

LA-UR-23-30602

Accepted Manuscript

Self-Assembled Nanofiltration Membranes with Thermo- and pH-Responsive Behavior

Saadat, Younes
Kim, Kyungtae
Foudazi, Reza

Provided by the author(s) and the Los Alamos National Laboratory (2024-06-27).

To be published in: ACS ES&T Engineering

DOI to publisher's version: 10.1021/acsestengg.4c00033

Permalink to record:

<https://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-23-30602>

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 **Self-assembled nanofiltration membranes with thermo- and pH-responsive**
2 **behavior**

3 Younes Saadat ¹, Seyed Mostafa Tabatabaei ¹, Kyungtae Kim ², Reza Foudazi ^{1*}

4 ¹ *School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman,*
5 *OK 73019, USA*

6 ² *Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National*
7 *Laboratory, Los Alamos, NM 87545, USA*

8 **ABSTRACT**

9 We produce controlled nanostructured membranes from crosslinking of self-assembled diacrylated
10 poloxamers. At sufficiently high concentrations, poloxamers form lyotropic liquid crystals
11 (LLCs), such as lamellar (L_a), cubic packing of spherical micelles, and hexagonal packing of rod-
12 like micelles in water (H_1). We use H_1 phase as a template to produce orderly packed nanofibrous
13 membranes. The obtained membrane has a continuous 3D transport pathway and can alter its
14 nanofiltration properties in response to changes in temperature and pH. The formulation includes
15 Pluronic P84-diacrylate (P84DA), a thermoresponsive component that acts as both macromer and
16 structure-directing amphiphile. P84DA facilitates changes in membrane pore size with temperature
17 due to its thermo-responsiveness when in contact with water. Furthermore, the precursor
18 contains acrylic acid (AAC) as the charged component, which upon copolymerization with P84DA,
19 not only enables ion separation through Donnan exclusion, but also imparts pH-responsive
20 behavior for the separation of ionic species. We show that the nanofiltration membrane has
21 separation properties adjustable with temperature and pH with exceptional resistance to fouling by
22 various solutes due to its highly hydrophilic surface. Furthermore, the membrane shows an
23 outstanding sulfate over chloride ion selectivity, which is a requirement for salt fractionation
24 applications. Deduced from separate experiments, the ideal chloride/sulfate selectivity for
25 magnesium cation is about 2.38 at low ionic strengths. This study is done on a model system to
26 show the capability of incorporating pH-responsiveness in LLC templated membranes, in which
27 the pH-responsive range can be designed by changing the charged groups of comonomer in the
28 formulation.

29 **Keywords:** *Nanofiltration, Membranes, Stimuli-responsive, Mesophases, Self-assembly*

* Corresponding author. Email: rfoudazi@ou.edu.

31 **1. INTRODUCTION**

32 In today's world, the significance of nanofiltration (NF) membranes is rising due to their utilization
33 in a variety of applications, including but not limited to water softening,¹ industrial wastewater
34 remediation,² salt fractionation in water streams,^{3,4} organic solvents nanofiltration,⁵ and bio-
35 separation.⁶ Porous NF membranes facilitate the separation process through three mechanisms:
36 size-exclusion, solution diffusion, and electrostatic interaction (also known as Donnan exclusion).⁴
37 The common methods used to produce NF membranes with the ability to separate dissolved salts
38 and molecular solutes at the 1 nm length scale are non-solvent induced phase separation (NIPS)^{7,8}
39 and interfacial polymerization.^{9–11} Although these methods offer certain benefits, they also come
40 with some drawbacks. NIPS has limited control over membrane pore size distribution, and the
41 process is also environmentally concerning due to the substantial amount of organic solvents
42 required (up to 70% by volume).¹² The disadvantages of interfacial polymerization include
43 limitations in the choice of monomers, variations in membrane properties (e.g., pore size,
44 thickness, and surface morphology) due to the complex nature of the process, and susceptibility to
45 fouling.^{13,14}

46 Lyotropic liquid crystal (LLC) templating is an alternative approach which can address these
47 challenges. To provide a brief background, LLCs are mesoscopic structures that exhibit long-range
48 periodic order ranging from 2 to 50 nm, formed via self-assembly of amphiphiles in selective
49 solvents.^{15–20} Out of the various nanostructures available for LLCs, the most frequently utilized
50 ones for synthesizing NF membranes are normal hexagonal (H_1)^{5,13,17} and normal bicontinuous
51 cubic (Q_1).^{21–24} Although both structures offer the desirable features of a 3D-continuous transport
52 path without requiring structural alignment, H_1 is particularly attractive as it forms more frequently
53 and is available in a wider range of compositions compared to Q_1 , making it a more ideal option
54 for membrane applications.¹⁷ A significant achievement in the field was demonstrated by Osuji
55 and coworkers,^{5,13,17} where they successfully synthesized H_1 -structured NF membranes with an
56 effective pore size of ~1 nm, molecular weight cutoff (MWCO) of ~300 Da, and permeability of
57 ~20 liters m⁻² hour⁻¹ bar⁻¹. Notably, these membranes outperformed commercially available NF
58 membranes like Dow FILMTEC NF90-400, which typically exhibit a permeability of 10 to 15
59 liters m⁻² hour⁻¹ bar⁻¹.¹²

60 The incorporation of stimuli-responsiveness into membranes can offer new opportunities for
61 applications by enabling dynamic selectivity and permeability,^{25–30} and enhanced cleaning of a

