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Executive Summary

This project addresses several key barriers to implement the next generation demand response
applications and provides a clear understanding of implementing hierarchical and standalone
control using AMI data. Through this program, Eaton has developed and tested a meter-as-a-
controller prototype with the help of other partners--- National Renewable Energy Laboratory
(NREL), Electric Power Research Institute (EPRI), Pecan St Inc. (PSI), and Delaware Electric
Cooperative (DEC). The controller can utilize residential controllable loads such as heating,
ventilation, and air conditioner (HVAC), electric water heater and distributed energy resources
like solar PV and battery energy storage systems for off-setting the demand that is required from
the grid, thus providing reliable grid-services for demand reduction or peak shaving. The
controller is also capable of coordinating the resources of the premises for better management
and energy efficiency while meeting the comfort bound of the premises owner as quality-of-
service. The development has been demonstrated in a three virtual-home setup at system
performance lab of NREL with real appliances (HVAC, electric water heater, solar PV, and battery).
The technology has also been proved through laboratory and field demonstration with successful
interconnectivity (e.g., end-to-end communication and data exchange) between the residential
appliances and utility through the RF network at Delaware Electric Co-op (DEC) in Delaware.
Major Goals & Objectives: In a nutshell, the primary objective of this project was to develop and
field-validate a first-of-its-kind TRL 6 control technology to enable optimal provision of high-value
grid services from behind-the-meter (BTM) solar PV and other synergistic distributed energy
resources (DER) such as battery storage, electric vehicles, and flexible loads. To achieve this
objective, the following technologies have been developed:

. An advanced load disaggregation algorithm to significantly improve the accuracy of day-
ahead and hour-ahead load forecasting to maximize the potential grid service capacity;
. A hierarchical control solution that leverages smart meters at the residential home level

(“meter-as-a-controller”) coordinated at the utility central level to enable optimal aggregate
control of DERs while respecting the low bandwidth nature of existing utility communication;
. A smart meter with enhanced computational and communication capabilities. Such a
meter will act as a “home energy services interface” to interact with diverse DERs, collect high-
resolution energy consumption data, extract load disaggregation information, and execute
optimal coordination control commands. Such a controller will help end-users to eliminate their
consumptions and electricity bill without compromising comfortability while maintain utility
constraints. Major accomplishments and technical effectiveness for the project are as follows:
* Load Disaggregation: achieved a MAPE of 5.1% for aggregated Solar, 5.4% for aggregated
EV and 8.5% for aggregated AC on the field data
* Load Forecast: Day-ahead forecasting approach achieved 58% improvement in
performance over the baseline method (naive persistence is used as the baseline method)
* Comfort bound for meter-as-a-controller: Quality-of-service maintained over 90% of the
time (customers temperature comfort bound doesn’t violate over 10% of the time).
Details validation of cost analysis is provided in task 12 of section 3.
* Scalability of the deployed system: Scalable to more than 10000 meters with additional
gateways than the standard meters
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1. Background:

According to U.S Energy Information Administration (EIA) projection, the world’s energy use
will increase by 50% by 2050 [1]. This growth will occur mainly due to increasing population,
climate change, paradigm shift in transportation sector, strong rising economy, and urbanization.
To meet this increasing demand and reduce the dependencies on fossil-fuel based generation,
climate and decarbonization strategies are being highly sought. Corporations, policy makers, and
geo-political and economic leaders are advocating net-zero greenhouse emission route as a critical
goal for electricity sector. International Energy Agency (IEA) predicts that integration of
distributed energy resources (DERs) and energy efficiency techniques will play a key role in
achieving this net-zero goal, and a fundamental transformation will take place in global energy
systems by 2050 [2]. During this fundamental transformation, annual solar and storage capacities
are estimated up to 630 GW and 380 GW, respectively [2],[3]. Furthermore, 240 million
households are expected to install rooftop solar PV which are contributing to significant behind-
the-meter (BTM) DER assets [2],[4]. These DERs along with other controllable loads will alter
the landscape of current distribution systems operations and pose different challenges and
opportunities. Utilities will have to face various challenges to control these end-user appliances to
receive optimal operations due to:

1. Distributed and geo-stochastic nature of BTM DERs (e.g., household solar and storage)
penetration, climate, human-behavior dependent controllable load (e.g., electric water heater, air
conditioner) consumption, and EV charging or discharging needs increased visibility to have
precise controllability through advanced forecasting and flexibility estimation [5],[6].

2. Coordination of all various BTM DERs and controllable loads require edge control algorithms
those can fulfill the objective of energy and cost reduction by considering constraints from both
homeowners and utility to provide grid-services and economic operations [7],[8].

3. One-to-one secured exchange of data-streams and state maintenance between a utility controller
such as Demand Response Management Systems (DRMS), Distributed Energy Resources
Management Systems (DERMS), Advanced Distribution Management Systems (ADMS) and
individual premises devices will make the system unscalable unless a mechanism of grouping or
premises aggregation of messages (e.g., broadcast, unicast, multicast) is not present for specified
messages [9].

In addressing these challenges of visibility, user preferences, and scalable coordination and
control, this project develops a hierarchical control and communication architecture for optimal
operations of edge controller, embedded in a hardware prototype called meter-as-a-controller, that
can optimize and schedule the BTM appliances autonomously. In addition, this meter-as-a-
controller can take the utility signal from a central controller to drive the coordination of the
premises appliances when required to provide grid-services. Below are the main algorithms
developments in this project:

a. Load disaggregation algorithm: U.S residential customers consumed the most end-use
electricity according to the U.S. Energy Information Administration [10]. Given such huge end-
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use electricity consumption from the residential sector, there is an urgent need to develop
an efficient load disaggregation methodology that can provide higher resolution for end-use
electricity estimation than house-level load estimation. The methodology needs to accurately
estimate the electricity usage of appliances/devices that consume most of the electricity in
typical homes. Meanwhile, with ever-evolving smart grids and artificial intelligence
technologies [11], the methodologies for demand response (DR) and load shifting are being
developed based on various cutting-edge techniques. Among the newly developed
algorithms [12], the assumptions for loads are always ideal. In [13], the authors proposed an
algorithm based on artificial intelligence; however, the algorithm is for load disaggregation at
the bulk supply point, and it can help DSM on the transmission grid. Research on load
disaggregation at the house level has also been conducted. A voltage-based method has been
designed [14], but it is based on the voltage changes, and the performance might degrade
with high penetrations of DERs because the methodology requires a device installed behind
a smart meter. Therefore, two aspects need to be addressed. The first is to utilize limited
information collected by AMI to achieve accurate load disaggregation. The second is to
consider the real-world application scenarios that the algorithm will be implemented at the
edge so it has to be computational friendly. In this project, residential load disaggregation is
tasked at the metering point of the home to develop further control application within the
residences in the subsequent tasks. Efficient and accurate load disaggregation algorithm is
developed with two-phase electrical service data of a home as inputs. Without additional
information, our proposed algorithm efficiently and fully uses the input data, and the load
disaggregation results meet the goals. For large communities with various types of houses
and load patterns, we also developed the classification algorithm to classify houses into
different clusters and train one load disaggregation model for each cluster. The classification
algorithm and the load disaggregation algorithm are tested at different locations and seasons
and the performances are good.

Load forecasting algorithm: The forecast model provides the central controller algorithm with
day-ahead values of the aggregate uncontrollable load for each node in the system. The
central controller decisions are influenced by the day-ahead forecasts and the associated
errors. Most of the earlier research in the area focused on aggregated residential load
forecasting using methods such as random forest regression [15], long short-term memory
(LSTM) [16], Bayesian deep learning [17] and forecast of net metered residential load using
Bayesian Neural Network [18], LSTM [19] etc. Not much work has been conducted on the
forecast of uncontrolled residential load which is volatile and heavily dependent on customer
behavior. In this project, we developed an approach suited to the forecast of aggregated
uncontrolled residential load based on the output of load disaggregation algorithm from
individual meter-as-a-controller.

Edge control algorithm: The first aspect of edge control algorithm is the development of the
edge-level DERs and loads models. The DERs and loads are classified as controllable and
uncontrollable assets. Controllable assets behavior can be modified through an external
control signal, whereas uncontrollable loads do not have this flexibility and are usually more
critical to the consumer. Based on literature, asset models have the following characteristics
— comprehensive, considering physical and operational characteristics of appliances and will
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allow external control signals to interact to simulate demand response operations [20]. For
this project, the following assets will be considered — solar photovoltaic and inverter (PV),
residential-energy-storage-system (RESS), electric-water-heater (EWH), heating-ventilation-
and--air-conditioner (HVAC), and electric vehicle (EV). The second aspect is the development
of the coordinated edge-level controller. From literatures [21-23], it is found that an
optimization-based edge-controller with a flat day-ahead time-of-Use tariff will generally
result in the following operations : the electrical energy from the grid is consumed and stored
in the batteries (for EV and RESS) during off-peak hours when the electricity cost is low and
utilized during on-peak hours when the electricity cost is high. Additionally, considering the
limited processing capability of the edge-level hardware, a Rule-Based method is deemed to
be more feasible and practical. Furthermore, an optimization-based controller is also
investigated for the purpose of precision. To this end, an optimization formulation to
optimally control the DERs are identified. The total electricity cost to the homeowner is
defined as the optimization cost function. The DERs model identified will be used to calculate
the model-states at every time-step, which are defined as the inside temperature of the
house (for HVAC), the hot water temperature (for EWH), and the batteries State-of-Charge
(for EV and RESS). The Quality-of-Service, which defines the minimum and maximum values
of the system-states for user comfort, are defined as the inequality and equality states-
constraints in the optimization problem. It is also identified that some DERs, such as the
electric-water-heater and HVAC system, can only be controlled in an On or Off manner, which
influences the optimization problem formulation and solver. Therefore, a mixed-integer
problem formulation and solver is selected to handle such DERs. The edge-controller modes
of operation are also identified to address both demand response (DR) and non-DR events.
To this end, a two-mode operation of the edge-level controller is considered. The first mode
is called the DR-mode, a pseudo-price electricity tariff is sent by the central-level to the edge-
level. During this mode, the edge-level controller objective is to manage its local DERs to
address the power requirement from the grid, which is represented by the pseudo-price,
without sacrificing the Quality-of-Service in the residential unit. The second mode is called
the Idle-mode, where the electricity tariff is represented by the flat Time-of-Use tariff. During
this mode, the edge-level controller objective is to manage its local DERs to minimize the cost
of electricity for the homeowner. To this end, the optimization methods discussed above are
implemented.

Central control algorithm: The goal of the central controller is to keep voltage magnitudes
within bounds and support grid-service events (e.g., peak shaving). It works in a day-ahead
fashion in that it takes historical day-ahead forecast errors of nodal loads on a distribution
network, the next day’s nodal load forecasts, and nodal load flexibility bounds as inputs, and
outputs day-ahead pseudo-prices for each edge controller to use as a control signal in the
demand response mode. The pseudo-prices are intended to guide nodal loads to meet the
central controller’s goals. The reason behind this daily batch collection of input data and
communication of pseudo-prices is that it requires data from smart meters that are typically
collected by utilities in batches [24,25]; whereas feedback-based central control algorithms
require a continuous bidirectional flow of data that is not currently supported by most smart
meter communication systems [26]. The main development is the internal calculation of
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dispatch bounds that determine if the central controller’s goals can be met with only the
nodal load flexibility bounds and sends out node-specific pseudo-prices when they are
insufficient.

All these algorithms listed above have been packaged in firmware and integrated in different
platforms. Algorithm(s) listed in (1), (2), and (3) have been unified in meter-as-a-controller, solely
developed for this project. Algorithms developed in (4) has been incorporated in the cloud that
has readily available integration with Eaton Yukon DRMS. All these developments have been
comprehensively tested in a unique lab setup at NREL with real home appliances and DERs. Then,
a subset of the development has be demonstrated in a real utility setup and volunteer homes in
Delaware. Figure 1 below shows the difference between state-of-the-art solution versus meter-
as-controller solution that has been developed in this project. As shown in the figure, meter-as-
a-controller can coordinate with all the residential resources and is able to communicate back
and forth with the utility. On the other hand, current solution is only able to control the loads
without any coordination with DERs which compromises the quality-of-services (e.g.,
temperature preference is not maintained by air conditioner or not enough hot water reserve)
of the homes.

Central Controller

i A
T

=) _ Utility-Owned
— Private Network
- — — Wifi (IEEE 2030.5)
DR DR_ - Secure http (https)
Needed Committed Electrical
lectrical
Connection
x ) Optimized DR
L7 A W Commitments
P / N
z N\
DR Requested M
- from I;|ome N Customized
-, , . DR Requests
4

o R,

LCR-controlled Home [Meter-controlled Home |

Figure 1. State-of-the-art Solution Vs Proposed solution with meter-as-a-controller.

2. Project Objectives:

Technical approaches and scopes

The nation aims to achieve net-zero greenhouse gas emissions by 2050 and this involves reducing
emissions across all sectors of the economy; Furthermore, the U.S. is committed to reducing net
GHG emissions by 50-52% below 2005 levels by 2030 [27]. This decade is crucial for implementing
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policies and technologies to accelerate emissions reduction. Therefore, the federal government
is investing in clean energy and climate solutions, with initiatives projected to reduce U.S. climate
pollution by up to 40% below 2005 levels by 2030 [28]. As part of this continuous investment,
Eaton along with its partners received funding from DOE SETO office to develop a hierarchical
control platform using the AMI data integration to take advantage of residential DERs for
improving the quality of grid services. With the background, there are specific technical
objectives accomplished during three budget periods. These activities have led clean energy
utilization, consumption cost, and CO; emission reduction by leveraging residential DERs and
minimizing the demand and energy consumption of the appliances (e.g., HVAC, EWH) within a
home as well as in a distribution system in an aggregated manner through the innovation of
meter-as-a-controller and next generation demand response application. Details of the
development, validation, and economic benefits are provided in later sections with the
comparison of target and achieved quantifications. High-level summary of the tasks,
corresponding milestones, and go-no go (GNG) decision per SOPO are listed below by the budget
periods to highlight the significant work done during the project lifetime to contribute to the net-
zero goal.

Budget Period 1 (BP1)

Task(s) summary: In this BP, team focused on algorithm development and overall
architecture design for the hardware and firmware. Ground truth data from whole house
consumption for different home appliances from over 140 homes from three different
regions (TX, NY, and CO) was made available to the team. The datasets had a resolution of 1-
minute and a yearly duration (availability from 2017 to 2020). The collected data were used
for developing load disaggregation and control algorithms. Different use cases and strategy
was developed for control purposes. Besides, RF network to interact with controllable loads
and utility via load control relay and solar PV/storage via IEEE 2030.5 over WiFi was designed.
Milestones summary: Associated milestones for the tasks completed in this BP are- collect
ground truth data from more than 100 homes, develop load disaggregation algorithm with
RMS error <5% at aggregated level, use cases for home operations and utility grid services
are approved by IAB, simulation validation of the use cases, communication architecture
design to meet sunspec alliance requirement, and conduct IAB meetings.

GNG summary: Passing GNG criteria for this budget period was to validate the load
disaggregation with <5% RMS error for individual homes and <30% RMS error for aggregated
appliances; Besides, team required to submit a formal commitment letter to DOE from a
utility partner to support the field demo.

Budget Period 2 (BP2)

Task(s) summary: During BP2, team concentrated on developing the hardware and firmware
for the meter-as-a-controller. The development focused on multiple applications that include
RF node, premises controller, and IEEE 2030.5 server. Besides, the algorithm developed for
central controller that is capable of aggregating large number of meter-as-a-controllers has
been integrated with Eaton’s Yukon demand response management system (DRMS). The
entire system has been placed in a three-home testbed at NREL to validate the
communication and control before deploying the field.
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Milestones summary: The milestones associated with the tasks during BP2 were to complete
integrated quasi-static simulation validation of a distribution feeder with sample residential
homes to quantify the grid services, develop and lab testing of hardware/firmware for meter-
as-a-controller with the communication link to central controller through Eaton’s Yukon
demand response platform, and conduct IAB meeting to come up with conclusive field-testing
plan.

GNG summary: GNG criteria to meet this BP was to complete simulation validation with that
promised grid services don’t violate the more than 90% of the operational time and detailed
test plan vetted by IAB members and host utility.

Budget Period 3 (BP3)

Task(s) summary: In budget period 3(BP3), team validated the hardware and firmware
development and fixed the necessary bugs. Beyond that, team has recruited ~20 volunteers
in the DEC territory to deploy the meter-as-a-controller and associated control and
communication devices (e.g., LCR, IEEE 2030.5 gateways). Communication link between
meter-as-a-controller and central controller has been established. Finally, Eaton team along
with Pecan St and DEC was able to test and demonstrate the interconnectivity with 11
residences through the meter-as-a-controller. The interconnectivity included data exchange
between the home appliances and meter-as-a-controller to estimate the demand flexibility
and transport it to central controller. It also included the operating status of each appliance
to ensure the estimated demand flexibility is accurate and control can be enforced, if
warranted. Demonstration did not include any controllability as the volunteers were not
willing to have controllability on the home appliances for extended period of time as per the
requirement of meter-as-a-controller.

Milestones summary: Milestones for this BP were to complete the lab and field testing —
thorough lab testing needs to be completed prior to field deployment; Communication
interconnectivity should be established with flexible loads and DERs using the protocols
considered on this project (e.g., IEEE 1815, IEEE 2030, Sunspec etc.) and field demonstration
needs to showcase the scalability to more than 10,000 meters- as-a controller.

End of project Goal: Project needs to showcase a commercial-grade hierarchical control
solution that is field-demonstrated on real utility feeder systems. Project will leverage meter-
as-a-controller and DRMS to enable aggregate control of BTM DERs to provide grid services
and meter-as-a-controller will be able to interact with diverse DERs within the home through
a field-demonstration. Further, a risk-based framework will be developed to utilize the
available flexibility of BTM DERs.

3. Project Results and Discussion:

This section discusses the tasks, associated subtasks, and milestones to accomplish the project
objective with detail clarity to showcase the development, testing, and validation of meter-as-a-
controller and demand response application. The activities include data collection and cleaning,
load disaggregation and forecasting algorithm development, controller development to operate in
both grid-event or demand response and idle-mode to reduce demand, energy, and cost,
hardware/firmware development, lab testing and validation, and field pilot. Besides, the
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conversations with stakeholders have been discussed which have helped to shape the outcome of
this program and paths forward. Before diving into the details, Table 1 below highlights the sub-
tasks by budget period.

Table 1. Subtasks listed for three budget periods.

development

Budget Task # Task Sub-task # Sub-task
Period
Machine 1.1.1 Historical meter data collection, selection,
learning based filtering, and analysis
load 1.1.2 Development of a machine learning method for
disaggregation load disaggregation
and load 1.1.3 Enhanced load forecasting using load
forecasting disaggregation information
algorithm
development
Hierarchical grid 1.2.1 Development of applications and use cases for
services control DER edge intelligence
algorithm 1.2.2 Edge-level control algorithm development
development 1.2.3 Coordinated control between central and edge
layers
Development of 13.1 Developing probabilistic profiles for BTM DERs
the risk-based 1.3.2 Stochastic optimization algorithm to calculate
DER dispatch DER dispatch bounds
bounds
calculation
framework
Advanced 14.1 System communications and security
metering architecture development
hardware, 1.4.2 Advanced smart meter node hardware platform
firmware, and development
software 1.4.3 Design specification of advanced smart meter
development
Stakeholder 1.5.1 Stakeholder engagement
engagement
Coordinated 2.6.1 Coordinated control between central and edge
control between layers
central and edge
layers
Development of 2.7.1 Risk-based framework implementation in REopt
the risk-based and testing
DER dispatch
bounds
calculation
framework
Advanced 2.8.1 Advanced smart meter node communications
metering interworking firmware development
hardware, 2.8.2 Advanced smart meter node analytics and
firmware, and control application firmware integration
software 2.8.3 Headend system control application software

integration and communications interworking
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9 Lab testing and 29.1 Unit level testing in the lab
end-to-end 2.9.2 End-to-end system integration testing in the lab
integration

testing
10 Field 2.10.1 Pilot site selection, volunteer recruitment, and
deployment and test planning
demonstration

11 Stakeholder 2.11.1 Stakeholder engagement

engagement

12 Lab testing and 3.12.1 End-to-end system integration testing in the lab
end-to-end
integration

testing
13 Field 3.13.1 Field tests and evaluation of overall solution
deployment and 3.13.2 Final report of the field demonstration of the
demonstration proposed AMI based grid service using BTM
DERs.
14 Stakeholder 3.14.1 Stakeholder engagement
engagement

Tables below shows the associated success values and target metrics per SOPO, and actual
performance achieved for each milestone including GNG and end of project goal. Quantitative
comparison have been discussed in detail in the later sections, wherever applicable, to
demonstrate the effectiveness of the outcomes of different technologies developed in this
project.

Table 2. Description of milestones associated with tasks and success criteria.

