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ABSTRACT: Recently, the U.S. Department of Energy (DOE), Office of Science, Biological and
Environmental Research (BER), and Advanced Scientific Computing Research (ASCR) programs
organized and held the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop
series. From this workshop, a critical conclusion that the DOE BER and ASCR community came
to is the requirement to develop a new paradigm for Earth system predictability focused on enabling
artificial intelligence (Al) across the field, lab, modeling, and analysis activities, called ModEx.
The BER’s ‘Model-Experimentation’, ModEXx, is an iterative approach that enables process models
to generate hypotheses. The developed hypotheses inform field and laboratory efforts to collect
measurement and observation data, which are subsequently used to parameterize, drive, and test
model (e.g., process-based) predictions. A total of 17 technical sessions were held in this AI4ESP
workshop series. This paper discusses the topic of the ‘Al Architectures and Co-design’ session
and associated outcomes. The Al Architectures and Co-design session included two invited talks,
two plenary discussion panels, and three breakout rooms that covered specific topics, including:
(1) DOE high-performance computing (HPC) Systems, (2) Cloud HPC Systems, and (3) Edge
computing and Internet of Things (IoT). We also provide forward-looking ideas and perspectives
on potential research in this co-design area that can be achieved by synergies with the other 16
session topics. These ideas include topics such as: (1) reimagining co-design, (2) data acquisition
to distribution, (3) heterogeneous HPC solutions for integration of AI/ML and other data analytics
like uncertainty quantification with earth system modeling and simulation, and (4) Al-enabled
sensor integration into earth system measurements and observations. Such perspectives are a

distinguishing aspect of this paper.
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SIGNIFICANCE STATEMENT: This study aims to provide perspectives on Al architectures and
co-design approaches for Earth-system predictability. Such visionary perspectives are essential
because Al-enabled model-data integration has shown promise in improving predictions associated
with climate change, perturbations, and extreme events. Our forward-looking ideas guide what is
next in co-design to enhance Earth-system models, observations, and theory using state-of-the-art

and futuristic computational infrastructure.

1. Introduction

The U.S. Department of Energy (DOE) recently concluded a workshop on Artificial Intelligence
for Earth-System Predictability (AI4ESP) (Hickmon et al. 2022). This workshop was hosted by the
DOE’s Office of Science, Biological and Environmental Research (BER) and Advanced Scientific
Computing Research (ASCR) Programs. A total of 17 sessions with researchers worldwide par-
ticipated and discussed how artificial intelligence (Al) could enhance Earth-system predictability
across the field, lab, modeling, and analysis activities (Hoffman et al. 2017, Fig-1.3). The pri-
mary focus of the discussion was on using Al for transforming BER’s “Model-Experimentation”
(ModEXx) integration (Chambers et al. 2012, page-93).

Traditionally, the ModEx paradigm (Hoffman et al. 2017, Section-1) integrates observations,
experiments, and measurements performed in the field or laboratory with conceptual/process
models in an iterative fashion. Recent advances in Al have shown promise to accelerate the
traditional ModEx efficiency (Tsai et al. 2021; Cromwell et al. 2021; Mudunuru et al. 2022).
Such an Al transformation in the ModEx loop is needed to efficiently and accurately integrate the
DOE’s observational capabilities and platforms?!, process models and software infrastructure?, and
computational hardware3. However, achieving this Al-enabled ModEx vision requires significant
advancements in co-design and associated Al architectures (Germann et al. 2013; Zhang et al.
2019; Beckman et al. 2020; Descour et al. 2021; Bringmann et al. 2021). Co-design Pao (2011);
PARKERe and TANG (2013); Germann (2021) refers to a computer system design process where

scientific problem requirements influence architecture design, technology, and constraints inform

Popular BER observational capabilities include Atmospheric Radiation Measurement Climate Research Facility (ARM) (ARM 2022) and
Environmental Molecular Sciences Laboratory (EMSL) (EMSL 2022)

2State-of-the-art DOE-funded, open-source, and massively-parallel multi-physics codes include PFLOTRAN (Lichtner et al. 2020), Advanced
Terrestrial Simulator (ATS) (ATS 2022), and Energy Exascale Earth System Model (E3SM) (E3SM 2022)

3ASCR-funded computational infrastructure and scientific user facilities include Argonne Leadership Computing Facility (ALCF) (ALCF 2022),
National Energy Research Scientific Computing Center (NERSC) (NERSC 2022), and Oak Ridge Leadership Computing Facility (OLCF) (OLCF
2022)
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the formulation and design of algorithms and software. Co-Design will weigh holistically the
fundamental tradeoffs, such as (1) hardware and architecture, (2) software stacks, (3) numerical
methods and algorithms, and (4) science applications. This paper provides perspectives on Al
architectures and co-design approaches needed to develop Al-enabled ModEx for Earth-system
predictability. These perspectives include co-designing computational and storage infrastructure
for automated ML feature engineering and model selection, integration of sensors, process models,
and ML methods for efficient data assimilation. We also provide futuristic system ideas on co-
designing frameworks and platforms to enable the BER community to accelerate the application
of Al architectures in the ModEx lifecycle.

The outline of our paper is as follows: Sec. 2 presents the state-of-the-science on Al architectures
and co-design that AI4ESP workshop participants discussed. Section 3 provides four different
futuristic concepts, and Sec. 4 discusses the grand challenges of developing such ideas. We also
discuss near-, middle-, and long-term goals to overcome these grand challenges. Section 5 provides
perspectives for potential research that will provide synergy with other AI4ESP workshop sessions.

Conclusions are drawn in Sec. 6.