62 fouled membrane.^{25,26,31} While there are some reports on the production of stimuli-responsive
63 ultrafiltration (UF) membranes by using LLC templates,^{26,32} there are only a few studies in the
64 literature available on the synthesis of stimuli-responsive NF membranes from LLC templates.
65 Zhu et al.³³ reported an LLC-based sodium selective isoporous membrane, which offered ion
66 conductive channels lined with carboxylate groups. Other than high Na^+/K^+ selectivity due to the
67 interactions of ions and carboxylate groups, this membrane also exhibited pH responsiveness
68 allowing for charge-governed ion transport. Li et al. synthesized a pH- and light-responsive
69 nanoporous polymer with a pore size of about 1 nm, but the potential of the polymerized LLC as
70 an NF membrane was not evaluated in their study.³⁴ By incorporating pH responsiveness to LLC
71 templated membranes, we could extend the functionalities of such membranes beyond narrow pore
72 size distribution, increased fouling resistance, and enhanced backwashing. Furthermore, this
73 incorporation is experimentally simple in LLC-based membranes as a comonomer with charged
74 responsive group is copolymerized to the network simultaneously and no additional step is
75 required. In contrast, other methods like surface modification and grafting, which are used for
76 NIPS and thin-film composite (TFC) membranes, usually have more complex chemistry³⁵ and are
77 time consuming.³⁶

78 The advantages of thermoresponsive membranes have been thoroughly discussed in our previously
79 published papers.^{26,32} Other than selective separation of solutes, cleaning process using the
80 thermoresponsive property is one of the main advantages. NIPS and TFC nanofiltration
81 membranes with pH-responsiveness have also been studied in the literature for a wide range of
82 applications. For example, Himstedt et al. developed pH-responsive NF membranes by
83 incorporating poly(acrylic acid) for the selective separation of glucose and sucrose, leveraging pH-
84 induced changes in membrane properties to enhance filtration performance in food and dairy
85 industries.^{35,37} In another study, carboxybetaine was incorporated to produce NF membranes that
86 are capable of separating organics/inorganic salts mixtures and divalent/monovalent ions systems
87 by adjusting the pH of the feeding solution.³⁸ Setiawan et al. demonstrated the development of pH-
88 tunable and pH-responsive polybenzimidazole nanofiltration membranes, showcasing an approach
89 for effective and selective separation of lithium and magnesium ions, which could outperform
90 similar commercial membranes.³⁹ The applications can go beyond water treatment, for example
91 in separation of biomolecules,⁴⁰ water/alcohols separation,⁴¹ and organic solvent nanofiltration.⁵

92 In the current research, we present the first successful production of H₁-structured stimuli-
93 responsive NF membrane via LLC templating. To create the membrane, we polymerize the LLC
94 from mixture of Pluronic P84-diacrylate (P84DA), 1-butyl-3-methylimidazolium tetrafluoroborate
95 ([BMIM][BF₄]) ionic liquid, acrylic acid (AAc), and 1,6-hexanediol diacrylate (HDDA) by using
96 UV light. After removing the ionic liquid (IL) through washing with water, the resulting
97 polymerized LLC (polyLLC) membrane exhibits a pore size of 2.2 nm. When the polyLLC
98 membrane is heated to 45°C, the pore size increases to 2.6 nm, which leads to an increase in
99 thickness-normalized flux and membrane MWCO from 16 to 31 liters m⁻² hour⁻¹ μm and from
100 1600 to 2400 Da, respectively. The addition of AAc into the formulation incorporates charge on
101 the pore wall, enabling the membrane to effectively reject dissolved trivalent and divalent salts at
102 neutral and alkaline pH levels. Moreover, highly hydrophilic surface of membrane makes it
103 resistant to fouling from various solutes.

104

105 2. EXPERIMENTAL

106 2.1. Materials

107 All the chemicals used in this study were purchased from Sigma-Aldrich and were used without
108 any purification unless otherwise noted. The components employed in the synthesis of the
109 polymerizable poloxamer, P84DA, were Pluronic P84 (PEO₁₉-PPO₄₃-PEO₁₉) with an average
110 molecular weight of 4,200 g/mol, anhydrous dichloromethane (≥99.8%), anhydrous toluene
111 (99.8%), triethylamine (99.5%), and acryloyl chloride (97%). The desired LLC was produced by
112 mixing P84DA with [BMIM][BF₄] (≥98%), HDDA (99%; Thermo Scientific Chemicals), AAc
113 (99%), and 1-hydroxycyclohexyl phenyl ketone (HCPK; 99%). For all the experiments, deionized
114 (DI) water with a conductivity of 0.055 μS/cm, which was acquired from EMD Millipore Direct-
115 Q3, was employed.

116 The performance of the membrane, which includes MWCO, rejection of proteins, salts and dyes,
117 and resistance to fouling, was assessed by filtering various solutes. These solutes comprised of
118 polyethylene glycol (PEG) with molecular weights ranging from 1 to 10 kDa, bovine serum
119 albumin (BSA) in the form of lyophilized powder (≥96%), lysozyme from chicken egg white
120 (lyophilized powder with protein content ≥90%), direct red 23 (DR23) with 30% dye content,
121 direct red 80 (DR80) with 25% dye content, orange G (OG) with 80% dye content, acid fuchsin
122 (AF) with 70% dye content, acid red 1 (AR1; TCI AmericaTM), K₃PO₄, Na₃PO₄, Na₂HPO₄,

123 Na₂SO₄, K₂SO₄, MgSO₄, Na₂CO₃, NaH₂PO₄, KNO₃, MgCl₂ (Thermo Scientific Chemicals),
124 CaCl₂, NaCl (Thermo Scientific Chemicals), KCl, and LiCl (Thermo Scientific Chemicals).
125 Sodium hydroxide (NaOH) and hydrochloric acid (HCl) were used for pH adjustments. The
126 membrane support layer, which was a nonwoven polyester sheet with 2 μ m porosity (CraneMat®
127 CU463), was provided by Neenah Filtration. A commercially available Dow FILMTEC NF270-
128 400 (NF270) with a MWCO of 400 Da was utilized to assess the pH-dependent rejection of ionic
129 species and compare it with the performance of the membrane produced in this study.

