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Simple and Sophisticated Models of Taylor’s Cylinder Impact

Sky Sjue, Kyle Hickmann, and Nga Nguyen
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3 Electronic mail: sjue@lanl.gov

Abstract. We present a study based on the simplest possible models for Taylor’s cylinder impact problem, in addition to examina-
tion of using convolutional neural networks (CNNs) to map cylinder profiles to strength calibrations. We find that the approximate
treatments of Taylor and Hawkyard compare well with hydrodynamic simulations using an equivalent assumption of constant flow
stress. The CNN models prove to be well suited to successfully infer parameterizations of the Preston-Tonks-Wallace model of
plastic deformation based on the deformed profile of an impacted cylinder.

INTRODUCTION TO TAYLOR’S CYLINDER IMPACT

G. L. Taylor introduced the cylinder impact test [1] to estimate dynamic yield stresses in 1948. This yield-stress test
fires a right cylinder of a material at a rigid anvil, with ideal conditions of constant initial velocity and a frictionless
contact between the tested cylinder and the rigid anvil. Taylor provided arguments supporting approximations to es-
timate a constant yield stress from the final deformed length and undeformed length of a right cylinder after impact
against a rigid anvil at a specified velocity. He based his approximations on considerations of the cylinder’s momen-
tum. J. B. Hawkyard proposed an alternate approximation based on considerations of the cylinder’s kinetic energy [2]
in 1968.

MOMENTUM FORMULATION

Consider a right cylinder of length L fired at a rigid, unyielding anvil with initial velocity U, density p, radius Ry
and cross section Ag. Taylor outlined assumptions that the deformation happens instantaneously at the location of the
plastic wave, where all material between the plastic wave and the impact surface has come to rest, and the remainder
of the cylinder has time-dependent uniform velocity u.

We will only consider engineering strain, which can be written in terms of the area on either side of the plastic
wave (€ = 1 — Ag/A), or velocity of the plastic wave v versus the rigid, undeformed cylinder’s remaining velocity:
€ =u/(u+v). The velocity of the plastic wave can similarly be written in terms of the instantaneous cylinder velocity
and deformation: v = u(1 — €)/€. Newton’s second law applied at the location of the plastic wave gives

0(A—Ag) = pAo(u+v)u, 1)

where o is the flow stress, pAg(u + v) is the mass crossing the deformation boundary per unit time, and u is the
velocity being brought to a halt. If we eliminate A, Ag, u and v in favor of €, we find

pu*/c=€*/(1—¢), (2)

which is instantaneously true at all times during the impact. The maximum strain &; is given by solving for € with the
initial condition u = U. The length of the undeformed portion of the cylinder is x, and we have dx/dt = —(u+v).
Newton’s second law again applied to the undeformed portion of the cylinder gives 6 = —(px)du/dt. We can use the
ratio of these two derivatives to write

dx _ (utv)px _ pux @_pudu_id g2 3)
du o  oe’ x oe 2 \l-g)

Integration by parts gives
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which uses the integration constants cg and ¢ = c¢g — 1. Taking the definite integral over dx from Ly to some smaller
undeformed value x, one finds

+In(1—¢). 5)
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Together, Egs. (2) and (4) determine the final undeformed length X as a function of the initial velocity U and the flow
stress o if we set £ =0.

The height & of the plastically deformed portion of the cylinder grows as the plastic wave moves at velocity v, which
we can combine with the rate of change of the undeformed length of the cylinder to obtain

@_ —v
dx  u+v

=—-1+4e. 6)
This equation is conceptually simple to integrate to find the cylinder’s deformed profile
"X
h:—/ (1—¢€)dx; r(h)=Ro/V1—¢, @)
Lo

subject to solving for € via Eq. (5) for each step dx. If this numerical integral is solved accurately, then the value of x
when € = 0 should agree with Eq. (4). Figure 1 illustrates this model in more detail, similar to Figure 1 in Taylor’s
1948 article.
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FIGURE 1. Taylor’s model of a hypothetical copper FIGURE 2. Constant flow stress simulations
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FURTHER SIMPLIFYING ASSUMPTIONS

Taylor further assumed a constant plastic wave velocity and constant deceleration, to simplify solutions for expedited
experimental estimates of flow stresses. If we assume a constant plastic wave velocity V, then we can manipulate Eq.
(3) and integrate from u = U to u = 0 to obtain

du (o]