Milestone Performance Success Value Actual performance achieved
# Metric
Machine 1.1.1 Data collection and Data collected Data has been gathered from about
learning based cleaning for >100 140 homes in TX, NY, and CO
load residential
disaggregation homes from 3
and load geographically
forecasting dispersed states
algorithm 1.1.2 RMS error <30% at The developed load disaggregation
development individual home  approach is neural network based and
level, <5% at shows an error of <30% for individual
aggregated level  appliance within a home and between
5%-9% at the aggregated level which is
close to target; different customer
behavior due to geography and other
random usage factors have made it
difficult to reach exactly to the target
1.1.3 Forecast error >10% reduction A load forecast model was developed

reduction

in error over
persistence
model

to generate day-ahead values of the
uncontrolled residential load at every
node in the system. The central
controller makes use of these forecasts
to account for the uncontrollable loads
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Hierarchical
grid services
control
algorithm
development

Development
of the risk-
based DER

dispatch

bounds
calculation
framework

Advanced
metering
hardware,
firmware, and
software
development

Stakeholder
engagement

121

1.2.2

131

14.1

151

Application and use  Approved by IAB

case definition

Simulation Meeting
validation specification
developed in

M1.2.1

Conforming risk
threshold based
on best
engineering
judgement

Simulation and
data mining

>9.6 Kbps over
up to six (6) link
hops; meet
Sunspec Alliance
requirement

Data rate and specs

Once every
quarter

Frequency and
outcome
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to maintain grid voltage profile within
acceptable range. The developed
adaptive persistence model achieved a
58% improvement in performance over
the baseline method (naive
persistence) which is also well above
the target.

For this project, hierarchical control is
referred as utility interactions with
residential meter-as-controllers. Two
use cases have been discussed with
and approved by IAB: a) Grid-event
case where the utility provides signal
to reduce demand, b) Idle-mode when
the home appliances are scheduled for
economic operation for the
homeowner; in both cases Quality-of-
Services (QoS) are the priority.
Model-based edge-level controls were
developed to optimally manage local
DERs in coordination with a central-
level controller to meet peak load
reduction during grid-event and
minimize electricity usage for
homeowners in idle mode as discussed
in 1.2.1 to conduct simulation.
Dispatch bounds are the subset of load
flexibility bounds that can guarantee
voltage magnitudes are within their
bounds if the dispatch
bounds/thresholds are respected.
Otherwise, pseudo-prices can be set to
guide controllable loads to bring nodal
voltage magnitudes back within
bounds and support grid-events.
Pseudo-prices were shown to be
successfully calculated under many
scenarios and distribution networks.
A compatible controller is developed
that can be integrated with commercial
meters, known as meter-as-a-
controller, to interact with residential
assets , DERs, and utility central
controller; this task also covers the
development of customized
information model to communicate
and exchange information between
utility and the homes to meet the
target metrics
In this task, a utility advisory board was
formed to discuss the use cases, field



Hierarchical
grid services
control
algorithm
development

Development
of the risk-
based DER

dispatch

bounds
calculation
framework

Advanced
metering
hardware,
firmware, and
software
development

Lab testing
and end-to-
end
integration
testing
Stakeholder
engagement

GNG-1A

GNG-1B

2.6.1

2.7.1

2.8.1

2.8.2

29.1

2111

RMS error

Commitment letter
and initial test plan

Simulation
validation

Simulation
validation

Firmware
functionalities

Hardware/software
integration

Hardware/software
function test

Frequency and
outcome

Simulation
validation

<30% at
individual home
level, <5% at
aggregated level
Receive formal
commitment
letter from at
least one utility
company for
field
demonstration
Single feeder
simulation

No violation of
promised grid
service for >90%
of the operation
hours in a period
of one year;
Provided reserve
is no less than
90% of the total
available reserve
in the system

Support
specified edge-
node inter-
communication
requirement
Successful
integration

Performance
meeting
specification

Once every
quarter

No violation of
promised grid
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integration and test plan of meter-as-a-
controller along with the future
development plans
The performance was met closely as
discussed in milestone 1.1.2

Received a commitment letter from
Delaware Electric Co-op to host the
pilot

Batch simulation using field data from
the selected feeder shows potential
15%-45% energy savings for
homeowners in summer months and
up to $1.15M annual saving for utilities
from coincidental-peak load reduction.
The simulation and HIL setup shows
that more than 90% of the time during
grid-event, no temperature violation
has occurred in customers premises
and threshold of load reduction was
maintained as commanded by the
central controller to maintain no
voltage violation for >90% of the
operational instants; team discussed
with DOE about the reserve and
decided not to look at this based on
the problem formulation
Firmware was developed to meet the
need for edge level communications
with assets using RF and IEEE 2030.5
protocol

Meter-as-a-controller hardware was
integrated with node applications
software
Performance was tested on the
stability of the prototype; ran over a 3-
4 day period without any interruptions
before validating in the lab

In this task, the development of the
hardware was reported and test plan
in the field was developed to align with
the expectation of the advisory board
Simulation criteria was met as
discussed in milestone 2.7.1



Lab testing
and end-to-
end
integration
testing

Field
deployment
and
demonstration

Stakeholder
engagement

GNG-2B

3.12.1

3.13.1

3.13.2

3.14.1

EOP

Detailed field
demonstration
plan

Hardware/software

function test

Status report

Field test

Frequency and
outcome

Connectivity and
scalability

service for >90%
of the operation
hours in a period
of one year;
Provided reserve
is no less than
90% of the total
available reserve
in the system
Committed by
the utility
company,
approved by IAB
and DOE
Performance
meeting
specification

Progress
towards field
deployment

Performance
meeting
specification

Once every
quarter

1) the newly
developed smart
meters show
proven
interconnectivity
with all DER and
flexible load
communication
protocols under
consideration on
this project (e.g.,
IEEE 1815, IEEE
2030, SunSpec);
2) the control
system
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Test plan developed in 2.11.1 was
approved by the stakeholders

To de-risk the technology, a setup like
the field was mimicked in system
performance lab at NREL where both
control and communication testing
were done to check the specified
requirements; an in-person demo was
also shown to DOE TM
Field installation updates were
provided

Details interconnectivity testing was
conducted between utility demand
response management systems
(DRMS) and meter-as-a-controllers at
13 volunteer homes; the controller was
able to exchange the solar inverter,
HVAC, and EWH information to the
DRMS; demonstration of the system
was shown to DOE
Field test results were shown and
pathway to add more
features/functionalities were discussed
The EOP goal was met by the
interconnectivity in the field validation
as discussed in milestone 3.13.2; The
analysis show that such a control
system is scalable to more than 10000
meter-as-a-controller with additional
gateways to Eaton Yukon DRMS
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demonstrates
capability to
scale to a field
system of more
than 10,000
meter interfaced
end points.

Task 1.0: Machine learning based load disaggregation and load forecasting algorithm development

Meter data collection: The raw field data is collected by Pecan St. in multiple locations and
different time windows, and the raw data is preprocessed by Eaton before shared with NREL
team.

Data preprocessing: The raw data from the households will have data quality issues. The

appliance-level data is sent through a preprocessing module to resolve the inconsistencies in the
data. The data preprocessing module performs the following tasks:

1. Handle missing timestamps: It is common to have missing observations from time series
data. The first stage of the preprocessing module will fill in the missing timestamps to
ensure clean time series data. The missing data points were filled using the approach of
linear interpolation.

2. Data format checking: The module ensures a uniform date and time format to do an
accurate aggregation of the residential data.

3. Outlier detection: In time series data, an anomaly or outlier is a data point that does not
follow the common trend or is significantly different from the rest of the data. The
approach of percentiles is utilized to detect anomalies and replaced with the mean of the
previous data points. As the approach is utilized using the historical data from the same
location/meter, it is expected to be precise.

Load disaggregation algorithm development: For this task, we designed and developed a specific
neural network to realize the load disaggregation algorithm. The neural network contains 5 layers
with 3 hidden layers, one input layer and one output layer. The algorithm is tested on different
locations and various time window. The locations include Texas, New York state, and Delaware.
Among all the previous scenarios, our developed load disaggregation (LD) algorithm
demonstrated accurate and robust performances under different conditions. The most recent
testing scenario locates in Delaware, and the data is collected in June. Three major appliances
are tested, which are air conditioner (AC), solar panels, and electric vehicles (EV).
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Figure 2. Solar model performance at aggregated level.

For each appliance, one house will be selected to train the model, and the trained model will be
applied to all the houses that have the same appliance. For example, in the Delaware dataset,
there are 15 houses with valid full month data for solar, and house 4553 is selected as the model
house to train the solar LD model. The trained model is then applied to the rest houses. The
Figure 2 shows the model performance at aggregated level. The mean absolute error (MAE) is
2.88 kW, and the mean absolute percentage error (MAPE) is 5.12%.

For AC there are 18 houses with valid data, and house 9464 is selected to train the model, the
aggregated level MAE is 2.62 kW, and the MAPE is 8.56%. For EV there are 7 houses with full
month valid data, house 10867 is selected to train the model. At aggregated level, the MAE is
1.06 kW, the MAPE is 5.48%. Table 3 shows the evaluation results for each appliance at
aggregated level. And Table 2 shows the maximum and minimum MAE for a single house among
all the houses with valid data for each of the appliances.

Table 3. Evaluation results for each appliance

Appliance Valid house Model house MAE (kW) MAPE
AC 18 9464 2.62 8.56%
Solar 15 4553 2.88 5.12%
EV 7 10867 1.06 5.47%
Table 4. Evaluation results for each appliance cont.
Appliance Model house MAX MAE(kW) Min MAE (kW)
AC 9464 0.615 0.106
Solar 4553 0.604 0.180
EV 10867 0.279 0.027

Besides testing the LD algorithm, we’ve also developed a clustering algorithm in case that there
are vast houses, and the locations are distant, so the household consumption varies a lot, and
one model may not cover all the scenarios. In our testing case, there are 141 houses, and the
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developed clustering algorithm can successfully classify the houses into different clusters and

improve the overall performance.
Figure 3 shows 3D visualization of five clusters.

Clustering results 30 plot
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Figure 3. 3D visualization of the clustering algorithm

Data aggregation: The cleaned time series data is aggregated to generate the load profiles. The
aggregation is performed on the selected households at an appliance level while ensuring the
data points in the same timestamps are only added. The load profile for an air conditioning unit
for a single residential household (home ID 1642), on August 17th, 2020, is shown in Figure 4.
The figure represents an example of raw data before preprocessing and aggregation. The
appliance level data for the selected households goes through the preprocessing and aggregation
modules and the aggregated air conditioning load for the system on the same day (Aug 17th,

2020) is shown in Figure 5.
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Figure 4. Load profile of an air conditioner for a single residential unit
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Figure 5. Aggregated profile for the air conditioning load

Forecasting algorithm to predict appliance-level consumption: The development of the forecast
algorithm to predict day-ahead values with 15-minute resolution is performed on the aggregated
appliance level data. Methods such as Random Forest (RF), Support Vector Machines (SVM), K
Nearest Neighbor’s (KNN), gradient boosting, and the different version of the novel modified
persistence model (D-N) are tested to find the best method for each appliance. The steps
followed for the modified persistence are shown in the block diagram below. The equation for
modified seasonal persistence is given in equation (1), and the error from these predictions are
evaluated using MAPE (Mean Absolute Percentage Error), as show in equation (2). Here,
P(t + At |t) is the forecast for a period of At made at time t; n represents the number of past
measurements; and §; are the different lag values for selecting the past measurements. In
equation (2), ¥; represents the forecasted value, y; the actual value and n the number of data
points in the forecast.

P(t+At|t) =~ P(t - &;t) (1)
— lyn Iyl
MAPE = - 3, = (2)
Preprocessed data
'
Test-Train data
Split
i %

| Test data

I Train data

L 2

Compute seasonal
persistence

Error metrics

Figure 6. Sequence for adaptive persistence forecasting approach.

Table 5. Comparison of forecasting approaches for individual appliances

Appliances RF SVM KNN |[Gradboosting| D-1 | D-1,23 | D-1.7 |D-1,7,14,21|D-7,14,21
AC power 525.11| 495.52| 461.78 420.44] 69.33| 87.16| 102.42 213.68| 271.56
Bedroom 13.36 154 1543 13.55 9.26 8.48 8.55 9.41  10.93
Furnace 91.87 78.5]  98.99 7439  20.85| 2497 29.98 44.19]  55.59
Kitchen 12.72|  29.33|  13.9 12.95]  16.26] 1420 13.14 13.05]  13.89
Pool 66.8] 12229 56.82 64.94| 1951 21.69] 27.31 36.30]  44.05
Refrigerator 7.49]  12.83 9.5 8.08 6.72 6.24 5.94 6.39 7.19
Others 2073  29.15|  22.17 2119  26.89| 2292 2033 2079 2118
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The MAPE from the day-ahead forecast using the 9 different approaches are listed in the table
above. The acronym ‘D-1,2,3’ represents the lags in days used for the modified persistence, data
from the previous 3 days are utilized for this model, similarly for all other persistence models
listed in the table. The values highlighted in red represent the method selected for each appliance
based on the error and run-time. The performance improvement in forecasting aggregate
residential load at an appliance level using APM in comparison with traditionally used
approached is validated using the tests conducted as shown in Table 5. The performance of APM
in forecasting load at an aggregate level is shown in Table 6, where it displayed a 58%
improvement in performance over classical persistence (baseline), and 10.6% improvement over
support vector machines (SVM).

Table 6. Comparison of forecasting approaches

Forecasting method MAPE

D-1,7,14,21,28 10.86

Mode, D-1,7,14,21,28 10.9

Mode, D-7,14,21,28 11.19

D-7,14,21,28 11.23
SVM 12.15

RF 12.67

KNN 13.82
D-1...7,14,21,28 15.56
Classic persistence 25.93

Performance of the forecasting methods on the uncontrollable load profile: The developed
forecasting method is tested on the appliance level value acquired from the load disaggregation
algorithm. The disaggregated information of 3 residential households is aggregated and the
results are shown in

Figure 7.

Figure 7(a) represents the aggregated air conditioning load and

Figure 7(b) shows the uncontrollable part of the residential households. In this task, the major
item that was validated is the performance of APM method on the aggregate residential load
generated from the output of load disaggregation.
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Figure 7. (a) Aggregated air conditioner load profile generated from the LD output of 3 residential households, (b) Aggregated uncontrollable
load profile generated from the LD output of 3 residential household

Uncontrollable load (kW)

——Actual = Predicted Actual_est === Predicted_est

Figure 8. Day-ahead forecast of uncontrollable load.

The day-ahead predictions with a 15-minute resolution on August 17t" on the uncontrollable part
of the aggregated residential load are represented in Figure 8. The modified persistence method
of D-1...7 was used to generate the predictions. The graph portrays the effect of load
disaggregation on the forecast. The legend ‘Actual_est’ and ‘Predicted_est’ represent the actual
and predicted values using the data from disaggregation, while the lines ‘actual’ and ‘predicted’
show the real and predicted values using the Pecan St appliance level values. The test was
extended to 22% of the dataset yielded a MAPE of 19.7 for the predictions based on the actual
Pecan St appliance data and a MAPE of 18.71 for the predictions based on disaggregated load.
The developed forecasting methodology is applied to predict the day-ahead aggregate
uncontrollable load values on the central controller. The forecasts were performed for a period
of 24 hours with a 15-minute resolution and the error values at each datapoint for the predictions
on 4 different days at the controllable node are given in Figure 9.

Forecast Errors
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Figure 9. Performance of the forecast method on the controllable node
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The home load is the aggregate of uncontrollable load values from 5 different homes. The
average MAE values for predictions conducted on the 4 days ranged from (1.2 to 1.5 kW).

The performance of the forecast method on the load values of uncontrollable nodes are given in
Figure 10. There are 20 uncontrollable nodes with 10 homes each and the average prediction
errors for the 4 days ( 19- Sept to 22-Sept) for all the 20 nodes are 3.25, 3.17, 3.54, and 3.75.

Forecast Model Performance

8
7
6
5 o]
<4 . © 8 a
= (] 8 [5)
. o
0
0 2 4 6 8 10 12 14 16 18 20

Uncontrollable Nodes ©22-5ep 21-5ep 20-5ep 19-5ep

Figure 10. Performance of the forecast method on the uncontrollable nodes

Task 2.0: Hierarchical grid services control algorithm development

The first use case in a simulation environment is the DR event. In a DR event, the central-level
controller will gather disaggregated load data from the edge-level controller and calculate
potential PV energy generation from weather forecast, to predict future energy reserve and
compute the corresponding energy pseudo-pricing that is broadcasted to the edge-level
controllers. Pseudo-price, as the name suggest, is not a real energy pricing. It is a simplified
pricing-value, based on the normal energy-pricing, that is used by the central-level controller to
communicate the expected loads to the edge-level controller during a DR event. First, the central-
level controller would perform its analysis and estimate the desired peak loads from the homes
during a DR event. Then, using the averaged historical aggregated load profile and the historical
energy-pricing, a simple correlation between energy-price and home loads is derived. The
pseudo-price is then calculated by using this price-to-load correlation with the desired peak loads
from the homes during the DR event and sent to the edge-level controllers. The edge-level
controller will then perform similar conversion using the home’s historical load profile and
historical energy-pricing to translate the pseudo-price into the expected maximum home load
during a DR event.

Each edge-level controller receives the pseudo-pricing data and manages its local DERs to meet
the energy/power demanded from the central-level controller, based on the pseudo-pricing,
while reporting back the disaggregated load data to the central-level controller. DR event use
case is selected as the starting point to evaluate the development of central-level and edge-level
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controllers in this program because it represents the most basic scenario where grid-level
demands are met by the edge-level responses through DERs participations and intelligence.

In a specific grid-service use-case for a hierarchical Distributed-Energy-Resources (DERs)
management strategy, a centralized controller (usually electrical utility provider) may send
signals to individual homes to limit their maximum net-power consumptions for a specific time-
duration. However, in conventional homes, multiple DERs operate independently and may turn
on at the same time to ensure the Quality-of-Services (QoS) are met for the homeowner. For
example, the AC needs to cool the indoor air, the electric water heater needs to heat the water
tank and the electric vehicle needs to be charged, all at the same time, which may cause a spike
of power usage at the home level. The challenge is then on scheduling the different DERs On and
Off statuses to limit the maximum net-power consumption of the home is below a certain power
threshold limit all the time during a grid-service event, while maintaining the Quality-of-Services
controlled by the DERs. The controller’s objective is also expanded to minimize total energy use
for the home and schedule the DERs outside of grid-service event, given the day-ahead Time-of-
Use (TOU) tariff, while also maintaining the Quality-of-Services controlled by the DERs. By
formulating the problem to consider pre-determined TOU tariff to minimize the energy cost, on
top of grid-even that can occur at any hours at any given day, the controller is guaranteed to
minimize the peak load during a grid-event for the utility, while at the same time minimizing the
energy cost for homeowners. This works in either scenarios of when the grid-event hours
coincides with the pre-determined peak-pricing hours or when they do not coincide.

Edge-Controller Overview: The first aspect is the development of the edge-level DERs loads
models. The DERs loads are classified into controllable and uncontrollable loads. Controllable
loads are loads whose behavior can be modified through external control signals, whereas
uncontrollable loads do not have this flexibility and are usually more critical to the consumer. For
this project, the following DERs loads will be considered — solar photovoltaic and inverter (PV),
residential-energy-storage-system (RESS), electric-water-heater (EWH), heating-ventilation-and-
-air-conditioner (HVAC), and electric vehicle (EV). While the main input into these models is the
energy/power consumed, each model has a different set of inputs/parameters depending on
customer comfort and thermal dynamics; PV - solar irradiation data, HVAC - ambient air
temperature, thermostat set point based on consumer comfort, allowable temperature deviation
or dead band and data pertaining to the structure of the house, with room temperature as the
model-state, EWH — ambient air temperature, outlet hot water set point based on consumer
comfort, allowable temperature deviation, tank characteristics, rated power and hot water usage
profile, with hot water temperature as the model-state, and RESS/EV — rated charging power and
plug in time, with battery State-of-Charge as the model-state. The challenge in EV modeling is
that the SOC is unknown; EV manufacturers do not typically allow SOC to be communicated to
the charger. The challenge in water heater modeling is estimating the daily usage, therefore the
total energy available is modeled instead of usage. From a control standpoint, water heater is a
one-way load, load can be increased but not decreased. These models are driven by the
power/energy inputs from the edge-level control algorithm.

The second aspect is the development of the edge-level controller. From literatures, it is found
that an optimization-based edge-controller with a flat day-ahead Time-of-Use tariff will generally
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result in the following operations : the electrical energy from the grid is consumed and stored in
the batteries (for EV and RESS) during off-peak hours when the electricity cost is low and utilized
during on-peak hours when the electricity cost is high. Additionally, considering the limited
processing capability of the edge-level hardware, a Rule-Based method is deemed to be more
feasible and practical. Additionally, an optimization-based controller will also be investigated. To
this end, an optimization formulation to optimally control the DERs are identified. The total
electricity cost to the homeowner is defined as the optimization cost function. The DERs model
identified will be used to calculate the model-states at every time-step, which are defined as the
inside temperature of the house (for HVAC), the hot water temperature (for EWH), and the
batteries State-of-Charge (for EV and RESS). The Quality-of-Service, which defines the minimum
and maximum values of the system-states for user comfort, are defined as the inequality and
equality states-constraints in the optimization problem. It is also identified that some DERs, such
as the electric-water-heater and HVAC system, can only be controlled in an On or Off manner,
which influences the optimization problem formulation and solver. Therefore, a mixed-integer
problem formulation and solver is selected to handle such DERs. The edge-controller modes of
operation are also identified to address DR and non-DR events. To this end, a two-mode
operation of the edge-level controller is considered. The first mode is called the DR-mode, a
pseudo-price electricity tariff is sent by the central-level to the edge-level. During this mode, the
edge-level controller objective is to manage its local DERs to address the power requirement
from the grid which is represented by the pseudo-price, without sacrificing the Quality-of-Service
in the residential unit. The second mode is called the Idle-mode, where the electricity tariff is
represented by the flat Time-of-Use tariff. During this mode, the edge-level controller objective
is to manage its local DERs to minimize the cost of electricity for the homeowner. To this end, the
optimization methods discussed above will be implemented.