2. State-of-the-Science

In this section, we describe the state-of-the-science on Al architectures and co-design. The foci
are the computing resources and DOE user facilities used in capturing and curating data, developing
advanced AI/ML models, and inferences for quantifying and improving earth system modeling and

simulation predictability.

a. DOE’s High-Performance Computing User Facilities

Over the past few decades, DOE has invested hundreds of millions of dollars in developing
high-performance computing (HPC) user facilities (Stevens et al. 2020; Vetter et al. 2022; Heroux
et al. 2022). DOE’s investments towards exascale computing include Leadership Computing
Facilities (LCFs) at Argonne national laboratory (ALCF) (e.g., Aurora), Oak Ridge National
Laboratory (OLCF) (e.g., Frontier), and National Energy Research Scientific Computing Center
(NERSC), (e.g., Perlmutter). The LCFs are leadership computing facilities for the computational

science community. The LCFs provide researchers with a world-class computing capability for
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breakthrough science and engineering. Frontier is ranked the fastest supercomputing system
on the November 2022 Top 500 list (list 2022). The latest generations of DOE’s leadership-
class computing facilities are based on integrating central processing unit (CPU) and graphics
processing unit (GPU) processors into heterogeneous systems. Concurrently, DOE’s Biological
and Environmental Research Program has invested substantial resources in state-of-the-art scientific
models (E3SM 2022; Lichtner et al. 2020; ATS 2022) including the flagship Energy Exascale Earth
System Model (E3SM) (E3SM 2022) that is specifically designed to target efficient utilization of the
exascale supercomputers. These HPC resources have significantly improved model predictability
in various areas, including earth system modeling, subsurface flow and transport models, etc.
(e.g., E3SM, PFLOTRAN). As part of the DOE’s Exascale Computing Project, a selected subset
of earth science applications E3SM-MMF (2022); Subsurface-ECP (2022) firmly focused on
model development for the exascale era. Furthermore, efforts like the E3ASM-MMF sub-project
(E3SM-MMF 2022) under ECP had targeted co-design activities, including strong engagements
with vendors on early architecture evaluation and algorithm design. Experience from such efforts
indicates the need for expansion to Al architecture co-design and increased coverage of earth
science applications. Such advancements allowed us to achieve energy-efficient performance on
GPUs while leveraging the commercial drivers for GPU-based AI/ML performance.

With the slowing of Moore’s Law (Eeckhout 2017; Theis and Wong 2017), the computing com-
munity recognized the increased need for architectural specialization. Hence, the next generation
of HPC systems are likely to incorporate increased heterogeneity beyond the current hybrid CPU
and GPU designs. The DOE’s efforts in Al for Science (Baker et al. 2019; Stevens et al. 2020)
are exploring capabilities that provide a foundation for the integration of HPC applications (e.g.,

ALCF’s Al testbeds (Testbed 2022)) with data science and AI/ML frameworks.

b. Cloud computing

Cloud providers# have user-friendly tools to run AI/ML workloads. But there needs to be more
compatibility among AI/ML tool capabilities and user interfaces among different providers that
make it difficult to achieve interoperability in a federation of clouds (Chouhan et al. 2020; Rosa et al.
2021; Saxena et al. 2021). While specific Earth system model (ESM) data are presently stored on

cloud storage systems (Xu et al. 2019), the data stores are associated with a patchwork of individual

4Popular providers include Amazon Web Services (AWS) (AWS 2022), Google Cloud Platform (GCP) (GCP 2022), and Azure (Azure 2022)

5
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groups and projects, lacking a federated view. Cloud providers can presently accommodate
petabytes to exabytes of data for data storage. The commercial cloud cost is based on accessing
and computing or analyzing the data. It can become prohibitively expensive if data transmission
in to/out of the Cloud becomes frequent. Commercial AI/ML cloud infrastructure and services
are predominately motivated by text and image data. Cloud providers have demonstrated Al-
at-Scale for these applications. For example, the most significant Al-based Natural Language
Processing (NLP) models (e.g., for sequence data analysis) approaching 1 trillion parameters have
been demonstrated on Selene (Chen et al. 2019) (the 9th fastest supercomputing system on the
November 2022 Top 500 list). Workflow services exist on the Cloud for specific applications,
including many AI/ML methods, and raw materials are available on cloud platforms to create more
complex workflows. However, ESM workflows that combine external data sources or coordinate
with HPC simulations efficiently and accurately currently do not exist. Computer science expertise
1s required to create such workflows in a form suitable for domain scientists (Chen et al. 2017;

Bauer et al. 2021).

c. Edge Computing

Recently, AI methods for classifying patterns, anomaly detection, unsupervised learning for
data compression, inference at the edge, and continuous learning with streaming sensor data have
gained considerable traction in the ESM community (Beckman et al. 2020; Talsma et al. 2022).
This advancement was possible because of the rapid forward deployment of AI models on intel-
ligent computing devices such as Raspberry Pi/Shake, Nvidia Jetson Nano, Google Coral Dev
Board, and Intel Neural Compute Stick connected to sensors. (Catlett et al. 2017, 2020; Mudunuru
et al. 2021). The integration of edge computing with smart sensors (e.g., Al@SensorEdge) has
many distinct deployment scenarios, including National Oceanic and Atmospheric Administration
(NOAA) and National Aeronautics and Space Administration (NASA) earth-observing satellite im-
agery with edge processing in space or at dedicated ground stations to control DOE’s Atmospheric
Radiation Measurement (ARM) or Environmental Molecular Science Laboratory (EMSL) user
facility instruments (Beckman et al. 2020). We can also integrate edge computing with the diverse
collection of distributed sensors that collect observations and measurements for the DOE’s ARM

user facility. Adaptive sensors with embedded hardware accelerators are now emerging (e.g., Wag-
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gle, PurpleAir) (Beckman et al. 2016; Stavroulas et al. 2020; Barkjohn et al. 2021). New concepts
for distributed applications are also under development, such as geomorphic computing, where
weather research and forecasting models are distributed, federated, and able to adapt dynamically

to the environment (Daepp et al. 2022).

