

LA-UR-23-22945

Accepted Manuscript

Perspectives on AI Architectures and Codesign for Earth System Predictability

Mudunuru, Maruti K

Ang, James A.

Halappanavar, Mahantesh

Hammond, Simon D.

Gokhale, Maya

Hoe, James C

Sreepathi, Sarat

Norman, Matthew

Peng, Ivy Bo

Jones, Philip Wiley

Provided by the author(s) and the Los Alamos National Laboratory (2024-06-28).

To be published in: Artificial Intelligence for the Earth Systems

DOI to publisher's version: 10.1175/AIES-D-23-0029.1

Permalink to record:

<https://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-23-22945>

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Perspectives on AI Architectures and Co-design for Earth System Predictability

Maruti K. Mudunuru,¹ James Ang,¹ Mahantesh Halappanavar,¹ Simon D. Hammond,² Maya B. Gokhale,³ James C. Hoe,⁴ Tushar Krishna,⁵ Sarat S. Sreepathi,⁶ Matthew R. Norman,⁶ Ivy B. Peng,⁷ and Philip W. Jones⁸

¹ *Pacific Northwest National Laboratory, Richland, WA, USA.*

² *National Nuclear Security Administration (NNSA), Washington, District of Columbia, USA.*

³ *Lawrence Livermore National Laboratory, Livermore, CA, USA.*

⁴ *Carnegie Mellon University, Pittsburgh, PA, USA.*

⁵ *Georgia Institute of Technology, Atlanta, GA, USA.*

⁶ *Oak Ridge National Laboratory, Oak Ridge, TN, USA.*

⁷ *KTH Royal Institute of Technology, Sweden.*

⁸ *Los Alamos National Laboratory, Los Alamos, NM, USA.*

¹⁴ *Corresponding author:* M. K. Mudunuru, Email: maruti@pnnl.gov; PNNL-SA-183269; LA-UR-
¹⁵ 23-22945; LLNL-JRNL-846885

16 ABSTRACT: Recently, the U.S. Department of Energy (DOE), Office of Science, Biological and
17 Environmental Research (BER), and Advanced Scientific Computing Research (ASCR) programs
18 organized and held the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop
19 series. From this workshop, a critical conclusion that the DOE BER and ASCR community came
20 to is the requirement to develop a new paradigm for Earth system predictability focused on enabling
21 artificial intelligence (AI) across the field, lab, modeling, and analysis activities, called ModEx.
22 The BER's 'Model-Experimentation', ModEx, is an iterative approach that enables process models
23 to generate hypotheses. The developed hypotheses inform field and laboratory efforts to collect
24 measurement and observation data, which are subsequently used to parameterize, drive, and test
25 model (e.g., process-based) predictions. A total of 17 technical sessions were held in this AI4ESP
26 workshop series. This paper discusses the topic of the 'AI Architectures and Co-design' session
27 and associated outcomes. The AI Architectures and Co-design session included two invited talks,
28 two plenary discussion panels, and three breakout rooms that covered specific topics, including:
29 (1) DOE **high-performance computing** (HPC) Systems, (2) Cloud HPC Systems, and (3) Edge
30 computing and Internet of Things (IoT). We also provide forward-looking ideas and perspectives
31 on potential research in this co-design area that can be achieved by synergies with the other 16
32 session topics. These ideas include topics such as: (1) reimagining co-design, (2) data acquisition
33 to distribution, (3) heterogeneous HPC solutions for integration of AI/ML and other data analytics
34 like uncertainty quantification with earth system modeling and simulation, and (4) AI-enabled
35 sensor integration into earth system measurements and observations. Such perspectives are a
36 distinguishing aspect of this paper.

37 SIGNIFICANCE STATEMENT: This study aims to provide perspectives on AI architectures and
38 co-design approaches for Earth-system predictability. Such visionary perspectives are essential
39 because AI-enabled model-data integration has shown promise in improving predictions associated
40 with climate change, perturbations, and extreme events. Our forward-looking ideas guide what is
41 next in co-design to enhance Earth-system models, observations, and theory using state-of-the-art
42 and futuristic computational infrastructure.

43 1. Introduction

44 The U.S. Department of Energy (DOE) recently concluded a workshop on Artificial Intelligence
45 for Earth-System Predictability (AI4ESP) (Hickmon et al. 2022). This workshop was hosted by the
46 DOE's Office of Science, Biological and Environmental Research (BER) and Advanced Scientific
47 Computing Research (ASCR) Programs. A total of 17 sessions with researchers worldwide par-
48 ticipated and discussed how artificial intelligence (AI) could enhance Earth-system predictability
49 across the field, lab, modeling, and analysis activities (Hoffman et al. 2017, Fig-1.3). The pri-
50 mary focus of the discussion was on using AI for transforming BER's "Model-Experimentation"
51 (ModEx) integration (Chambers et al. 2012, page-93).

52 Traditionally, the ModEx paradigm (Hoffman et al. 2017, Section-1) integrates observations,
53 experiments, and measurements performed in the field or laboratory with conceptual/process
54 models in an iterative fashion. **Recent advances in AI have shown promise to accelerate the**
55 **traditional ModEx efficiency (Tsai et al. 2021; Cromwell et al. 2021; Mudunuru et al. 2022).**
56 **Such an AI transformation in the ModEx loop is needed to efficiently and accurately integrate the**
57 **DOE's observational capabilities and platforms¹, process models and software infrastructure², and**
58 **computational hardware³.** However, achieving this AI-enabled ModEx vision requires significant
59 advancements in co-design and associated AI architectures (Germann et al. 2013; Zhang et al.
60 2019; Beckman et al. 2020; Descour et al. 2021; Bringmann et al. 2021). **Co-design Pao (2011);**
61 **PARKERe and TANG (2013); Germann (2021) refers to a computer system design process where**
62 **scientific problem requirements influence architecture design, technology, and constraints inform**

¹Popular BER observational capabilities include Atmospheric Radiation Measurement Climate Research Facility (ARM) (ARM 2022) and Environmental Molecular Sciences Laboratory (EMSL) (EMSL 2022)

²State-of-the-art DOE-funded, open-source, and massively-parallel multi-physics codes include PFLOTRAN (Lichtner et al. 2020), Advanced Terrestrial Simulator (ATS) (ATS 2022), and Energy Exascale Earth System Model (E3SM) (E3SM 2022)

³ASCR-funded computational infrastructure and scientific user facilities include Argonne Leadership Computing Facility (ALCF) (ALCF 2022), National Energy Research Scientific Computing Center (NERSC) (NERSC 2022), and Oak Ridge Leadership Computing Facility (OLCF) (OLCF 2022)

63 the formulation and design of algorithms and software. Co-Design will weigh holistically the
64 fundamental tradeoffs, such as (1) hardware and architecture, (2) software stacks, (3) numerical
65 methods and algorithms, and (4) science applications. This paper provides perspectives on AI
66 architectures and co-design approaches needed to develop AI-enabled ModEx for Earth-system
67 predictability. These perspectives include co-designing computational and storage infrastructure
68 for automated ML feature engineering and model selection, integration of sensors, process models,
69 and ML methods for efficient data assimilation. We also provide futuristic system ideas on co-
70 designing frameworks and platforms to enable the BER community to accelerate the application
71 of AI architectures in the ModEx lifecycle.