DERs Control Models Development: In total there are five DERs under consideration for the
simulation efforts which are Air-Conditioner (AC), Electric Water Heater (EWH), EV-charger (EVC),
PV-solar (PV) and Residential Energy Storage System (RESS). Control-models for the DERs are
developed to predict the amount of electrical power each DER can consume or generate during
a DR-event, while minimizing the impact on the Quality of Service (QoS) for the users. The models
are calibrated based on DERs historical data, which are assumed to be collected in a database at
the edge-level, to ensure good representations of the actual DERs.

Home Thermal Parameters Estimation with Indoor Temperature Reading for Air-Conditioner
(AC): The objective of the AC control-model is to predict the home indoor temperature variations
when the AC is turned on or off. By knowing this, the edge-level control can then allocate the on
and off timings of the AC during a DR-event without violating the Quality-of-Service based on the
temperature set-points by the user. First, the thermal model of a residential unit is represented
as a simple RC-circuit as shown in

Figure 10 as discussed in [20,21]. A simple, but well-calibrated model, is first proposed that can
be used in a wide variety of users homes. More complex model can also be utilized — however
this requires detailed information about the house such as walls insulation materials, number of
rooms and their locations with respect to the outer home walls. This information may be hard to
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collect may complicate the development of the controller if each house has its own different
model to be calibrated. The objective is therefore to have a common model that can be calibrated
to specific homes using data collected on-site. To this end, a simple model was found to be
sufficient to capture the indoor temperature dynamics, as will be presented in here. Rt and Cin
represent thermal resistance and capacitance of the home respectively, while Tin and Tout
represent the indoor and outdoor temperatures. Pac represents the electrical power used by the
AC.

Tout Tin

W
N o(i“ ® b

Figure 10. Simple RC-circuit Representation of Home Thermal Model.

The dynamics of the indoor home temperature is given by (1)
Tout - Tin PAC

o =[S - o] &

The thermal constants R and Ci, are calculated during on and off cycles of the AC based on Ti,,
Tout and Pac from historical data collected at the edge-level, as shown in Figure 11.

—— Hec. Power

----- el EELEEEEEEY ELEL CELE —— Room Temperature

\/‘\\ - == Outdoor Temperature
To T,

Figure 11. On and Off cycles of AC for Thermal Constants Calculations.

RinCin is estimated during off-cycles with (2) while Cw, is estimated during on-cycles with (3). Rin is
then calculated by dividing RinCin with Cin.

t1
fto (Tout — Ty )dt

RepCen = (T1 = To) (2)
t2
Ji1 Pacdt
Cth = J.tz(T T )d (3)
— T,)dt
T, — T, 4 Jriiiout in
( 1 2) Rtthh

Once the thermal constants are estimated, the On-delay-time and On-duration for an AC can be
estimated, such that the indoor temperature does not exceed the maximum and minimum
temperatures set by the user. It is assumed historical data of forecasted outdoor temperature,
estimated/measured indoor-temperature and measured AC-power consumption are stored on
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the edge-level and can be used for model calibration. During simulation development, actual
residential historical data from Pecan St were unavailable and therefore were manually
generated. Note that these will be replaced with actual historical data when they are available.
The indoor temperature is represented by a sinusoidal function between 18°C and 33°C, while
the outdoor temperature is 35°C, both with added random noise, shown in Figure 12 (a). The
rated AC-Power is assumed to be 4 kW, where the AC is turned-on when indoor temperature
decreases and turned-off when the temperature rises, shown in Figure 12 (b).
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Figure 12.(a) Manually Generated Data of (a) Indoor & Outdoor Temperatures; (b)AC-Power

First, the user temperature set point is estimated to be 25.96°C from the mean of indoor
temperature variations. The thermostat temperature deadband is estimated to be 7.13°C from
the temperature variation from the mean to the maximum and minimum indoor temperatures,
based on data collected from users in Austin TX as shown in Figure 13. The temperature set point
& deadband are used to determine the minimum and maximum allowable indoor temperatures,
in this case are 18.83°C and 33.09°C respectively. The thermal resistance Ri, and thermal
capacitance Ci, are calculated using equations (2-3) for each on-cycle and off-cycle and are
averaged. Using R:h, Cih and actual AC-Power, the indoor temperature is simulated. Simulation
results in Figure 13 show good estimation of the indoor temperature variation using an RC-circuit.
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Figure 13. Indoor Temperature Simulation with Estimated Thermal Constants.
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Home Thermal Parameters Estimation without Indoor Temperature Reading for Air-
Conditioner (AC): Previous method to calibrate home thermal parameters relies on the
availability of home indoor temperature. However, unless if a home has a smart thermostat,
indoor temperature sensor may not be available in all SETO homes. Therefore, an indoor
temperature estimation method without relying on historical measurement of indoor
temperature is proposed. Several assumptions are made in the proposed method as shown in
Figure 14. In this method, only the AC power consumption is known from Load Disaggregation
output. First, it is assumed that the AC will turn on when the maximum allowable indoor
temperature Ty; is reached. Second, the AC will turn off when the minimum allowable indoor
temperature Ty, . Third, the increasing temperature trajectory f can be approximated as a
polynomial function of T}, Ty; and AC-off times. Fourth, the decreasing temperature trajectory
g can also be approximated as a polynomial function of T},, T,; and AC-on times.
AC Power, Py

PAC

0 kW

Time
Indoor-Temp, T;,

Figure 14. Indoor Temperature Estimation

It was found that a 2" order polynomial best represents the increasing and decreasing
temperature trajectories f and g with a fitting K -factor to ensure the end temperature is
reached by the end of the temperature increase or decrease durations as shown in (5). (4)
represents the increasing temperature function f, while (5) represents the decreasing
temperature function g. Note that there are multiple cycles of temperature increase and
decrease durations during the calibration period. With historical virtual indoor temperature, the
home thermal parameters RC;y, and Cyp, can be calculated and used as model parameters to
estimate future indoor home temperature variations.

1
T, =K -timez + Ty, (4)
1
Tin =Th —K - timez (5)

Once the historical virtual temperature estimates are available, the home thermal parameters
can be calculated using (6) during AC off-cycles and (7) during AC on-cycles.
time_final
(Tour—Tin)dt

R C — time_start
th™th (Tin_final_Tin_start)

(6)
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time_final
C — time_start
th —

(Tin_start_Tin_final)+<

Power 4cdt ( 7)
time_final
Jtime start (Tout—Tin)df>

RenCen

Past fourteen days of historical AC power consumption were utilized to test the indoor
temperature estimation using virtual temperature. First, T;, and Ty,; were selected as [22,25] °C,
based on historical actual indoor temperature. In actual implementation, the temperature bound
values can be identified using user surveys. Next, the virtual indoor temperature trajectory during
AC on and off-cycles are estimated using (4) and (5). Home thermal parameters can then be
calculated using the virtual temperatures using (6) and (7). Note that since there are multiple on
and off AC durations during the fourteen days, the average RC;, and Cyj, after removal of
statistical outliers, are calculated to represent the thermal home parameters.

Table 7. Indoor Temperature Estimations using Actual Temperature and Virtual Temperature

Est using Virtual Indoor Temp

RC-  C-th T;, RMSE [C] AT,
th  [k/C] Max
[hr] [C]

Calibration
Dates

NO8/I6/2020) 2.59 162158  0.2775 | 1.46  892.24 0.5287 0.9667
108/17/2020 2.51 1590.07  0.3960  1.03 660.75 0.5886 0.9425
N08/18/2020) 2.48 1554.52  0.4138 | 1.00 587.05 0.6973 1.2610
1 08/20/2020 2.48 1535.15  0.4272 159 888.48 0.6435 1.4871
N08/21/2020 2.74 1639.96  0.4616 | 1.64 905.12 0.8917 1.4584
1 08/25/2020 3.18 1848.09  0.2627  1.84 992.53 0.1333 0.3615
N08/26/20200 2.66 1592.63  0.4206 | 1.69  882.06 0.9903 1.6945
1 08/27/2020 2.46 1486.25  0.2041  1.26 683.33 0.3266 0.5993
N08/28/2020 2.48 1509.36  0.4869 | 1.27 | 737.46 0.7912 1.3230
108/29/2020 3.72 2258.48 04200  1.64 892.29 0.3284 0.5572

Test days are selected in August as shown in Table 7. In general, both indoor temperature
estimation using actual temperature and virtual temperature provide thermal parameters that
are consistent across different days, with reasonable variations. The variations may be attributed
to homeowner activities such as windows not being shut properly or error in actual localized
outdoor temperature, which were captured by the calibration variations and resulted in low
RMS-error below 1°C. The thermal parameters estimated using virtual temperature in general is
lower than using actual temperature, which may be attributed by a lower temperature range of
the virtual temperature compared to actual average temperature range. Despite having lower
estimates of thermal parameters, estimation using virtual temperature is able to maintain good
level of RMS-error with a maximum RMSE of 0.9903 °C. Additionally, the maximum absolute
temperature error ranges between 0.35 to 1.69 °C, which is only 1.5-7.2% of the mean average
temperature being controlled inside the home of 23.5 °C. Comparisons of temperature
estimation results using actual and virtual temperature on August 25™ 2020 are shown in Figure
5.

=
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Figure 15. Indoor Temperature Estimations using Actual Temperature (top) and Virtual Temperature (bottom) for August 25" 2020.

Electric-Water-Heater (EWH): This task involves control design specification of an electric water
heater (EWH) of an individual household such that the consumed power can be controlled from
the edge level in response to a grid service event. This task has continued from the last quarter
and presently the revised model and control strategy allows the EWH to be a fully controllable
load. Through intelligently delaying the turning on of the EWH, a certain reserve capacity of
power is obtained during a grid service event. This reserve capacity adds to the aggregate reserve
of controllable loads in a household allowing the edge controller to take part in responding to a
grid service event as requested by the central utility level control.

EWH can be considered as a potent source of energy reserve in a household as it is designed to
always store a certain volume of hot water for ready usage. This reserve can be exploited by the
edge control to respond to a grid service event. In a typical EWH as illustrated in Figure 16(a),
cold water is circulated from the bottom of the tank while hot water outlet is at the top. Usually
there are two heating elements, one located near the top and the other near the bottom. The
control of each heating element is managed by their respective thermostats in a way that the
elements heat up the water when temperature falls below a preset threshold. The lower heating
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element heats up the inlet cold-water to an intermediate hot temperature, while the top one
maintains the hot water temperature at the top outlet. The top heating element has the priority
over the bottom one. The resultant behavior is thus like an on off control maintaining the
temperature at both the top and bottom half of the chamber within certain bounds. The
temperature distribution in a water heater is shown in Figure 16(b) through a 40-layer Eaton
developed EWH model represented in Excel tool.
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Figure 16. (a) Simple EWH Representation, (b) 40-layer EWH model represented in Excel tool (right)

There are substantial challenges in controlling such an EWH some of which are listed as below:

1. The turning on of the EWH is uncertain and is triggered by random human behavior.

2. During hours of substantial hot water usage (e.g. when dishwasher is running),
responding to grid service event may lead to customer discomfort like cold showers.

3. EWH, compliant with CTA 2045 standard provides reserve capacity as a measurement. In
others, no measurements are available, installation of additional sensors may lead to
tampering the manufacturer’s warranty for the EWH.

4. Controllability is only available in the form of blocking of the heating elements.

In order to tackle these challenges, an innovative control strategy is developed. Some of the
simplifying assumptions are as follows:

1. The EWH is a two-mass system, upper and lower chamber with uniform temperature.

2. Temperature of the hot water at the outlet, ground water at the inlet, ambient
temperature, power rating and tank capacity are known or can be estimated.

3. Parameters like specific heat and density of water is known.

A brief overview of all the steps involved in the control of the EWH is shown in Figure 17. The
principal steps are mentioned below:

1. Data Historian

2. Stochastic Modeling

3. Reserve Capacity Estimation using two-mass model
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4. Safe Deferred Time Computation.
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Figure 17. Control Overview of Edge Control Algorithm of Electric Water Heater.

The steps mentioned in the overview are detailed in this section:

Data Historian: Historical 1- min power consumption data of EWH from a single household is
obtained as shown in Figure 18. The Edge controller uses a Historian function to store this data
in a database and then retrieve it as required for the algorithm. The EWH either consumes its
rated power of 4.5 kW or is zero.

EWH New Data
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Figure 18. (a) 1-mn power consumption of EWH , (b)Hourly variation of power of EWH

3
Pawer in kW used

CENEELBEES

From this data, the number of minutes EWH is turned on in a certain period (say 15 min) can be
derived, which in turn provides exact consumed power Pgy,y pis[n].
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Stochastic Modeling: The historical power usage Pgyy pis[n]as determined above can be fed
into a stochastic prediction model which can forecast an expected kWatt
consumption Pgyy os¢[n]. It is observed that there is some correlation between daily power
usage of EWH with that of the hour of operation. The 3-d plot in Figure 18(b) shows power in kW
used in all hours of the day in all days of July 2018 from a certain household. It clearly shows
concentration of power consumption in a few hours in the morning. Based on this understanding,
a Pearson correlation coefficient is computed between the power usage in the current period n
and that of the previous period n,for a certain length of days (typically 14 days).

Y12, (Pewn,j[n]-Pewn,jIn]) (PEwn,j[n1]-PEwn,jnil)

z\/zjl'il(PEWH,j [n]-PEwn,j [n])2 z\jzjl'i1(PEWH,j [n1]-PEwn,j[n4])

Corr(Pewnlnl, Pewn[ni1) =(8)
Based on the calculated correlation coefficient and the measured power in the previous period
n,, the power that will be consumed in the next period n can be predicted following the relation
as shown below.

Pewn eseln] = Corr(Pgyylnl, Ppwy[MiDP,,,, [M1] ©)
Reserve Capacity Estimation using two-mass model: In a certain interval if estimated power usage
Prwy ese[nlis known, that information can be used to delay the turning on of the EWH by a
certain number of minutes. This facilitates the edge controller to minimize the aggregate power
demand in the household during grid service events. But for that a reserve capacity of hot water
needs to be estimated in real time so that customer comfort bounds are not violated. The
problem is thus transformed to a determination of reserve capacity of hot water in the tank with
obtained power measurements.

Outlet water flow

<_

7'y
U half
pper ha hAI

Lower Half

Inlet water flow
Figure 19. 2 mass model.

The temperature distribution in the EWH tank follows a pattern as shown in Figure 16(b). As
observed, there is a sharp change in water temperature along the length of the water tank.
Consequently, the energy balance in the water tank can be captured approximately as a two-
mass model shown in Figure 19. In the approximate 2-mass model, the top mass has an average
temperature of T;, while the bottom mass has an average temperature of T;. Water is injected
into the tank through the inlet at a bottom while hot water leaves from the top at a mass flow
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rate of m. Ambient temperature is provided by T,,,,,. UAy g is the heat loss coefficient of the
tank, Qcec is the electrical energy input, C, is the specific heat of water and Cy, is the thermal
capacitance of water. The dynamics of the height of the top hot water mass is defined by the
following differential equation,

dh _ QetectUAWH(Tamb—T1) « H — mep H— UAwhy h (10)
dt Cw (Ty—TY) Cw Cw
Considering steady state operation when the amount of hot water in the tank is not changing,
—_ nc.
@ =0- QelectUAWHTamp—T1) « H — mlp H = UAwn hss (11)
at Cw (Ty—T1) Cw Cw

Now, if initial steady level of hot water
hgss = aH (13)
This leads to the following relation,

QetectUAWH (Tamb—T1) S —
= me = aUAWH (14)

The above relation is valid in case when water is used, and water is not used in steady state.
Considering the scenario when hot water is not used, mcC, =0
Qetecnouse = QUAwy(Ty — T)) — UAwy (Tamp — T1) (15)

On the other hand, when hot water is being used

Qetecuse = aUAyy (T, —T)) — UAwy(Tamp — T)) + me, (T, —Tp) (16)
Qetecnouse is basically the energy used the EWH if hot water is not used at all. It can be computed
daily based on the computations of low power surges used by the EWH through out the day. So,
the unknown parameters of tank loss coefficient and mass flow rate of hot water can be
estimated as,

Qelecnouse
UA = ' 17
. ‘ZH (aTu+(1—am—Tézmb) . (7)
mC — elecouseYelecnouse >m= elecouse”Yelecnouse dt 18
p (Tu—TD) I Cp(Ty=T1) (18)

Tupperr Tiowerr» Tamp €an be respectively considered as 125 °F, 50°F, 70°F in approximate terms.
Provided measurement of energy is known in a certain period, one can thus estimate the new
reserve capacity of hot water in real time following the relations:

i. If energy usage > a preset threshold (10% of rated energy in a period)

Mesti )
esti old (p*tank_capacity 19

ii. If energy usage <a preset threshold (10% of rated energy in a period)
Qosti = Apig = Preset bottom sensor location

Safe Deferred Time Computation: Once the reserve capacity is estimated, the safe deferral time
for turning on the electric water heater at the beginning of a grid service event can be computed.
Say for example if full tank (say 50 Gallon) of hot water needs to be heated up the energy required
can be computed as below,

energy = p * tank_capacity * (T,, — T;) =8.337 gal/Ib*50 gal*(125-50) "F=31275 BTU=9.16kWh
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For the same EWH with 4.5 kW rated power if there is a full tank of hot water, the number of
minutes, the turning on of the EWH can be deferred by

safe deferred time=9.16kWh/4.5kW=2.04 hours= 122 mins
If only atis the fraction of hot water is estimated to be left at the end of the grid service event,
safe deferred time= 122* a mins

Also, If 0<0.25, EWH doesn’t participate in grid service event, safe deferred time= 0 mins. This
guarantees a minimum reserve capacity of 0.25 at the end of each grid service event, preventing
customer discomfort or cold showers. The Control logic engine in Figure 20 shows the
implementation of the algorithm in the edge controller. In this way based on the reserve capacity
estimated at the beginning of grid service event, the edge controller determines a safe deferred
time for blocking the turning on of the EWH.

s — Mesti . Estlm?te ?d B Yes
old p* Eankicapacity rom estimate «

hot water flow

Set a to be 0.9 | IS power usage> 10% rated

Estimate
Power usage
through
stochastic
regression

Obtain
Historical
power
consumption

Start Monitoring
a

\ 4

Obtain deferred
runtime for
blocking EWH
122min* a

Grid Service event
initiation

If estimated a< 0.25

EWH is not
controlled for
grid service

\ 4

Figure 20. Control Logic Engine.

Results: The method mentioned above is used to forecast power usage of a single household
EWH based on historical data. Figure 21(a) shows forecasted mins of usage of an EWH for an
entire day considering a 10 min of forecasting horizon. Figure 21(b) shows forecasted power for
an hour with 10 min intervals considering a 60 min forecasting horizon. In this task, the
correlation between EWH energy consumption and the mass of hot water leaving the tank is
performed. Therefore, the input required is the EWH energy consumption - which is the
integration of the EWH power profile in Figure-21b. Despite not capturing the peak power, the
forecasted EWH power stays longer (Figure 21b), due to the forecasting method that utilize
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averaged 10-minutes historical EWH power profiles. Therefore, as shown in Figure 22 which
utilized averaged 1-hour historical EWH power profiles for the whole day, the estimated hot
water usage using EWH energy consumption is shown to be correlated with the actual hot water
usage.

| — Actual EWH power On w{ 1 —— Actual EWH pawer
—— Predicted EWH power On 5 —— Predicted EWH power
=
B (=]
i 30
£
2 6 £ 25
5 =]
2 T W
E 4 § 15
E 10
=
2 A z A
0 A h o
0 20 4 & 8 100 120 140 by 1 2 3 1 5
(a) 10 min perieds in a day (b) 10 min perieds in a 1 hour window

Figure 21. (a) 10-min forecasting horizon, (b) 60-min forecasting window

The next set of results are for estimation of the usage of hot water in a household based on
simple power measurement. This estimation is critical for computing the reserve estimate which
determines the safe deferment of the turning on of the EWH. Figure 22(a) shows the hourly
usage prediction of a household having family of 2 with a 40 Gallon water tank. Likewise, Figure
22(b) shows the hourly usage prediction of a household having family of 4 with a 60 Gallon water
tank. In either case the estimator can capture the peak usage time which is required for the
implementation of the control logic engine of Figure 20.

50

m 45 L I

40 | [
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m [gallon]
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. . .
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(a ) Hourly duration in a Day ( b) Hourly duration in a Day

Figure 22. (a) Family of 2, 40 Gallon Water tank; (b) Family of 4, 60 Gallon Water tank
Conclusions and Insights:
The development of this control oriented EWH model has further be quantified and validated

during lab tests in Task 12: Lab testing and end-to-end integration testing. However, the following
insights were found:
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e The correlation pattern in historical usage can be exploited for long term forecast and usage
profile.

e The simple model and control strategy maximizes the utility of EWH reserve in grid service
events such as demand response.

e Automatic tuning of minimum safety reserve can further help avoid customer discomfort.

e The method is applicable in all EWH irrespective of CTA-2045 compliant or not

e Overestimating the usage in peak times, provides safety against cold showers.

EV-Charger (EVC): The objective of the EVC control-model is to predict the ON/OFF times and
power consumption of the EVC within certain time period in the future when a DR-event kicks
off. With the predicted EVC information, the edge-level control can then allocate the on and off
timings of other DERs during a DR-event without violating the Quality-of-Service based on the
charging need set by the user.

