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ABSTRACT: Recently, the U.S. Department of Energy (DOE), Office of Science, Biological and

Environmental Research (BER), and Advanced Scientific Computing Research (ASCR) programs

organized and held the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop

series. From this workshop, a critical conclusion that the DOE BER and ASCR community came

to is the requirement to develop a new paradigm for Earth system predictability focused on enabling

artificial intelligence (AI) across the field, lab, modeling, and analysis activities, called ModEx.

The BER’s ‘Model-Experimentation’, ModEx, is an iterative approach that enables process models

to generate hypotheses. The developed hypotheses inform field and laboratory efforts to collect

measurement and observation data, which are subsequently used to parameterize, drive, and test

model (e.g., process-based) predictions. A total of 17 technical sessions were held in this AI4ESP

workshop series. This paper discusses the topic of the ‘AI Architectures and Co-design’ session

and associated outcomes. The AI Architectures and Co-design session included two invited talks,

two plenary discussion panels, and three breakout rooms that covered specific topics, including:

(1) DOE high-performance computing (HPC) Systems, (2) Cloud HPC Systems, and (3) Edge

computing and Internet of Things (IoT). We also provide forward-looking ideas and perspectives

on potential research in this co-design area that can be achieved by synergies with the other 16

session topics. These ideas include topics such as: (1) reimagining co-design, (2) data acquisition

to distribution, (3) heterogeneous HPC solutions for integration of AI/ML and other data analytics

like uncertainty quantification with earth system modeling and simulation, and (4) AI-enabled

sensor integration into earth system measurements and observations. Such perspectives are a

distinguishing aspect of this paper.
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SIGNIFICANCE STATEMENT: This study aims to provide perspectives on AI architectures and37

co-design approaches for Earth-system predictability. Such visionary perspectives are essential38

because AI-enabled model-data integration has shown promise in improving predictions associated39

with climate change, perturbations, and extreme events. Our forward-looking ideas guide what is40

next in co-design to enhance Earth-system models, observations, and theory using state-of-the-art41

and futuristic computational infrastructure.42

1. Introduction43

The U.S. Department of Energy (DOE) recently concluded a workshop on Artificial Intelligence44

for Earth-System Predictability (AI4ESP) (Hickmon et al. 2022). This workshop was hosted by the45

DOE’s Office of Science, Biological and Environmental Research (BER) and Advanced Scientific46

Computing Research (ASCR) Programs. A total of 17 sessions with researchers worldwide par-47

ticipated and discussed how artificial intelligence (AI) could enhance Earth-system predictability48

across the field, lab, modeling, and analysis activities (Hoffman et al. 2017, Fig-1.3). The pri-49

mary focus of the discussion was on using AI for transforming BER’s “Model-Experimentation”50

(ModEx) integration (Chambers et al. 2012, page-93).51

Traditionally, the ModEx paradigm (Hoffman et al. 2017, Section-1) integrates observations,52

experiments, and measurements performed in the field or laboratory with conceptual/process53

models in an iterative fashion. Recent advances in AI have shown promise to accelerate the54

traditional ModEx efficiency (Tsai et al. 2021; Cromwell et al. 2021; Mudunuru et al. 2022).55

Such an AI transformation in the ModEx loop is needed to efficiently and accurately integrate the56

DOE’s observational capabilities and platforms1, process models and software infrastructure2, and57

computational hardware3. However, achieving this AI-enabled ModEx vision requires significant58

advancements in co-design and associated AI architectures (Germann et al. 2013; Zhang et al.59

2019; Beckman et al. 2020; Descour et al. 2021; Bringmann et al. 2021). Co-design Pao (2011);60

PARKERe and TANG (2013); Germann (2021) refers to a computer system design process where61

scientific problem requirements influence architecture design, technology, and constraints inform62

1Popular BER observational capabilities include Atmospheric Radiation Measurement Climate Research Facility (ARM) (ARM 2022) and
Environmental Molecular Sciences Laboratory (EMSL) (EMSL 2022)