3. Future System Concepts

In this section, we describe several plausible future systems concepts that participants in the
breakout room focus groups discussed in the AI4ESP workshop. The focus was on the evolution of
DOE’s Leadership Computing Facilitysystems for HPC and Al. These large-scale heterogeneous
computing systems provide a foundation for advancing Al architectures and co-design using HPC.
Moreover, these future concepts have the potential to provide a radically different approach to

future earth system modeling and Al-enabled ModEx.

a. Centralized Large-scale HPC Concept

The baseline system concept is the future evolution of large-scale HPC and cloud computing
systems. This next step will extend post-exascale architectures beyond the first generation of DOE’s
heterogeneous systems integrating CPUs and GPUs. As the HPC and Cloud computing commu-
nities increasingly rely on hardware specialization to improve performance, co-design approaches
will support the development of accelerators (Lie 2021; Reuther et al. 2021; Cortés et al. 2021)
for frequently used kernels in scientific modeling and AI/ML methods. New specialized acceler-
ators may arise to support additional data science capabilities such as uncertainty quantification,
streaming analytics, or graph analysis (Halappanavar et al. 2021; Acer et al. 2021). These future
large-scale computing systems with extreme heterogeneity must be co-designed to support the in-
creased computational and dataset sizes associated with earth science predictability and scientific

machine reasoning (Yang et al. 2016; Zhang et al. 2020; Yu et al. 2022).

b. Edge sensors with Centralized HPC/Cloud Resources Concept

In the second system concept, environmental data are recorded from a broad collection of point
(Christensen and Blanco Chia 2017; Winter et al. 2021) and distributed sensors (e.g., fiber optics)

(Lindsey et al. 2019) spread across the globe. These advanced sensors are designed to monitor
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specific items of interest (e.g., river flow, nutrients, temperature, chemical concentration, light) and
to communicate these data back to a centralized location (Beckman et al. 2020). At this centralized
facility, large HPC or cloud computing environments will process the incoming data streams for
integration into online simulations of extreme weather events, climate, hydrology, and their impacts
on earth systems.

We could utilize AI/ML capabilities within this system concept at multiple points. First, the
velocity of sensor data coming into the system will potentially overrun even the most significant
data processing centers’ capabilities. Hence, such a volume of data is unlikely to be able to be stored
in memory or even temporary storage resources (such as file systems or object stores). Advanced
AI/ML models could be trained and tailored to summarize or select relevant features from the
incoming data streams. Such an encoding or feature selection process will significantly reduce the
amount of data that needs to be kept and integrated into ongoing simulations. Another potential is
for AI/ML models to identify anomalies or precursors Yuan et al. (2019) from the incoming data
streams that might suggest areas of interest for simulations to be focused on — for instance, the
start of a hurricane or the high likelihood of significant rain-on-snow events or wildfires. Other
examples include where to place a Geostationary Operational Environmental Satellites (GOES)
floater and scan phased array radars for faster, more spatially focused sensing.

Due to the distributed nature and inhospitable environments (e.g., remote locations, extreme
temperatures, or pressures) where sensors may need to be placed or roam, it is unlikely that a
reliable data stream will reach the centralized location for all possible inputs. One common use
case is the intelligent city scenario to study urban science. Figure 1 is a notional depiction of various
deployed sensors, computing, and data storage capabilities (Zhu et al. 2021). AI/ML models could
be used in such an environment to fill measurement gaps and present a more consistent view of
observational data to a future simulation run on a large-compute resource. Moreover, to understand
and predict urban air mobility, a distributed sensor network (e.g., drone deliveries and air taxis)
coupled with edge computing and Al is needed for block-level monitoring and forecasting for

eddies.
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Fic. 1. A smart city scenario with a large number of sites for fixed sensor deployments that measure
temperature, wind profile, CO, concentration, precipitation, etc., plus a variety of mobile devices that can also
be used to augment the collection of measurement and observation data intermittently. An urban setting will
support advanced wireless communications like 5G and eventually 6G to understand the interactions between

cities and climate. [Figure developed by Advanced Wireless Communications lab at PNNL]

c. Federated Processing from the Edge to the Data Center Concept

The third potential system design extends the second concept by leveraging much more processing
in or near the distributed sensor network. We can process the sensor data directly on the sensor
itself or in a nearby edge server (e.g., fog computing) with processing elements that may stream a
small collection of sensor data into it (Stevens et al. 2020, Chapter-15). Local processing stations
can then send their raw or locally processed data to a centralized HPC and/or cloud resource for
inclusion in simulation models and centralized AI/ML models as in the first system concept.

The advantage of this approach is that data down-selection and feature extraction can be performed
locally, significantly reducing the volume of data that must be transmitted to a centralized resource.
Assuming that a sufficiently performant local network among sensors can be established, process
model parameters and partial results, perhaps even AI/ML model updates, can be exchanged

within a locale, allowing for a genuinely federated design aspect. Initially, this concept takes



220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

advantage of existing gateways and local area networks serving sensors in the field. Through
co-design collaborations, it is possible to expand that service to include application/sensor-specific
processing to filter, analyze, compress, encrypt, and unify multiple sensor streams transmitting

measurements through the wireless network.

d. Dynamic and Adaptive Federated Processing Concept

The last system concept builds on the previous three by augmenting feedback and control paths
within distributed networks of sensor-local resources (Di Lorenzo et al. 2021; Charles et al. 2021).
Local control offers lower latency decision-making to dynamically control what information is
observed, measured, recorded, and relayed by the sensor network (Morell and Alba 2022). Such a
design has powerful implications — By dynamically controlling sensors online, simulations of the
earth’s weather and climate can essentially focus sensor inputs on specific quantities or geographic
locations of interest. Examples might include where severe weather events are expected or whether
climate scientists identify where specific information is needed to help improve the quality of
their models. This concept expands to multiple HPC and/or Cloud data centers for federated
AI/ML modeling. AI/ML models can play a crucial part in this system by performing continuous,
autonomous online inspection of evolving simulations or recorded data to identify areas of data
insufficiency or statistical weakness. Furthermore, a dynamic and adaptive system may be able to
carefully obtain and select data to improve the quality of its training, reducing the need for vast,

potentially intractable datasets to be collected over long periods (Catlett et al. 2017).