EV charger consists of a power converter and a battery pack, where the characteristics of both
should be considered for physical modelling. The electrical parameters of the battery, e.g.,
internal voltage and resistance, vary with various factors such as temperature or state-of-charge
(SOCQ). All the parameters and state variables are needed in a physical battery model. It comes to
our attention that the battery SOC, as an important state variable in the physical battery model,
is typically not accessible in majority of the EVs. Therefore, the data based EVC load forecast
models which do not rely on SOC and other physical measurements are adopted to achieve the
objectives. Similar to EWH modelling, two data-based modelling approaches were developed for
EVC, i.e., time-series characteristics and statistical analysis approaches.

Time-series weighted forecast model: The time-series weighted forecast model takes the real-
time power consumption data before the DR event and conducts the weighted mean of the
measurements of the day as well as the historical data of a similar day. The historical load data is
classified through qualitative inspection into the following patterns: day-wise pattern; weekly
pattern (weekdays vs. weekends); and seasonal pattern. Figure 23 shows the day-wise EV
charging profile in two weeks with x-axis unit being hour. The sample data is collected in a
household in New York and is provided by Pecan Street. It can be clearly observed that there is a
day-wise pattern in the charging profile of the EV owner. The EV was charged most often after
3pm every day.

T i
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Figure 23. The daily charging load profile of an EV owner within 2 weeks.
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Similar to EWH, the mathematical expression of the short-term (in this case 0.5 hour ahead) time-
series EVC forecast model can be written as:

Peyc est[n] = (1 — k) - Mean(Pgyc r¢[n — 59, n — 30]) + k * Peyc_pis[n] (20)
where Pevc est[n] is the estimated power consumption at the nth time step, Pevc [n] is the real-
time measurement of the power consumption at the nth time step of the day, Pevc nis[n] is the
historical power consumption at the nth time step of a similar day, and k is the blending factor.
Statistical forecast model: The statistical forecast model predicts the random parameters of an
EVC, such as turning ON/OFF times, based on the statistical analysis of the historical data of a
particular EVC. Since the power consumption of an EVC during on time is approximately constant,
i.e., its rated power, knowing the time stamps of ON and OFF instants are enough to reconstruct
the load profile of an EVC. The EVC ON/OFF status and the duration time can be predicted with
the current operating status and the statistics of that EWH in a similar situation, e.g., same hour
in a day. Figure 24 shows the power usage profile of an EVC in a week. The x-axis unit is minute.
The durations of the ON and OFF status within that particular day can be analyzed using statistical
approach and are illustrated in Figure A16. Figure A16(a) shows the probability distribution of the
duration when the EVCis on; and Figure A16(b) shows the probability distribution of the duration
when the EVCis off.

EV Hist Data
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Figure 24. EVC power usage profile in a regular week.

EWH Ton Probability

(@ : " (o)

Figure 25. Probability distribution of EVC status duration: (a) on time; (b) off time

Results: Preliminary results of the two models are generated with the two weeks of the field data
provided by Pecan Street. One week’s data is used for learning purpose and the other is used for
verification. The two weeks’ data are plotted in Figure 26 as below.
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Figure 26. EVC weekly load profiles for model validation
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Figure 27.EVC prediction with the statistical model at 3930 minutes. Left: Time-series weight model; Right: Statistical ON/OFF model; Upper:
time sequence plots; Lower: average power in 30-min time window

The results of the time-series weighted model and the statistical model in 3920 minutes are
shown in Figure 27. The averaged power of the real measurements versus the estimated in the

30min window are also compared.
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PV-Solar (PV) and Energy Storage: Simple calibration of a PV-gain calculated from historical
solar-irradiance and solar-power generation are calculated, which is then used with forecasted
solar-irradiance to forecast solar-power generation [23]. Other advanced techniques to forecast
solar generation can also be used. However, since predicting weather is hard and advanced
techniques have already been implemented to forecast solar-irradiance (SI) which can be readily
accessed through weather services, a straightforward way to predict PV-solar generation is to
estimate the home’s PV panel sizing based on the generated power. Additionally, since PV is not
being controlled and the development focus is on the edge-level controller and its coordination
with the central-level controller, a simple yet effective way of forecasting PV-solar generation
was utilized. Besides, many other information such as rating of the DERs and SOC are readily
available using IEEE 2030.5 client-server through the inverter and meter-as-a-controller which
reduces the burden of details modeling.

Modes of Operations: The edge-level control strategy is divided into two different modes. The
first mode is called the Demand-Response (DR) mode, which occurs when a DR-event is triggered
by the central-level control. During this mode, which lasts for a certain time duration, the central-
level control will send a pseudo price signal to the edge-level control which is translated into a
net-power requirement for the residential unit. The residential unit will then manage its DERs to
achieve the net-power requirement from the central-level control. Figure 28 shows a depiction
of the edge-level control during DR-mode.
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Figure 28. Edge-level Control during DR-mode.

The second mode is called the Idle-mode, which occurs when there are no DR event. In this mode,
the edge-level control will manage its DERs to lower electricity cost for the homeowner.

DERs Scheduler Optimization Formulation: The DERs scheduler objective is to minimize the
energy cost for homeowner while meeting several constraints to ensure grid-event objectives
and homeowner’s Quality-of-Service are met. First, only the air-conditioner (AC), solar-PV (PV)
and residential energy storage system (RESS) are considered as controllable DERs. The dynamics
of indoor air temperature and battery state of charge are modeled, and the parameters are
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assumed to be known. Electric-water-heater (EWH) and electric vehicle (EV) are considered as
uncontrollable DERs, where the power consumptions are forecasted using statistical methods.
The problem is then formulated as an optimization problem, with the objective of minimizing the
integral of the multiplication of electricity tariff with the net home power consumption from the
grid. The net home power consumption is given by the summation of all controllable and
uncontrollable DERs, which are constrained by an upper limit during a Grid-Event which is
communicated by a central-level controller. Additionally, the net power of controllable DERs are
constrained by the home’s flexible power threshold outside of the Grid-Event, which is
communicated by the edge-controller to the central-level controller. Two states dynamics
considered from the controllable assets are the indoor air temperature which is controlled by AC
power as input and RESS battery state-of-charge which is controlled by RESS power as input. The
states are bounded by upper and lower limits. Parameters that define the dynamics of the indoor
air temperature and battery state of charge are either calibrated or known. Additionally, the
forecasted outdoor temperature and the solar irradiation are also assumed to be known. The
objective of the optimization is to minimize the electricity cost for the user, where the tariff can
either be constant or time-dependent, such as Time-of-Use tariff, as shown in the objective
function. It will also ensure the Quality of Services are met while restricting the net home power
during the grid event and the net controllable DERs power outside of grid event, as described in
the inequality constraints. These requirements are formulated as a single mixed-integer
optimization problem and solved using a generic solver, as shown below.

Objective Function:

min ft";f C(L) - Pyyia(t) dt (21)

where
C(t) =Known day-ahead electricity tariff.
P 4,14(t) = Power imported from grid = P 5¢(t) + Pgss(t) + Pewy () + Pey () + Pycr(t) —
Ppy(0).
P,c(t) =Power consumption of Air-Conditioner (controlled)
Pgss(t) = Power consumption & generation of Energy Storage System (controlled)
Prwy(t)= Predicted power consumption of Electric-Water-Heater (uncontrolled)
Py (t) = Predicted power consumption of Electric-Vehicles (uncontrolled)
Pycr(t) = Predicted power consumption of other uncontrolled loads
Ppy(t) = Predicted power generation of Solar-PV (uncontrolled)
States:
1. Indoor Air Temperature (AC):

Tin = f(PAC(t); Tout(t): ACconst)’ where PAC(t) = [PAC_lo’PAC_hi] discrete

2. Battery State-of-Charge (ESS):

SOCgss = f(Pgss(t), ESSconst), where Prss(t) = [Pgss 10, Pess_ni| continuous
Equality Constraints:
1. States initialization:

[i1 Tin(to) = Tin initiar [iil SOCgss(to) = SOCEss initial
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Inequality Constraints:
1. Indoor Air Temperature (AC):
Tin_min < Tin(t) < Tin_max vVt

2. Battery State-of-Charge (ESS)
SOCgss min < SOCEss(t) < SOCEss max V T

3. Restrict power export to Grid (optional):
Pgig®) =0 V ¢t

4. Restrict P 54(t) during grid event:
Pgrid(t) < PGridEvent V t= [tStart: tEnd]GridEvent

5. Restrict net controlled DERs power outside of grid-event as communicated to central-
control:
chontrolled(t) < PLimit(t) V t+ [tStart' tEnd]GridEvent

Knowns Inputs:

Forecasted outdoor temp: T out ()

Forecasted solar irradiation & PV power:  SI(t), Ppy(t)

DER’s Parameters: AC consts PV const» RESS const
Forecasted uncontrollable loads: Pycr(t)

Known day-ahead electricity tariff: C(t)

Coordination of Edge and Central-Controller: The third aspect is the coordination between the
central-level and edge-level controls. This subtask aims to layout and finalize the overall
architecture and coordination between the central-level and edge-level controllers. The overall
system consists of a central-level controller and edge-level controllers. The edge-level controllers
will send real-time information of disaggregated DERs loads and energy reserve estimates data
to the central-level controller which are then stored centrally. Using historical DERs load and
reserves data from the edge-level, together with potential renewable energy generation from
weather forecast, the central-level controller will predict future grid load profile and potential
grid energy/power reserves. Using the forecasted grid energy/power, along with real-time DERs
loads and reserves estimates from the edge-level controller, the central-level controller will
compute the DR energy/power reference. This DR reference is then converted into a pseudo-
price that is sent to the edge-level controllers. A DR-event is initiated when a pseudo-price is sent
to the edge-level controller. On the edge-level, this pseudo-price is the converted into an
equivalent grid energy/power demand to be met by the edge-level controller. The edge-level
controller will manage its local DERs to meet this grid demand, while also meeting the Quality-
of-Service of the residential unit for user’s comfort. Historical pseudo-pricing and aggregated
local edge-level loads will be used by the edge-level controller as feedbacks to tune an
aggressiveness coefficient to correct the participation level of the house to the grid service. A
module on the edge-level controller will collect information on DERs operations and process the
load information into disaggregated load data to be sent back to the central-level controller.
Historical data inducing the responses of the house participation in the previous DR-events and
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pseudo-prices will be utilized to train the central-level control module over times to improve its
performance continuously. The overall architecture is shown in Figure 29.
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Figure 29. Overall Control Architecture
Through the design, development, and implementation of artificial intelligence and coordinated

control between the central and edge layers, it is expected that the reliability, economy, and
safety of the power distribution system during a DR event can be improved.

Task 3.0: Development of the risk-based DER dispatch bounds calculation framework

The NREL team made the following accomplishments within this task to develop risk-based DER
dispatch bounds: (i) develop a sequence of problem formulations to solve for dispatch bounds
from the ideal (deterministic) scenario to the practical realistic (data-driven, stochastic) scenario;
(ii) design a new data-driven method for the dispatch bound problem to utilize historical data
that can guarantee constraint satisfaction for a given probability and submit the results to a
journal for publication; (iii) prototype the dispatch bounds on an IEEE test case under synthetic
settings to understand what complications might be in the upcoming data-driven version, and to
demonstrate the potential benefits of dispatch bounds; (iv) design an algorithm to turn historical
forecast error data and controllable DER bounds into probabilistic profiles for an aggregation of
homes.

The data we need at each node to solve for the dispatch bounds we define as the “Probabilistic
Profile” of that node. It comes from the uncontrollable loads and controllable DERs of the homes
aggregated at that node and has three parts that extend for 24 hours at 15-minute granularity:
(i) forecasts of the uncontrollable loads, (ii) forecast error probability distributions, and (ii) control
bounds for the controllable DERs. We obtained historical forecasts and their errors for an
aggregation of four homes in Austin, TX from the Eaton team working on the forecasting task of
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the project, and we obtained the control bounds of the controllable DERs at each of the same
four homes from the Eaton team working on the Edge Controller.

Figure 30 shows the three parts of the probabilistic profile of the four homes on Dec 9t 2020.
The empirical forecast error distributions were built by taking the 28 days of previous and
grouping them by the 15-min time of the day. In general, the error gets larger as we look further
a head into the day until the end of the day which has less volatility. The control bounds come
from summing together the upper bounds of the homes and summing together their lower
bounds. The dip in the lower bound is from being able to curtail the PV power.
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Figure 30. (a) Forecast of uncontrollable loads; (b) Empirical forecast error probability distributions; (c) Control bounds of controllable DERs

If we take the 24-hr forecasts, add on an error percentile, and add on the controllable region, we
get

Figure 31 for the 4th and 96th error percentiles. Notice that where the two regions overlap, it
means that it is possible for a setpoint to be made and complied with 92% probability. Extending
this idea to all permutations of the spaces between lower and upper percentiles get different
regions where a setpoint can be complied under a certain probability. Figure 33 shows this for
the four aggregated homes. Compliance to a setpoint has the highest probability when the
forecast errors are small (e.g., early in the day), or when the controllable region is large (e.g.,
middle of the day). With this method of probabilistic profile data visualization, it becomes easily
apparent when and at what level an aggregation of loads is most controllable.
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Figure 31. Controllable regions if the forecast error is at the 4th or 96th percentile
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Figure 32. Probabilistic setpoints over 24 hours

From the Dispatch Bound optimization problem described in the project’s proposal there were
still many details that needed to be worked out about the problem and how the solved dispatch
bounds would be utilized. At a basic level, dispatch bounds are meant to quantify the amount of
future flexible load available for control at a node in a power system given that there are
uncertainties in the whole system. In discussions with Eaton, it was decided that the dispatch
bounds would be most useful as a day-ahead metric at 15-minute time granularity to size how
much flexibility from controllable DERs could be sold into a day-ahead energy market. See Figure
33 for a detailed map of flow of data and information into and out of the Dispatch Bound
Calculator.
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Figure 33. Flow Chart of the Day-ahead Dispatch Bounds

Thus, under this specific scenario, the task of the Dispatch Bound Calculator was to take (i) the
day-ahead forecasts of the uncontrollable loads from an aggregation of homes, (ii) historical data
of the forecast error, and (iii) the day-ahead controllable bounds of the controllable DERs, to find
a subset of the day-ahead controllable (dispatch) bounds that will guarantee that the voltage
magnitudes in a distribution system stay within their operational limits for a given probability.
This type of guarantee is called a chance constraint, which has a long history in the Stochastic
Optimization community. However, a challenge with chance constraints in this problem is that
they are typically used to optimize a setpoint and not a (set-)interval as in our case. We
reformulated the chance constraints on the interval into chance constraints on the upper and
lower bounds of the interval so that we could use existing chance constraint solution methods.
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Instead of making assumptions that the probability distribution of the forecast errors was of a
certain convenient type (e.g., Gaussian), one of our goals was to use an empirical distribution
built from historical data so that our solution could account for any problematic distribution that
could arise. However, all the existing data-driven methods for chance constraints that we could
find in the literature would add a significant amount computational runtime to solving the
dispatch bound optimization problem; especially for high-dimensional data such as forecast
errors for every node in a distribution network. Thus, we took a lightweight distributionally
robust chance constraint method and modified it into a data-driven method. The original method
assumed that the mean and covariance of the distribution were known a priori. Our adjustment
allowed us to instead use the sample mean and sample covariance derived from data while
making the same guarantees as the original method. Since we figured that other researchers
may have run into similar issues in other application areas, we wrote a journal paper explaining
our new method with its theoretical guarantees and submitted it to the INFORMS journal
Mathematics of Operations Research.

To demonstrate the potential benefits of dispatch bounds and to discover any complicating
factors we might run into, we prototyped a small numerical simulation under synthetic settings
on an |IEEE 33-bus distribution network. Specifically, we assumed that the forecast errors were
Gaussian with known moments and that they were independent between nodes in the network.
We also assumed that the controllable DERs were curtailable so that it would be possible to get
a node’s power injection to be within a static band. We recognize that these assumptions are
very ideal which may not hold in reality but are being used as a placeholder until we obtain data
or evidence to change them. Under these settings, we solve for the dispatch bounds, and display
them (active and reactive power) for Bus 27 versus time for one day in

Figure 34 where positive bounds represent consumption and negative bounds represent
generation. The dotted red and blue lines respectively are the upper and lower bounds of the
available control region from the controllable DERs. The solid red and blue lines respectively are
the upper and lower bounds of the dispatch bounds which are a subregion of the control region
and are meant to guarantee voltage bound satisfaction with 95% probability. The grey region
running along the bottom measures the distance between the upper and lower dispatch bounds.
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Figure 34. Dispatch bounds for Bus 27

Because these dispatch bounds are meant to guarantee voltage bound satisfaction if all the
controllable DERs stay within the bounds, there are an infinite number of possible scenarios that
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could be evaluated. We choose to evaluate four extreme scenarios to evaluate the efficacy of
the dispatch bounds: (i) all controllable DERs are at their lower dispatch bounds; (ii) all
controllable DERs are at their upper dispatch bounds and compare them against when: (iii) all
controllable DERs are at their lower control bounds; (iv) all controllable DERs are at their upper
control bounds. Figure 35 shows the voltage profiles under these four scenarios at Bus 27 where
the voltage magnitude bounds were set to (0.95, 1.05) pu. We can see that the extreme dispatch
bound scenarios (solid lines) are able to keep the voltages within or near the voltage bounds,
while relying on only the control bounds (dotted lines) allow for extreme voltage violations. It is
also interesting to note that the dispatch bounds were solved assuming linearized power flow
equations, while the voltages shown in Figure 35 are from a nonlinear power flow solver.

144 e all ctr at max
----- all ctr at min
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all ctr at DB-low

o 5 10 15 20
time, hr

Figure 35. Voltage magnitude at Bus 27

From the Eaton team, we received: (i) the controllable load bounds of 14 (18) homes on Aug 17th
2020 (Dec 8th, 2020); (ii) the aggregated uncontrollable loads of the 14 (18) homes on Aug 17th
2020 (Dec 8th, 2020) and 30 days prior along with day-ahead forecasts for each of those days.
All of the data was in 15-min granularity. The goal was to use this data in a power system
simulation to find and evaluate the Dispatch Bounds. To expand the data both spatially and
temporally, we used the bootstrapping method to generate random selections. Random
selections of the 14 (18) homes were used to create the control bounds at different load buses
in the IEEE 33-bus distribution network. Random selections of the 30 days were used to create a
history of forecasting errors for each of the load buses.

One of the issues faced when solving for the Dispatch Bounds was that there were specific time
intervals that no feasible Dispatch Bounds could be found because the space of the controllable
loads was too small which causes the internal optimization problem solver to fail. To solve this
issue, we added a dispatchable “slack” resource, analogous to a slack bus in a power flow solver,
at each load and made them expensive so that the optimization problem would only use them
when the control spaces were too small. One benefit to using the slack resources, especially in a
day-ahead framework, is that it can give the utility a concrete signal of how much other resources
need to be dispatched. A sample result of the new Dispatch Bounds at two buses is the following
figure where the green dashed lines are the slack resources.
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Figure 36. Dispatch bound and needed slack resources at (a)Bus 10; (b) Bus 2.

The resulting voltage profiles at the selected extreme scenarios are shown in the following figure,
including when the slack resources are used to show the necessity of them with respect to
keeping the voltage magnitudes within bounds, i.e., utilizing slack resources are needed to avoid
under voltages between hours 18 and 21 due to the higher amount of load with smaller control
space.

----- all ctr at manx =++e+ all ctr at max

----- all ctr at min o weeee @l ctr at min
—— all ctr at DB-upp 115 i — allctr at DB-upp
— all ctr at DB-low = all ctr at DB-low
110 tf === wfneeded sources 110 === w needed sources

il
105 S,
roe v—ll.,-"rrl WLLI\,\
I, S, | e

b

FENEY

voltage magnitude, p.u.
=
o
o

voltage magnitude, p.u

-~ ---:a=':;

-

o 5 10 ) 15 20 o 5 10 ) 15 20
(a) time, hr ( b) time, hr
Figure 37. Voltage profiles at (a) Bus 10 and (b) Bus 27 under the extreme scenarios.
Task 4.0: Advanced metering hardware, firmware, and software development

The San Cloud Beagle bone Enhanced single-board computer was selected as the processing
platform for the meter-as-a-controller. Off-the-shelf L&G meters are used to embed with meter-
as-a-controller single board computer. The board integrates the necessary peripheral
components such as GPS and WiFi to facilitate the meter-controller functions. The prototype
physical meter adapter that included an enclosure for the SETO single-board computer and
associated components were selected. The enclosure provides weather proofing and allows
external access to the SETO meter controller without need to interrupt power supply or smart
meter operation once installed. The mechanical and electrical layout were determined, and the
detailed board layout and schematics produced to meet the system requirements.
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An intercept board was designed to allow standard access to the meter from both the AMI smart
meter node and the SETO meter-as-a-controller. See figure below:

The design was completed for the low-level hardware (carrier) board that hosts the BBE and
other peripherals for the meter-controller, to include its board layout and connectivity
specifications. The hardware mechanical and electrical schematics were submitted to an external
test certification company for design analysis.

Lastly, work was completed in the evaluation of the smart meter-reading interface and the
development of the preliminary hardware-firmware design to allow meter-controller to
transparently interoperate with the AMI node in accessing the smart meter over a single standard
meter UART serial interface. This work included the ability to increase the meter-reading UART
interface baud rate and configure the associated C12.18 interface protocol to allow the meter-
controller to perform high-frequency load disaggregation meter-reading while minimizing impact
to existing AMI node standard meter reading operations.

Smart meter application design: The end-to-end system communications control and security
architecture for the SETO hierarchical control system was completed.