130

131 **2.2. Synthesis of P84DA**

132 P84DA was synthesized via a functionalization reaction on P84 following a previously described
133 procedure³² and a commonly accepted protocol available in the literature.^{42,43} The degree of
134 functionalization reaction was evaluated using nuclear magnetic resonance spectroscopy (1H
135 NMR, Varian VNMRS-400 with Probe AutoX-DB-PFG). Further details regarding this analysis
136 can be found in section S1 of the Supplementary Information.

137

138 **2.3. LLC preparation**

139 To produce the H₁-structured LLC, a mixture of P84DA, [BMIM][BF₄] (containing 1 wt% HCPK
140 with respect to [BMIM][BF₄] as UV initiator), AAc, and HDDA (containing 10 wt% HCPK with
141 respect to HDDA) was prepared at a weight ratio of P84DA/[BMIM][BF₄]/AAc/HDDA =
142 48.8/48.8/0.5/1.9. The mixture was repeatedly hand-mixed and centrifuged at 11,000 rpm for 5
143 minutes in a 50 mL centrifugal tube until a transparent gel was obtained. The chemical structure
144 of the components utilized for mesophase preparation is depicted in Fig. 1, and a schematic of the
145 H₁ structure is presented in Fig. 1f.

146

147 **2.4. LLC and polyLLC characterization**

148 ***2.4.1. Cross-polarized light microscopy (CPLM)***

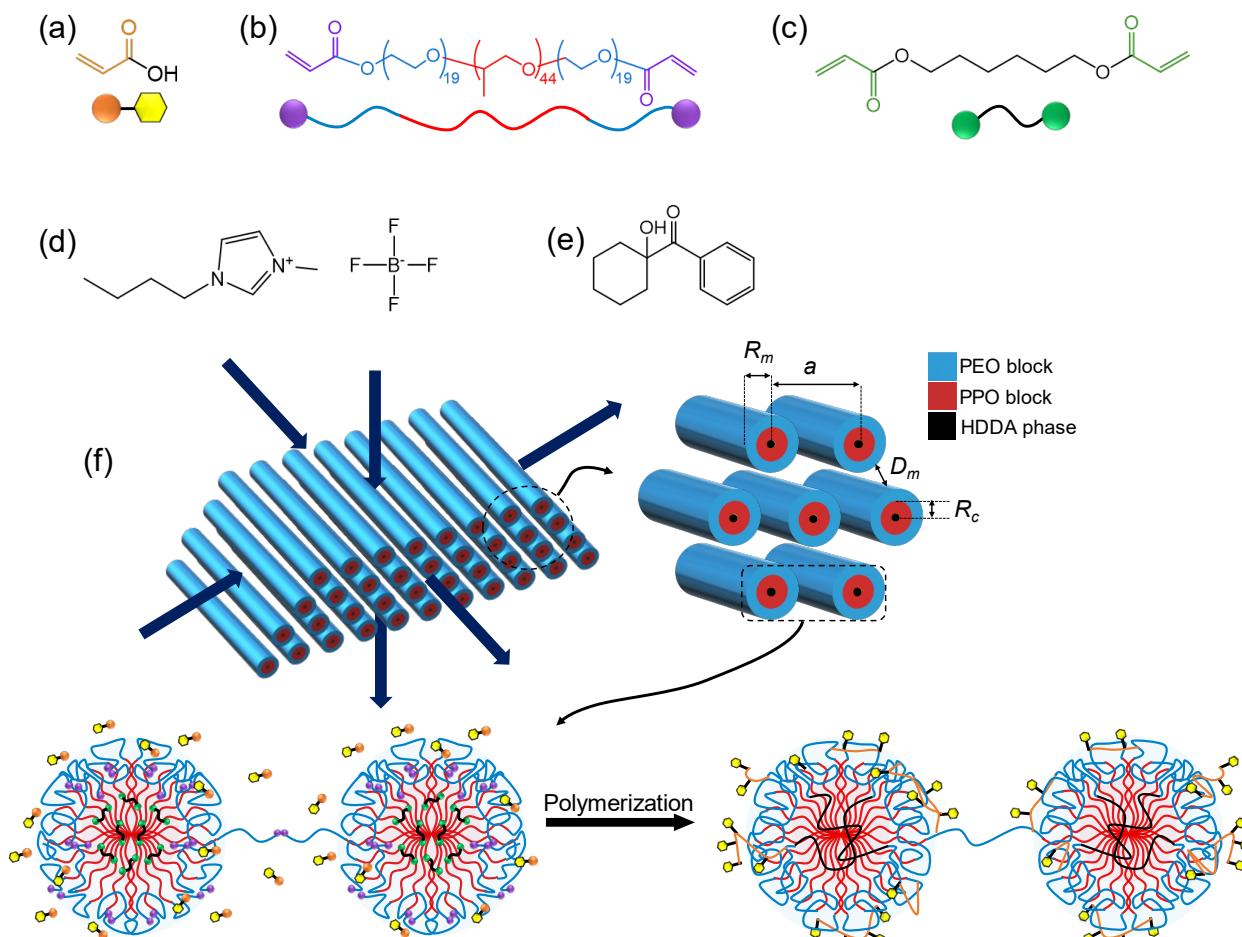
149 To assess the birefringence of the H₁-structured sample before and after polymerization, a cross-
150 polarized Nikon microscope (model LABOPHOT2-POL) equipped with a digital camera was
151 utilized. For CPLM analysis, ~0.2 g of the mesophase gel was placed between a glass slide and a
152 glass cover slip. To polymerize the LLC, the sandwiched sample was UV-cured for 40 seconds

153 using a Uvitron Sunray 600 SM curing system equipped with a 600 W UV flood lamp placed 15
154 cm above the sample. The structure of the polymerized LLC is schematically illustrated in Fig. 1f.