2State-of-the-art DOE-funded, open-source, and massively-parallel multi-physics codes include PFLOTRAN (Lichtner et al. 2020), Advanced
Terrestrial Simulator (ATS) (ATS 2022), and Energy Exascale Earth System Model (E3SM) (E3SM 2022)

3ASCR-funded computational infrastructure and scientific user facilities include Argonne Leadership Computing Facility (ALCF) (ALCF 2022),
National Energy Research Scientific Computing Center (NERSC) (NERSC 2022), and Oak Ridge Leadership Computing Facility (OLCF) (OLCF
2022)
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the formulation and design of algorithms and software. Co-Design will weigh holistically the63

fundamental tradeoffs, such as (1) hardware and architecture, (2) software stacks, (3) numerical64

methods and algorithms, and (4) science applications. This paper provides perspectives on AI65

architectures and co-design approaches needed to develop AI-enabled ModEx for Earth-system66

predictability. These perspectives include co-designing computational and storage infrastructure67

for automated ML feature engineering and model selection, integration of sensors, process models,68

and ML methods for efficient data assimilation. We also provide futuristic system ideas on co-69

designing frameworks and platforms to enable the BER community to accelerate the application70

of AI architectures in the ModEx lifecycle.71

The outline of our paper is as follows: Sec. 2 presents the state-of-the-science on AI architectures72

and co-design that AI4ESP workshop participants discussed. Section 3 provides four different73

futuristic concepts, and Sec. 4 discusses the grand challenges of developing such ideas. We also74

discuss near-, middle-, and long-term goals to overcome these grand challenges. Section 5 provides75

perspectives for potential research that will provide synergy with other AI4ESP workshop sessions.76

Conclusions are drawn in Sec. 6.77

2. State-of-the-Science78

In this section, we describe the state-of-the-science on AI architectures and co-design. The foci79

are the computing resources and DOE user facilities used in capturing and curating data, developing80

advanced AI/ML models, and inferences for quantifying and improving earth system modeling and81

simulation predictability.82

a. DOE’s High-Performance Computing User Facilities83

Over the past few decades, DOE has invested hundreds of millions of dollars in developing84

high-performance computing (HPC) user facilities (Stevens et al. 2020; Vetter et al. 2022; Heroux85

et al. 2022). DOE’s investments towards exascale computing include Leadership Computing86

Facilities (LCFs) at Argonne national laboratory (ALCF) (e.g., Aurora), Oak Ridge National87

Laboratory (OLCF) (e.g., Frontier), and National Energy Research Scientific Computing Center88

(NERSC), (e.g., Perlmutter). The LCFs are leadership computing facilities for the computational89

science community. The LCFs provide researchers with a world-class computing capability for90
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breakthrough science and engineering. Frontier is ranked the fastest supercomputing system91

on the November 2022 Top 500 list (list 2022). The latest generations of DOE’s leadership-92

class computing facilities are based on integrating central processing unit (CPU) and graphics93

processing unit (GPU) processors into heterogeneous systems. Concurrently, DOE’s Biological94

and Environmental Research Program has invested substantial resources in state-of-the-art scientific95

models (E3SM 2022; Lichtner et al. 2020; ATS 2022) including the flagship Energy Exascale Earth96

System Model (E3SM) (E3SM 2022) that is specifically designed to target efficient utilization of the97

exascale supercomputers. These HPC resources have significantly improved model predictability98

in various areas, including earth system modeling, subsurface flow and transport models, etc.99

(e.g., E3SM, PFLOTRAN). As part of the DOE’s Exascale Computing Project, a selected subset100

of earth science applications E3SM-MMF (2022); Subsurface-ECP (2022) firmly focused on101

model development for the exascale era. Furthermore, efforts like the E3SM-MMF sub-project102

(E3SM-MMF 2022) under ECP had targeted co-design activities, including strong engagements103

with vendors on early architecture evaluation and algorithm design. Experience from such efforts104

indicates the need for expansion to AI architecture co-design and increased coverage of earth105

science applications. Such advancements allowed us to achieve energy-efficient performance on106