Energy Energy
Market Contracts

Private DER Clowd

. AMIDR EatonSGN
AF Maah, Collslr,
Fllsor, st §
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Figure 38. Interworking between the DR+DER Central Controller and Utility DER Management Systems (DERMS)

The figure above illustrates the high-level system architecture including the potential
interworking between the DR+DER Central Controller and Utility DER Management Systems
(DERMS) as well as the potential for Utility SCADA system interworking for access to behind-te-
meter (BTM) DERs.

Communications, control and security protocol requirements for implementation of the end-to-
end system were defined and evaluated. Regard qwas given to the requirement for supporting
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heterogenous network technologies as part of utility AMI smart grid communications networks.
This not only reflects the reality of the current utility landscape but is also important in the
transition to different next generation networks. The figure below illustrates a combined RF mesh
and cellular network-based utility infrastructure connecting the utility headend to different
customer premise sites.

W eather Energy Energy
Forecasts Market Contracts

Figure 39. Combined RF mesh and cellular network-based utility infrastructure

The system architecture model is based on the use of public key infrastructure standard C.509
certificate-based security in each of the interlocking security domains from the utility headend
enterprise network to the utility field area network. The three connectivity specified domains
are: the Utility Enterprise Network Application Server connectivity domain, the Utility Headend-
to-Meter wide area Field Network connectivity domain, and the Premise Network Meter-to-DER
connectivity domain. DER control shall be delivered through an integrated, end-to-end system of
standardized application layer and transport layer security with standard public key
infrastructure (PKl)-based security applied in each of the linked domains. While introducing
additional PKI management requirements, certificate-based PKI security provides the most
robust mechanisms for securing end-to-end DER control while supporting standardized and
interoperable security.

IEEE 2030.5 server: EPRI developed an IEEE 2030.5 server software that is a part of the meter
controller used in this project. The server can communicate with a DER gateway, which includes
an IEEE 2030.5 client. The gateway is connected to a Fronius inverter that is used in this project.
The server is used to control the DER by issuing several control commands such as the active
power limit setpoint. EPRI’s IEEE 2030.5 server supports DER operations defined in the Common
Smart Inverter Profile (CSIP) standard. The server integrates with the meter edge controller
application that manages the premise DERs and can serve up to 16 DER clients. The server is built
from SEP schema 2.1.0 from IEEE 2030.5 standard and is extended to add advanced grid-edge
functions such as loss of master & reversion to defaults and advanced scheduling features. Table
8 below shows the technology stack of the server built by the EPRI team.
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Table 8. Technology Stack of IEEE 2030.5 Server

Role Facility DER Server ‘
Profile Common Smart Inverter Profile (CSIP) — 2018 — Version 2.1
Schema SEP 2.1.0+

Programming Language | C

Operating System Linux

Target Hardware Embedded Platforms (Ex: Raspberry Pi)

Compiler GCC

Format Static library (.a) or Dynamic library (.so)
Dependencies Microhttpd, GNU TLS (Only for Standalone version)
Security TLS v1.2/1.3 (Only for Standalone version)

Releases: Table 9 shows the various releases of the server library and the associated features
that EPRI team has been working on.

Table 9. IEEE 2030.5 server releases

Release Description Capabilities
Initial version | Basic server Integrated with microhttpd, Start/Stop Server
Server control and HTTP object APIs Open/Close/Write HTTP client

Release 2 Object Handling APIs, List Handling APlIs, Create, update and get basic smart energy (SE)
Scheduling APIs objects like DeviceCapability, EndDevice,
DERProgram, DERControl etc

Release 3 Device Data APls, Access Management Get end device availability, status, settings, log
APIs, utility/helper APIs events and meter data
Release 4 Final Release with APl documentation

and source code

CSIP Testing: As part of the CSIP compliance testing, EPRI carried out a number of informal tests
following the official SunSpec Common Smart Inverter Profile (CSIP) Conformance Test
Procedures. We performed a subset of the tests listed in the CSIP test procedures document. The
subset of tests is chosen based on the most common interactions between an IEEE 2030.5 server
and a client. These tests verify the interoperability of DERs using the 2030.5 protocol. They make
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sure that the 2030.5 functional subset that must be supported are present in the server and client
used for this project. The tests were selected based on the applicability of the 2030.5 protocol to
this project and on the functionality of the client. The 2030.5 client used in this project works
with one single DER; in other words, it is not an aggregator type client. Hence, all the tests related
to aggregator clients were out-of-scope of this testing.

The test setup included the 2030.5 server software running on a Linux OS computer. The server
is connected to a DER gateway software which includes the 2030.5 client. The gateway runs on a
Linux OS, as well. The gateway is also connected to a DER simulator software running on a
Windows OS computer. The test setup is depicted in Figure 40.

(.- ] SunSpec |
(--- | IEEE 2030.5 ModBus Ban |l B
. — ]
' 55 X T o
EPRI 20305 OpenEGrid Gateway
Server (2030.5 Client) EPRI DER
Simulator

Figure 40. Test setup for CSIP compliance of 2030.5 server and client

The 2030.5 server is used for sending control commands to the DER gateway. The DER gateway
incorporates a 2030.5 client. All messages between the client and the server follow the standard
2030.5 protocol. The gateway is responsible for translating the 2030.5 messages into SunSpec
Modbus messages. The DER simulator has a SunSpec Modbus interface where it can
communicate with the gateway. The DER simulator receives control commands coming from the
gateway, as well as it makes the DER status (measurements) available to be read by the gateway.
The gateway can also send the DER status to the 2030.5 server using the 2030.5 protocol.

Task 5.0: Stakeholder engagement (Budget Period 1)

Task Activities:

In the budget period 1, the Eaton team had formed an industry advisory board combining
multiple utilities that includes investor-owned utilities, co-operatives, and municipalities. ComEd,
Southern California Edison, San Diego Gas and Electric, Provo power, Loveland water and power,
Grand Valley Power, Jo-Carroll Energy, Sterling Municipal light department, and Delaware Electric
co-op have been the part of industry advisory board. Two things were focused for engaging the
stakeholders in the first year:

1) The usecases and corresponding elements for DERs and flexible loads were discussed to
develop the coordinated control strategy in different layers
2) A letter of commitment from a utility partner who is willing to host the demo for the

developed technology

Task 6.0: Hierarchical grid services control algorithm development
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In general, coordination between central-level and edge-level involves information exchange
between both levels as shown in Figure 41 This information exchange is divided into three
categories. First, multiple SETO homes and non-SETO homes are grouped together as a node
point, where the net load among these homes can be communicated to the central control. The
nodal location is a common point for the homes in the grid network where the net load can be
measured and communicated by the utility operator, such as a distribution transformer.
Secondly, all SETO homes communicate directly to the central control. The information sent by
the homes are related to DERs load flexibility forecast and actual loads in SETO homes, which are
used as feedback for the central control to make group-level decisions. Finally, central control
also broadcasts a common message to all edge controllers in SETO homes related to the ancillary
grid service. The framework and subfunctions within the blocks in Figure 41 will be discussed in
more detailed next.

4 SETO home

A Non-SETO home

Central

Control

Figure 41. Overview of Information Exchange Between Edge-Level and Central-Level
First, detailed functional blocks within the edge-level and the central-level controllers are
discussed. Next, the integration phases, from a simple to the final simulation scenario are
elaborated. The edge control contains two functions; first is a data repository function that
automate load data cleaning, disaggregation and combining that the controller receive updates
periodically and by query from multiple sources.
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Figure 42. Functional Blocks in Edge-Level Data Repository

Page 55 of 105



DE-EE0009023
Eaton Corporation

Data Repository for Edge Controller: Blocks A1-A9 in Figure 42 represents the different inputs,
outputs, and processes in related to the data repository on edge-level. Al represents the home
aggregated load data, given by Grid_L1 and Grid_L2, as measured by an eGauge sensor from the
two legs of a home’s power supply. A2 represents precleaning of this data in the event of missing
data or irregularity readings before data is fed into the trained load disaggregation model shown
in block A3. The output of A3 are the disaggregated loads for Tier-1 appliances such as air
conditioner (AC), electric vehicle (EV), electric water heater (EWH), PV-solar (PV) and battery
(RESS) powers. A4 represents the weather APl to query actual and forecasted weather
information from a weather data server via ethernet. A5 represents the nodal pseudo-price data
that is received from the central level. Ideally weather APl A4 is located in central level to have a
single and reliable ethernet source. However, for the purpose of simulating the edge-control
only, A4 and A5 can be assumed to reside in edge-level as shown in A4-A6. Constant DERs
parameters can be queried from DERs controller and sent to the data repository A9, while time-
varying dynamic states of the DERs (if available), such as battery SoC are combined with other
time-varying data in A7. In A7, data from A3, A6 and A8 are further cleaned, aligned and
combined in the edge data repository A9. Time-series historical power consumption data,
constant DERs parameters and time-series weather data are used to calibrate DERs models and
forecast DERs states and powers in the edge-level DERs controller, shown in Figure 43.
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Figure 43. Functional Blocks in Edge-Level DERs Controller

DERs Controller: The edge-level DERs controller consists of two primary functions; first is to
calculate DERs flexibility bounds shown in B1 and secondly to schedule DERs inside of home
shown in B2. B1 calculates the maximum net home minimum and maximum power flexibility
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bounds through an optimization, which are sent to B2 as the net power constraints when
scheduling DERs and communicated to the central level controller via B3 to calculate the grid-
level dispatch bounds. B2 optimizes the scheduling of the DERs in the home to meet an economic
or grid-level objectives while meting the quality of service (QoS) of the home. B5 represents the
initial state of charge and capacity of the battery from the data repository that are extracted by
B1 and B2 to estimate battery flexibility. B6 represents the historical PV-solar power, historical
actual solar irradiance and forecast solar irradiance from the data repository. B7 utilizes the
information to forecast availability of PV power for B1 and B2. B8 represents the net home power
consumption and the Tier-1 DERs powers from the data repository, where the difference of these
two loads is used to forecast the home uncontrollable load via B9 and sent to B1 and B2. B10 and
B12 are EWH and EV historical power consumptions that are used to forecast consumptions of
EWH and EV through B11 and B13 for B1 and B2. Historical AC power consumption, indoor
temperature and outdoor temperatures from data repository are represented by B14 and are
used to calibrate the AC model parameters in B15. The parameters are used to estimate indoor
temperature forecast using forecasted outdoor temperature in B14, along with the optimized AC
power in B1 and B2. B16 represents the historical home net power consumption and historical
pseudo price signal from data repository that are used to estimate the home maximum power
threshold in B17 during a grid-event for B2.

Integration & Process Flow: The different functions in edge-controller are integrated and a
process flow is established across different edge-control functions shown in Figure 44 and
explained in Table 10.
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Figure 44. Edge-Level Controller Process Flow Diagram
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Table 10. Edge-Control Process Flow Descriptions
Descriptions
At start of simulation, edge-control checks if there is pseudo-price sent from central-control to
indicate a grid-event (or not).

If there is a pseudo-price from central, edge-control proceeds to calculate DERs flex bounds.
Pseudo-price received from central-control is translated into power threshold during grid-event.
Upper bounds from DERs flex bounds (from Step-2) & grid-event power threshold (from Step-3)

are combined as optimization constraints for DERs Scheduler (in Step-5 and 9):
o Upper bound from DERs flex bounds represents the constraint for net controllable DERs
power, outside of grid-event.
e Grid-event power threshold represents net power threshold for combined uncontrolled loads
& controllable DERs during grid-event.
The constraints represent home power threshold commitments communicated to central-control.
Using constraints in Step-4, DERs schedules are optimized using coarse 1-hour time-steps to allow
faster solving time, for multi-iterations to adjust grid-event power threshold to a feasible value, to
account for the home’s DERs availabilities & capacities.
Grid-event power threshold is increased or decreased iteratively until the home’s lowest feasible
power threshold is found:
e If solution is not found, power threshold is increased.
e If solution is found in first trial, power threshold is decreased.
Once a solution with the lowest threshold limit is found, this feasible grid-event power threshold
is sent to central-control.
Time-series home power thresholds are finalized as input to DERs Scheduler in Step-9.
DERs schedules are optimized using finer 15-minute time-steps & implemented on the DERs in
current execution window.
With repeating receding-horizon executions, edge-control will check if it received NEW message
from central-control, indicating a new grid-event:
e Ifthereis no NEW message but there is grid-event scheduled in previous receding-window, it
will utilize the original power threshold (from Step-4) & re-schedule DERs (Step-9).
e Ifthereis no NEW message & no grid-event scheduled in previous receding-window, it will
schedule DERs without power constraints (Step-9). This is the idling/economic mode.

Edge-control is executed in a receding window manner at fixed time intervals (4-6 hour intervals).

General Architecture of central Controller: Central-level functional blocks are shown in

Figure 45. C1 represents both the nodal-1 aggregated data consisting of both SETO and non-SETO
homes that are measured and sent from a nodal point in the grid (e.g., distribution transformer)
to central-level (green arrows) and the edge-level data that are directly sent by SETO homes
controllers to central-level (red arrows). Similarly, C2 represents the nodal-2 aggregated data and
nodal-2 SETO homes data sent to the central-level.
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Figure 45. General Central-Level Functional Blocks

At central-level, a Central Client Hub C3 receives the nodal -aggregated load data from all
individual nodes and DERs flexibility bounds, net loads, uncontrolled loads, DERs parameters and
DER initial states from each SETO home in multiple nodes. C3 will pass the received data to the
nodal data cleaning block C4 for data sorting, aggregation, quality check and preprocessing.
Outputs from C4 are sorted according to their respective nodal locations, and consist of SETO
homes aggregated uncontrollable load, SETO homes aggregated controllable load, SETO homes
aggregated DERs flexibility bounds, SETO homes DERs parameters, SETO homes initial states and
non-SETO homes aggregated uncontrollable load. These data are stored in nodal data storage
C5. The historical loads and DERs data on central-level are used as inputs for nodal dispatch
bounds calculation, aggregated uncontrolled load forecast and pseudo-price optimization in C6.
The nodal pseudo-price and weather data from C7 are sent to the nodal broadcaster in C8. C8
broadcasts nodal pseudo-price, actual weather data and forecasted weather data to the SETO
homes, shown by the blue arrows.

Edge-Controller & Central-Controller: Client-Server: Figure 42 and Figure 43 represent the

integration between multiple functional blocks that can be used to simulate a simple edge-level
simulation without considering the central-level control, where data in A4, A5, B3 and B16 which
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requires interactions with central-level controller, can be artificially moved to edge-level blocks.
A complete interaction would require a server-client functions both on the edge-level and
central-level to facilitate data transfer between the controllers. Figure 46 shows the server-client
functions that resides in the edge-level. The edge-level would require the nodal pseudo-price and
weather information from the central-level, while the central-level would require the DERs
flexibility bounds, home net & uncontrolled loads, DERs parameters and DERs initial states from
the edge-level.

@ ] D
To Block A6 Central-To-Edge Client From Central

-+ Nodal pseudo-price —

N Actual & forecasted weather )

/Edge-To-CentraI Server A
FromA9 & B3 |« DERs flexibility bounds To Central

* Home net & uncontrolled loads
N DERs parameters & initial state&

Figure 46. Edge-Level Server-Client Functions

Edge-Controller & Central-Controller: Pseudo-Price Correction Mechanism: The framework for
the pseudo price feedback mechanism is given in Figure 47. The pseudo prices are sent from
the central controller to the edge controller during grid service events to modify the customer
usage for the desired peak reduction.
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< F3

]

Home Max Net-
Power Conversion

Day-ahead Energy Market &
R e BT F4 Day-ahead Nodal Flexibility
l Obligations

F2 :] thm'es,rt?‘

1
I
|
@Home-l F5 | Pseudo-Price Controller
J |
I

$/kwh
@Home—z < \_ J
F, . $/kWh
g | ! 7
@Home—n < §/kWh

Figure 47. Pseudo-Price Feedback Mechanism

This is not the energy price customer pays for the demand usage, but it is a form of control signal
generated by the central controller. The central controller sends the same pseudo price to all the
homes connected to a node and is not individualized to each home. This helps in maintaining
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user privacy and safety against cyber-attacks since information is not tagged to a specific
household. This approach also helps in lowering the communication bandwidth since we can
broadcast the message instead of sending unique message to each household.

F4 in Figure 47 represents the information from the day-ahead energy market and nodal
flexibility bounds based on which the central controller will decide the reference threshold power
or power reduction for the upcoming grid service event. The pseudo-price controller F5
generates the pseudo price based on the reference power threshold, historical aggregate power
consumption, and energy price. The pseudo prices are broadcasted to the residential smart
meters which are received by the pseudo price to home power threshold converter F1. F1
converts the received pseudo price to a household level threshold based on the historical power
consumption of the household and energy price. The generated household level power threshold
is used by the edge-controller to modify the user’s power consumption. The residential power
consumption Pg feedbacks to the central controller where the nodal load aggregator F3 combines
the power consumption from multiple households to generate the net-power consumption Pag.
The pseudo price controller uses this information to update the pseudo price to reach the desired
aggregated reference threshold power.

Simulation Results: Simulation results are shown in Figure 48. In this exercise, a mock central-
control is utilized to send a price signal to the edge-control in Home-1. The grid-event occurs at
18-20hrs, with the central-control sending a pseudo price of $0.10 per kWh. The edge-control
receives this and translated it into a grid-event threshold of 1.5kW. However, through Step 4-6
iterations, edge-control had to increase the limit to 3kW, as 1.5kW was too low for the load
consumptions and DERs availability for Home-1, as shown in Table 11. The objective of DERs
scheduler is to minimize the energy costs for the homeowner based on the ToU rate, while at the
same time limit the net power consumptions based on the power thresholds. Note in Figure 48
column-[1] row-[2], net power imported from grid (dark-blue shade) between 18-20hrs is limited
to the threshold of 3kW (black dotted line). Imported power from grid is also minimized between
9-21hrs by utilizing more battery energy (light-blue shade) when the TOU rate was high,
especially during grid-event between 18-20hrs. These are accomplished while keeping the indoor
temperature and battery SoC within its upper and lower limits, as shown in Figure 48 , column-
[2], rows-[2,3] and maintaining net home power below the committed thresholds to central-
control in Figure 48, column-[1], row-[3]. More results will be discussed in the next multi-homes
simulations section, especially for homes without battery storage.
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Figure 48. Single-Home Integration Simulation Results for Home-1
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Simulator for Multi-Homes Edge-to-Central Integration & Multi-Nodes Edge-to-Central
Integration: In multi-home simulations, a group of 13-homes with different sets of DERs assets
were selected as home candidates to implement multi-homes simulation shown in Table 11.
Based on edge-control architecture explained before, each SETO home that receives central-
control’s pseudo-signal will adjust its net power threshold during the grid-event to the lowest it
can manage, based on the load behavior and DERs availability of the home. Hence, some homes
may not be able to meet the requested threshold, but homes may reduce it beyond its threshold.
As an aggregation however, the group of homes at each nodal location will strive to minimize
power consumption during a grid-event.

Table 11. Home Candidates DERs Compositions

Home Air Cond [kW] Solar-PV [kW] EV Charger Battery [kWh] Electric Water
[kw] Heater [kW]

Home-1 2 3.5 3 10 4

Home-2 2 4.5 N/A 10 N/A
Home-3 3.5 3.5 N/A 10 N/A
Home-4 1 3.5 N/A 10 N/A
Home-5 2 3.5 N/A 10 N/A
Home-6 3 3.5 N/A 10 N/A
Home-7 2 5 N/A 10 N/A
Home-8 2.5 3.5 3.5 10 N/A
Home-9 3.5 4 3 10 N/A
Home-10 2.5 7 115 10 N/A
Home-11 2 5 N/A N/A N/A
Home-12 2.5 3.5 3.5 N/A N/A
Home-13 3.5 4 3 N/A N/A
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As shown in Figure 48, the load threshold during grid event must be increased due to high load
consumption at the home, despite having a 10kWh battery, PV solar and controllable air-
conditioner. Conversely, for Home-4, a pseudo-price signal of $0.10 per kWh is translated into a
power threshold of 1kW during a grid-event between 18-20hrs. However, through Step 4-6
iterations, the edge-controller calculated that the home can accommodate OkW during the grid-
event as shown in Figure 49, column-[1], row-[2,3]. Looking at DERs compositions of Home-4, it
has a small 1kW AC, a 3.5kW solar-PV and a 10kWh battery. Home-4 also consumes around 1-
1.5kW of net uncontrolled loads throughout the day. Due to battery storage, PV-generation and
low consumptions, Home-4 can produce net-zero grid consumption during the grid event, while
maintaining the quality-of-services for indoor air temperature and battery state-of-charge.
Subplot top-left shows the appliances load profiles & power ratings. Subplot mid-left and bottom-
left shows a net-zero grid consumption during grid event by offsetting home loads using home
battery. Subplot top-right shows the Time-of-Use tariff. Subplot mid-right and bottom-right show
the Quality-of-Service being met for AC and Home Battery.
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Figure 49. Simulation Results for Home-4

Homes 11-13 in Table 11 do not have batteries for storing energy from either excess solar-PV
power or the grid to minimize grid power-import during a grid-event. However, the home can
store thermal energy in the form of lowering its indoor temperature, which represents the home
thermal energy capacity. Therefore, for homes without energy storage, indoor temperature
range plays a big role in determining whether the home can participate in a grid-event or not.
Home-11 simulation results in Figure 50 shows such behavior. The indoor temperature range is
increased to between 19-25°C in Figure 50, column-[2], row-[2], to allow Home-11 to be cooled
down enough to avoid AC from turning on during a grid-event between 18-20hrs as shown in
Figure 50, column-[1], row-[1,2,3].
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Figure 50. Simulation Results for Home-11

Different combinations of multi-homes simulations can be created using homes listed in Table 11
to analyze potential peak power reductions during a grid event. Figure 51 shows the net power
imported from grid for Homes 1-13. In general, edge-control reduces power imported from grid
during grid-event between 18-20hrs. Additionally, power consumptions during high ToU
between 9-21hrs are also reduced.