155 **2.4.2. Small angle X-ray scattering (SAXS)**

156 SAXS was used to evaluate the structure of samples and determine the formulation that exhibits
157 the desired H_1 structure. Quartz capillary tubes with a nominal diameter of 1.5 mm (Charles Supper
158 Company, Natick, MA) were used for sample preparation following the procedure described in
159 our previous work.³² 2D scattering patterns were acquired using a Bruker Nanostar X-ray
160 scattering system equipped with a monochromatic Cu K α radiation source (X-ray wavelength of
161 1.541 Å) and were azimuthally averaged to obtain 1D scattering profiles. SAXS analysis was
162 carried out at various temperatures for LLC gels and water-swollen polyLLCs to investigate
163 potential structural changes upon temperature variation. Moreover, polyLLCs swollen by water at
164 pH of 4, 6 and 9 were analyzed using SAXS to examine any probable structural changes upon pH
165 change.

166 **2.4.3. Differential scanning calorimetry (DSC)**


167 Differential scanning calorimetry (DSC) was employed to examine the thermal properties of
168 various samples, including pure P84DA, water-swollen polyLLC, and dried polyLLC (the water-
169 swollen polyLLC sample was dried under vacuum for at least 72 hours). ~10 mg of each sample
170 was placed in an aluminum pan (PerkinElmer, Inc.) and was hermetically sealed. Thermal analysis
171 was performed using a calorimeter (Q2500, TA Instruments, New Castle, DE) operated at a
172 heating/cooling rate of 1 °C/min. The heating/cooling cycle between 0 and 60 °C was repeated
173 twice and the second cycle was used for analysis after erasing the thermal history of the samples.

174 **2.4.4. Swelling characteristics of the polyLLC**

175 A 500 μ m thick LLC film was sandwiched between two glass plates and photopolymerized at
176 room temperature. The resulting polymer film was washed multiple times with water and then
177 dried under vacuum. From this film, samples with approximately 2 cm \times 2 cm size were cut for
178 water uptake experiments. Each sample was immersed in an excess of DI water at the desired
179 temperature (with a precision of ± 0.1 °C) until it reached equilibrium swelling. The swollen
180 samples were then removed from the water and any excess water on the surface was removed with
181 a paper towel. The water uptake (swelling capacity) was determined by using the weight of the dry
182 state (W_0) and the swollen state (W_t), according to the following equation:

183 $Swelling\ Capacity = \frac{W_t - W_0}{W_0} \times 100$ (1)

184

185

186 **Fig. 1.** Molecular structure of (a) AAc, (b) P84DA, (c) HDDA, (d) [BMIM][BF₄], and (e) HCPK.
 187 Schematic illustrations of AAc, P84DA, and HDDA have also been shown in panel (a), (b), and (c),
 188 respectively. (f) A schematic depiction of an H₁-structured LLC, showing 3D transport pathways,
 189 obtained by blending various components, wherein the micelles are enveloped by a mixture of
 190 [BMIM][BF₄] and AAc. Important structural parameters have also been shown in the schematic. The
 191 apolar domain consists of PPO block and HDDA. A chemically bound polymer network is formed from
 192 reaction of acrylate groups of P84DA, HDDA, and AAc. To achieve a well-integrated H₁-structured
 193 membrane, it is crucial to have intermicellar bridges, which are formed from reaction of acrylate groups
 194 of extended PEO blocks.¹⁷

195

196 The kinetics of thermal response was investigated by transferring the swollen sample from a water
197 bath at 25 °C to one maintained at 45 °C, followed by time-course monitoring the water uptake at
198 different intervals. To confirm the reversibility of the response, the sample was subjected to several
199 cycles of sequential environmental changes (i.e., transferred back and forth between 25 and 45 °C
200 water baths), and the swelling capacity was measured after each change.

201 To evaluate the salt-dependent swelling behavior of polyLLC, the polymer was swollen in aqueous
202 solutions of K₂SO₄ at different ionic strengths (1, 5, 10, 50, and 100 mM) at 25 and 45 °C.
203 Additionally, the swelling capacity of polyLLC was measured at different pH values ranging from
204 3 to 9 to investigate the pH effect on its swelling behavior.

205 Water uptake measurements were performed on a minimum of three samples, and the average
206 value along with the standard deviation is presented.

207

208 **2.5. Manufacturing of the supported polyLLC membrane**

209 As stated in our previous research,³² these LLC formulations have the ability to undergo structural
210 changes when heated (see Fig. S2 for SAXS analysis), resulting in a decrease in their viscosity.
211 This property enables the application of the mesophase onto a polyester support sheet using knife
212 coating, followed by UV polymerization to produce a polyLLC membrane supported on the sheet.
213 Further information regarding the membrane fabrication process is available in our prior
214 publication.³² The thickness of the polyLLC coated layer was determined using Scanning Electron
215 Microscopy (SEM, ThermoFisher Quattro S field emission environmental SEM).