72 The outline of our paper is as follows: Sec. 2 presents the state-of-the-science on AI architectures
73 and co-design that AI4ESP workshop participants discussed. Section 3 provides four different
74 futuristic concepts, and Sec. 4 discusses the grand challenges of developing such ideas. We also
75 discuss near-, middle-, and long-term goals to overcome these grand challenges. Section 5 provides
76 perspectives for potential research that will provide synergy with other AI4ESP workshop sessions.
77 Conclusions are drawn in Sec. 6.

78 **2. State-of-the-Science**

79 In this section, we describe the state-of-the-science on AI architectures and co-design. **The foci**
80 **are the computing resources and DOE user facilities used in capturing and curating data, developing**
81 **advanced AI/ML models, and inferences for quantifying and improving earth system modeling and**
82 **simulation predictability.**

83 *a. DOE's High-Performance Computing User Facilities*

84 Over the past few decades, DOE has invested hundreds of millions of dollars in developing
85 high-performance computing (HPC) user facilities (Stevens et al. 2020; Vetter et al. 2022; Heroux
86 et al. 2022). DOE's investments towards exascale computing include Leadership Computing
87 Facilities (LCFs) at Argonne national laboratory (ALCF) (e.g., Aurora), Oak Ridge National
88 Laboratory (OLCF) (e.g., Frontier), and National Energy Research Scientific Computing Center
89 (NERSC), (e.g., Perlmutter). **The LCFs are leadership computing facilities for the computational**
90 **science community. The LCFs provide researchers with a world-class computing capability for**

91 breakthrough science and engineering. Frontier is ranked the fastest supercomputing system
92 on the November 2022 Top 500 list (list 2022). The latest generations of DOE's leadership-
93 class computing facilities are based on integrating central processing unit (CPU) and graphics
94 processing unit (GPU) processors into heterogeneous systems. Concurrently, DOE's Biological
95 and Environmental Research Program has invested substantial resources in state-of-the-art scientific
96 models (E3SM 2022; Lichtner et al. 2020; ATS 2022) including the flagship Energy Exascale Earth
97 System Model (E3SM) (E3SM 2022) that is specifically designed to target efficient utilization of the
98 exascale supercomputers. These HPC resources have significantly improved model predictability
99 in various areas, including earth system modeling, subsurface flow and transport models, etc.
100 (e.g., E3SM, PFLOTTRAN). As part of the DOE's Exascale Computing Project, a selected subset
101 of earth science applications E3SM-MMF (2022); Subsurface-ECP (2022) firmly focused on
102 model development for the exascale era. Furthermore, efforts like the E3SM-MMF sub-project
103 (E3SM-MMF 2022) under ECP had targeted co-design activities, including strong engagements
104 with vendors on early architecture evaluation and algorithm design. Experience from such efforts
105 indicates the need for expansion to AI architecture co-design and increased coverage of earth
106 science applications. Such advancements allowed us to achieve energy-efficient performance on
107 GPUs while leveraging the commercial drivers for GPU-based AI/ML performance.

108 With the slowing of Moore's Law (Eeckhout 2017; Theis and Wong 2017), the computing com-
109 munity recognized the increased need for architectural specialization. Hence, the next generation
110 of HPC systems are likely to incorporate increased heterogeneity beyond the current hybrid CPU
111 and GPU designs. The DOE's efforts in AI for Science (Baker et al. 2019; Stevens et al. 2020)
112 are exploring capabilities that provide a foundation for the integration of HPC applications (e.g.,
113 ALCF's AI testbeds (Testbed 2022)) with data science and AI/ML frameworks.

114 *b. Cloud computing*

115 Cloud providers⁴ have user-friendly tools to run AI/ML workloads. But there needs to be more
116 compatibility among AI/ML tool capabilities and user interfaces among different providers that
117 make it difficult to achieve interoperability in a federation of clouds (Chouhan et al. 2020; Rosa et al.
118 2021; Saxena et al. 2021). While specific Earth system model (ESM) data are presently stored on
119 cloud storage systems (Xu et al. 2019), the data stores are associated with a patchwork of individual

⁴Popular providers include Amazon Web Services (AWS) (AWS 2022), Google Cloud Platform (GCP) (GCP 2022), and Azure (Azure 2022)

120 groups and projects, lacking a federated view. Cloud providers can presently accommodate
121 petabytes to exabytes of data for data storage. The commercial cloud cost is based on accessing
122 and computing or analyzing the data. It can become prohibitively expensive if data transmission
123 in to/out of the Cloud becomes frequent. Commercial AI/ML cloud infrastructure and services
124 are predominately motivated by text and image data. Cloud providers have demonstrated AI-
125 at-Scale for these applications. For example, the most significant AI-based Natural Language
126 Processing (NLP) models (e.g., for sequence data analysis) approaching 1 trillion parameters have
127 been demonstrated on Selene (Chen et al. 2019) (the 9th fastest supercomputing system on the
128 November 2022 Top 500 list). Workflow services exist on the Cloud for specific applications,
129 including many AI/ML methods, and raw materials are available on cloud platforms to create more
130 complex workflows. However, ESM workflows that combine external data sources or coordinate
131 with HPC simulations efficiently and accurately currently do not exist. Computer science expertise
132 is required to create such workflows in a form suitable for domain scientists (Chen et al. 2017;
133 Bauer et al. 2021).