_ —— —_U%/2—
= ) pln(X/Lo)— U*/2-VU. ®)

If the final length of the cylinder is L, then we have V = (L} — X)/T. If the deceleration is constant, then the
average velocity of the undeformed portion of the cylinder is U/2 = (Ly — L;)/T. These assumptions determine
V=(U/2)(Li —X)/(Lo— L), which leads to Taylor’s famous estimate of the yield stress

_pUr 1 Loy—X
T T (LX) (LO—L1>' ©)

This simple equation estimates the yield stress o from the initial length Ly and velocity U, based upon the final length
L1 and the undeformed length X. In practice, it can be difficult to determine X, because deformed profiles tend to be



smooth, especially as the strain approaches zero. Using these same assumptions, the average strain rate based on the
average strain of the deformed portion divided by the duration of the plastic wave is

v Li—X
T 2 Lo—L) (LO—X>' (10)

ENERGY FORMULATION

Starting from the same assumption of instantaneous deformation bringing material to rest, Hawkyard notes that the
plastic work per unit time is o (u+v)AgIn(A/Ap), which creates internal energy in the stopped, deformed material.
This comes from work per unit time arresting the rigid, undeformed portion of the cylinder, cuA, and kinetic energy
per unit time being lost into deformation, Ag(u + v)pu?/2. Eq. (1) specified the rate of momentum loss due to the
flow stress. Instead, we can equate the internal energy from plastic work in the deformed portion of the cylinder with
the kinetic energy lost from the rigid, undeformed part:

pu’

o(u+v)Apln (A) = —(u+v)Ag+ cAou. (11)
Ao 2

The analogy to Eq. (2) based on these work considerations is
(p/o)u?/2=—In(1—¢)—¢, (12)

which can again be solved for maximum strain &; based on the initial condition ¥ = U. Unlike the quadratic Eq. (2),
this one is transcendental. We take the differential of this equation and find

(p/o)udu=de/(l —€)—de =ede/(1 —€). (13)
None of the work considerations invalidate Eq. (3), so we use the differential of the work formulation with it to find

dx pudu  de _ _ ) _ s _

where a is an integration constant based on x = Ly when € = ¢;, which is found before taking the exponential of both
sides.
Now we write v = dh/dt and use it with c = —(px)du/dt to get

@_ px __Eul—e :_BuLo(l—e,-)
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where first we used v = u(1 — €) /¢, then we used Eq. (14). Now we use the differential from Eq. (13) again
1—¢
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Here, b was another integration constant and this time it was found from the initial condition 7 = 0 when € = ¢;. Tay-
lor’s momentum formulation required a numerical integral; Hawkyard’s energy formulation results in a transcendental
equation for the initial strain &;, then gives a closed form solution for the profile. This approach also allows a definite
expression for the final length:

L = Lo(l 78,‘) 7L0(1 781')111(1 78,') = L()(l 78[)[1 71n(1 78,‘)]. (17

CONSTANT FLOW STRESS SIMULATIONS

In order to test these simplest models in a case where some of the assumptions are valid, we simulated cylinder
impacts for comparison using a constant flow stress model and a Lagrangian mesh in the FLAG hydrocode [3]. All of
the simulations for comparison and CNN training are based on stainless steel 304L with a density p = 7.91 g/cc and



initial velocity U = 261.5 m/s, using the sesame equation of state 4272. Figure 2 shows simulated profiles for a range
of flow stresses, profiles from Taylor and Hawkyard’s theories, as well as actual data taken at LANL. Agreement on
the final length L; was found from both theories using o = 940 MPa. Using Eq. (10) and X from Taylor’s theory with
0 = 940 MPa, the average strain rate is estimated to be & ~ 14,000 s~

Graphical summaries of the results on constant flow stress simulations are shown in Figs. 3 and 4. The final lengths
L, from the models versus flow stress agree with simulated values significantly better than the maximum deformed
radii. In Fig. 4, stress estimates from Eq. (9) applied to simulation results are shown compared with estimates based
on the final calculated lengths. It is a nuisance to determine X for the estimate formula and we found it using the
threshold (R(X) — Ro)/(Rmax — Ro) = 0.05, which was determined to give best agreement for this set of simulations.
The consistency of the results suggests that either method is reasonable for conveniently estimating an average flow
stress from a deformed cylinder length.
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CONVOLUTIONAL REGRESSION ON THE PTW PARAMETERS