4. Grand Challenges

The system concepts that integrate federated processing are beyond the capabilities of affordable
technologies today. It will require significant investment both in foundational technology sys-
tems and co-design programs. Such synergy between climate scientists, mathematicians, AI/ML
experts, computer scientists, and hardware engineers is needed to balance the competing perfor-
mance, energy, cost, and security challenges associated with Al-enabled ModEx. The following
subsections describe technical challenges that will arise in the areas: (1) programmability and

usability, (2) data movement, (3) energy efficiency, and (4) privacy and security of data.
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a. Programmability and Usability

The current and near-term challenge is integrating scientific modeling and simulation applications
with AI/ML methods. This drives the need to integrate earth system HPC applications written
in C/C++ and/or Fortran with AI/ML methods that use Python-based ML frameworks (Ott et al.
2020). Programming models are under development to support the convergence of applications and
workflows onto heterogeneous computing systems. Many AI/ML architectures provide hardware
support for reduced or mixed precision, and tools will be required to analyze which specific model
components can use these capabilities. We must create protocols and tools for ESP data-sharing
and data federation on the cloud. The usability challenge is managing the complexity of mapping
converged application workloads to future heterogeneous computing architectures that integrate
specialized hardware accelerators with commodity CPU/GPU/TPU processors.

Domain scientists are interested in exploring the capabilities of new heterogeneous advanced
architecture computing systems. Interfacing with sensors and Al analytics at the Edge will allow
domain scientists to extract actionable information needed for improved modeling of disturbances
and extreme events. This type of co-design is needed for most ESP applications. For example,
watershed science, hydrology, ecohydrology, climate variability and extremes, aerosols and clouds,
and atmospheric modeling are cross-cutting themes where AlSensorEdge has the highest impact.
Co-design approaches that interface with distributed sensor networks will allow us to (1) col-
lect reliable and relevant watershed data under disturbances, (2) monitor land-atmosphere-coastal
interactions by embedding intelligence on the Atmospheric Radiation Measurement (ARM) in-
struments, (3) understand wildfire events and their impact on ecosystems in near-real-time, and (4)
assess critical infrastructure impacted by extreme events (e.g., see Human Systems and Dynamics,
chapter 9 in AI4ESP report). Popular co-design examples include sustainable urban systems Webb
et al. (2018), socio-technical systems corresponding to Earth observation data (Barbier et al. 2022),
and sensor placement (Huadong 2016).

Still, there are challenges in understanding how to map AI4ESP workflows to the diverse col-
lection of computing system options. Understanding how AI/ML capabilities originally developed
for generic commercial workloads may or may not be applicable for Earth System Predictabil-
ity (ESP) hybrid modeling applications or observation and measurement capabilities is essential.

From centralized large-scale modeling and training to edge computing inferencing and federated

11
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learning, new challenges arise for the composition and distribution of applications, algorithms, and
methods. This is an important opportunity for the AI4ESP community to develop a new generation
of proxy applications and benchmarks for modeling and observation capabilities. For example,
Al-enabled co-design will enable us to emulate and deploy DOE codes such as PELOTRAN, ATS,
and E3SM at the sensor edge for empowering ARM instruments and EMSL user facilities. The
focus should be facilitating communication and co-design collaborations with hardware designers,

system software developers, algorithm developers, and domain scientists.

b. Data Movement

The expected volume of data associated with a complete, coordinated earth sensor capability
will be unprecedented. Not only will such a network generate a previously unimaginable quantity
and diversity of data, but the computing and network load for processing, transmitting, and
subsequent storage of this volume will be orders of magnitude higher than any system available
today. Data movement costs in terms of energy and latency motivate the interest in the federation
and distribution of computing across the AI4ESP scientific ecosystem. AI/ML technologies could
help reduce such volumes by identifying patterns and anomalies and summarizing sub-volume. We
will require significant investment in AI/ML approaches to ensure that the modeling capabilities
will be compatible and efficient for the types of data being recorded, especially where this may
deviate from commercial photo or video capabilities. Technologies that may assist in energy-
efficient data transfers include investment in silicon photonic network capabilities, satellite-based
communications, and wide-area 5G- or 6G-like communication networks that enable sensors to
communicate over short/medium distances without needing physical wiring (Beckman et al. 2020).
On the storage side, cloud technologies such as high-performance, large-volume data object stores
could likely provide a capability to address increased sparse data storage volumes. However, this
would pose a significant cost barrier using current commercial cloud pricing. We may also use
AI/ML to enable innovative compression techniques on earth system data to increase information
density without increasing storage costs. Additionally, DOE HPC centers could incorporate
concepts and methods from cloud storage systems into future parallel file and storage systems to
slowly move toward such capability. These HPC centers allow data storage and connectivity with

repositories such as ESS-DIVE Agarwal et al. (2022); Velliquette et al. (2021). This HPC-to-ESS-

12
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DIVE connectivity allows to store (raw and curated) data for long periods of time. This data storage
strategy benefits the DOE community when new sensor data is collected, curated, and interfaced

with existing data repositories.

c. Energy Efficiency

Large-scale networks with integrated sensors, federated processing, and wide-area communica-
tion networks to handle data transmissions will likely be very expensive in energy consumption.
While this was a lower-priority focus for exascale computing, data processing and communication
remain power-expensive. Co-design has the potential to help improve this situation through the
use of novel materials, devices, and processing techniques (e.g., neuromorphic-based accelerators
to analyze images/video). However, significant investment will still be required in foundational
technologies if large-scale, power-efficient sensing networks are to be realized. Co-design to bal-
ance performance and energy efficiency will also address how the modeling, machine learning,
uncertainty quantification, and other streaming analytics capabilities are partitioned across the
ESM scientific ecosystem. Such a co-design that integrates DOE’s heterogeneous HPC systems

with cloud computing, edge servers, and sensors with IoT devices will transform the ModEx loop.