216 To replace the IL with water, the manufactured membrane was submerged in water for a minimum
217 of one week before being tested.

218

219 **2.6. Analysis of the polyLLC membrane performance**

220 ***2.6.1. Water flux and permeability***

221 The Sterlitech HP4750 high-pressure stirred cell (a dead-end filtration system) was employed to
222 assess the performance of the membrane, with an effective area of 14.6 cm², operating under
223 stirring at 750 rpm using a magnetic stirrer and a pressure of 30 psi (2.07×10⁵ Pa). The thickness-
224 normalized flux of the membrane, reported as liters m⁻² hour⁻¹ μm, was measured at both 25 and
225 45 °C. To measure the flux at an elevated temperature, the filtration cell containing the membrane
226 was placed in a water bath set to 45 ± 0.1 °C. The permeate collection was initiated only after

227 verifying the isothermal conditions at the membrane level and obtaining a stable flux. All
228 measurements were conducted on three separate membranes.

229 Permeability of the membrane was calculated based on Darcy's law.⁴⁴ The parameters in this
230 equation are Q (flow rate), μ (viscosity), A (membrane area), ΔP (pressure difference across the
231 membrane), l (membrane thickness), and κ (Darcy's constant or intrinsic permeability).

232
$$\frac{\kappa}{l} = \frac{Q\mu}{A\Delta P} \quad (2)$$

233 We obtained the viscosity of water at both 25 and 45 °C from the literature.^{26,45} To eliminate the
234 impact of thickness variation in our assessments, we calculated the thickness-normalized intrinsic
235 permeability because membranes with lower thickness would have higher flux. In other words,
236 according to Darcy's law in membranes and neglecting the non-idealities, multiplication of water
237 flux and thickness of a membrane in the same pressure and temperature is constant.⁴⁶ A membrane
238 with higher thickness-normalized flux has a more permeable active layer. Since we are considering
239 the DI water flux here, there is no concentration change that can directly or indirectly affect the
240 membrane resistance according to Darcy's law.⁴⁷

241

242 ***2.6.2. MWCO and membrane rejection performance against proteins, single salts, and dyes***

243 To measure the MWCO, we filtered 1 mg/mL aqueous solutions of PEG with varying molecular
244 weights (ranging from 1 to 10 kDa) using one membrane. For each analysis, we collected at least
245 5 mL of permeate. In 0.3 mL of the collected permeate, we added 3 mL of a reagent⁴⁸ consisting
246 of potassium iodide (2 g) and iodine (1.27 g) in water (100 mL) to be able to measure the
247 concentration of PEG by using UV-Vis spectroscopy. The iodine and iodide ion react together and
248 produce triiodide ions, which react with oxygen atoms of PEG through charge transfer complex
249 formation. Within 15 minutes of sample preparation, we employed UV-Vis spectroscopy (Thermo
250 Scientific™ GENESYS™ UV-Vis Spectrophotometer) to determine the concentration of PEG in
251 the permeate. We utilized the following equation to compute the PEG rejection:

252
$$r = (1 - \frac{C_p}{C_f}) \times 100 \quad (3)$$

253 The equation involves three parameters: r (rejection), C_p (solute concentration in the permeate,
254 e.g., PEG), and C_f (solute concentration in the feed). The molecular weight of PEG that showed a
255 rejection of about 90% is considered as the MWCO.⁴⁹

256 The aqueous solutions of following components were used to evaluate the membrane performance
257 in terms of the rejection of protein, dye, and single salt:

- 258 1) BSA and lysozyme proteins with a concentration of 1 mg/ml.
- 259 2) DR23, DR80, OG, AF, and AR1 dyes with a concentration of 0.5 mg/ml.
- 260 3) K_3PO_4 , Na_3PO_4 , Na_2HPO_4 , Na_2SO_4 , K_2SO_4 , $MgSO_4$, Na_2CO_3 , NaH_2PO_4 , KNO_3 , $MgCl_2$,
261 $CaCl_2$, $NaCl$, KCl , and $LiCl$ salts having different ionic strengths (1, 5, 10, 50 and 100
262 mM).

263 A fresh membrane was employed for each experiment. To determine the contents of proteins and
264 dyes in the permeate, UV-Vis spectroscopy was utilized. The conductivity measurement via
265 FisherbrandTM accumetTM XL200 pH/conductivity meter was used to measure the salt
266 concentration in the permeate. Equation 3 was applied to calculate the rejection
267 of various species.

268 Thermoresponsive properties of the membrane were evaluated at two different temperatures, 25
269 and 45 °C. To do so, the experiment was first performed at 25 °C and then at 45 °C with the same
270 membrane. The reversibility of the thermoresponsiveness was evaluated by cooling the same
271 membrane back to 25 °C and repeating the rejection experiment. To determine the selectivity of
272 the membrane for ionic species as a function of pH, the rejection of Na_2SO_4 , K_2SO_4 , $MgSO_4$, OG,
273 AF, and AR1 was measured at different pH values ranging from 3 to 9. For comparison purpose,
274 we evaluated the pH-dependent rejection of OG using a commercially available NF270 membrane
275 as well. The pH of the aqueous solutions was adjusted by HCl and NaOH having 0.1 M
276 concentration.

277 All the membrane performance experiments were conducted for three individually prepared
278 membranes, and the reported results represent the average value and standard deviation from the
279 three trials.