GPUs while leveraging the commercial drivers for GPU-based AI/ML performance.107

With the slowing of Moore’s Law (Eeckhout 2017; Theis and Wong 2017), the computing com-108

munity recognized the increased need for architectural specialization. Hence, the next generation109

of HPC systems are likely to incorporate increased heterogeneity beyond the current hybrid CPU110

and GPU designs. The DOE’s efforts in AI for Science (Baker et al. 2019; Stevens et al. 2020)111

are exploring capabilities that provide a foundation for the integration of HPC applications (e.g.,112

ALCF’s AI testbeds (Testbed 2022)) with data science and AI/ML frameworks.113

b. Cloud computing114

Cloud providers4 have user-friendly tools to run AI/ML workloads. But there needs to be more115

compatibility among AI/ML tool capabilities and user interfaces among different providers that116

make it difficult to achieve interoperability in a federation of clouds (Chouhan et al. 2020; Rosa et al.117

2021; Saxena et al. 2021). While specific Earth system model (ESM) data are presently stored on118

cloud storage systems (Xu et al. 2019), the data stores are associated with a patchwork of individual119

4Popular providers include Amazon Web Services (AWS) (AWS 2022), Google Cloud Platform (GCP) (GCP 2022), and Azure (Azure 2022)
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groups and projects, lacking a federated view. Cloud providers can presently accommodate120

petabytes to exabytes of data for data storage. The commercial cloud cost is based on accessing121

and computing or analyzing the data. It can become prohibitively expensive if data transmission122

in to/out of the Cloud becomes frequent. Commercial AI/ML cloud infrastructure and services123

are predominately motivated by text and image data. Cloud providers have demonstrated AI-124

at-Scale for these applications. For example, the most significant AI-based Natural Language125

Processing (NLP) models (e.g., for sequence data analysis) approaching 1 trillion parameters have126

been demonstrated on Selene (Chen et al. 2019) (the 9th fastest supercomputing system on the127

November 2022 Top 500 list). Workflow services exist on the Cloud for specific applications,128

including many AI/ML methods, and raw materials are available on cloud platforms to create more129

complex workflows. However, ESM workflows that combine external data sources or coordinate130

with HPC simulations efficiently and accurately currently do not exist. Computer science expertise131

is required to create such workflows in a form suitable for domain scientists (Chen et al. 2017;132

Bauer et al. 2021).133

c. Edge Computing134

Recently, AI methods for classifying patterns, anomaly detection, unsupervised learning for135

data compression, inference at the edge, and continuous learning with streaming sensor data have136

gained considerable traction in the ESM community (Beckman et al. 2020; Talsma et al. 2022).137

This advancement was possible because of the rapid forward deployment of AI models on intel-138

ligent computing devices such as Raspberry Pi/Shake, Nvidia Jetson Nano, Google Coral Dev139

Board, and Intel Neural Compute Stick connected to sensors. (Catlett et al. 2017, 2020; Mudunuru140

et al. 2021). The integration of edge computing with smart sensors (e.g., AI@SensorEdge) has141

many distinct deployment scenarios, including National Oceanic and Atmospheric Administration142

(NOAA) and National Aeronautics and Space Administration (NASA) earth-observing satellite im-143

agery with edge processing in space or at dedicated ground stations to control DOE’s Atmospheric144

Radiation Measurement (ARM) or Environmental Molecular Science Laboratory (EMSL) user145

facility instruments (Beckman et al. 2020). We can also integrate edge computing with the diverse146

collection of distributed sensors that collect observations and measurements for the DOE’s ARM147

user facility. Adaptive sensors with embedded hardware accelerators are now emerging (e.g., Wag-148
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gle, PurpleAir) (Beckman et al. 2016; Stavroulas et al. 2020; Barkjohn et al. 2021). New concepts149

for distributed applications are also under development, such as geomorphic computing, where150

weather research and forecasting models are distributed, federated, and able to adapt dynamically151

to the environment (Daepp et al. 2022).152

3. Future System Concepts153

In this section, we describe several plausible future systems concepts that participants in the154

breakout room focus groups discussed in the AI4ESP workshop. The focus was on the evolution of155