134 *c. Edge Computing*

135 Recently, AI methods for classifying patterns, anomaly detection, unsupervised learning for
136 data compression, inference at the edge, and continuous learning with streaming sensor data have
137 gained considerable traction in the ESM community (Beckman et al. 2020; Talsma et al. 2022).
138 This advancement was possible because of the rapid forward deployment of AI models on intel-
139 ligent computing devices such as Raspberry Pi/Shake, Nvidia Jetson Nano, Google Coral Dev
140 Board, and Intel Neural Compute Stick connected to sensors. (Catlett et al. 2017, 2020; Mudunuru
141 et al. 2021). The integration of edge computing with smart sensors (e.g., AI@SensorEdge) has
142 many distinct deployment scenarios, including National Oceanic and Atmospheric Administration
143 (NOAA) and National Aeronautics and Space Administration (NASA) earth-observing satellite im-
144 agery with edge processing in space or at dedicated ground stations to control DOE's Atmospheric
145 Radiation Measurement (ARM) or Environmental Molecular Science Laboratory (EMSL) user
146 facility instruments (Beckman et al. 2020). We can also integrate edge computing with the diverse
147 collection of distributed sensors that collect observations and measurements for the DOE's ARM
148 user facility. Adaptive sensors with embedded hardware accelerators are now emerging (e.g., Wag-

gle, PurpleAir) (Beckman et al. 2016; Stavroulas et al. 2020; Barkjohn et al. 2021). New concepts for distributed applications are also under development, such as geomorphic computing, where weather research and forecasting models are distributed, federated, and able to adapt dynamically to the environment (Daapp et al. 2022).

153 **3. Future System Concepts**

154 In this section, we describe several plausible future systems concepts that participants in the
155 breakout room focus groups discussed in the AI4ESP workshop. The focus was on the evolution of
156 DOE’s Leadership Computing Facilitysystems for HPC and AI. These large-scale heterogeneous
157 computing systems provide a foundation for advancing AI architectures and co-design using HPC.
158 Moreover, these future concepts have the potential to provide a radically different approach to
159 future earth system modeling and AI-enabled ModEx.

160 *a. Centralized Large-scale HPC Concept*

161 The baseline system concept is the future evolution of large-scale HPC and cloud computing
162 systems. This next step will extend post-exascale architectures beyond the first generation of DOE’s
163 heterogeneous systems integrating CPUs and GPUs. As the HPC and Cloud computing commu-
164 nities increasingly rely on hardware specialization to improve performance, co-design approaches
165 will support the development of accelerators (Lie 2021; Reuther et al. 2021; Cortés et al. 2021)
166 for frequently used kernels in scientific modeling and AI/ML methods. New specialized acceler-
167 ators may arise to support additional data science capabilities such as uncertainty quantification,
168 streaming analytics, or graph analysis (Halappanavar et al. 2021; Acer et al. 2021). These future
169 large-scale computing systems with extreme heterogeneity must be co-designed to support the in-
170 creased computational and dataset sizes associated with earth science predictability and scientific
171 machine reasoning (Yang et al. 2016; Zhang et al. 2020; Yu et al. 2022).

172 *b. Edge sensors with Centralized HPC/Cloud Resources Concept*

173 In the second system concept, environmental data are recorded from a broad collection of point
174 (Christensen and Blanco Chia 2017; Winter et al. 2021) and distributed sensors (e.g., fiber optics)
175 (Lindsey et al. 2019) spread across the globe. These advanced sensors are designed to monitor

176 specific items of interest (e.g., river flow, nutrients, temperature, chemical concentration, light) and
177 to communicate these data back to a centralized location (Beckman et al. 2020). At this centralized
178 facility, large HPC or cloud computing environments will process the incoming data streams for
179 integration into online simulations of extreme weather events, climate, hydrology, and their impacts
180 on earth systems.

181 We could utilize AI/ML capabilities within this system concept at multiple points. First, the
182 velocity of sensor data coming into the system will potentially overrun even the most significant
183 data processing centers' capabilities. Hence, such a volume of data is unlikely to be able to be stored
184 in memory or even temporary storage resources (such as file systems or object stores). Advanced
185 AI/ML models could be trained and tailored to summarize or select relevant features from the
186 incoming data streams. Such an encoding or feature selection process will significantly reduce the
187 amount of data that needs to be kept and integrated into ongoing simulations. Another potential is
188 for AI/ML models to identify anomalies or precursors Yuan et al. (2019) from the incoming data
189 streams that might suggest areas of interest for simulations to be focused on – for instance, the
190 start of a hurricane or the high likelihood of significant rain-on-snow events or wildfires. **Other**
191 **examples include where to place a Geostationary Operational Environmental Satellites (GOES)**
192 **floater and scan phased array radars for faster, more spatially focused sensing.**

193 Due to the distributed nature and inhospitable environments (e.g., remote locations, extreme
194 temperatures, or pressures) where sensors may need to be placed or roam, it is unlikely that a
195 reliable data stream will reach the centralized location for all possible inputs. One common use
196 case is the intelligent city scenario to study urban science. Figure 1 is a notional depiction of various
197 deployed sensors, computing, and data storage capabilities (Zhu et al. 2021). AI/ML models could
198 be used in such an environment to fill measurement gaps and present a more consistent view of
199 observational data to a future simulation run on a large-compute resource. **Moreover, to understand**
200 **and predict urban air mobility, a distributed sensor network (e.g., drone deliveries and air taxis)**
201 **coupled with edge computing and AI is needed for block-level monitoring and forecasting for**
202 **eddies.**

203 FIG. 1. A smart city scenario with a large number of sites for fixed sensor deployments that measure
204 temperature, wind profile, CO₂ concentration, precipitation, etc., plus a variety of mobile devices that can also
205 be used to augment the collection of measurement and observation data intermittently. An urban setting will
206 support advanced wireless communications like 5G and eventually 6G to understand the interactions between
207 cities and climate. [Figure developed by Advanced Wireless Communications lab at PNNL]

208 *c. Federated Processing from the Edge to the Data Center Concept*

209 The third potential system design extends the second concept by leveraging much more processing
210 in or near the distributed sensor network. We can process the sensor data directly on the sensor
211 itself or in a nearby edge server (e.g., fog computing) with processing elements that may stream a
212 small collection of sensor data into it (Stevens et al. 2020, Chapter-15). Local processing stations
213 can then send their raw or locally processed data to a centralized HPC and/or cloud resource for
214 inclusion in simulation models and centralized AI/ML models as in the first system concept.

215 The advantage of this approach is that data down-selection and feature extraction can be performed
216 locally, significantly reducing the volume of data that must be transmitted to a centralized resource.
217 Assuming that a sufficiently performant local network among sensors can be established, process
218 model parameters and partial results, perhaps even AI/ML model updates, can be exchanged
219 within a locale, allowing for a genuinely federated design aspect. Initially, this concept takes

220 advantage of existing gateways and local area networks serving sensors in the field. Through
221 co-design collaborations, it is possible to expand that service to include application/sensor-specific
222 processing to filter, analyze, compress, encrypt, and unify multiple sensor streams transmitting
223 measurements through the wireless network.