d. Privacy and Security of Data

As earth systems modeling becomes increasingly integrated with a distributed network of ob-
servations and perhaps federated processing capabilities. The information’s quality, accuracy, and
robustness through such a sensor network will become more critical. It must also be secured if
the information generated from modeling and measurement capabilities is used to support high-
consequence national or international scientific policy decisions. The implications of potential data
tampering or nefarious modification are clear, as a national or international resource for accurate
scientific prediction could be severely affected. Data privacy concerns are particularly valid in
a data acquisition system where individual human subject images or videos may be captured, or
their behavior discerned from the data. An example includes sensor capabilities that could identify
patterns in human systems data (e.g., in citizen science or urban environments). Co-design has
a potential role in this space — by including security experts in cyber-physical designs from the

outset, secure data transmission and processing can be integrated as a first-level citizen rather than
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as a last, software-derived additional layer. In addition, data privacy may be afforded if local
artifacts associated with specific individuals can be aggregated into a larger, federated model with

individual patterns obfuscated or redacted into the complete model of the system.

5. Synergy with other AI4ESP Workshop Sessions

In this section, we provide visionary perspectives for future ideas and potential research in
synergy with other workshop sessions. Table 1 summarizes this synergy with short- (< 5 years),
medium- (5-year), and long-term (10-year) goals. The focus is on how Al architectures and co-
design approaches are related to the integrative water cycle and associated water cycle extremes.

The below categories came from the AI4ESP workshop themes.

TasLE 1. This table provides short-, medium-, and long-term goals needed to overcome the grand challenges
discussed in Section 4. Gradual progress on these specific goals will allow us to advance on the future system

concepts needed for improving earth system predictability.

346

347

348

349

350

351

352

353

354

355

356

357

Short-term goals Medium-term goals Long-term goals Co-design opportunities
Benchmark datasets Data formats for federated learning | Improve efficiency across ESP domains | Anomaly analysis for extreme events
Distributed AI/ML workflows AI/ML for UQ Al-at-scale demonstration Al for down- and up-scaling
AI/ML surrogates AI/ML + physics simulators Al for streaming analytics AI/ML + IoT + Exascale ecosystem
AI/ML abstractions for edge Al@SensorEdge Al-enabled automation Digital Twin for ESP

Atmospheric modeling — Need for advancing the modeling of subgrid physics across scales
and guiding or automating process model calibration. This includes (1) co-design approaches
for parameterization and knowledge transfer across scales and (2) Al infrastructure for datasets,
software, testing, validation, and training workflows for efficient model calibration.

Land modeling — AI architectures for efficient transfer of information between land and atmo-
spheric models. This includes (1) subgrid parameterizations to capture the full complexity within
a grid, (2) capturing heterogeneity utilizing LCFs, and (3) addressing observational gaps using
advanced Al architectures (e.g., transformers).

Hydrology — Advanced Al architectures are needed for parameter estimation, down-scaling, and
imputation to improve data products. Model-data co-design approaches are needed to identify how
many and what types of observations are required to reach a desired process model performance

without actual measurements being available. This includes 5G or other high-speed networking
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or software pipelines that can accelerate the transfer of information between field instrumentation
and process models for near real-time sampling decisions.

Watershed science — Co-design approaches are needed to understand better (1) the quality
of collected data, (2) the predictability of a watershed’s response (e.g., the evolution of micro-
bial activity) under disturbances and long-term perturbations using process-based models (e.g.,
PFLOTRAN), (3) when, how, and where to collect data (e.g., wildfires, flooding, drought events),
and (4) how to deal with large data volumes.

Ecohydrology — Advanced Al architectures are needed for developing new data products and
benchmark datasets across spatial scales from microbial and leaf scales to watershed and continental
scales. Novel co-design approaches that build and collect labeled earth science data needed for
process models and open-sourcing them to the BER community would facilitate rapid testing of
existing AI/ML methods.

Aerosols and clouds — Co-design approaches that can extract valuable information or identify
indicator patterns of forced changes and emergent properties of the actual and simulated climate
system are essential. Future system concepts that can develop databases for indicator patterns
(e.g., nucleation of ice or particles, snow formation) and emergent properties provide a path toward
knowledge discovery and reveal missing mechanisms that must be incorporated in process models.

Coastal dynamics, oceans, and ice — Advanced Al architectures that can improve (1) the
standardization and merging of disparate datasets, (2) scale-awareness and dependency in process
models (e.g., capturing coastal, ocean, and cryosphere processes across scales and from sparse
datasets).

Climate variability and extremes — Co-design approaches for climate variability, signal iden-
tification, and sources of predictability are essential. These include Al architectures to detect
signatures and features corresponding to tropical cyclones, fronts, atmospheric rivers, hailstones,
tornadoes, and ice storms.

Human systems and dynamics — Co-design approaches that can provide a better understanding
of human and earth systems. For example, advancements in Al architectures are needed to gain

better insights into urban prediction and long-term urban policy due to extreme events.
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6. Conclusions

In this perspective paper, we have described the need for co-design approaches for efficient and
accurate integration of process models and observations for improved earth system predictability.
Current state-of-science and HPC facilities provide a starting point to address the grand challenges
of the ‘Model-Experimentation’ loop. Future system concepts that connect the edge sensors to in-
telligent computing devices and, subsequently, the process models that reside in fog/cloud/exascale
infrastructure are needed to transform the ModEx lifecycle. Our near-term to long-term goals allows
us to develop Al architectures and co-design approaches using future system concepts. Community
integration and effort between domain and computational experts allow us to transform how we

model the integrative and associated water cycle extremes.