DOE’s Leadership Computing Facilitysystems for HPC and AI. These large-scale heterogeneous156

computing systems provide a foundation for advancing AI architectures and co-design using HPC.157

Moreover, these future concepts have the potential to provide a radically different approach to158

future earth system modeling and AI-enabled ModEx.159

a. Centralized Large-scale HPC Concept160

The baseline system concept is the future evolution of large-scale HPC and cloud computing161

systems. This next step will extend post-exascale architectures beyond the first generation of DOE’s162

heterogeneous systems integrating CPUs and GPUs. As the HPC and Cloud computing commu-163

nities increasingly rely on hardware specialization to improve performance, co-design approaches164

will support the development of accelerators (Lie 2021; Reuther et al. 2021; Cortés et al. 2021)165

for frequently used kernels in scientific modeling and AI/ML methods. New specialized acceler-166

ators may arise to support additional data science capabilities such as uncertainty quantification,167

streaming analytics, or graph analysis (Halappanavar et al. 2021; Acer et al. 2021). These future168

large-scale computing systems with extreme heterogeneity must be co-designed to support the in-169

creased computational and dataset sizes associated with earth science predictability and scientific170

machine reasoning (Yang et al. 2016; Zhang et al. 2020; Yu et al. 2022).171

b. Edge sensors with Centralized HPC/Cloud Resources Concept172

In the second system concept, environmental data are recorded from a broad collection of point173

(Christensen and Blanco Chia 2017; Winter et al. 2021) and distributed sensors (e.g., fiber optics)174

(Lindsey et al. 2019) spread across the globe. These advanced sensors are designed to monitor175
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specific items of interest (e.g., river flow, nutrients, temperature, chemical concentration, light) and176

to communicate these data back to a centralized location (Beckman et al. 2020). At this centralized177

facility, large HPC or cloud computing environments will process the incoming data streams for178

integration into online simulations of extreme weather events, climate, hydrology, and their impacts179

on earth systems.180

We could utilize AI/ML capabilities within this system concept at multiple points. First, the181

velocity of sensor data coming into the system will potentially overrun even the most significant182

data processing centers’ capabilities. Hence, such a volume of data is unlikely to be able to be stored183

in memory or even temporary storage resources (such as file systems or object stores). Advanced184

AI/ML models could be trained and tailored to summarize or select relevant features from the185

incoming data streams. Such an encoding or feature selection process will significantly reduce the186

amount of data that needs to be kept and integrated into ongoing simulations. Another potential is187

for AI/ML models to identify anomalies or precursors Yuan et al. (2019) from the incoming data188

streams that might suggest areas of interest for simulations to be focused on – for instance, the189

start of a hurricane or the high likelihood of significant rain-on-snow events or wildfires. Other190

examples include where to place a Geostationary Operational Environmental Satellites (GOES)191

floater and scan phased array radars for faster, more spatially focused sensing.192

Due to the distributed nature and inhospitable environments (e.g., remote locations, extreme193

temperatures, or pressures) where sensors may need to be placed or roam, it is unlikely that a194

reliable data stream will reach the centralized location for all possible inputs. One common use195

case is the intelligent city scenario to study urban science. Figure 1 is a notional depiction of various196

deployed sensors, computing, and data storage capabilities (Zhu et al. 2021). AI/ML models could197

be used in such an environment to fill measurement gaps and present a more consistent view of198

observational data to a future simulation run on a large-compute resource. Moreover, to understand199

and predict urban air mobility, a distributed sensor network (e.g., drone deliveries and air taxis)200

coupled with edge computing and AI is needed for block-level monitoring and forecasting for201

eddies.202
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Fig. 1. A smart city scenario with a large number of sites for fixed sensor deployments that measure

temperature, wind profile, CO2 concentration, precipitation, etc., plus a variety of mobile devices that can also

be used to augment the collection of measurement and observation data intermittently. An urban setting will

support advanced wireless communications like 5G and eventually 6G to understand the interactions between

cities and climate. [Figure developed by Advanced Wireless Communications lab at PNNL]