224 *d. Dynamic and Adaptive Federated Processing Concept*

225 The last system concept builds on the previous three by augmenting feedback and control paths
226 within distributed networks of sensor-local resources (Di Lorenzo et al. 2021; Charles et al. 2021).
227 Local control offers lower latency decision-making to dynamically control what information is
228 observed, measured, recorded, and relayed by the sensor network (Morell and Alba 2022). Such a
229 design has powerful implications – By dynamically controlling sensors online, simulations of the
230 earth’s weather and climate can essentially focus sensor inputs on specific quantities or geographic
231 locations of interest. Examples might include where severe weather events are expected or whether
232 climate scientists identify where specific information is needed to help improve the quality of
233 their models. This concept expands to multiple HPC and/or Cloud data centers for federated
234 AI/ML modeling. AI/ML models can play a crucial part in this system by performing continuous,
235 autonomous online inspection of evolving simulations or recorded data to identify areas of data
236 insufficiency or statistical weakness. Furthermore, a dynamic and adaptive system may be able to
237 carefully obtain and select data to improve the quality of its training, reducing the need for vast,
238 potentially intractable datasets to be collected over long periods (Catlett et al. 2017).

239 **4. Grand Challenges**

240 The system concepts that integrate federated processing are beyond the capabilities of affordable
241 technologies today. It will require significant investment both in foundational technology sys-
242 tems and co-design programs. Such synergy between climate scientists, mathematicians, AI/ML
243 experts, computer scientists, and hardware engineers is needed to balance the competing perfor-
244 mance, energy, cost, and security challenges associated with AI-enabled ModEx. The following
245 subsections describe technical challenges that will arise in the areas: (1) programmability and
246 usability, (2) data movement, (3) energy efficiency, and (4) privacy and security of data.

247 *a. Programmability and Usability*

248 The current and near-term challenge is integrating scientific modeling and simulation applications
249 with AI/ML methods. This drives the need to integrate earth system HPC applications written
250 in C/C++ and/or Fortran with AI/ML methods that use Python-based ML frameworks (Ott et al.
251 2020). Programming models are under development to support the convergence of applications and
252 workflows onto heterogeneous computing systems. Many AI/ML architectures provide hardware
253 support for reduced or mixed precision, and tools will be required to analyze which specific model
254 components can use these capabilities. We must create protocols and tools for ESP data-sharing
255 and data federation on the cloud. The usability challenge is managing the complexity of mapping
256 converged application workloads to future heterogeneous computing architectures that integrate
257 specialized hardware accelerators with commodity CPU/GPU/TPU processors.

258 Domain scientists are interested in exploring the capabilities of new heterogeneous advanced
259 architecture computing systems. Interfacing with sensors and AI analytics at the Edge will allow
260 domain scientists to extract actionable information needed for improved modeling of disturbances
261 and extreme events. This type of co-design is needed for most ESP applications. For example,
262 watershed science, hydrology, ecohydrology, climate variability and extremes, aerosols and clouds,
263 and atmospheric modeling are cross-cutting themes where AISensorEdge has the highest impact.
264 Co-design approaches that interface with distributed sensor networks will allow us to (1) col-
265 lect reliable and relevant watershed data under disturbances, (2) monitor land-atmosphere-coastal
266 interactions by embedding intelligence on the Atmospheric Radiation Measurement (ARM) in-
267 struments, (3) understand wildfire events and their impact on ecosystems in near-real-time, and (4)
268 assess critical infrastructure impacted by extreme events (e.g., see Human Systems and Dynamics,
269 chapter 9 in AI4ESP report). Popular co-design examples include sustainable urban systems Webb
270 et al. (2018), socio-technical systems corresponding to Earth observation data (Barbier et al. 2022),
271 and sensor placement (Huadong 2016).

272 Still, there are challenges in understanding how to map AI4ESP workflows to the diverse col-
273 lection of computing system options. Understanding how AI/ML capabilities originally developed
274 for generic commercial workloads may or may not be applicable for Earth System Predictabil-
275 ity (ESP) hybrid modeling applications or observation and measurement capabilities is essential.
276 From centralized large-scale modeling and training to edge computing inferencing and federated

277 learning, new challenges arise for the composition and distribution of applications, algorithms, and
278 methods. This is an important opportunity for the AI4ESP community to develop a new generation
279 of proxy applications and benchmarks for modeling and observation capabilities. For example,
280 AI-enabled co-design will enable us to emulate and deploy DOE codes such as PFLOTRAN, ATS,
281 and E3SM at the sensor edge for empowering ARM instruments and EMSL user facilities. The
282 focus should be facilitating communication and co-design collaborations with hardware designers,
283 system software developers, algorithm developers, and domain scientists.

284 *b. Data Movement*

285 The expected volume of data associated with a complete, coordinated earth sensor capability
286 will be unprecedented. Not only will such a network generate a previously unimaginable quantity
287 and diversity of data, but the computing and network load for processing, transmitting, and
288 subsequent storage of this volume will be orders of magnitude higher than any system available
289 today. Data movement costs in terms of energy and latency motivate the interest in the federation
290 and distribution of computing across the AI4ESP scientific ecosystem. AI/ML technologies could
291 help reduce such volumes by identifying patterns and anomalies and summarizing sub-volume. We
292 will require significant investment in AI/ML approaches to ensure that the modeling capabilities
293 will be compatible and efficient for the types of data being recorded, especially where this may
294 deviate from commercial photo or video capabilities. **Technologies that may assist in energy-**
295 **efficient data transfers include investment in silicon photonic network capabilities, satellite-based**
296 **communications, and wide-area 5G- or 6G-like communication networks that enable sensors to**
297 **communicate over short/medium distances without needing physical wiring (Beckman et al. 2020).**
298 On the storage side, cloud technologies such as high-performance, large-volume data object stores
299 could likely provide a capability to address increased sparse data storage volumes. However, this
300 would pose a significant cost barrier using current commercial cloud pricing. We may also use
301 AI/ML to enable innovative compression techniques on earth system data to increase information
302 density without increasing storage costs. Additionally, DOE HPC centers could incorporate
303 concepts and methods from cloud storage systems into future parallel file and storage systems to
304 slowly move toward such capability. **These HPC centers allow data storage and connectivity with**
305 **repositories such as ESS-DIVE Agarwal et al. (2022); Velliquette et al. (2021). This HPC-to-ESS-**

306 DIVE connectivity allows to store (raw and curated) data for long periods of time. This data storage
307 strategy benefits the DOE community when new sensor data is collected, curated, and interfaced
308 with existing data repositories.