Nomenclature

* AI4ESP: The Artificial Intelligence for Earth System Predictability
* Al Artificial Intelligence

* ALCF: Argonne Leadership Computing Facility

* ARM: Atmospheric Radiation Measurement Climate Research Facility
* ASCR: Advanced Scientific Computing Research

* ATS: Advanced Terrestrial Simulator

* AWS: Amazon Web Services

* BER: Biological and Environmental Research

* CPU: Central Processing Unit

* DOE: Department of Energy

* E3SM: Energy Exascale Earth System Model

* ESM: Earth System Model

* ESP: Earth System Predictability
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EMSL: Environmental Molecular Sciences Laboratory
GCP: Google Cloud Platform

GOES: Geostationary Operational Environmental Satellites
GPU: Graphics Processing Unit

HPC: High-Performance Computing

IoT: Internet of Things

LCF: Leadership Computing Facility

ModEx: Model-Experimentation

ML: Machine Learning

NASA: National Aeronautics and Space Administration
NERSC: National Energy Research Scientific Computing Center
NLP: Natural Language Processing

NOAA: National Oceanic and Atmospheric Administration
OLCF: Oak Ridge Leadership Computing Facility

TPU: Tensor Processing Unit

UQ: Uncertainty Quantification

17



426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

Acknowledgments. The authors acknowledge all the efforts made as part of the Artificial Intel-
ligence for Earth System Predictability (AI4ESP) workshop. MKM acknowledges the support
from the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility
sponsored by the Biological and Environmental Research program under Contract No. DE-ACO5-
76RL0O1830. PJ’s research was supported as part of the Energy Exascale Earth System Model
(E3SM) project, funded by the U.S. Department of Energy, Office of Science, and Office of
Biological and Environmental Research. SS and MN research was supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration. MBG’s research was performed
under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. MKM, JAA, and MH acknowledge the contributions of
Johnathan Cree and Elena Peterson at PNNL’s Advanced Wireless Communications Lab, who de-
veloped the figure in this paper. This manuscript has been authored by Pacific Northwest National
Laboratory (PNNL), operated by Battelle Memorial Institute for the U.S. Department of Energy
under Contract No. DE-AC05-76RL01830. This manuscript has been authored by Oak Ridge
National Laboratory, operated by UT-Battelle, LLC under Contract No. DE-AC05-000R22725
with the U.S. Department of Energy. The US government retains and the publisher, by accepting
the article for publication, acknowledges that the US government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of this manuscript or
allow others to do so, for US government purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access Plan. The authors thank

the reviewers whose feedback helped substantially improve the manuscript.

Data availability statement. There is no data developed in this paper

References

Acer, S., and Coauthors, 2021: Exagraph: Graph and combinatorial methods for enabling exascale
applications. The International Journal of High Performance Computing Applications, 35 (6),
553-571.

Agarwal, D., and Coauthors, 2022: Ess-dive reporting format for dataset package metadata. Tech.

rep., Environmental System Science Data Infrastructure for a Virtual Ecosystem . . ..

18



455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

ALCEF, 2022: ALCF — Argonne Leadership Computing Facility. URL https://www.alcf.anl.gov/,
accessed on: 2022-11-10.

ARM, 2022: ARM — Atmospheric Radiation Measurement Climate Research Facility. URL https:

/lwww.arm.gov/, accessed on: 2022-11-10.

ATS, 2022: ATS — The Advanced Terrestrial Simulator. URL https://github.com/amanzi/ats,
accessed on: 2022-11-10.

AWS, 2022: AWS — Amazon Web Services. URL https://aws.amazon.com/about-aws/, accessed
on: 2022-11-10.

Azure, 2022: Microsoft Azure: Cloud Computing Services. URL https://azure.microsoft.com/

en-us/, accessed on: 2022-11-10.

Baker, N., and Coauthors, 2019: Workshop report on basic research needs for scientific machine
learning: Core technologies for artificial intelligence. Tech. rep., USDOE Office of Science

(SC), Washington, DC (United States). https://doi.org/10.2172/1478744.

Barbier, R., S. B. Yahia, P. Le Masson, and B. Weil, 2022: Co-design for novelty anchoring
into multiple socio-technical systems in transitions: The case of earth observation data. IEEE

Transactions on Engineering Management.

Barkjohn, K. K., B. Gantt, and A. L. Clements, 2021: Development and application of a united
states-wide correction for pm 2.5 data collected with the purpleair sensor. Atmospheric Mea-

surement Techniques, 14 (6), 4617-4637.

Bauer, P., P. D. Dueben, T. Hoefler, T. Quintino, T. C. Schulthess, and N. P. Wedi, 2021: The

digital revolution of earth-system science. Nature Computational Science, 1 (2), 104—-113.

Beckman, P., R. Sankaran, C. Catlett, N. Ferrier, R. Jacob, and M. Papka, 2016: Waggle: An open
sensor platform for edge computing. 2016 IEEE SENSORS, 1IEEE, 1-3.

Beckman, P., and Coauthors, 2020: 5g enabled energy innovation: Advanced wireless networks
for science (workshop report). Tech. rep., Argonne National Lab.(ANL), Argonne, IL (United
States); Northwestern Univ . . . . https://doi.org/10.2172/1606538.

19



481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

Bringmann, O., and Coauthors, 2021: Automated hw/sw co-design for edge ai: State, challenges
and steps ahead: Special session paper. 2021 International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ ISSS), IEEE, 11-20.

Catlett, C., P. Beckman, N. Ferrier, H. Nusbaum, M. E. Papka, M. G. Berman, and R. Sankaran,
2020: Measuring cities with software-defined sensors. Journal of Social Computing, 1 (1),

14-27.

Catlett, C. E., P. H. Beckman, R. Sankaran, and K. K. Galvin, 2017: Array of things: a scientific
research instrument in the public way: platform design and early lessons learned. Proceedings of

the 2nd international workshop on science of smart city operations and platforms engineering,

26-33.