More realistic plastic behavior involves subtleties like strain hardening, strain-rate hardening, and thermal softening.
The aspirational solution in this study is a regression model built with CNN layers used to learn how final cylinder
profiles depend on Preston-Tonks-Wallace (PTW) strength model [4] parameters. First, we created our study data set
that contains about 1,400 Taylor deformation profiles obtained from 1,400 corresponding samples of 8 parameters in
the PTW model, ¥, K, p, S0, S, 60, Y0, and y.. From our set of simulated deformation profiles, we formed subsets
for training, validation, and testing using 75% for training, 15% for validation, and 10% of the data for testing. Each
profile was flattened into a series of 350 radial sampled along a regular grid in the z-coordinate (the cylinder axis).
Thus, our training problem is to learn the mapping from the 350 radial profile values to the 8 PTW parameters.

We customized two one-dimensional convolutional regression architectures and evaluated the accuracy of the two
models. Inspired by interpretable [5] learning, the first regression model (R{) is built from repeated convolutional
blocks that keep the filtered profile size approximately equal to the input profile size at each layer of the network.
These interpretable layers are then followed by double-stride convolutional layers that quickly reduce the size of the
profile, leading the network toward inferring the 8 PTW parameters. Once a predetermined, small, output length is
reached dense regression layers are inserted to infer a final estimation of strength parameters. The number of filters
Ny in the interpretable convolutional layers is kept small (N, = 12). A total of 15 interpretable layers are used and
then stride-2 layers are inserted until the output size is less than or equal to 20. This is followed by three dense layers
having 10, 10, and 8 output neurons, respectively. In total this convolutional network uses only 12,000 parameters.
However, R extracts the nonlinear output/input relationship between the deformed profiles and simulation parameters
with accuracy comparable to a much larger regression model (see Fig. 5 versus Fig. 6). Our second regression model,



R», is constructed with Ny being double in size after each computing unit consisting of 4 similar convolutional layers,
starting with N,i = 256 and having N/ = 1024 in the final single convolutional block. A max-pooling layer is added
after each convolutional multiplication aggressively reducing the resolution of inputs (from 350 in the first computing
block to 21 in the final computing block). Consequently, R, has a much larger number of parameters (= 5 million).
High accuracy on the training set mirrored by comparable accuracy on the validation set is obtained after 5,000
epochs for Ry and 20,000 epochs for R,. Both models still exhibit limitations, with some data points in the test set
exhibiting significantly lower accuracy compared to the majority of samples. Overall, R, performs slightly better than
R on all train, validation, and test sets but there are cases where R outperforms R, as shown in Figure 7(a). Here,
we compare the profile reconstruction using the predicted 8 PTW-parameters from two regression models R; (blue
solid) and R; (purple solid) with ground truth (black solid). Other randomly selected samples of profile reconstruction
(red solid) in the validation set obtained using predicted 8 PTW-parameters are shown in Figs. 7(b), (c), and (d).
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FIGURE 7. Post-impact profiles from simulations using predicted PTW parameters of both regression models (a)
and from the wide regression model (b,c,d) compared to the ground truth profiles.

CONCLUSION

Both Taylor and Hawkyard’s approximate treatment of the cylinder impact problem reproduce the maximum deformed
radius and the final length of the cylinder well over a reasonable range of assumed constant flow stresses. The final
total length is particularly well-suited to estimate the flow stress. Machine learning approaches with CNNs capture the
relationship between parameterizations of the PTW model of plastic deformation and simulated cylinder profiles well.
We propose application of this approach as a hybrid method when compared with traditional calibration and validation
approaches. Often, a strength model like the PTW model is calibrated to quasi-static and split Hopkinson pressure bar
stress-strain data, then validated by comparison with an impacted cylinder profile, which may reach higher strains and
strain rates. Beginning with a Bayesian posterior set of models from traditional calibration data (e.g. [7]), it would
be simple enough to train a network on these posterior parameter sets, then pick a final set based on the trained CNN
applied to the profile data. This approach could also be generalized to more complex data sets that are still sensitive
to strength, like Richtmyer-Meshkov or Rayleigh-Taylor instabilities driven by explosives.
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