309 *c. Energy Efficiency*

310 Large-scale networks with integrated sensors, federated processing, and wide-area communica-
311 tion networks to handle data transmissions will likely be very expensive in energy consumption.
312 While this was a lower-priority focus for exascale computing, data processing and communication
313 remain power-expensive. Co-design has the potential to help improve this situation through the
314 use of novel materials, devices, and processing techniques (e.g., neuromorphic-based accelerators
315 to analyze images/video). However, significant investment will still be required in foundational
316 technologies if large-scale, power-efficient sensing networks are to be realized. Co-design to bal-
317 ance performance and energy efficiency will also address how the modeling, machine learning,
318 uncertainty quantification, and other streaming analytics capabilities are partitioned across the
319 ESM scientific ecosystem. Such a co-design that integrates DOE's heterogeneous HPC systems
320 with cloud computing, edge servers, and sensors with IoT devices will transform the ModEx loop.

321 *d. Privacy and Security of Data*

322 As earth systems modeling becomes increasingly integrated with a distributed network of ob-
323 servations and perhaps federated processing capabilities. The information's quality, accuracy, and
324 robustness through such a sensor network will become more critical. It must also be secured if
325 the information generated from modeling and measurement capabilities is used to support high-
326 consequence national or international scientific policy decisions. The implications of potential data
327 tampering or nefarious modification are clear, as a national or international resource for accurate
328 scientific prediction could be severely affected. Data privacy concerns are particularly valid in
329 a data acquisition system where individual human subject images or videos may be captured, or
330 their behavior discerned from the data. An example includes sensor capabilities that could identify
331 patterns in human systems data (e.g., in citizen science or urban environments). Co-design has
332 a potential role in this space – by including security experts in cyber-physical designs from the
333 outset, secure data transmission and processing can be integrated as a first-level citizen rather than

334 as a last, software-derived additional layer. In addition, data privacy may be afforded if local
335 artifacts associated with specific individuals can be aggregated into a larger, federated model with
336 individual patterns obfuscated or redacted into the complete model of the system.

337 5. Synergy with other AI4ESP Workshop Sessions

338 In this section, we provide visionary perspectives for future ideas and potential research in
339 synergy with other workshop sessions. Table 1 summarizes this synergy with short- (< 5 years),
340 medium- (5-year), and long-term (10-year) goals. The focus is on how AI architectures and co-
341 design approaches are related to the integrative water cycle and associated water cycle extremes.

342 The below categories came from the AI4ESP workshop themes.

343 TABLE 1. This table provides short-, medium-, and long-term goals needed to overcome the grand challenges
344 discussed in Section 4. Gradual progress on these specific goals will allow us to advance on the future system
345 concepts needed for improving earth system predictability.

Short-term goals	Medium-term goals	Long-term goals	Co-design opportunities
Benchmark datasets	Data formats for federated learning	Improve efficiency across ESP domains	Anomaly analysis for extreme events
Distributed AI/ML workflows	AI/ML for UQ	AI-at-scale demonstration	AI for down- and up-scaling
AI/ML surrogates	AI/ML + physics simulators	AI for streaming analytics	AI/ML + IoT + Exascale ecosystem
AI/ML abstractions for edge	AI@SensorEdge	AI-enabled automation	Digital Twin for ESP

346 **Atmospheric modeling** – Need for advancing the modeling of subgrid physics across scales
347 and guiding or automating process model calibration. This includes (1) co-design approaches
348 for parameterization and knowledge transfer across scales and (2) AI infrastructure for datasets,
349 software, testing, validation, and training workflows for efficient model calibration.

350 **Land modeling** – AI architectures for efficient transfer of information between land and atmo-
351 spheric models. This includes (1) subgrid parameterizations to capture the full complexity within
352 a grid, (2) capturing heterogeneity utilizing LCFs, and (3) addressing observational gaps using
353 advanced AI architectures (e.g., transformers).

354 **Hydrology** – Advanced AI architectures are needed for parameter estimation, down-scaling, and
355 imputation to improve data products. Model-data co-design approaches are needed to identify how
356 many and what types of observations are required to reach a desired process model performance
357 without actual measurements being available. This includes 5G or other high-speed networking

358 or software pipelines that can accelerate the transfer of information between field instrumentation
359 and process models for near real-time sampling decisions.

360 **Watershed science** – Co-design approaches are needed to understand better (1) the quality
361 of collected data, (2) the predictability of a watershed’s response (e.g., the evolution of micro-
362 bial activity) under disturbances and long-term perturbations using process-based models (e.g.,
363 PFLOTRAN), (3) when, how, and where to collect data (e.g., wildfires, flooding, drought events),
364 and (4) how to deal with large data volumes.

365 **Ecohydrology** – Advanced AI architectures are needed for developing new data products and
366 benchmark datasets across spatial scales from microbial and leaf scales to watershed and continental
367 scales. Novel co-design approaches that build and collect labeled earth science data needed for
368 process models and open-sourcing them to the BER community would facilitate rapid testing of
369 existing AI/ML methods.

370 **Aerosols and clouds** – Co-design approaches that can extract valuable information or identify
371 indicator patterns of forced changes and emergent properties of the actual and simulated climate
372 system are essential. Future system concepts that can develop databases for indicator patterns
373 (e.g., nucleation of ice or particles, snow formation) and emergent properties provide a path toward
374 knowledge discovery and reveal missing mechanisms that must be incorporated in process models.

375 **Coastal dynamics, oceans, and ice** – Advanced AI architectures that can improve (1) the
376 standardization and merging of disparate datasets, (2) scale-awareness and dependency in process
377 models (e.g., capturing coastal, ocean, and cryosphere processes across scales and from sparse
378 datasets).

379 **Climate variability and extremes** – Co-design approaches for climate variability, signal iden-
380 tification, and sources of predictability are essential. These include AI architectures to detect
381 signatures and features corresponding to tropical cyclones, fronts, atmospheric rivers, hailstones,
382 tornadoes, and ice storms.

383 **Human systems and dynamics** – Co-design approaches that can provide a better understanding
384 of human and earth systems. For example, advancements in AI architectures are needed to gain
385 better insights into urban prediction and long-term urban policy due to extreme events.

386 **6. Conclusions**

387 In this perspective paper, we have described the need for co-design approaches for efficient and
388 accurate integration of process models and observations for improved earth system predictability.
389 Current state-of-science and HPC facilities provide a starting point to address the grand challenges
390 of the ‘Model-Experimentation’ loop. Future system concepts that connect the edge sensors to in-
391 telligent computing devices and, subsequently, the process models that reside in fog/cloud/exascale
392 infrastructure are needed to transform the ModEx lifecycle. Our near-term to long-term goals allows
393 us to develop AI architectures and co-design approaches using future system concepts. Community
394 integration and effort between domain and computational experts allow us to transform how we
395 model the integrative and associated water cycle extremes.