203

204

205

206

207

c. Federated Processing from the Edge to the Data Center Concept208

The third potential system design extends the second concept by leveraging much more processing209

in or near the distributed sensor network. We can process the sensor data directly on the sensor210

itself or in a nearby edge server (e.g., fog computing) with processing elements that may stream a211

small collection of sensor data into it (Stevens et al. 2020, Chapter-15). Local processing stations212

can then send their raw or locally processed data to a centralized HPC and/or cloud resource for213

inclusion in simulation models and centralized AI/ML models as in the first system concept.214

The advantage of this approach is that data down-selection and feature extraction can be performed215

locally, significantly reducing the volume of data that must be transmitted to a centralized resource.216

Assuming that a sufficiently performant local network among sensors can be established, process217

model parameters and partial results, perhaps even AI/ML model updates, can be exchanged218

within a locale, allowing for a genuinely federated design aspect. Initially, this concept takes219
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advantage of existing gateways and local area networks serving sensors in the field. Through220

co-design collaborations, it is possible to expand that service to include application/sensor-specific221

processing to filter, analyze, compress, encrypt, and unify multiple sensor streams transmitting222

measurements through the wireless network.223

d. Dynamic and Adaptive Federated Processing Concept224

The last system concept builds on the previous three by augmenting feedback and control paths225

within distributed networks of sensor-local resources (Di Lorenzo et al. 2021; Charles et al. 2021).226

Local control offers lower latency decision-making to dynamically control what information is227

observed, measured, recorded, and relayed by the sensor network (Morell and Alba 2022). Such a228

design has powerful implications – By dynamically controlling sensors online, simulations of the229

earth’s weather and climate can essentially focus sensor inputs on specific quantities or geographic230

locations of interest. Examples might include where severe weather events are expected or whether231

climate scientists identify where specific information is needed to help improve the quality of232

their models. This concept expands to multiple HPC and/or Cloud data centers for federated233

AI/ML modeling. AI/ML models can play a crucial part in this system by performing continuous,234

autonomous online inspection of evolving simulations or recorded data to identify areas of data235

insufficiency or statistical weakness. Furthermore, a dynamic and adaptive system may be able to236

carefully obtain and select data to improve the quality of its training, reducing the need for vast,237

potentially intractable datasets to be collected over long periods (Catlett et al. 2017).238

4. Grand Challenges239

The system concepts that integrate federated processing are beyond the capabilities of affordable240

technologies today. It will require significant investment both in foundational technology sys-241

tems and co-design programs. Such synergy between climate scientists, mathematicians, AI/ML242

experts, computer scientists, and hardware engineers is needed to balance the competing perfor-243

mance, energy, cost, and security challenges associated with AI-enabled ModEx. The following244

subsections describe technical challenges that will arise in the areas: (1) programmability and245

usability, (2) data movement, (3) energy efficiency, and (4) privacy and security of data.246
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a. Programmability and Usability247

The current and near-term challenge is integrating scientific modeling and simulation applications248

with AI/ML methods. This drives the need to integrate earth system HPC applications written249

in C/C++ and/or Fortran with AI/ML methods that use Python-based ML frameworks (Ott et al.250