Chambers, J., R. Fisher, J. Hall, R. J. Norby, S. C. Wofsy, and D. Stover, 2012: Research priorities
for tropical ecosystems under climate change workshop report, june 4-5, 2012. Tech. rep.,
USDOE Office of Science (SC), Washington, DC (United States). Biological and .... URL
https://ess.science.energy.gov/wp-content/uploads/2020/12/NGEE-Tropics3webHR.pdf.

Charles, Z., Z. Garrett, Z. Huo, S. Shmulyian, and V. Smith, 2021: On large-cohort training for

federated learning. Advances in neural information processing systems, 34, 20461-20475.

Chen, K. M., E. M. Cofer, J. Zhou, and O. G. Troyanskaya, 2019: Selene: a pytorch-based deep
learning library for sequence data. Nature methods, 16 (4), 315-318.

Chen, X., X. Huang, C. Jiao, M. G. Flanner, T. Raeker, and B. Palen, 2017: Running climate model
on a commercial cloud computing environment: A case study using community earth system

model (cesm) on amazon aws. Computers & Geosciences, 98, 21-25.

Chouhan, L., P. Bansal, B. Lauhny, and Y. Chaudhary, 2020: A survey on cloud federation
architecture and challenges. Social Networking and Computational Intelligence, Springer, 51—

65.

Christensen, B., and J. Blanco Chia, 2017: Raspberry shake-a world-wide citizen seismograph

network. AGU Fall Meeting Abstracts, Vol. 2017, S11A—-0560.

Cortés, U., U. Moya, and M. Valero, 2021: When sally met harry or when ai met hpc. Supercom-

puting Frontiers and Innovations, 8 (1), 4-7.

20



509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

Cromwell, E., P. Shuai, P. Jiang, E. T. Coon, S. L. Painter, J. D. Moulton, Y. Lin, and X. Chen,
2021: Estimating watershed subsurface permeability from stream discharge data using deep

neural networks. Frontiers in Earth Science, 9, 613 011.

Daepp, M. 1., and Coauthors, 2022: Eclipse: An end-to-end platform for low-cost, hyperlocal
environmental sensing in cities. 2022 21st ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN), IEEE, 28—40.

Descour, M., J. Tsao, D. Stracuzzi, A. Wakeland, D. Schultz, W. Smith, and J. Weeks, 2021:
Workshop report: Ai-enhanced co-design for next-generation microelectronics: Innovating
innovation. Tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
https://doi.org/10.2172/1845383.

Di Lorenzo, P., C. Battiloro, M. Merluzzi, and S. Barbarossa, 2021: Dynamic resource optimization
for adaptive federated learning at the wireless network edge. ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 4910-4914.

E3SM, 2022: E3SM — The Energy Exascale Earth System Model. URL https://e3sm.org/, accessed
on: 2022-11-10.

E3SM-MMF, 2022: E3SM Multiscale Modeling Framework. URL https://www.exascaleproject.

org/research-project/e3sm-mmf/, accessed on: 2022-11-10.
Eeckhout, L., 2017: Is moore’s law slowing down? what’s next? IEEE Micro, 37 (04), 4-5.

EMSL, 2022: EMSL — The Environmental Molecular Sciences Laboratory. URL https:/www.
emsl.pnnl.gov/, accessed on: 2022-11-10.

GCP, 2022: GCP — Google Cloud Platform. URL https://cloud.google.com/, accessed on: 2022-
11-10.

Germann, T. C., 2021: Co-design in the exascale computing project. SAGE Publications Sage UK:
London, England, 503-507 pp.

Germann, T. C., A. L. McPherson, J. F. Belak, and D. F. Richards, 2013: Exascale co-design center

for materials in extreme environments. https://doi.org/10.2172/1116965.

21



535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

Halappanavar, M., M. Minutoli, and S. Ghosh, 2021: Graph analytics in the exascale era. Proceed-
ings of the 18th ACM International Conference on Computing Frontiers, 209-209.

Heroux, M. A., and Coauthors, 2022: Ecp software technology capability assessment report.
Tech. rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). https://doi.org/
10.2172/1760096.

Hickmon, N. L., C. Varadharajan, F. M. Hoffman, S. Collis, and H. M. Wainwright, 2022: Arti-
ficial intelligence for earth system predictability (ai4esp) workshop report. Tech. rep., Argonne

National Lab.(ANL), Argonne, IL (United States). https://doi.org/10.2172/1888810.

Hoffman, F. M., and Coauthors, 2017: 2016 international land model benchmarking (ilamb)
workshop report. Tech. rep., USDOE Office of Science, Washington, DC (United States).
https://doi.org/10.2172/1330803.

Huadong, G., 2016: Digital earth and future earth. Taylor & Francis, 1-2 pp.
Lichtner, P. C., and Coauthors, 2020: PFLOTRAN Web page. Http://www.pflotran.org.

Lie, S., 2021: Multi-million core, multi-wafer ai cluster. 2021 IEEE Hot Chips 33 Symposium
(HCS), IEEE Computer Society, 1-41.

Lindsey, N. J., T. C. Dawe, and J. B. Ajo-Franklin, 2019: Illuminating seafloor faults and ocean
dynamics with dark fiber distributed acoustic sensing. Science, 366 (6469), 1103-1107.

list, T., 2022: Top500 List — The 59th edition of the TOP500 revealed the Frontier system
to be the first true exascale machine with an HPL score of 1.102 Exaflop per second. URL
https://www.top500.org/lists/top500/2022/11/, accessed on: 2022-11-10.

Morell, J. A., and E. Alba, 2022: Dynamic and adaptive fault-tolerant asynchronous federated

learning using volunteer edge devices. Future Generation Computer Systems, 133, 53—67.

Mudunuru, M. K., K. Son, P. Jiang, G. Hammond, and X. Chen, 2022: Scalable deep learning for

watershed model calibration. Frontiers in Earth Science, 2206.