Table 12 shows the different combinations of homes with its peak net power during a grid-event
with edge-to-central coordination, compared to its worst-case scenario where uncontrolled loads
with controlled DERs coinciding during the grid-event. The first scenario where all homes have
battery resulted in the highest power reduction during grid event at 88.2%, while the lowest is
when all homes do not have battery at 63.5%. The case where half of the homes have battery
while the other half does not have battery resulted in 81.3% of power reduction, which is higher
than the case with 80% of homes have battery. Home with no battery however may still be able
to reduce its consumption during a grid-event, as shown in Home-11 in Figure 50. However, a
home without battery may still unable to displace high uncontrolled load if it occurs during a grid
event. Therefore, the percentages of homes with battery may still play significant role in reducing
grid-event average power at the nodal level. Scenario with 20% of homes with battery resulted
in 70.5% power reduction during grid event.
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Figure 51. Net Power Imported From Grid for Candidates Homes 1-13

Table 12. Multi-Homes Scenarios Power Reductions during Grid Event

Scenario Descriptions & [Homes List] Average Nodal Average Nodal Power
Power, with Power, Worst-Case  Reduction [%]
Controls [kW] [kw]
All Homes Have Battery 4.97 kW 42.20 kW 88.2%
[Home-1 to Home-10]
All Homes Does Not Have Battery 13 kW 35.62 kW 63.5%
[3 x Home-11, 3 x Home-12, 4 x Home-13]

50% Homes Have Battery 5.88 kW 31.48 kW 81.3%

50% Homes Does Not Have Battery
[Home-1 to Home-5,
2 x Home-11, 2 x Home-12, 1 x Home-13]
80% Homes Have Battery 6.69 kW 34.20 kW 80.4%
20% Homes Does Not Have Battery
[Home-1 to Home-8, Home-12, Home-13]
20% Homes Have Battery 9.10 kW 30.88 kW 70.5%
80% Homes Does Not Have Battery

[Home-1, Home-2, 3 x Home-11, 3 x Home-12,

2 x Home-13]

Delaware Electric Cooperative Service Area Batch Simulations: Power consumptions data for 19
volunteer homes with valid data in Delaware Electric Cooperative (DEC) service area were
collected for the month of July 2023 and simulations were performed using the data to analyze
the potential savings from implementing the proposed control methods.
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First, the benefits for utilities are calculated during Coincidental-Peak (CP) days. Simulations were
performed for the 19 homes based on actual CP days in July 2023 to get the kW reductions from
the 19 homes using the proposed controls methods. There were 5 actual CP days in July 2023 -
July 5th, 6th, 12th, 13th and 14th with each day having a 1-hour CP duration starting at either
5PM or 6PM. Then, the cost-saving multiplier (dollars per kW saved) is calculated based on actual
CP events in 2021 and 2022, which are then averaged and inflation-adjusted to be $21.75 per kW
saved for 2023. Finally, the potential savings from CP reduction in July 2023 is projected for the
102,000 homes in DEC service area. As shown in Figure 52, based on simulation analysis there is
a potential to save between $115K-$1.15M if the proposed controls are deployed in 10%-100%
of the homes in DEC territory during coincident peaking (5 days per year & 5 hours total).
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Figure 52. Potential Savings for Utility during Coincidental-Peak Days in July 2023

Secondly, the benefits for homeowners are calculated during non-Coincidental-Peak (non-CP)
days. As proposed, the home-controller will perform energy saving functions in the homes
without impacting the quality-of-services (QoS) for the homeowners. As shown in Figure 53,
simulation results show there is a potential to save DEC homeowners between 15%-45% energy
in the month of July 2023 if the proposed controls were implemented. Note the varying savings
are based on the home’s appliances and ratings - for example, home with higher PV and lower
AC power-ratings tends to benefit more.
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Key takeaway on this section is that the coordination between edge-level and central-controller
is defined and batch simulations are performed to shows benefits in terms of energy savings and
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peak load reduction during grid-event; all while maintaining comfort bounds for the
homeowners.

Task 7.0: Development of the risk-based DER dispatch bounds calculation framework
Task Activities:

Central controller formulation and simulation: Previously, the central-controller code was
tested with simulations using feeder models from PandaPower and only a small (5-bus) feeder
model from OpenDSS. Because the real-world demonstration will use the J1 feeder model from
OpenDSS, we needed to make sure that the code would work with that model and the new data
from DEC. The J1 feeder model in OpenDSS is a three-phase model and was modified into an
equivalent single-phase model for the central-controller. Because the J1 feeder has transformers
that affect admittance matrix and some of the nodes have different nominal voltages (e.g., the
nodes near the head of the feeder containing voltage regulators), the central-controller code had
to be modified to allow for a heterogeneity of nominal voltages across the nodes.

Using the load data, flexibility bounds, and bootstrapping method from the numerical simulations
from the work done in Task 3.0, we tested the central controller on the reduced J1 feeder. 23 of
the 223 nodes with loads were chosen among 3 different branches of the feeder to be
controllable with pseudo-prices. One noticeable difference between using the J1 feeder and the
previous distribution networks is that the voltages in the J1 feeder are more sensitive to changes
in the load. For example, at node x_6009029653-a, near the end of the feeder, the target load
for control is larger than the control region (forecasted load) at the beginning of the day, whereas
the targeted load goes below the control region in the later afternoon and evening as shown in
the figure below.
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Figure 54. Load reduction response for J1 feeder

Consequently, the pseudo-prices reflect this by being very low in the morning and high in the late
afternoon and evening as demonstrated in Figure 55.
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Figure 55. Pseudo price response

Intuitively, this means that a seto-home or meter-controlled home with controllable energy
storage would be signaled to store energy early in the day to be used later in the day.

The bootstrapping module was changed to fit the data availability from DEC, specifically for the
uncontrolled nodes; 20 aggregations of uncontrolled homes were randomly placed among the
uncontrolled nodes for the J1 feeder. One node near the end of the feeder was picked to be the
SETO-node with 5 SETO-homes aggregated at that node.

The main challenge with the J1 feeder and the DEC data was that optimization solver in the
central-controller would fail at certain time intervals by saying that the problem was infeasible
and not output a pseudo-price for those time intervals. To avoid these issues, we made the
following changes to the code:

1. Added the option to add auxiliary nodes that can inject reactive power with a high penalty
to the optimization objective function. For the J1 feeder, these auxiliary nodes were
added to the same location as the voltage regulators.

2. Added in contingency rules for when the optimization solver says that the problem is
infeasible; it uses the latest feasible solution that was previously solved.

The modified central-controller code was tested under various forecasting error sizes and loading
factors.

Task 8.0: Advanced metering hardware, firmware, and software development

Smart Meter: Prototype hardware was received, and hardware functionality was verified.
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Figure 56. Smart-meter hardware prototype

The Figure above show different views of the integrated hardware components on which the
current end-to-end communications firmware and controller algorithms were being developed
and tested. The pictures show (from left to right): 1) the new field demo hardware carrier board
integrated into the external meter adaptor enclosure, without the main BeagleBone processor
board installed, 2) the carrier board with the BeagleBone processor board installed (mounted),
and 3) the complete hardware setup including the partially visible attached smart meter (with
enclosed intercept board) and the ribbon cable-connected, door-mounted AMI RF
communications module for SETO data communications across the RF mesh AMI network.

Node controller Firmware: The functionality allowing meter-based Premise Controller to be a
local controller for Load Control Relay (LCR) switches was developed. Unlike typical AMI-Demand
Response (DR) in which DR controls originate at the headend system, in the SETO hierarchical
control design, the Premise Controller is also a controller for premise DR assets. Firmware was
developed and successfully tested in allowing the Premise Controller to activate DR controls in
conjunction with the overall premise edge control algorithm. Work was completed on the
firmware that allows the premise LCR to accept local premise controller commands that take
precedence while the LCR devices remain also utility system-controllable from the Headend
System. The Figure below provides an overview of the two-level broadcast communications that
has now been implemented and tested.
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Figure 57. Message broadcasting between Yukon and Meter-controller.

System-wide broadcasts allow the Central Controller to broadcast control commands and other
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DER+DR application data to groups or to all Premise Controllers using a modified AMI system
broadcast mechanism. Local premise-level broadcasts were further implemented for the local
Premise Controller DR control and device management. It should be noted that a feature of the
local premise broadcast is that while it does use an RF broadcast mechanism to increase the
reliability of communications between a Premise Controller and the local LCR(s), that number of
RF mesh network transmission hops is limited and controlled. This allows Premise-originated
broadcasts to be sent frequently, if needed, without unduly adding to the AMI network RF mesh
background traffic.

Headend system communication interworking testing- SETO node to Central and vice versa:
SETO project applies smart meter as the edge controller for distributed energy resources on
premises. The communication infrastructure block diagram is shown below.

DR Control
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Central Controller Server J
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Figure 58. SETO Communication Infrastructure

The project deploys a central controller at the utility headend system to allow for grid services
on the distribution network or for user-centered premise energy management services control.
As a result, the project requires solid data exchange between the edge and central controllers to
share information and commands. The project utilizes the Eaton YUKON system for data
exchange through the AMI.

Central controller resides in Central controller server, which communicates to Eaton YUKON
system through REST APIs. YUKON would transfer the data between the central controller and
the specified premise node or group of premise nodes. RF node C App on the premise node
receives/sends the data on the node side for end-to-end communication, interacts with the
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premise controller algorithm through TCP communication process, and take care of LCR DR
control. Meter data is stored in sqlite3 database and input to load decomposition for processing
through database operation module. 2030.5 Server controls the DERs in the house and
communicates with premise controller.

The team utilized the TCP communication module for edge-control to facilitate message sending
and receiving through local socket port. The local port is the point where messages are exchanged
with the edge device RF Node that sends/receives messages to/from central control. Messaging
formats were specified to standardize the information exchanges between edge-control and
central-control. These messages are then embedded in JSON format and echoed though the TCP
communication module to ensure the format is transmittable and receivable.

Task 9.0: Lab testing and end-to-end integration testing

NREL Lab Setup: In this task, Eaton team has established an architecture for end-to-end system
integration testing & validation in lab environment.
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Figure 59. Testbed integrating SETO Smart Meter/Controller and Hierarchical Grid-Service Control System.

The objective was to leverage NREL's Smart Home hardware in loop (HIL) setup to test and
validate three SETO AMI meter/controller prototypes (unit-level) for three virtual smart homes;
and also integrate with Eaton’s Yukon AMI DR headend device and DR+DER Central Controller.
Figure 59 shows the testbed integrating SETO Smart Meter/Controller and Hierarchical Grid-
Service Control System. This lab setup also targets to help identify and mitigate risks prior to the
field demonstration in BP3.

A description of how the load models were mimicked are provided below. Uncontrolled loads are
considered based on inflexibility or if there is not much to gain from them while controlling the
whole house consumption. For example, washer/dryer are running occasionally, adding another
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layer of control through a relay or breaker installation and commissioning may not provide

enough justification for benefit to cost ratio; therefore, they are not considered in this test.

* HVAC: Pair hardware, including thermostat, with building simulation running in real-time
using weather file from Austin, TX. The building simulations should match properties of
buildings from Pecan Street.

* Water Heater: Create draw profiles for different homes in Austin, TX. The draw profiles will
run on a schedule that can easily be repeated.

* PV: DC power from panels is simulated using DC power supplies that follows insolation data
from historical Austin weather.

* EV: Load data from Pecan Street will be used to determine start time, duration of charging.

* Uncontrolled loads: This will include refrigerators, washer, dryer in each home and lights on
timers in each home. Lights are a good load since that can be tailored by the number of lights
to get the wattage need to be consumed.

For the purpose of control, HVAC and electric water heaters are controlled via Eaton’s load
control relay over RF mesh and PV and Battery are controlled over WiFi using IEEE 2030.5
protocol. This is shown in Figure 59 as well.

Testing the developed load disaggregation and controller code on BBB : The developed edge-
controller modules are tested independently and as an integrated system on an open-source
embedded platform, BeagleBone Black (BBB). BBB is a low-power, open hardware with a Linux
based system with a small footprint, the size of a credit card. For the software integration testing,
an upgraded version of Beagle board called SanCloud BeagleBone Enhanced is used. It has
upgraded RAM, ethernet speeds, and Wi-Fi/Bluetooth facility. The system uses AM3358 Sitara
processor and Debian based operating system. The following tasks were completed on the BBB
platform.

° An initial testing was conducted on the BBB to learn
its development tools and functions.
° The developed modified persistence forecasting

model was successfully tested on the BBB. The aggregate
of 14 residential households generated from the
disaggregated load profiles was loaded into the BBB as
input to the forecast model to generate day-ahead
forecasts (24-hour ahead with 15-minute resolution)

° Tested the modeling and calibration of DERs (AC, PV,
EWH, & EV) for the edge analytics with preloaded data.

° Ensured the execution of the load disaggregation
module on the BBB platform

. Created a common database for the load
disaggregation module to write the results and the edge-
control algorithm to read.

Figure 60. SanCloud BeagleBone Enhanced

Page 72 of 105



DE-EE0009023
Eaton Corporation

e Executed the edge-control algorithm on the BBB, using the load disaggregation output
read from the common database.

The BBB used for the software integration testing is shown in Figure 60. The board is enclosed in
an open hardware facilitator to protect from short circuits. The edge controller framework uses
an optimization suite, Gekko, to find the optimal schedule for the appliances. Gekko is a python
package for solving mixed-integer and differential algebraic equations and can be used for
machine learning and optimization problems. As a step prior to running the edge controller code,
the optimization suite was installed on the BBB. The BBB is connected to the Wi-Fi to receive
code and commands. The edge controller eco-optimization codes and input data files are
transferred to the BeagleBone and tested the functionality to ensure accuracy and same results
as with running on PC. The eco-optimization code for a simulation period of 18 hours was
executed with a run time of 3 hours on the BBB. The team will work reducing the computational
time by changing the simulation time horizon or time step/time resolution.

The final solution for the integrated edge controller—load disaggregation module is shown in the
Figure 61 below.

solver
Solution time

Objecti

Figure 61. Results from executing the integrated edge-controller on PC

The final objective value for both code runs was found to be matching and the execution time for
the final optimization module as shown in the figure below.

Solver
Solution time E
=12}

solution

Figure 62. Results from executing the integrated edge-controller on BBB

The run-time for the different modules within the edge-controller code are shown in the table
below. The edge-controller program executed in around 55 minutes for finding the set points for
a 24 hour ahead period with 15-minute resolution. This runtime is reasonable for a day-ahead
planning given the complexity of the optimization problem of handling multiple DERs with upper
and lower constraints for the states to maintain Quality-of-Service and for the inputs to adhere
within the operation limits of the DERs. The optimization can be executed by the firmware 1 or 2
hours before the start of the next day as a planning tool. Additionally, the low-cost for a single

Page 73 of 105



DE-EE0009023
Eaton Corporation

board computer such as BBB for around $50 is an attractive price-point for broader deployment

of the meter controllers in multiple homes.
Table 13. Run-time Analysis

Time (Secs)

DER Flex bound calculation 93.56
Coarse time (1-hour) DER-scheduler 438.84
Finer time-step (15-minutes) DER- 2794.2
scheduler

Total 3326.6

Task 10.0: Field deployment and demonstration

Pecan Street worked in tandem with DEC to identify communities that had a feeder with a high
penetration of rooftop PV. DEC reviewed the individual circuits on their maps and narrowed it
down to three that could be targeted for participant recruitment. The three target communities
were in Lewes, Delaware.

Pecan Street developed recruitment materials for DECs marketing team to distribute, including a
1-pager about the project, newsletter language, and examples of social media posts that proved
successful with previous recruitment. DEC conducted targeted outreach to solar homes in the
community with the most solar homes. After a few rounds of newsletters, Facebook posts, and
attendance at the neighborhood HOA meeting it became clear that recruiting all 25 homes in the
one neighborhood was not achievable. After 3 months of targeting the first neighborhood, DEC
broadened the participant outreach by sending out digital newsletters and mailers to the homes
on the circuit with the second highest number of solar homes.

Delaware Electric Cooperative is looking for about 25
walunteers with solar, EVs, andjor energy storage to
participate in an energy usage study. The big benefit for
any volunteers is they will install and comprehensive
energy monitoring system like Sense but more
adwvanced.

DEC has chosen TWL because of the larger percentage
of solar already installed, they would prefer to do as
many as possible in the same area to reduce their
installation costs.

You must have at least Solar panels, an EV, or energy
storage. Pricrity will be given o members with multiple.

The organization has created a resource page on its
weebsite for people who are looking to learn more. Visit
[wownewr. pecanstreat.orgfresources] (b

www pecanstreet.orgfresoun s) for stories about Pecan
Street’s research. To learn more or sign up to participate,
please contact Rachel Jenkins at
[Nenkins@pecanstraat.org]
{mailto:rrienkins@pecanstrest.org) or at S12-782-9213.
Duestions about Delaware Electric Cooperative’s
participation in this project can be addressed wo CJ
Myers at [cmyers@delawane coop]
{mailtoromyers@delaware coop) or 302-349-0718.

D=
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Thirty-four households expressed interest in the program and Pecan Street was able to secure
participant agreements and get completed enrollment form questionnaires from 23 households.
The enrollment form was developed to determine if homes had rooftop PV, an electric vehicle
that is charged on site, a smart thermostat, an electric water heater, and/or interest to install an
energy storage system at their home. The table below displays a snapshot of some of the data

collected from the enrollment form.
Table 14. Participants list with End-User Asset.

Circuit | Rooftop Solar | EV on premise | Smart thermostat Interest in BESS Electric water heater
1 No Yes Yes Yes No
1 Yes Yes Yes Yes No
1 Yes No Yes No No
1 Yes Yes Yes Yes No
1 Yes No Yes No No
1 Yes No Yes Yes No
1 Yes No Yes Yes No
1 Yes No Yes Yes No
1 Yes Yes No No No
1 No No Yes No No
1 Yes Yes Yes Has Powerwall No
1 Yes No Yes Yes No
1 Yes No Yes Yes No
1 Yes No Yes Yes No
1 Yes No Yes No No
2 Yes Yes Yes Yes No
2 Yes No No No No
2 Yes No Yes Yes No
2 Yes Yes Yes Yes No
2 Yes No Yes Yes No
2 Yes No Yes Yes No
2 Yes No Yes Yes No
2 Yes No Yes Yes No

Pecan Street trained a local electrical contractor to perform the eGauge installations and
installations began in July 2022. All eGauge installations underwent a quality control process to
check the data reporting from all installed systems and coordinated troubleshooting site visits
with households and the local electrical contractor where system installation checks were
deemed necessary. Pecan Street’s data team also set up server access for project team members
to access the data for all Delaware households. A script was written to automate delivery of the
previous month's data on the 3 of each month.
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Beginning in the second quarter of 2022 Pecan Street began development of the temperature
sensors. Procurement of the Raspberry Pi hardware was delayed due to a shortage of available
Raspberry Pi’s as a result of supply chain issues. The temperature sensors were designed to allow
the homeowners to self-install without having an electrician or other specially trained individual
install the device. To obtain information on participant’s preferred thermostat settings, comfort
bounds for the filed demonstration and other information that the team anticipated may be
needed for a successful demonstration Pecan Street created a short questionnaire to share with
participants.

Initial test plan: As a draft test plan, Eaton team along with Pecan St And Delaware Electric
discussed the following items to be tested:
e End-to-end RF system inter-working between live Yukon network and installed meter-
controllers in the field
e Communication and data exchange between central controller and Yukon network
e Inter-connectivity between meter-controllers and load control relays controlling the
HVAC and electric water heater
e Selected control use cases in the NREL testbed and volunteer homes

Task 11.0: Stakeholder engagement (Budget Period 2)

In BP2, Eaton team along with partners mainly focused on the use cases that need to be validated
and the test plan that will occur in the field trial. Both use cases and test plan were disseminated
to the stakeholders in the industry advisory board.

Task 12.0: Lab testing and end-to-end integration testing

IEEE 2030.5 testing: The IEEE 2030.5 protocol specifies the application layer protocol that is used
for communication between devices in a smart grid environment. It is designed to enable a
variety of use cases, including demand response, energy management, and grid optimization.
The protocol provides a standardized interface for exchanging information between different
types of devices, such as smart meters, thermostats, and energy management systems. IEEE
2030.5 uses a RESTful (Representational State Transfer) architecture, which is a common
approach for building web services. This makes it easy to integrate with existing web technologies
and simplifies the development of new applications.