2020). Programming models are under development to support the convergence of applications and251

workflows onto heterogeneous computing systems. Many AI/ML architectures provide hardware252

support for reduced or mixed precision, and tools will be required to analyze which specific model253

components can use these capabilities. We must create protocols and tools for ESP data-sharing254

and data federation on the cloud. The usability challenge is managing the complexity of mapping255

converged application workloads to future heterogeneous computing architectures that integrate256

specialized hardware accelerators with commodity CPU/GPU/TPU processors.257

Domain scientists are interested in exploring the capabilities of new heterogeneous advanced258

architecture computing systems. Interfacing with sensors and AI analytics at the Edge will allow259

domain scientists to extract actionable information needed for improved modeling of disturbances260

and extreme events. This type of co-design is needed for most ESP applications. For example,261

watershed science, hydrology, ecohydrology, climate variability and extremes, aerosols and clouds,262

and atmospheric modeling are cross-cutting themes where AISensorEdge has the highest impact.263

Co-design approaches that interface with distributed sensor networks will allow us to (1) col-264

lect reliable and relevant watershed data under disturbances, (2) monitor land-atmosphere-coastal265

interactions by embedding intelligence on the Atmospheric Radiation Measurement (ARM) in-266

struments, (3) understand wildfire events and their impact on ecosystems in near-real-time, and (4)267

assess critical infrastructure impacted by extreme events (e.g., see Human Systems and Dynamics,268

chapter 9 in AI4ESP report). Popular co-design examples include sustainable urban systems Webb269

et al. (2018), socio-technical systems corresponding to Earth observation data (Barbier et al. 2022),270

and sensor placement (Huadong 2016).271

Still, there are challenges in understanding how to map AI4ESP workflows to the diverse col-272

lection of computing system options. Understanding how AI/ML capabilities originally developed273

for generic commercial workloads may or may not be applicable for Earth System Predictabil-274

ity (ESP) hybrid modeling applications or observation and measurement capabilities is essential.275

From centralized large-scale modeling and training to edge computing inferencing and federated276
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learning, new challenges arise for the composition and distribution of applications, algorithms, and277

methods. This is an important opportunity for the AI4ESP community to develop a new generation278

of proxy applications and benchmarks for modeling and observation capabilities. For example,279

AI-enabled co-design will enable us to emulate and deploy DOE codes such as PFLOTRAN, ATS,280

and E3SM at the sensor edge for empowering ARM instruments and EMSL user facilities. The281

focus should be facilitating communication and co-design collaborations with hardware designers,282

system software developers, algorithm developers, and domain scientists.283

b. Data Movement284

The expected volume of data associated with a complete, coordinated earth sensor capability285

will be unprecedented. Not only will such a network generate a previously unimaginable quantity286

and diversity of data, but the computing and network load for processing, transmitting, and287

subsequent storage of this volume will be orders of magnitude higher than any system available288

today. Data movement costs in terms of energy and latency motivate the interest in the federation289

and distribution of computing across the AI4ESP scientific ecosystem. AI/ML technologies could290

help reduce such volumes by identifying patterns and anomalies and summarizing sub-volume. We291

will require significant investment in AI/ML approaches to ensure that the modeling capabilities292

will be compatible and efficient for the types of data being recorded, especially where this may293

deviate from commercial photo or video capabilities. Technologies that may assist in energy-294

efficient data transfers include investment in silicon photonic network capabilities, satellite-based295

communications, and wide-area 5G- or 6G-like communication networks that enable sensors to296

communicate over short/medium distances without needing physical wiring (Beckman et al. 2020).297

On the storage side, cloud technologies such as high-performance, large-volume data object stores298

could likely provide a capability to address increased sparse data storage volumes. However, this299

would pose a significant cost barrier using current commercial cloud pricing. We may also use300

AI/ML to enable innovative compression techniques on earth system data to increase information301

density without increasing storage costs. Additionally, DOE HPC centers could incorporate302

concepts and methods from cloud storage systems into future parallel file and storage systems to303

slowly move toward such capability. These HPC centers allow data storage and connectivity with304

repositories such as ESS-DIVE Agarwal et al. (2022); Velliquette et al. (2021). This HPC-to-ESS-305
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DIVE connectivity allows to store (raw and curated) data for long periods of time. This data storage306

strategy benefits the DOE community when new sensor data is collected, curated, and interfaced307

with existing data repositories.308

c. Energy Efficiency309

Large-scale networks with integrated sensors, federated processing, and wide-area communica-310

tion networks to handle data transmissions will likely be very expensive in energy consumption.311

