar farm
was connected to bus 31 with a capacity of 6 times its default
node load size. The voltages are required to be in the range
[0.95 p.u.,1.05 p.u.]. Virtual power plant bounds of +0.2 MW
were placed around the power going into the feeder.

In the first set of numerical simulations, we considered a
static case in which the utility function parameters, the reactive
power demands, and the generations were fixed. The solar
farm was disconnected causing some of the nodal voltage
magnitudes to drop below 0.95 p.u. and initiating the incentive
mechanism. The parameters of the algorithms were set to: € =
0.5 for the dual ascent; ¢ = 0.3 for the first-order algorithm;
o = 0.02 and € = 0.05 for the zero-order method. A vector of
uniform random variables between -1 and 1 was chosen for
¢(t). The proposed algorithms are compared by showing their
total incentive, minimum nodal voltage magnitude, and feeder
power versus the number of iterations, in Figures 3, 4, and
5, respectively. As expected, the more information we have
about the prosumers, the faster we can approach an optimal
&. Dual ascent utilizes complete knowledge of the prosumer
utility functions to converge the fastest, while the first-order
algorithm utilizes only the prosumer sensitivities to incentives
to converge at a slightly slower rate. However, the zero-order
algorithm has no knowledge of the prosumers and requires
exploration to slowly find effective values of £ with respect
to the voltage and virtual power plant bounds.

In the second set of simulations, we tested the algorithms in
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Fig. 6. Total incentive of customers vs. the number of iterations in the time-
varying case.

a time-varying setting. The solar farm output is chosen accord-
ing to the ISO New England aggregated solar production in the
Western Massachusetts Zone on 9/19/2016 [25]. The incentive
mechanism makes the prosumers adapt to the solar farm’s
volatility and ensures the fulfillment of the voltage and power
constraints. Figure 6 shows the total incentive trajectories. The
algorithms track the optimal incentives. Again, the dual ascent
provides the best performance, followed by the primal-dual
and then by the zero-order method.

VII. CONCLUSION

We have presented an incentive mechanism that, by essen-
tially changing the energy price, makes rational users change
their demand and provide grid services, e.g., voltage and
power regulation. The incentives are described here with affine
functions. The function parameters that achieve the desired
grid performance and minimize the cost for the SO can be
computed by solving an optimization problem. When the
problem cannot be directly solved because some grid/customer
information is not available, we devised feedback control algo-
rithms that iteratively update the incentives until convergence
to the optimum. Future research directions include studying
the convergence properties of our algorithms in time-varying
cases and considering nonlinear incentive functions.
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