In this project, the team utilized 2030.5 protocol to control behind-the-meter DERs. The team
designed and implemented the communication architecture in the past reporting quarters.
During this quarter, the team focused on testing the implemented communication architecture.
In the NREL testbed, there are 3 homes, each of which comes with a PV inverter. The team
connected the inverter with the meter-based controller through a gateway via Wi-Fi. Below are
the screenshots that the team successfully conducted the testing. Screenshots cover sending
command from the meter controller, the feedback from 2030.5 server, and the inverter curtailing
generation according to the command.
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Figure 64. 2030.5 Server to transfer information between meter controller and gateway
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Tue Feb 21 18:83:43 2023 [INFO ] [tid:3064951984] : POST https://192.168.8.1:5556/rsps/@/rsp 201 /rsps/@/rsp/e@
Tue Feb 21 18:04:49 2023 [INFO ] [tid:3@52401768] : GET https://192.168.8.1:5556/edev/8/fsa/0/derp/8/derc/a 200
<DERControl smlns="urn:ieee:std:2838.5:n5" href="/edev/8/fsa/8/derp/0/derc/@8" replyTo="/rsps/@/rsp" responseRequired="87">
«mRID>B575398bbE438 cO0DRGR040000e T cl¢ /mRID>
<description>charge/discharge power</description>
<version>1</version»
¢creationTime>16770023894/ creationTimes
{EventStatuss
<currentStatuss»1</currentStatusy
<dateTime»1677002688< /dateTime>
<potentiallySupersededsfalsed/potentiallySuperseded>
<potentiallySupersededTime»8</potentiallySupersededTime>
<reasonrActived/reason»
< /EventStatus>
¢intervals
<duration»388</duration>
<start>1677002689«/start»
«/interval»
¢randomizeDuration»@</randomizeDurations
{randomizeStart»@</randomizeStarts
<DERControlBases
<opModConnect>trues/opModConnects
<{opModMaxL imd>1088+ fopModMaxlL imbk>
</DERControlBase:>
</DERControl>

<DERControlResponse xmlns="urn:ieee:std:2838,5:ns">
¢createdDateTime»16770026914/createdDateTime>
¢endDevicelFDI>dedb74ffc9453d743cc74c4a8067 33a4d2bT6a3l< /endDeviceL FOI »
¢status»2</status>
<subject»@5f5398bba4 380 HRAADOABRABe TcB /subject

Figure 65. 2030.5 Gateway log showing event activated

L eoton dasyhriew

Figure 66.PV inverter follows the command and curtail PV generation

The final step is to integrate the standalone code with the meter controller firmware and run the
control every 5 minutes, with 4-minute curtailment and 1-minute off. The Figure 67 below gives
the control curve. The PV simulator originally stay steady around 4kW, then with the control
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issued, it reduces generation to given setpoints for 4 minutes and then restore to 4kW for 1

minute.
4500
3500 1
3000 !
2500 '
2000 !
1500
1000 H
500
0

o R R R R R R R R R T R R R R R R R e R R e e e e e e
e -

0:45 PN
7.09 P
{01:09 PN
2:45 PN

4
4:
4
4

3:29:09 PN

33

3:32:21 PN
3:33:57 PN
3:35:33 PN

33
1 3:38:.45 P

ul
Q
I
S

35757 P
3:59:33 PN

e 67. PV control runs with a schedule

Load Control Relay (LCR) Commissioning: In this project, on top of controlling smart home
appliances which supports IEEE2030.5 protocols, the smart meter will also control home
appliances that have not widely adopted IEEE2030.5 standards, such as the air conditioner (AC)
and electrical water heater (EWH). These appliances will follow a schedule that is prepared by
the smart meter by considering user comfort bounds, home economic objective, and power
curtailment objective. In order to switch on and off the appliances that are non-IEEE2030.5
compliant, controllable Eaton Load-Control-Relays (LCR) are installed between the appliances
and their electrical power sources. LCRs communicates to the smart meter via Eaton’s proprietary
radio frequency (RF) mesh network. In this work, the communication to the LCR is handled by a
subroutine called the Node-Controller. The home intelligence is hosted in a separate subroutine
called the Premise-Controller which among all intelligence tasks include the preparation of the
appliance’s schedules. Premise-Controller communicates to the Node-Controller through a local
TCP channel within the smart-meter. The communications are mainly divided into two
categories: LCR discovery and LCR Command Sending, before conducting the control test.

LCR Control Lab Test

Repeated LCR-OPEN (device off) and LCR-RESET (device on) commands were sent to control the
air conditioner (Figure 68) and electric water heater (Figure 69) in a laboratory environment. For
AC, the thermostat was set to be controlled at a low temperature to ensure it is always on, so
that when LCR-OPEN and LCR-RESET commands are sent, the AC will turn on and off immediately.
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Figure 68. LCR-OPEN and LCR-RESET Commands Test on Air-Conditioner

For EWH, whenever an LCR-OPEN command is sent, the device will turn off immediately as shown
in. However, whenever an LCR-RESET command is sent, the device will perform a safety check
before turning on. This is because during a prior LCR-OPEN (device off), the power to the EWH
was abruptly cut off, therefore the (smart) EWH assumes that there was a power outage. Due to
this, the EWH will perform a safety check by sending pulses of power to the heating element
while measuring temperatures in the EWH to ensure there is enough water in the tank before
the electrical heating element is being turned on, as shown in Figure 69.

LCR-open LCR-reset cmd LCR-open |CR-reset cmd

4500 cmd 1 cmd
ettt —— ) e

g 3500
=
—
q;) 2500
o
a.
g 1500
(]

500

9000 9500 10000 1050d] 11000 11500 1200 12500 Time (s)
-500

EWH-OFF EWH-ON EWH-OFF EWH-ON

Figure 69. LCR-OPEN and LCR-RESET Commands Test on Air-Conditioner Electric Water Heater
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Edge-Firmware Integration

Figure 70 shows the overall diagram of the edge-firmware. The objective of this task is to map
out the data exchanges and the coordination of the different functions within the edge-firmware.
First, crontab within the Linux system is utilized to boot-up the main edge-firmware. Within the
main edger-firmware, different functions are then scheduled periodically, at different cadences
depending on the needs of every function, using a non-blocking background routine called the
apscheduler. The tasks within edge-firmware are categorized into three main groups; Edge-
Execution, Edge-Databases and Edge-Control Functions.

Edge-Executions contains three main functions; Database-Ops, Signal-Listen and Signal-Send.
The objective of the Edge-Executions is to coordinate data flow (listen, write, read, send and
format) between multiple edge functions and databases. Database Ops receives home-
aggregated data from the actual home meter and sends it to the Load-Disaggregation module.
Signal-Listen listens for messages from three sources; central-control (actual and forecasted
weather data), local-LCR and local-2030.5 devices (discovery and acknowledgement messages)
via two intermediaries; TCP-Comm (that communicates to both the LCR and central-control) and
2030.5 API (that communicates to 2030.5 devices). Once received, the data will be erased from
the buffers within the TCP-Comm and 2030.5 API, which is why they need to be formatted and
written in their respective databases, specified by the tags within the messages. Signal-Send
reads specific data from the different databases, formats and sends them to three sources;
central-control (edge data for grid-event planning), local-LCR (LCR commands) and 2030.5
devices (2030.5 devices commands), also through the two intermediaries; TCP-Comm and 2030.5
API, as shown in Figure 70.

Edge-Databases contains historical data (Home_Database) to be used by the Edge-Control
function and to be sent to Central-Control, temporary storages (GridEvent Pseudo,
GridEvent_PwrThr, DERs_Flexbounds) for data coordinations between different functions and
storage for reference DERs schedules (Schedule_PowerRef, Schedule_StateRef) from the Edge-
Control to Signal-Send.

Edge-Control Functions contains two main functions: Load Disaggregation (LD) and Edge-Control.
Load Disaggregation module receives aggregated load profile from the meter at specific time-
intervals and utilizes classifications and machine learning algorithms to disaggregate it into
individual DER load profiles, which are then stored in Home_Database for Edge-Control. Within
the Edge-Control module, there are several submodules that perform separate tasks depending
on the daily scenarios; either a day without a grid-event, or a day with a grid-event. During a day
without grid-event, the Edge-Control perform DERs models calibrations and scheduled the DERs
operations with the objective to minimize the electricity cost for homeowners. During a day with
grid-event, the Edge-Control perform DERs models calibrations, DERs Flexibility Bounds
calculations (which is sent to the central-control), Pseudo-Price conversion and DERs Scheduling
by considering additional constraints for the grid-event. Note that the scheduling are done in a
day-ahead manner which provides the operating-points references for the DERs.
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Figure 70. Edge-Controller Firmware Diagram

Premise-Controller Validation in Meter Controller: Premise controller validation involves testing
the logics to executes three main events that is programmed to be handle by the smart meter,
which are the Idle, Grid-Event mode and Coincidental-Peak modes, shown in Figure 71. These
events are governed by the event message received (or not) from the Central-Controller. When
an event information is received by the Premise-Controller from Central-Controller, it will store
the event information in the meter, which includes the start/end time of the event and the
pseudo-price. In the meter, two subroutines are executed every two hours and at every 10PM to
check this event information. During the two-hours check, if (1) the start/end time of the event
is on the same day, (2) the event start-time is within 2 hours lookahead from current-time and
(3) the event start-time is before 8PM on current day, then a Coincidental-Peak event is assumed
and all routines related to preparing the home end-devices schedule will be executed (mainly are
future states forecast, DERs flexibility bound calculation, Optimal DERs/DR scheduling, as
discussed in previous reports). If the event start/end time occurs the next day, the controller will
not execute anything. However, at 10PM the same day, it will perform the same check for either
Day-Ahead Grid-Event mode or Idle mode. If there is an event message from Central-Controller
with a start/end time on the next day, a Day-Ahead Grid-Event is assumed and again all routines
related to preparing the home end-devices schedule for the a Grid-Event for the next day will be
executed. If at 10PM there are no messages from the central controller, then a next-day Idle
mode end-devices schedule will be prepared. The logics were tested in the smart-meter and it
was able to produce the end-devices schedules in preparation for the said events.
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Figure 71. Premise-Controller Logics for Grid-Event, Idle-Mode and Coincidental-Peak Implementations

Central Controller Integration: This task involved the integration of different modules of the
central controller. The components which were previously developed and tested individually are
brought together to work as a single entity. The different modules include data storage, data
aggregation, day-ahead forecasting, forecasting error, weather API, feeder level information,
data sorting, file creation, scheduler, and central controller algorithm. The incoming data from
controlled homes (disaggregated power profiles, DER flexibility bounds) and the nodal level
information which provides an insight into the net nodal level load values are accepted and
stored in the central controller database. The data aggregation module combines the values from
individual homes to get the nodal level values. The generated nodal level uncontrolled load
values are used by the forecast module to generate the day-ahead forecast and the forecast
errors for a month prior to the forecast day.

The weather API captures the weather information in a day-ahead time horizon and pulls the
actual weather information of the location every 2 hours. All these information is stored in the
central controller database. SQLite3 is used as the database system for the central controller. The
feeder level information includes the admittance matrix and load sizes and is stored as csv files.
The next step in the process includes data sorting and file creation. All the required data for the
central controller are queried from the database tables and are saved as csv files in the specified
location of the central controller algorithm. The central controller utilizes this information and
generates the pseudo price for the grid events. This pseudo price is stored back in the database
and send to the controlled homes to optimize the DERs and DRs according to the requirement.
The final piece in the central controller architecture is the scheduler, which is developed using
APScheduler package, to schedule all the modules according to the design. The central controller
architecture overview is given in the Figure 72.
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Figure 72. Central controller architecture

Lab Validation: Day-long (24 hour) tests were conducted in NREL's Systems Performance Lab
(SPL) to validate the performance of the edge controls strategies and to validate the overall
integration of the various hardware and software components on the edge in a laboratory setup.
Tests were conducted on a home with controllable Air Conditioner (AC) and Electric Water Heater
(EWH) for different scenarios, as shown in Figure 73 and Figure 74. In Figure 73, first a Baseline
scenario is tested which mimics how an actual home operates and is based on a home in Austin
Texas. Then, a Controlled Grid-Event scenario where the controlled appliances were optimized
for a Grid Event between 6PM to 8PM, and a high Time-of-Use pricing for Austin TX between
3PM to 6PM. Test results as summarized in Table 15 shows a 20.4% and 22% savings of energy
and cost respectively for the home. It also shows indoor temperature was kept 100% within the
desired bounds during the Grid-Event between 6PM-8PM. The indoor temperature was mainly
kept within the bounds 99% of the time throughout the whole day. A minor temperature
violation occurs at less than 0.2°C temperature difference near the upper-bound at 12:30PM,
which is attributed to a communication issue with the LCR that controls the AC during those
times. The controlled Grid-Event scenario also achieved 30% reduction of power compared to
the Baseline. Hence, the proposed controlled strategy was able to maintain the Quality-of-Service
(QoS) while minimizing the cost and energy usage for home and reducing the peak power for the
home during the Grid-Event.

Page 84 of 105



DE-EE0009023
Eaton Corporation

Baseline Powers Optimal Powers

@

T
—— ——Pv

JR— : [

| EVv e
ol = =° ==
= UnctaF oge| = UnctaFridge
= Uncir Lighss. = Unctd Lights.
o o
o o

2 ULM.M.“_ 2 H__[ H

Q s 0 - -
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr) Time (hr)
Baseline Indoor-Temp Optimal Indoor-Temp
== =
Outdoor-Temp Oudoor Tep

Temperatuer [C]
8
Temperatuer [C]

L ' | L | L L L N L L L N L N L L L L L I
0 2 4 6 B 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr) Time (hr)
Baseline Power & Grid-Energy-Consumption Optimal Power & Grid-Energy-Consumption
10 . ; . . - . - : . - 30 10 - . - . - : - ; - - 30
NelPower < NelPower g
—— Cumulative Grid-Energy Consumgtion = —— Cunulatve God-Energy Consumption =
>
& L 120 B
g 5 20 & g 5 20 §
- [=4 _- (=4
] “ “ |'| “ “ " “ " n w © w
= @ 3 @
£ o 10 2 £ 0 10 %
k- 3
E E
S s
L I L L L L 1 1 I L&) I 1 I I I I I L o
-5 0 5 ‘0
0 2 4 6 8 0 12 14 16 18 20 22 24 0 2 ) 6 8 0 12 14 16 18 20 22 24
Time (hr) Time (hr)

Figure 73. Results for Baseline versus Controlled Grid-Event Scenarios Full-Day Lab Test

Table 15. Performance Metrics for Baseline versus Controlled Grid-Event Scenarios
Baseline Optimal [\[e] {=H

Energy Import From Grid [kWh] 27.9kWh 22.2kWh  20.4% savings
$1.00 $S0.78 22% savings

Demand during Grid-Event 4.4kW 3.1kW 30% reduction

[6-8PM] [kW]

Indoor Temp QoS [%] 100% 99% Violation @ upper bound by < 0.2 °C
(no DR)

Indoor-Temp QoS during Grid-Event [%] 100% 100%

AC Energy Consumption [kWh] 25.1kWh  16.2kWh  35.5% savings

EWH Energy Consumption [kWh] 6.4kWh  6.2kWh 3.1% savings

Percentage of Following AC Commands N/A 90.6%

Percentage of Following EWH N/A 74.0%

Commands

In Figure 74, the same Baseline scenario as before is shown and compared with an Controlled-
Idle scenario where the controlled appliances were optimized for a high Time-of-Use pricing for
Austin TX between 3PM to 6PM. Test results as summarized in Table 16shows a 16.1% and 20%
savings of energy and cost respectively for the home. The indoor temperature was mainly kept
within the bounds 99% of the time throughout the whole day. A minor temperature violation
occurs at less than 0.3°C temperature difference near the lower bound at 5:45AM and 9AM,
which is attributed to a communication issue with the LCR that controls the AC during those
times. Hence, the proposed controlled strategy was able to maintain the Quality-of-Service (QoS)
while minimizing the cost and energy usage for the home.
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Figure 74. Results for Baseline versus Controlled-Idle Scenarios Full-Day Lab Test

Table 16. Performance Metrics for Baseline versus Controlled-Idle Scenarios

Baseline Optimal Notes

Energy Import From Grid [kWh] 27.9kWh 23.4kWh  16.1% savings
Energy Cost [$] $1.00 $0.80 20% savings

Indoor Temp QoS [%] 100% 99% Violation @ lower bound by = 0.3 °C
(no DR)

25.1kWh  18.5kWh 26.3% savings
6.4kWh  55kWh  14% savings
N/A 85.4%

N/A 70.8%

Electric Water Heater (EWH) Validation

The EWH was controlled based on the strategy to avoid having low hot water temperature in the
tank for the homeowners, as have been discussed in previous reports. In the lab test,
temperatures at different locations on the EWH tank and the water outlet were measured for
the test scenarios discussed above and are shown in Figure 75 and Figure 76. As expected, the
average hot water temperature within the EWH tank for the controlled cases were within 3°C of
the baseline case with the same water usage, therefore avoiding “cold-showers” for the
homeowners.
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Figure 75. EWH Temperatures & Tank Outlet Flow Rates for Baseline and Grid-Event Scenarios

Home 1 Water Heater Data - Baseline vs Idle
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Figure 76. EWH Temperatures & Tank Outlet Flow Rates for Baseline and Idle Scenarios

Based on the temperatures at different locations of the water heater, the power (and energy)
consumptions and the mass-flow of hot water measured in the lab, the EWH model as defined in
Task 2 is calibrated. First, 18 instances of hot-water usage were identified from the data, similar
to the instances shown in Figure 86-87. The estimated mass of hot-water usage using EWH power
usage is calculated and the RMSE are calculated against the actual measured mass of hot-water
for these 18 instances as shown in Figure 88. The parameter AT = T,, — T} is the temperatures
difference between the two theoretical upper and lower masses of tank volumes in the two-mass model
defined in Task 2. Since this method assumes homogenous temperatures in each upper and lower volume
of the tank, the temperature measured at specific locations in the tank may not represent the model
accurately because the volume separation location is unknown in a real tank. Therefore, the RMSE from
the 18 instances of hot water usage are plotted and AT = 15.7 °C with lowest RMSE is selected as the
best fit for the EWH model. Using a fixed AT = 15.7 °C, the mass of hot-water are estimated for all
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18 instances as shown in Figure 89. The result shows good correlation between in all 18 instances

when EWH was in use, with an RMSE of 11.4 Ibs.

Root-Mean-Squre Error
25

20

Mass of Water RMSE [Ib]
o

T T

o) RMSE Result
Linear RMSE

* The Min. RMSE

AT[ O

Figure 88. RMSE between Estimated and Actual Mass of Hot-Water in EWH Calibration Process
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Figure 89. Mass of Hot-Water Usage Comparison with Optimal AT

Lab Test Results for Central Controller: One of the main functionalities of the central controller
is to monitor the service status and device availability from the multiple test homes in the system.
This functionality provides the utility user with an overall system overview at a device level. The
premise controller runs three services to control the end devices, premise controller, node
controller, and 2030.5 services and an additional service for monitoring. The monitoring service
records the status of the other three services at an hourly resolution in the edge database. The
recorded service status for a test home in the NREL test bed is given in Figure 77, Figure 78, and
Figure 79. The figures depict the availability of the services for the whole test duration.
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Home 1 node controller status (meter db)
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Figure 77. Edge premise controller service status for the test day
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Figure 78. Edge node controller service status for the test day
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Figure 79. 2030.5 service status for the test day

The premise controller also records the availability of the edge devices (PV, battery) and LCRs

(AC

, EWH) at a 15-minute resolution in the edge database. The premise will send out the service

status along with the device and LCR availability once it receives the statistics request from the
central controller. The received PV, battery, LCR availability at the central controller are shown

inF

igure 80,Figure 81, and Figure 82.
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Figure 80. PV availability status for a home received at the central controller
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Figure 81. LCR availability status for a home received at the central controller
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Figure 82. Battery availability status received at the central controller

Task 13.0: Field deployment and demonstration

LCR, GW, and Meter-as-a-controller installation: In the second quarter of 2023 Pecan Street
began preparing participants for the field demonstration by sharing more information about the
full suite of devices that would be installed at their home and what to expect during the
installation. It was at this time that some participants became concerned about a third party
controlling their air conditioner and a couple opted out of receiving the LCR. As participants
expressed comfort in the full field demonstration, Pecan Street shipped temperature sensors to
households for self-installation. A dashboard was developed for the team to internally monitor
temperature sensors to confirm when the device was successfully installed by the participant and
make sure they remain online with accurate temperature readings reporting in.

Datald4 |Mac |Temp f | Temp_c
1391 562e 71.9 22.2
3540 6c3a 64.8 18.2
4553 5604 69.7 20.9
5763 f8ag 74.0 23.3
5791 Sede 70.7 21.5
6721 6c56 70.9 21.6
9282 3641 72.2 223
10250 | 6782 70.5 21.3
10496 | 5a38 68.9 20.5
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In the months leading up to the LCR and Gateway installations the Pecan Street team answered
questions and hosted zoom meetings with residents to answer questions and prepare them for
installation and the field demonstration tests.

LCR and Gateway installations commenced the last week of June 2023. In total Pecan Street was
able to coordinate field deployment of load control relays and/or gateways in 12 participating
households. Of the 12 houses installed, 10 received the full LCR and gateway kit, 2 received
gateways only (because the digital controls on their heat pumps were not compatible with LCR),
and 2 received LCR only (because they didn’t have solar or had a non-Fronius inverter). The 10
remaining participants were not able to be installed for a variety of reasons, including but not
limited to: declining to participate, refusing installation of the DEC meter installation due to minor
construction, HVAC issues that couldn’t be resolved before the firmware upgrade visit, and
inability to align schedules with the installer prior to the teams visit to perform firmware
upgrades on the system.

LCR and Solar PV Discoveries through IEEE 2030.5: Within the edge-controller, there are
discovery functions to check the availabilities of all LCR and 2030.5 appliances that are
communicating to the meter-controller. As previously explained for LCR devices, this is done
through broadcasted messages from LCRs to the meter-controller. Once meter-controller
receives the broadcast message, it will save the LCR information containing the LCR Device-ID,
Device-Type and Device-Availability in a database file (“LCR_IDs.csv”), as shown in Figure 83.
Additionally, the LCR information are also passed and stored in the main database (“setoDB.db")
as shown in Figure 83. During field commissioning, after the meter-firmware is executed, both
“LCR_IDs.csv” and “setoDB.db” will be updated if communication is established. Then, these files
were downloaded and checked to ensure the LCR devices are discoverable and available
(Availability = 1), as shown in Figure 83.