280 ***2.6.3. Contact angle and fouling resistance***

281 The contact angle of the membrane was measured using an optical tensiometer from Biolin
282 Scientific. The fouling resistance of the membrane was evaluated by filtering aqueous dispersions
283 of PEG (10 kDa), BSA, and DR80 at a concentration of 1 mg/mL. The filtration cell was initially
284 filled with approximately 250 mL of solution, and 5-8 mL of permeate was collected every 12 h.
285 The test was conducted over 60 h, and the membrane flux and rejection were measured at 12-h
286 time intervals.

287 **3. RESULTS AND DISCUSSIONS**

288 **3.1. Characterization of LLC and polyLLC**

289 The structural analysis of LLC and polyLLC was conducted using CPLM and SAXS. After
290 preparation and screening of several samples, LLC with P84DA/[BMIM][BF₄]/AAc/HDDA
291 48.8/48.8/0.5/1.9 w/w/w/w composition was selected since it has the desired structure before and
292 after polymerization as well as after exchange of IL with water. Anisotropic mesostructures like
293 hexagonal or lamellar show birefringence, which means that they have a refractive index
294 depending on the polarization and propagation direction of light passing through them. The CPLM
295 results (Fig. 2a-c) indicate that the LLC, polyLLC, and water-swollen polyLLC exhibit the
296 birefringent characteristic of hexagonal mesophases, which is a fan-like texture.^{16,50} This indicates
297 that the original LLC structure remains intact even after polymerization and solvent exchange. Fig.
298 2d displays the obtained 1D SAXS profiles, which support the findings from CPLM. The presence
299 of Bragg peaks with $1:\sqrt{3}:\sqrt{7}$ q/q^* ratios for the LLC is observed in the data, where q represents
300 the scattering vector and q^* represents the primary peak position in each curve. Thus, the LLC has
301 an H₁ structure. Similar Bragg peaks ratios have been reported for LLCs with H₁ structure.^{5,13,17}
302 Additionally, the presence of the typical birefringence associated with the H₁ structure and the
303 retention of the distinct SAXS peaks confirm that the structure is preserved following
304 polymerization and solvent exchange (i.e., exchange of IL with water in polyLLC).

305

306 **Fig. 2.** The images taken using CPLM display the samples in three different stages: (a) their original state
 307 (LLC), (b) after undergoing a reaction, and (c) after swelling with water. (d) 1D SAXS profile, in which
 308 plots are vertically shifted for clarity.

309

310 From the SAXS data, structural parameters such as intermicellar distance (which determines the
 311 pore size), lattice parameter, apolar domain size, micelle size, and grain size can be estimated. A
 312 schematic representation of these parameters is shown in Fig. 1f. The following equation can be
 313 used to calculate the lattice parameter a for hexagonal structure:⁵¹

$$314 \quad a = \frac{4\pi}{\sqrt{3}q^*} \quad (4)$$

315 As discussed in our previous works,^{32,52} it is assumed that the solvent (either [BMIM][BF₄]⁺AAc
 316 or water), PEO, PPO, and HDDA are completely segregated and each domain is characterized by
 317 a bulk density.⁵³ It is important to note, however, that in the case of water-swollen samples, the

318 polymer and water are not entirely segregated, as the polymer network can absorb significant
319 amounts of water. Furthermore, partitioning of the PEO and PPO blocks in the solvent and HDDA
320 phases makes the calculations somewhat imprecise.⁵⁴ Nevertheless, we have shown that this
321 geometric calculation provides a good agreement with the pore size measured from MWCO.^{32,44}
322 In this method, the size of the IL or water domain is assumed to be equal to the pore size of the
323 polyLLC membrane.

324 It is assumed that the apolar domain, with a volume fraction of ϕ , is formed by the HDDA and
325 PPO blocks, while the solvent and PEO block constitute the polar domain that fills the remaining
326 volume (1- ϕ). Therefore, the size of the apolar domain, R_c , is calculated as:^{51,55}

$$327 R_c = a \sqrt{\frac{\sqrt{3}}{2\pi} \phi} \quad (5)$$

328 The micelle size R_m can be calculated as:⁵⁹

$$329 R_m = a \sqrt{\frac{\sqrt{3}}{2\pi} (\phi_{Pluronic} + \phi_{HDDA})} \quad (6)$$

330 In this equation, $\phi_{Pluronic}$ represents the volume fraction of the block copolymer and ϕ_{HDDA} is the
331 volume fraction of the HDDA phase. In our prior work,³² we have thoroughly explained the
332 derivation of Eq. 5 and Eq. 6.