396 **Nomenclature**

- 397 • AI4ESP: The Artificial Intelligence for Earth System Predictability
- 398 • AI: Artificial Intelligence
- 399 • ALCF: Argonne Leadership Computing Facility
- 400 • ARM: Atmospheric Radiation Measurement Climate Research Facility
- 401 • ASCR: Advanced Scientific Computing Research
- 402 • ATS: Advanced Terrestrial Simulator
- 403 • AWS: Amazon Web Services
- 404 • BER: Biological and Environmental Research
- 405 • CPU: Central Processing Unit
- 406 • DOE: Department of Energy
- 407 • E3SM: Energy Exascale Earth System Model
- 408 • ESM: Earth System Model
- 409 • ESP: Earth System Predictability

- 410 • EMSL: Environmental Molecular Sciences Laboratory
- 411 • GCP: Google Cloud Platform
- 412 • GOES: Geostationary Operational Environmental Satellites
- 413 • GPU: Graphics Processing Unit
- 414 • HPC: High-Performance Computing
- 415 • IoT: Internet of Things
- 416 • LCF: Leadership Computing Facility
- 417 • ModEx: Model-Experimentation
- 418 • ML: Machine Learning
- 419 • NASA: National Aeronautics and Space Administration
- 420 • NERSC: National Energy Research Scientific Computing Center
- 421 • NLP: Natural Language Processing
- 422 • NOAA: National Oceanic and Atmospheric Administration
- 423 • OLCF: Oak Ridge Leadership Computing Facility
- 424 • TPU: Tensor Processing Unit
- 425 • UQ: Uncertainty Quantification

426 *Acknowledgments.* The authors acknowledge all the efforts made as part of the Artificial Intel-
427 ligence for Earth System Predictability (AI4ESP) workshop. MKM acknowledges the support
428 from the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility
429 sponsored by the Biological and Environmental Research program under Contract No. DE-AC05-
430 76RL01830. PJ’s research was supported as part of the Energy Exascale Earth System Model
431 (E3SM) project, funded by the U.S. Department of Energy, Office of Science, and Office of
432 Biological and Environmental Research. SS and MN research was supported by the Exascale
433 Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office
434 of Science and the National Nuclear Security Administration. MBG’s research was performed
435 under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
436 under Contract DE-AC52-07NA27344. MKM, JAA, and MH acknowledge the contributions of
437 Johnathan Cree and Elena Peterson at PNNL’s Advanced Wireless Communications Lab, who de-
438 veloped the figure in this paper. This manuscript has been authored by Pacific Northwest National
439 Laboratory (PNNL), operated by Battelle Memorial Institute for the U.S. Department of Energy
440 under Contract No. DE-AC05-76RL01830. This manuscript has been authored by Oak Ridge
441 National Laboratory, operated by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725
442 with the U.S. Department of Energy. The US government retains and the publisher, by accepting
443 the article for publication, acknowledges that the US government retains a nonexclusive, paid-up,
444 irrevocable, worldwide license to publish or reproduce the published form of this manuscript or
445 allow others to do so, for US government purposes. DOE will provide public access to these results
446 of federally sponsored research in accordance with the DOE Public Access Plan. **The authors thank**
447 **the reviewers whose feedback helped substantially improve the manuscript.**

448 *Data availability statement.* There is no data developed in this paper

449 **References**

- 450 Acer, S., and Coauthors, 2021: Exagraph: Graph and combinatorial methods for enabling exascale
451 applications. *The International Journal of High Performance Computing Applications*, **35** (6),
452 553–571.
- 453 Agarwal, D., and Coauthors, 2022: Ess-dive reporting format for dataset package metadata. Tech.
454 rep., Environmental System Science Data Infrastructure for a Virtual Ecosystem

- 455 ALCF, 2022: ALCF – Argonne Leadership Computing Facility. URL <https://www.alcf.anl.gov/>,
456 accessed on: 2022-11-10.
- 457 ARM, 2022: ARM – Atmospheric Radiation Measurement Climate Research Facility. URL <https://www.arm.gov/>, accessed on: 2022-11-10.
- 459 ATS, 2022: ATS – The Advanced Terrestrial Simulator. URL <https://github.com/amanzi/ats>,
460 accessed on: 2022-11-10.
- 461 AWS, 2022: AWS – Amazon Web Services. URL <https://aws.amazon.com/about-aws/>, accessed
462 on: 2022-11-10.
- 463 Azure, 2022: Microsoft Azure: Cloud Computing Services. URL <https://azure.microsoft.com/en-us/>, accessed on: 2022-11-10.
- 465 Baker, N., and Coauthors, 2019: Workshop report on basic research needs for scientific machine
466 learning: Core technologies for artificial intelligence. Tech. rep., USDOE Office of Science
467 (SC), Washington, DC (United States). <https://doi.org/10.2172/1478744>.
- 468 Barbier, R., S. B. Yahia, P. Le Masson, and B. Weil, 2022: Co-design for novelty anchoring
469 into multiple socio-technical systems in transitions: The case of earth observation data. *IEEE*
470 *Transactions on Engineering Management*.
- 471 Barkjohn, K. K., B. Gantt, and A. L. Clements, 2021: Development and application of a united
472 states-wide correction for pm 2.5 data collected with the purpleair sensor. *Atmospheric Mea-*
473 *surement Techniques*, **14 (6)**, 4617–4637.
- 474 Bauer, P., P. D. Dueben, T. Hoefler, T. Quintino, T. C. Schulthess, and N. P. Wedi, 2021: The
475 digital revolution of earth-system science. *Nature Computational Science*, **1 (2)**, 104–113.
- 476 Beckman, P., R. Sankaran, C. Catlett, N. Ferrier, R. Jacob, and M. Papka, 2016: Waggle: An open
477 sensor platform for edge computing. *2016 IEEE SENSORS*, IEEE, 1–3.
- 478 Beckman, P., and Coauthors, 2020: 5g enabled energy innovation: Advanced wireless networks
479 for science (workshop report). Tech. rep., Argonne National Lab.(ANL), Argonne, IL (United
480 States); Northwestern Univ . . . <https://doi.org/10.2172/1606538>.