/home/debian/premise-controller/ [Z7 fhome/debian/premise-controller/Home_20305_IDs.csv -
Name Size Changed Rights Owner 0e 2 B oxE| D R & #8 vE | e
1DB_UPDATE py 3KB 7/7/2023102354 AM  rwxrwxrwx  debian NS bevice-17di,pevice-t ’
‘e evice-1fdi,Device-Type
JEDGE CTRL CP.py 14K8 7/1/2023 10:2354 A rwxrwxrwx - debian g oV 02c666F0265e1164b964b5doeadcc8894d8fosbd, 4.
JEDGE_CTRL_IDLE_GRIDEVNT py 16K8 7/10/2023 115956 AM  rsnvoawx debian | |30
EDGE CTRL updatep 3KB 7/7/2023 102350 AM___roawoawx__debian_| "
JHome 20305 IDs.csv 1KB_8/21/2023 2:30.00 PM oot I )
2 #8 €% 7 = Encoding - [ | Color~ &%

debian

JHome_data.csv 10,830 KB 7/7/2023 10:23:54 AM

Device—ID—Pr‘int,Devic Device-Type [Device-Availability
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2 SaUtestudio (333) -Invenerstat (0_Edge 71
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JHome_DERsScheduler GridEvent.py 72KB 8/7/2023 7:52:54 AM rwxrwxrwx  debian
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] Home_DERsScheduler GridEvent RB.py 7AKB 8/7/2023 7:52:54 AM rwxrwxrwx  debian
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3 169269000 3540 4 1
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# 1D _Edge 7.db 9,444 KB 8/21/2023 2:30:02 PM [ £ sQliteStudio (33.3) - infoDRTab (setoDB))
TLD_Edge database operation py BB 7/7/2023 10:23:54 AM Datdbase Structure View Tools  Help
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Figure 83. LCR Discovery and 2030.5 Discovery Files Generated in Edge-Controller
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Similarly for 2030.5 devices, after the meter-controller is executed, the meter-controller will send
a status request to the 2030.5 gateway. If communication is established, the response from the
2030.5 gateway to meter-controller will contain the PV-inverter power-rating and the DER-type
(PV-Inverter’s DER-type = 4, based on 2030.5 standard). Theses information are stored in two
databases in the meter-controller (“Home_20305_IDs.csv” and “LD_Edge_7.db”) as shown in
Figure 83. As another layer of checking, the 2030.5 gateway can also be accessed to review its
event-logs during the status-request and status-response.

Thu Aug 24 10:04:16 2023 : PUT https://192,168.8.1:5556/edev/0/der/0/dera 201
Thu Aug 24 18:04:16 2023 [DEBUG] [tid:4146984832] : 1692896656 PUT /edev/@/der/8/dera 281
Thu Aug 24 18:4:16 2023 [DEBUG] [tid:4146384832] : put ok
Thu Aug 24 10:24:17 2823 : <DERCapability xmlns="urn:icee:std:2030.5:ns">
<modesSupported>3440%801</modesSupported>
<rtghaxA>
<multipliersd</multipliers
<value»20</value>
</ rtghiaxa>
<rtghaxvay
<multiplier>@¢/multipliers
<value>5@00</value>
</rtghaxvas
<rtglaxVariieg>
<multiplier»@</multiplier>
<value>263@</value>

<rtghaxid> .

<multipliersa</multipliers PV— t g = 5kW
Zvalue>5800</value> ra In
</rtghaxdly

<rtgMinPFUnderExcited>
<displacement>65451</displacement>
<multipliers>-2¢/multipliers
</rtgMinPFUnderExcited>

<rtgoverExcitedhi>
<multiplierso</multipliers
<valuer5@0a</value>

</rtgOverExcited>

<rtgUnderExcitedPF>
<displacement>65451</displacement>
<multipliers-2¢/multipliers
</rtgUndsrExcitedPF>

<rtgUnderExcitedi>
<multipliersd¢/multipliers
<value»5@00</valua>

</rtgUnderExcitedi>

<rtgViom>
<multipliersd¢/multipliers
<value»248</value>

peez—— DER-type = 4 = PV-inverter

Figure 84.2030.5 Gateway’s Event-Log Showing Discoverable PV-Inverter

As shown in

Figure 84, the status-responses from the home’s PV-inverter contains the PV-rating of 5kW and
DER-type equals of 4. This shows the communication is established between the meter-controller
and the 2030.5 PV-Inverter.

Edge to central communication- interconnectivity testing: The central-edge interconnectivity
checklist used in the field is given in the table below. The table lists the home ID, the status of
the unicast request to the home right after service activation to test the central-edge
communication, the response from the device for the unicast request, message reception at the
central controller (flexibility bounds, net home load, and controllable home load) and finally the
date when we activated the services in the home.

Table 17 Central — Edge communication checklist for the DEC field test
Home Unicast Stats Flex Net home Controllable Activation

ID send Response bounds load home load Date
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7988 Yes Yes x v x 21-Aug
3540 Yes Yes v v v 21-Aug
6568 Yes Yes v v v 22-Aug
5334 Yes Yes v v v 22-Aug
4553 Yes Yes 4 v 4 23-Aug
11410  Yes Yes v v v 23-Aug
6721 Yes Yes v v v 23-Aug
9282 Yes Yes v v 4 23-Aug
10250  VYes Yes v v v 23-Aug
10867 Yes Yes v v v 24-Aug
7808 Yes Yes v v v 24-Aug

The central controller sends a status request to all the SETO homes at an hourly resolution and
homes as soon they receive the request, will respond back with the control and availability
metrics. Figure 85 represents the PV availability in one of the test homes remotely received at
the central controller during the field demonstration period. Here, 1 means the PV inverter is
available and 0 represents its unavailability. The missing values for a day on Sept 6 were due to a
communication disruption caused by Yukon system overload. The availability of LCRs for control
in the home 3540 is given in Figure 86. The meter runs 3 services to control and coordinate its
activities, and an additional service to monitor the status of the 3 main services. The status of the
three services: node controller, premise controller, and the IEEE 2030.5 server are given in
Figures

Figure s7to Figure 89, respectively. The meter also provides the system computing performance
to the central controller which is given in Figure 90. Through the completion of this task, we have
demonstrated the remote monitoring capabilities of the central controller to send and receive
status information from the edge devices on a regular basis.
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PV Availability - Home ID 3540
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Figure 85.The status PV Inverter received at the central controller from home 3540.
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Figure 86.The availability of LCR for control received at the central controller from the 3540.
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Figure 87. The status of the node controller received at the central controller from the home 3540
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Premise controller status
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Figure 88. The status of the premise controller received at the central controller from the home 3540
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Figure 89. The status of the IEEE 2030.5 server received at the central controller from the home 3540
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Figure 90. The edge system computing performance received at the central controller from the home 3540

In addition to system performance metrics and status updates, the meter also sends load
information to the central controller at regular intervals. The net home load and net controllable
load values from the home 3540 received at the central controller are given in Figure 91. The
available load for control from the home is calculated from individual device level values which
was generated using load disaggregation. We have demonstrated the ability to provide
controllable portion of the home load to the utility without installing any additional sensors in
the home to record appliance level values.

Page 95 of 105



DE-EE0009023
Eaton Corporation

Home load information - Home ID 3540
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Figure 91. Net controllable and net home load received from the home 3540 at the central controller
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Figure 92. Flexibility bounds received from the homes (9282, 6568, 4553, 7808) on Aug 26t

The meter also sends upper and lower bound flexibility to the central controller, which will
provide the utility with the net operating region (power) for appliances (AC, PV) that maintains
customer QoS (Quality of Service). An example of the values is given in Figure 92.

Scalability analysis

The SETO control system is architected and executed using a hierarchical communications model.
The system is comprised of various elements; the DR+DER Central Controller, the AMI Yukon
service which provides the entry point into the AMI RF Mesh network. Both services are hosted
on either cloud or on-premises compute resources and interact via an IP communication
network. RF Gateway appliances are downstream from Yukon and provide a bridge to AMI Field
Area Network segments. Yukon and Gateway interface via wired or cellular IP backhaul. Various
Endpoint devices including the SETO meter-controller form the RF mesh and operates at data
rates between 9.6 - 153.6 Kbps.
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Referring the hierarchical structure of the SETO system, as the meter-controller can manage the
DR and DER assets at the premise and given the fact that the central controller and Yukon service
can readily scale though the addition of server capacity, the scalability of the SETO system is
principally limited by the communications bandwidth within the RF Mesh Network.

Table 18: Daily AMI Meter Data Exchange Volume
Residential Meter C&I Meter

3210 9216
3072 3072
2048 2048
[ Total (bytes/day) BN <Xl 14336

Table 19: Daily SETO Meter Data Exchange Volume

Daily Occurrence Size (bytes) Daily Total (bytes)

1 710 710
1 760 760
1 180 180
4 380 1520
4 380 1520
24 1000 24000
12 450 5400
1 1000 1000
1 1000 1000
1 100 100
24 200 4800
40990

Considering the broad categories of AMI data including interval and billing data, statistics, and
network information, the typical AMI residential and commercial meters generate and transfer
approximately 8330 and 14,336 bytes daily respectively (See Table 18). Comparatively, ignoring
the one-time Discovery messages, a SETO device exchanges approximately 40,990 bytes daily
(See Table 19). This represents a 5 and 3 time multiple to that of a typical residential and
commercial meter respectively and therefore imposes a heavy burden on the RF AMI network.
Such a demand profile may be addressed in the RF Mesh network through the addition/creation
of RF gateway appliances and gateway segments to increase bandwidth capacity. Here each
gateway segment will support a lesser number of devices to offset the increase in individual
device bandwidth. As an example, consider a 10,000 RF AMI meter system. A typical gateway
segment will ideally contain 2000 endpoints comprised of 200 C&| meters and 1800 residential
meters. The current RF AMI system would require 5 gateways. Substituting residential meters
with SETO units would result in a need of 25 RF gateways with each gateway segment consisting
of approximately 360 SETO units (See Table 20).
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Table 20: Comparison of Standard and SETO RF AMI System
Standard AMI SETO AMI

10000 10000
2000 500
1800 360 (SETO)
200 40 (standard)
5 25

An alternative approach involves adjusting the frequency of central to edge communications,
such as the Edge Level Statistics and Statistics Requests parameters to a single daily exchange.
The resultant required daily bandwidth would reduce to below that of the typical C&l meter.
Further reductions of the SETO meter-controller required data capacity is achievable if the
message format of the central to edge exchanges utilized binary data formats rather than text-
based JSON messages. Lastly, the use of the RF AMI network’s broadcast facility to distribute
weather information will improve the efficiency of data transmission. The required daily
bandwidth would approach levels typical of an AMI residential meter.

To summarize, it is possible to scale the SETO system in the RF Mesh AMI network. The current
system as implemented and configured would require a higher number of gateway segments
than typical but may be mitigated at some level through reconfiguration of the SETO services.
Implementation of a more efficient message data format would allow the SETO system to scale
seamlessly within the existing RF AMI Mesh Network. Figure 93 below shows an example of end-
to-end deployment of SETO system.

DEC Network
Central Controller
1 ﬁ ;<1
f _________
1 S Pe—— - H
I T

BrightLayer™
tilities DRMS.

LCR installed at HVAC

Meter-as-a-controller
installed at the residences

> -

2030.5 Gateway installed at inverter Wi-Fi

Figure 93. End-to-end system deployment in the DEC network.

After the field demonstration, team has documented some limitations and lessons learned for the
technologies developed:
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Table 21. Lessons learned/takeaways from the developed technologies

Meter-Controller *  No Remote Connectivity to update FW
Prototype *  HW watchdog should be included
* Software security can be increased
* Permanent adapters and extension to fit on a house socket

Premise- *  Open sources solvers to fit on single-board processor
Controller * Detection of loads
Application * Integration with thermostat and/or auto discovery

* Eliminate heat capacity of the electric water heater tank
* Integration of EV control

IEEE 2030.5 * Server doesn’t support reconnection
Service * Vendors are not open to provide certifications for testing
Central * Nice to have the ability to access the edge FW and update from the central
Controller/Yukon controller

* Integration of weather station for more precise and granular data

End-to-end *  RF Mesh is hard to debug remotely; WiFi/Cellular can be alternative
communication

Platform OS *  Moving to Ubuntu core or Yocto Linux would provide more benefits over Linux
0S

Task 14.0: Stakeholder engagement (Budget Period 3)

In BP3, team focused on demonstrating the outcome of the use cases through lab validation and
the update on field trial. Team consequently reported the how the field devices will be installed,
and communication will be established. Industry advisory board constantly provided positive
feedback on the development. In addition, in many discussion with the stakeholders, the
inclusion on electric vehicle in the control and coordination platform. Team acknowledges that it
is a gap in the development and would like to put a plan for it in future development.

3. Significant Accomplishments and Conclusions:

The objective of this project was to develop, test, and demonstrate a hierarchical control
framework integrating utility DRMS and a meter-as-a-controller protype through AMI. Goal for
this end-to-end integration is create observability and controllability of BTM DERs to utilize them
for grid services. The major accomplishments in this project are listed below:

o Algorithms: A precise load disaggregation, utility level uncontrolled load forecast, and
coordinated control algorithms for end-user assets for both utility interfacing and user-
focused; a central level control algorithm is also developed to coordinate residential loads in
a distribution for achieving necessary load reduction so that voltage profiles don’t violate
over 90% of the operational time.
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o Hardware prototype: A hardware/software prototype of meter-as-a-controller to integrate
with end-user assets such as HAVC, EWH, and DERs, and utility controller (DRMS); HVAC and
EWH are controlled by Eaton load control relay (LCR) based on the command received from
meter-as-a-controller; meter-as-a-controller is also able to control the solar PV setpoint as
well as battery SOC.

o Lab testing: Detailed technology readiness level 5 (TRL 5) level validation plan and successful
testing at system performance lab in National Renewable Energy Lab (NREL); The testing
included the asset controls in three virtual homes; these homes were also coordinated via
Eaton Yukon DRMS to test the interconnectivity, exchange the homes flexibility, and pseudo-
price a signal to curtail the load within the home; the validation helped in de-risking the
technology prior to field deployment.

o Field deployment and demonstration: Successful technology readiness level 6 (TRL 6) field
demonstration to show the interconnectivity and scalability at Delaware Electric Co-op; The
communication between meter-as-a-controller and home assets were showcased through RF
and IEEE 2030.5; Communication between meter-as-a-controller and Yukon DRMS was also
demonstrated; the end-to-end interconnectivity is scalable to more than 10000 meters with
additional RF gateway.

o Patent applications: Generated 7 patent applications for path to commercialization; details
of the patent applications are provided in section 5;

o Papers: Published three papers and one paper has received the recognition of best paper at
IEEE PES GM 2024.

4. Path Forward:

Eaton does not have any smart metering commercial product as such to take the meter-as-a-
controller developments to the market right away. However, all the developments have been
filed for patent applications. In addition, team is currently working on how portions of these
developments can be taken to the available product lines as well what new research can be
conducted basing these developments. Few directions that may lead to the next level of research
are:

o Hosting platform: Enhance the developments and controls in the breaker-based system to
reduce dependency on additional controller and communication platforms; breakers are
already connected to the home assets which can be controlled and coordinated through a
gateway instead of meter-as-a-controller.

o Algorithms: Include EV and/or V2X functionalities for providing resilience in a residential
home; Current SETO algorithm didn’t consider EV as controllable load- considering EV load as
a controllable load would provide additional flexibility for home operations as well as grid
services.

o Utility Interfacing: Make the controller vendor agnostic to interconnect with numerous home
assets and ADMS/DRMS/DERMS provided by different vendors; This will ensure the controller
has a broader points list and multiple protocols to support different HW/SW manufactures.

o Firmware Improvement: Eliminate the firmware related limitations from the lessons learned
listed in Table 21; this will enable a close-to-commercial grade product for the end-users.
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5. Products:

Throughout the project, the development that team has undergone a significant development
which have been disseminated through different publications and intellectual properties. Tables
below show the list of publications and patents/Provisionals/disclosures submitted during the
project lifetime.

Table 22. Papers published during the project life-time

Date
S i m Paper Conference/Proceedings Conference (MM/DD/YYYY;
Article Title . . . . .
Number | Title Location First day if multiple
days)
Secure Control Regions for
Distributed Stochastic Systems American Control
with Application to Distributed 1047 Conference Atlanta, GA 6/8/2022
Energy Resources Dispatch
A Hierarchical Control
Architecture: Utilization of Power and Energy Society
Behind-the-Meter Appliances 2003 . Orlando, FL 7/23/2023
. o General Meeting
with Increased Visibility
and Controllability
Value-based Insights from the
Implementation of Hie'rarchical 1348 Power and Enfargy Society Seattlg, 7/22/2024
Control for Energy Savings and General Meeting Washington
Demand Response in
Residential Premises
Table 23. Patents/Provisionals/Disclosures submitted during project lifetime
Date
Application Patent Application
"Patent Title" Filed Number
(Invention Disclosure Tile) (Date (Invention Disclosure
Disclosure Dock No.)
Filed)
Control of Electric Water Heater based on Two-Mass Model for
Behind-the-Meter Building Energy Management System 31-Mar-22 18/193077
DERs Sche'zdl'JIer with Quality-of-Service Consideration for Behind-the- 7-Jul-23 15720.1055USP1.
Meter Building Energy Mgmt System
Short-term load prediction of residential appliances using a memory- 7-Jul-23 15720.1054USP1
based method
Air Conditioner Predictive Power Management with Quality-of-
Service Consideration for Behind-the-Meter Building Energy Mgmt 31-Mar-22 18/192259
System
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Pseudo Signal Feedback Mechanism for Aggregated Load Regulation

1-Mar-22 18/1
in a Hierarchical Distributed Grid Control 3 ar 8/193957
Estimation of Home Indoor Temperature Without Temperature
Sensor for Maintaining Quality of Service in Behind-the-Meter 7-Jul-23 15720.1056USP1
Building Energy Management System
A Hierarchical Cqmmunlcatlon and Control Archltgcture Ut|||.Z|ng 041-242P01/P23-
Advanced Metering Infrastructure for the Operations of Behind-the- 11-Jul-23 1504USOLPROV
Meter Distributed Energy Resources and Controllable Appliances

6. Project Team and Roles:

Table below shows the required milestones, teams involved in each milestone, and timelines of
the project per SOPO those have been completed:

Table 24. Milestones per SOPO

SOPO/TWP . . Original Revised Percent
Milestone # Milestone Description Performer Planned Planned Actual o
Data collection and NREL, Eaton, 0
M.1.1.1 cleaning Pecan Street 12/31/20 12/31/20 100%
NREL, Eaton, o
M.1.1.2 RMS error Pecan Street 6/30/21 6/28/21 100%
Forecast error NREL, Eaton, 0
M.1.1.3 reduction Pecan Street 9/30/21 9/30/21 100%
Applicati d
M1.2.1 ppiication ang use Eaton, EPRI | 3/31/21 3/26/21 100%
case definition
M1.2.2 Simulation validation Eaton, EPRI 6/30/21 6/24/21 100%
M1.3.1 Simulationanddata | \oei aron | 6/30/21 6/23/21 100%
mining
M1.4.1 Data rate and specs Eaton, EPRI 9/30/21 9/30/21 100%
Eaton, EPRI,
M1.5.1 Industry engagement Pecan Street, 9/30/20 10/1/20 100%
NREL
Eaton, EPRI,
M1.5.1 Industry engagement Pecan Street, 12/31/20 12/10/20 100%
NREL
Eaton, EPRI,
M1.5.1 Industry engagement Pecan Street, 3/31/21 3/26/21 100%
NREL
Eaton, EPRI,
M1.5.1 Industry engagement Pecan Street, 6/30/21 6/28/21 100%
NREL
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Eaton, EPRI,
M1.5.1 Industry engagement Pecan Street, 9/30/21 9/27/21 100%
NREL
M.2.6.1 Simulation validation Eaton 9/30/22 9/30/22 100%
M.2.7.1 Simulation validation NREL 6/30/22 7/31/22 6/30/22 100%
Firmware 0
M.2.8.1 functionalities Eaton, EPRI 3/31/22 3/31/22 100%
H f
M.2.8.2 ardware/software | ¢ NReL | 6/30/22 | 10/30/22 | 9/26/22 |  100%
integration
Hardware/software Eaton, Pecan
.2.9. ! 1 22 |1 22 1002
M.2.9.1 function test Street 9/30/22 0/30/. 0/30/. 00%
Eaton, EPRI,
M.2.11.1 Industry engagement Pecan Street, 12/31/21 12/31/21 100%
NREL
Eaton, EPRI,
M.2.11.1 Industry engagement Pecan Street, 4/1/22 4/1/22 100%
NREL
Eaton, EPRI,
M.2.11.1 Industry engagement Pecan Street, 6/30/22 6/30/22 100%
NREL
Eaton, EPRI,
M.2.11.1 Industry engagement Pecan Street, 9/30/22 9/30/22 100%
NREL
Hardware/software 0
M.3.12.1 function test Eaton 12/31/23 6/15/23 100%
M.3.13.1 Status report Eaton 3/31/23 7/15/23 7/15/23 100%
M.3.13.2 Field Test Eaton 6/30/23 9/30/23 8/30/23 100%
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