Mudunuru, M. K., and Coauthors, 2021: EdgeAl: How to use ai to collect reliable and relevant
watershed data. Tech. rep., Artificial Intelligence for Earth System Predictability (AI4ESP .. ..
https://doi.org/https://doi.org/10.2172/1769700.

22



562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

NERSC, 2022: NERSC — National Energy Research Scientific Computing Center. URL https:

/lwww.nersc.gov/, accessed on: 2022-11-10.

OLCEF, 2022: OLCF - Oak Ridge Leadership Computing Facility. URL https://www.olcf.ornl.gov/,
accessed on: 2022-11-10.

Ott, J., M. Pritchard, N. Best, E. Linstead, M. Curcic, and P. Baldi, 2020: A fortran-keras deep

learning bridge for scientific computing. Scientific Programming, 2020.

Pao, K.,2011: Co-Design and You: Why Should Mathematicians Care About Exascale Computing,
2011 DOE Applied Mathematics Program Meeting. URL https://www.csm.ornl.gov/workshops/
applmath11/documents/talks/Pao_CoDesign.pdf.pdf, accessed on: 2022-11-10.

PARKERe, J. S., and L. TANG, 2013: On the role of co-design in high-performance computing.
Transition of HPC Towards Exascale Computing, 24, 141.

Reuther, A., P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, 2021: Ai accelerator
survey and trends. 2021 IEEE High Performance Extreme Computing Conference (HPEC),
IEEE, 1-9.

Rosa, M. J., C. G. Ralha, M. Holanda, and A. P. Araujo, 2021: Computational resource and cost
prediction service for scientific workflows in federated clouds. Future Generation Computer

Systems, 125, 844-858.

Saxena, D., R. Gupta, and A. K. Singh, 2021: A survey and comparative study on multi-cloud archi-

tectures: emerging issues and challenges for cloud federation. arXiv preprint arXiv:2108.12831.

Stavroulas, I., and Coauthors, 2020: Field evaluation of low-cost pm sensors (purple air pa-ii)

under variable urban air quality conditions, in greece. Atmosphere, 11 (9), 926.

Stevens, R., V. Taylor, J. Nichols, A. B. Maccabe, K. Yelick, and D. Brown, 2020: Ai for
science: Report on the department of energy (doe) town halls on artificial intelligence (ai) for
science. Tech. rep., Argonne National Lab.(ANL), Argonne, IL (United States). https://doi.org/
10.2172/1604756.

23



587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

*

2

613

Subsurface-ECP, 2022: Subsurface: An Exascale Subsurface Simulator of Coupled Flow,
Transport, Reactions, and Mechanics. URL https://www.exascaleproject.org/research-project/

subsurface/, accessed on: 2022-11-10.

Talsma, C., K. C. Solander, M. K. Mudunuru, B. Crawford, and M. Powell, 2022: Frost prediction

using machine learning and deep neural network models for use on IoT sensors.

Testbed, A. A., 2022: ALCF Al Testbed, a next generation of Al-accelerator machines. URL
https://www.alcf.anl.gov/alcf-ai-testbed, accessed on: 2022-11-10.

Theis, T. N., and H.-S. P. Wong, 2017: The end of moore’s law: A new beginning for information
technology. Computing in science & engineering, 19 (2), 41-50.

Tsai, W.-P., D. Feng, M. Pan, H. Beck, K. Lawson, Y. Yang, J. Liu, and C. Shen, 2021: From
calibration to parameter learning: harnessing the scaling effects of big data in geoscientific

modeling. Nature communications, 12, 1-13.

Velliquette, T., J. Welch, M. Crow, R. Devarakonda, S. Heinz, and R. Crystal-Ornelas, 2021: Ess-
dive reporting format for file-level metadata. Tech. rep., Environmental System Science Data

Infrastructure for a Virtual Ecosystem .. ..

Vetter, J. S., and Coauthors, 2022: Extreme heterogeneity 2018-productive computational science
in the era of extreme heterogeneity: Report for doe ascr workshop on extreme heterogeneity.

https://doi.org/10.2172/1473756.

Webb, R., and Coauthors, 2018: Sustainable urban systems: Co-design and framing for transfor-

mation. Ambio, 47, 57-77.

Winter, K., D. Lombardi, A. Diaz-Moreno, and R. Bainbridge, 2021: Monitoring icequakes in east
antarctica with the raspberry shake. Seismological Research Letters, 92 (5), 2736-2747.

Xu, H., W. Wei, J. Dennis, and K. Paul, 2019: Using cloud-friendly data format in earth system
models. AGU Fall Meeting Abstracts, Vol. 2019, IN13C-0728.

Yang, C., and Coauthors, 2016: 10m-core scalable fully-implicit solver for nonhydrostatic atmo-
spheric dynamics. SC’16: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, IEEE, 57-68.

24



614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

Yu, Y., and Coauthors, 2022: Characterizing uncertainties of earth system modeling with het-

erogeneous many-core architecture computing. Geoscientific Model Development Discussions,

1-23.

Yuan, B., and Coauthors, 2019: Using machine learning to discern eruption in noisy environ-
ments: A case study using co2-driven cold-water geyser in chimayd, new mexico. Seismological

Research Letters, 90 (2A), 591-603.

Zhang, S., and Coauthors, 2020: Optimizing high-resolution community earth system model on a
heterogeneous many-core supercomputing platform. Geoscientific Model Development, 13 (10),

4809-4829.

Zhang, X., W. Jiang, Y. Shi, and J. Hu, 2019: When neural architecture search meets hardware
implementation: from hardware awareness to co-design. 2019 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), IEEE, 25-30.

Zhu, T., J. Shen, and E. R. Martin, 2021: Sensing earth and environment dynamics by telecom-
munication fiber-optic sensors: An urban experiment in pennsylvania, usa. Solid Earth, 12 (1),

219-235.

25