While this was a lower-priority focus for exascale computing, data processing and communication312

remain power-expensive. Co-design has the potential to help improve this situation through the313

use of novel materials, devices, and processing techniques (e.g., neuromorphic-based accelerators314

to analyze images/video). However, significant investment will still be required in foundational315

technologies if large-scale, power-efficient sensing networks are to be realized. Co-design to bal-316

ance performance and energy efficiency will also address how the modeling, machine learning,317

uncertainty quantification, and other streaming analytics capabilities are partitioned across the318

ESM scientific ecosystem. Such a co-design that integrates DOE’s heterogeneous HPC systems319

with cloud computing, edge servers, and sensors with IoT devices will transform the ModEx loop.320

d. Privacy and Security of Data321

As earth systems modeling becomes increasingly integrated with a distributed network of ob-322

servations and perhaps federated processing capabilities. The information’s quality, accuracy, and323

robustness through such a sensor network will become more critical. It must also be secured if324

the information generated from modeling and measurement capabilities is used to support high-325

consequence national or international scientific policy decisions. The implications of potential data326

tampering or nefarious modification are clear, as a national or international resource for accurate327

scientific prediction could be severely affected. Data privacy concerns are particularly valid in328

a data acquisition system where individual human subject images or videos may be captured, or329

their behavior discerned from the data. An example includes sensor capabilities that could identify330

patterns in human systems data (e.g., in citizen science or urban environments). Co-design has331

a potential role in this space – by including security experts in cyber-physical designs from the332

outset, secure data transmission and processing can be integrated as a first-level citizen rather than333
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as a last, software-derived additional layer. In addition, data privacy may be afforded if local334

artifacts associated with specific individuals can be aggregated into a larger, federated model with335

individual patterns obfuscated or redacted into the complete model of the system.336

5. Synergy with other AI4ESP Workshop Sessions337

In this section, we provide visionary perspectives for future ideas and potential research in338

synergy with other workshop sessions. Table 1 summarizes this synergy with short- (< 5 years),339

medium- (5-year), and long-term (10-year) goals. The focus is on how AI architectures and co-340

design approaches are related to the integrative water cycle and associated water cycle extremes.341

The below categories came from the AI4ESP workshop themes.342

Table 1. This table provides short-, medium-, and long-term goals needed to overcome the grand challenges

discussed in Section 4. Gradual progress on these specific goals will allow us to advance on the future system

concepts needed for improving earth system predictability.

343

344

345

Short-term goals Medium-term goals Long-term goals Co-design opportunities

Benchmark datasets Data formats for federated learning Improve efficiency across ESP domains Anomaly analysis for extreme events

Distributed AI/ML workflows AI/ML for UQ AI-at-scale demonstration AI for down- and up-scaling

AI/ML surrogates AI/ML + physics simulators AI for streaming analytics AI/ML + IoT + Exascale ecosystem

AI/ML abstractions for edge AI@SensorEdge AI-enabled automation Digital Twin for ESP

Atmospheric modeling – Need for advancing the modeling of subgrid physics across scales346

and guiding or automating process model calibration. This includes (1) co-design approaches347

for parameterization and knowledge transfer across scales and (2) AI infrastructure for datasets,348

software, testing, validation, and training workflows for efficient model calibration.349

Land modeling – AI architectures for efficient transfer of information between land and atmo-350

spheric models. This includes (1) subgrid parameterizations to capture the full complexity within351

a grid, (2) capturing heterogeneity utilizing LCFs, and (3) addressing observational gaps using352

advanced AI architectures (e.g., transformers).353

Hydrology – Advanced AI architectures are needed for parameter estimation, down-scaling, and354

imputation to improve data products. Model-data co-design approaches are needed to identify how355

many and what types of observations are required to reach a desired process model performance356

without actual measurements being available. This includes 5G or other high-speed networking357
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or software pipelines that can accelerate the transfer of information between field instrumentation358

and process models for near real-time sampling decisions.359

Watershed science – Co-design approaches are needed to understand better (1) the quality360

of collected data, (2) the predictability of a watershed’s response (e.g., the evolution of micro-361

bial activity) under disturbances and long-term perturbations using process-based models (e.g.,362