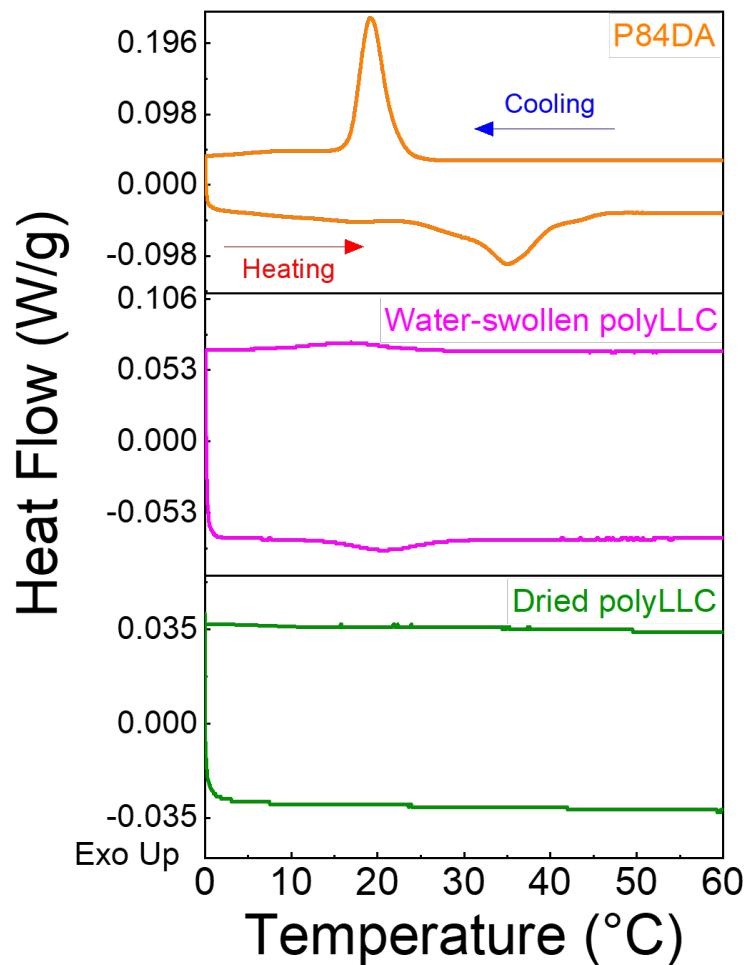
333 In the polymerized H₁ structure, the exclusion size of solutes is equivalent to the shortest distance
334 between micelles, which is the same as the intermicellar distance D_m :⁵⁴

$$335 D_m = a - 2R_m \quad (7)$$

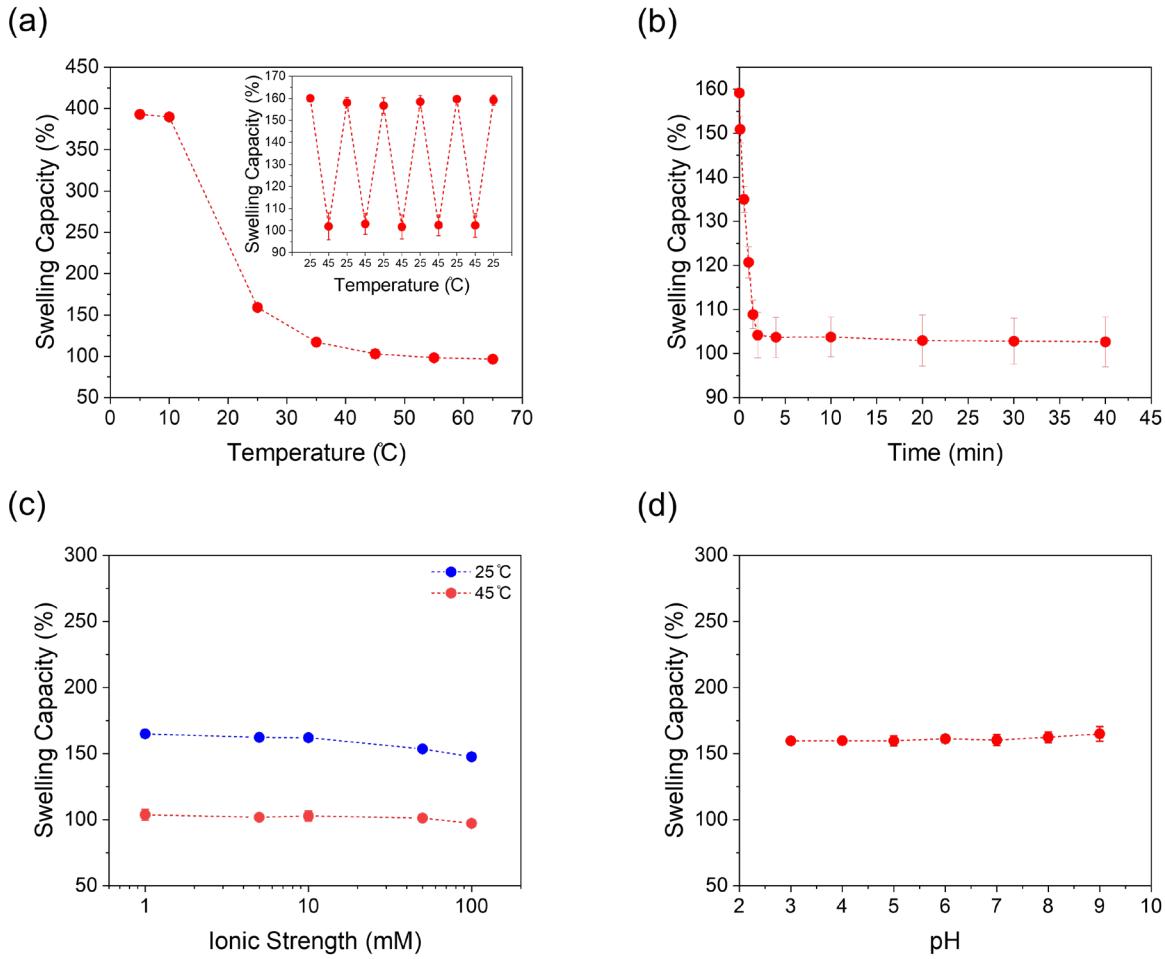
336 The calculated structural parameters are presented in Table 1. It is evident that the estimated
337 intermicellar distance (pore size) is approximately 2.7 nm for both the LLC and polyLLC samples.
338 However, this value increases to around 4.2 nm for the water-swollen sample at 25 °C and pH 6.
339 The MWCO experiment can be utilized to achieve a more precise measurement of the pore size.
340 Further details regarding the MWCO experiment will be provided in section 3.2.2. As control
341 sample, we have included the calculated parameters for the water-swollen polyLLC at 45 °C and
342 pH 6 in Table 1. Fig. 5 displays the corresponding SAXS data for this specific sample. The
343 calculated data for this particular sample will be discussed in detail in section 3.2.2.