- 481 Bringmann, O., and Coauthors, 2021: Automated hw/sw co-design for edge ai: State, challenges
482 and steps ahead: Special session paper. *2021 International Conference on Hardware/Software*
483 *Codesign and System Synthesis (CODES+ ISSS)*, IEEE, 11–20.
- 484 Catlett, C., P. Beckman, N. Ferrier, H. Nusbaum, M. E. Papka, M. G. Berman, and R. Sankaran,
485 2020: Measuring cities with software-defined sensors. *Journal of Social Computing*, **1** (1),
486 14–27.
- 487 Catlett, C. E., P. H. Beckman, R. Sankaran, and K. K. Galvin, 2017: Array of things: a scientific
488 research instrument in the public way: platform design and early lessons learned. *Proceedings of*
489 *the 2nd international workshop on science of smart city operations and platforms engineering*,
490 26–33.
- 491 Chambers, J., R. Fisher, J. Hall, R. J. Norby, S. C. Wofsy, and D. Stover, 2012: Research priorities
492 for tropical ecosystems under climate change workshop report, june 4-5, 2012. Tech. rep.,
493 USDOE Office of Science (SC), Washington, DC (United States). Biological and URL
494 <https://ess.science.energy.gov/wp-content/uploads/2020/12/NGEE-Tropics3webHR.pdf>.
- 495 Charles, Z., Z. Garrett, Z. Huo, S. Shmulyian, and V. Smith, 2021: On large-cohort training for
496 federated learning. *Advances in neural information processing systems*, **34**, 20 461–20 475.
- 497 Chen, K. M., E. M. Cofer, J. Zhou, and O. G. Troyanskaya, 2019: Selene: a pytorch-based deep
498 learning library for sequence data. *Nature methods*, **16** (4), 315–318.
- 499 Chen, X., X. Huang, C. Jiao, M. G. Flanner, T. Raeker, and B. Palen, 2017: Running climate model
500 on a commercial cloud computing environment: A case study using community earth system
501 model (cesm) on amazon aws. *Computers & Geosciences*, **98**, 21–25.
- 502 Chouhan, L., P. Bansal, B. Lauhny, and Y. Chaudhary, 2020: A survey on cloud federation
503 architecture and challenges. *Social Networking and Computational Intelligence*, Springer, 51–
504 65.
- 505 Christensen, B., and J. Blanco Chia, 2017: Raspberry shake-a world-wide citizen seismograph
506 network. *AGU Fall Meeting Abstracts*, Vol. 2017, S11A–0560.
- 507 Cortés, U., U. Moya, and M. Valero, 2021: When sally met harry or when ai met hpc. *Supercom-*
508 *puting Frontiers and Innovations*, **8** (1), 4–7.

- 509 Cromwell, E., P. Shuai, P. Jiang, E. T. Coon, S. L. Painter, J. D. Moulton, Y. Lin, and X. Chen,
510 2021: Estimating watershed subsurface permeability from stream discharge data using deep
511 neural networks. *Frontiers in Earth Science*, **9**, 613 011.
- 512 Daepp, M. I., and Coauthors, 2022: Eclipse: An end-to-end platform for low-cost, hyperlocal
513 environmental sensing in cities. *2022 21st ACM/IEEE International Conference on Information
514 Processing in Sensor Networks (IPSN)*, IEEE, 28–40.
- 515 Descour, M., J. Tsao, D. Stracuzzi, A. Wakeland, D. Schultz, W. Smith, and J. Weeks, 2021:
516 Workshop report: Ai-enhanced co-design for next-generation microelectronics: Innovating
517 innovation. Tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
518 <https://doi.org/10.2172/1845383>.
- 519 Di Lorenzo, P., C. Battiloro, M. Merluzzi, and S. Barbarossa, 2021: Dynamic resource optimization
520 for adaptive federated learning at the wireless network edge. *ICASSP 2021-2021 IEEE Interna-
521 tional Conference on Acoustics, Speech and Signal Processing (ICASSP)*, IEEE, 4910–4914.
- 522 E3SM, 2022: E3SM – The Energy Exascale Earth System Model. URL <https://e3sm.org/>, accessed
523 on: 2022-11-10.
- 524 E3SM-MMF, 2022: E3SM Multiscale Modeling Framework. URL <https://www.exascaleproject.org/research-project/e3sm-mmf/>, accessed on: 2022-11-10.
- 526 Eeckhout, L., 2017: Is moore's law slowing down? what's next? *IEEE Micro*, **37** (04), 4–5.
- 527 EMSL, 2022: EMSL – The Environmental Molecular Sciences Laboratory. URL <https://www.emsl.pnnl.gov/>, accessed on: 2022-11-10.
- 529 GCP, 2022: GCP – Google Cloud Platform. URL <https://cloud.google.com/>, accessed on: 2022-
530 11-10.
- 531 Germann, T. C., 2021: Co-design in the exascale computing project. SAGE Publications Sage UK:
532 London, England, 503–507 pp.
- 533 Germann, T. C., A. L. McPherson, J. F. Belak, and D. F. Richards, 2013: Exascale co-design center
534 for materials in extreme environments. <https://doi.org/10.2172/1116965>.

- 535 Halappanavar, M., M. Minutoli, and S. Ghosh, 2021: Graph analytics in the exascale era. *Proceedings of the 18th ACM International Conference on Computing Frontiers*, 209–209.
- 536
- 537 Heroux, M. A., and Coauthors, 2022: Ecp software technology capability assessment report.
- 538 Tech. rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). <https://doi.org/10.2172/1760096>.
- 539
- 540 Hickmon, N. L., C. Varadharajan, F. M. Hoffman, S. Collis, and H. M. Wainwright, 2022: Artificial
- 541 intelligence for earth system predictability (ai4esp) workshop report. Tech. rep., Argonne
- 542 National Lab.(ANL), Argonne, IL (United States). <https://doi.org/10.2172/1888810>.
- 543
- 544 Hoffman, F. M., and Coauthors, 2017: 2016 international land model benchmarking (ilamb)
- 545 workshop report. Tech. rep., USDOE Office of Science, Washington, DC (United States).
- 546 <https://doi.org/10.2172/1330803>.
- 547
- 548 Huadong, G., 2016: Digital earth and future earth. Taylor & Francis, 1–2 pp.
- 549
- 550 Lichtner, P. C., and Coauthors, 2020: PFLOTRAN Web page. [Http://www.pfotran.org](http://www.pfotran.org).
- 551
- 552 Lie, S., 2021: Multi-million core, multi-wafer ai cluster. *2021 IEEE Hot Chips 33 Symposium*
- 553 (HCS), IEEE Computer Society, 1–41.
- 554
- 555 Lindsey, N. J., T. C. Dawe, and J. B. Ajo-Franklin, 2019: Illuminating seafloor faults and ocean
- 556 dynamics with dark fiber distributed acoustic sensing. *Science*, **366** (6469), 1103–1107.
- 557
- 558 list, T., 2022: Top500 List – The 59th edition of the TOP500 revealed the Frontier system
- 559 to be the first true exascale machine with an HPL score of 1.102 Exaflop per second. URL
- 560 <https://www.top500.org/lists/top500/2022/11/>, accessed on: 2022-11-10.
- 561
- 562 Morell, J. Á., and E. Alba, 2022: Dynamic and adaptive fault-tolerant asynchronous federated
- 563 learning using volunteer edge devices. *Future Generation Computer Systems*, **133**, 53–67.
- 564
- 565 Mudunuru, M. K., K. Son, P. Jiang, G. Hammond, and X. Chen, 2022: Scalable deep learning for
- 566 watershed model calibration. *Frontiers in Earth Science*, 2206.
- 567
- 568 Mudunuru, M. K., and Coauthors, 2021: EdgeAI: How to use ai to collect reliable and relevant
- 569 watershed data. Tech. rep., Artificial Intelligence for Earth System Predictability (AI4ESP . . .
- 570 <https://doi.org/https://doi.org/10.2172/1769700>.
- 571