PFLOTRAN), (3) when, how, and where to collect data (e.g., wildfires, flooding, drought events),363

and (4) how to deal with large data volumes.364

Ecohydrology – Advanced AI architectures are needed for developing new data products and365

benchmark datasets across spatial scales from microbial and leaf scales to watershed and continental366

scales. Novel co-design approaches that build and collect labeled earth science data needed for367

process models and open-sourcing them to the BER community would facilitate rapid testing of368

existing AI/ML methods.369

Aerosols and clouds – Co-design approaches that can extract valuable information or identify370

indicator patterns of forced changes and emergent properties of the actual and simulated climate371

system are essential. Future system concepts that can develop databases for indicator patterns372

(e.g., nucleation of ice or particles, snow formation) and emergent properties provide a path toward373

knowledge discovery and reveal missing mechanisms that must be incorporated in process models.374

Coastal dynamics, oceans, and ice – Advanced AI architectures that can improve (1) the375

standardization and merging of disparate datasets, (2) scale-awareness and dependency in process376

models (e.g., capturing coastal, ocean, and cryosphere processes across scales and from sparse377

datasets).378

Climate variability and extremes – Co-design approaches for climate variability, signal iden-379

tification, and sources of predictability are essential. These include AI architectures to detect380

signatures and features corresponding to tropical cyclones, fronts, atmospheric rivers, hailstones,381

tornadoes, and ice storms.382

Human systems and dynamics – Co-design approaches that can provide a better understanding383

of human and earth systems. For example, advancements in AI architectures are needed to gain384

better insights into urban prediction and long-term urban policy due to extreme events.385
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6. Conclusions386

In this perspective paper, we have described the need for co-design approaches for efficient and387

accurate integration of process models and observations for improved earth system predictability.388

Current state-of-science and HPC facilities provide a starting point to address the grand challenges389

of the ‘Model-Experimentation’ loop. Future system concepts that connect the edge sensors to in-390

telligent computing devices and, subsequently, the process models that reside in fog/cloud/exascale391

infrastructure are needed to transform the ModEx lifecycle. Our near-term to long-term goals allows392

us to develop AI architectures and co-design approaches using future system concepts. Community393

integration and effort between domain and computational experts allow us to transform how we394

model the integrative and associated water cycle extremes.395

Nomenclature396

• AI4ESP: The Artificial Intelligence for Earth System Predictability397

• AI: Artificial Intelligence398

• ALCF: Argonne Leadership Computing Facility399

• ARM: Atmospheric Radiation Measurement Climate Research Facility400

• ASCR: Advanced Scientific Computing Research401

• ATS: Advanced Terrestrial Simulator402

• AWS: Amazon Web Services403

• BER: Biological and Environmental Research404

• CPU: Central Processing Unit405

• DOE: Department of Energy406

• E3SM: Energy Exascale Earth System Model407

• ESM: Earth System Model408

• ESP: Earth System Predictability409
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• EMSL: Environmental Molecular Sciences Laboratory410

• GCP: Google Cloud Platform411

• GOES: Geostationary Operational Environmental Satellites412

• GPU: Graphics Processing Unit413

• HPC: High-Performance Computing414

• IoT: Internet of Things415

• LCF: Leadership Computing Facility416

• ModEx: Model-Experimentation417

• ML: Machine Learning418

• NASA: National Aeronautics and Space Administration419

• NERSC: National Energy Research Scientific Computing Center420

• NLP: Natural Language Processing421

• NOAA: National Oceanic and Atmospheric Administration422

• OLCF: Oak Ridge Leadership Computing Facility423

• TPU: Tensor Processing Unit424

• UQ: Uncertainty Quantification425
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