- 562 NERSC, 2022: NERSC – National Energy Research Scientific Computing Center. URL <https://www.nersc.gov/>, accessed on: 2022-11-10.
- 564 OLCF, 2022: OLCF – Oak Ridge Leadership Computing Facility. URL <https://www.olcf.ornl.gov/>,
565 accessed on: 2022-11-10.
- 566 Ott, J., M. Pritchard, N. Best, E. Linstead, M. Curcic, and P. Baldi, 2020: A fortran-keras deep
567 learning bridge for scientific computing. *Scientific Programming*, **2020**.
- 568 Pao, K., 2011: Co-Design and You: Why Should Mathematicians Care About Exascale Computing,
569 2011 DOE Applied Mathematics Program Meeting. URL https://www.csm.ornl.gov/workshops/applmath11/documents/talks/Pao_CoDesign.pdf.pdf, accessed on: 2022-11-10.
- 571 PARKERe, J. S., and L. TANG, 2013: On the role of co-design in high-performance computing.
572 *Transition of HPC Towards Exascale Computing*, **24**, 141.
- 573 Reuther, A., P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, 2021: Ai accelerator
574 survey and trends. *2021 IEEE High Performance Extreme Computing Conference (HPEC)*,
575 IEEE, 1–9.
- 576 Rosa, M. J., C. G. Ralha, M. Holanda, and A. P. Araujo, 2021: Computational resource and cost
577 prediction service for scientific workflows in federated clouds. *Future Generation Computer
578 Systems*, **125**, 844–858.
- 579 Saxena, D., R. Gupta, and A. K. Singh, 2021: A survey and comparative study on multi-cloud archi-
580 tectures: emerging issues and challenges for cloud federation. *arXiv preprint arXiv:2108.12831*.
- 581 Stavroulas, I., and Coauthors, 2020: Field evaluation of low-cost pm sensors (purple air pa-ii)
582 under variable urban air quality conditions, in greece. *Atmosphere*, **11 (9)**, 926.
- 583 Stevens, R., V. Taylor, J. Nichols, A. B. Maccabe, K. Yelick, and D. Brown, 2020: Ai for
584 science: Report on the department of energy (doe) town halls on artificial intelligence (ai) for
585 science. Tech. rep., Argonne National Lab.(ANL), Argonne, IL (United States). <https://doi.org/10.2172/1604756>.

- 587 Subsurface-ECP, 2022: Subsurface: An Exascale Subsurface Simulator of Coupled Flow,
588 Transport, Reactions, and Mechanics. URL <https://www.exascaleproject.org/research-project/subsurface/>, accessed on: 2022-11-10.
- 590 Talsma, C., K. C. Solander, M. K. Mudunuru, B. Crawford, and M. Powell, 2022: Frost prediction
591 using machine learning and deep neural network models for use on IoT sensors.
- 592 Testbed, A. A., 2022: ALCF AI Testbed, a next generation of AI-accelerator machines. URL
593 <https://www.alcf.anl.gov/alcf-ai-testbed>, accessed on: 2022-11-10.
- 594 Theis, T. N., and H.-S. P. Wong, 2017: The end of moore's law: A new beginning for information
595 technology. *Computing in science & engineering*, **19** (2), 41–50.
- 596 Tsai, W.-P., D. Feng, M. Pan, H. Beck, K. Lawson, Y. Yang, J. Liu, and C. Shen, 2021: From
597 calibration to parameter learning: harnessing the scaling effects of big data in geoscientific
598 modeling. *Nature communications*, **12**, 1–13.
- 599 Velliquette, T., J. Welch, M. Crow, R. Devarakonda, S. Heinz, and R. Crystal-Ornelas, 2021: Ess-
600 dive reporting format for file-level metadata. Tech. rep., Environmental System Science Data
601 Infrastructure for a Virtual Ecosystem
- 602 Vetter, J. S., and Coauthors, 2022: Extreme heterogeneity 2018-productive computational science
603 in the era of extreme heterogeneity: Report for doe ascr workshop on extreme heterogeneity.
604 <https://doi.org/10.2172/1473756>.
- 605 Webb, R., and Coauthors, 2018: Sustainable urban systems: Co-design and framing for transfor-
606 mation. *Ambio*, **47**, 57–77.
- 607 Winter, K., D. Lombardi, A. Diaz-Moreno, and R. Bainbridge, 2021: Monitoring icequakes in east
608 antarctica with the raspberry shake. *Seismological Research Letters*, **92** (5), 2736–2747.
- 609 Xu, H., W. Wei, J. Dennis, and K. Paul, 2019: Using cloud-friendly data format in earth system
610 models. *AGU Fall Meeting Abstracts*, Vol. 2019, IN13C–0728.
- 611 Yang, C., and Coauthors, 2016: 10m-core scalable fully-implicit solver for nonhydrostatic atmo-
612 spheric dynamics. *SC'16: Proceedings of the International Conference for High Performance
613 Computing, Networking, Storage and Analysis*, IEEE, 57–68.

- 614 Yu, Y., and Coauthors, 2022: Characterizing uncertainties of earth system modeling with het-
615 erogeneous many-core architecture computing. *Geoscientific Model Development Discussions*,
616 1–23.
- 617 Yuan, B., and Coauthors, 2019: Using machine learning to discern eruption in noisy environ-
618 ments: A case study using co2-driven cold-water geyser in chimayó, new mexico. *Seismological*
619 *Research Letters*, **90 (2A)**, 591–603.
- 620 Zhang, S., and Coauthors, 2020: Optimizing high-resolution community earth system model on a
621 heterogeneous many-core supercomputing platform. *Geoscientific Model Development*, **13 (10)**,
622 4809–4829.
- 623 Zhang, X., W. Jiang, Y. Shi, and J. Hu, 2019: When neural architecture search meets hardware
624 implementation: from hardware awareness to co-design. *2019 IEEE Computer Society Annual*
625 *Symposium on VLSI (ISVLSI)*, IEEE, 25–30.
- 626 Zhu, T., J. Shen, and E. R. Martin, 2021: Sensing earth and environment dynamics by telecom-
627 munication fiber-optic sensors: An urban experiment in pennsylvania, usa. *Solid Earth*, **12 (1)**,
628 219–235.