344

345 Table 1. Structural parameters for various species determined through calculations using SAXS data.


Sample	q^* (nm ⁻¹)	ϕ_{PPO}^a	ϕ_{HDDA}	$\phi_{Pluronic}$	f	a (nm)	R_c (nm)	R_m (nm)	D_m (nm)
LLC	0.59	0.66	0.021	0.53	0.37	12.4	3.9	4.8	2.7
PolyLLC	0.58	0.66	0.021	0.53	0.37	12.5	4.0	4.9	2.7
Water-swollen									
polyLLC at 25 °C and pH 6	0.60	0.66	0.014	0.37	0.26 ^b	12.0	3.2	3.9	4.2
Water-swollen ^c									
polyLLC at 45 °C and pH 6	0.60	0.66	0.019	0.48	0.33 ^b	12.0	3.6	4.4	3.1

346 ^a The volume fraction of the PPO block in the Pluronic block copolymer is denoted as ϕ_{PPO} .


347 ^b The volume fraction of the apolar domain in the water-swollen polyLLC was determined by considering
348 the swelling capacity of the polymer at 25 °C and 45 °C, which corresponded to 160% and 100%
349 respectively, as shown in Fig. 4a.

350 ^c Fig. 5 presents the SAXS data for the water-swollen polyLLC at temperature of 45 °C and pH 6.

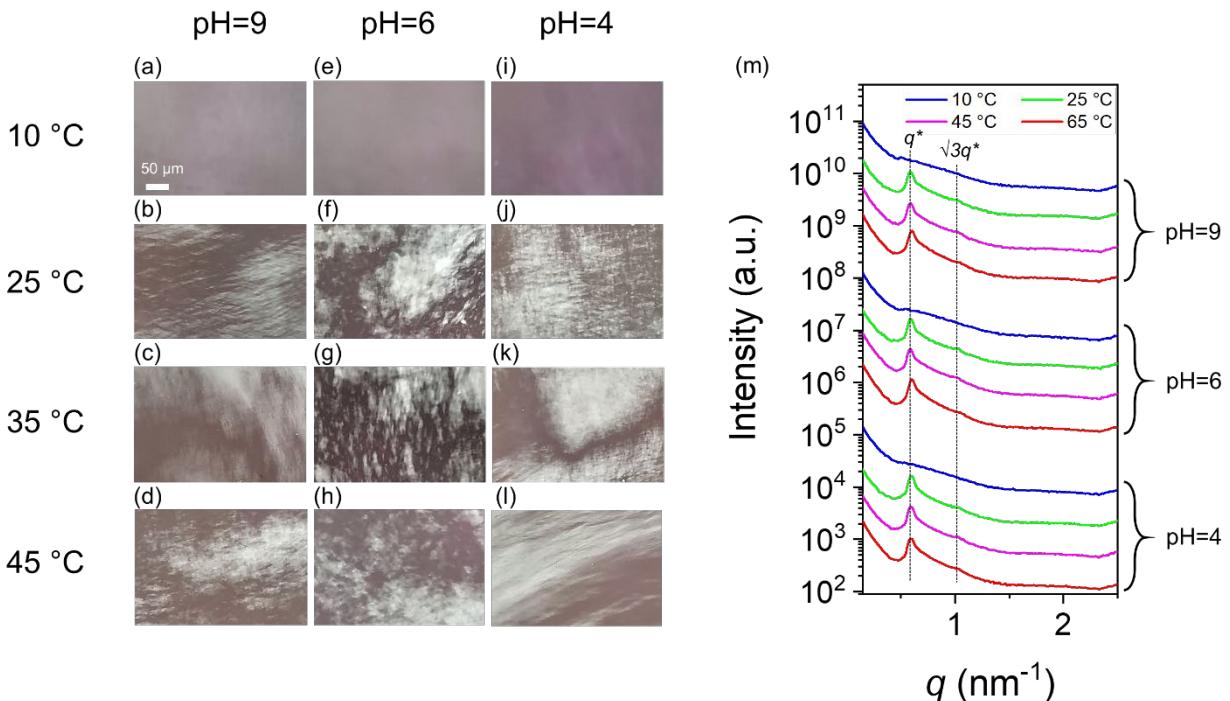
351
352 DSC was used to analyze the thermoresponsiveness of the water-swollen polyLLC in comparison
353 to pure P84DA and dried polyLLC as control samples. The obtained results are shown in Fig. 3.
354 A thermal transition in 5–32 °C range is seen for the water-swollen polyLLC due to the lower
355 critical solution temperature (LCST) of the poloxamer in water.^{56,57} In other words, since dried
356 polyLLC does not show any peak in 5–32 °C range, we conclude that the peak observed for water-
357 swollen polyLLC in this range is due to the LCST and not melting point of PEO block. When the
358 temperature reaches the LCST, the PPO block undergoes a significant increase in hydrophobicity,
359 leading to a reduced water solubility of the block copolymer.⁵⁸ On the other hand, pure P84DA
360 exhibits a melting point within the 20–47 °C range, which can be attributed to the melting of the
361 crystalline regions created by the PEO block.⁵⁹ We can infer that the formation of polyLLC inhibits
362 the crystallization of the PEO block since dried polyLLC does not exhibit any thermal transition,
363 including melting, crystallization, and LCST transitions. Therefore, the thermal response observed
364 in the water-swollen polyLLC can be attributed to the LCST of the block copolymer surfactant in
365 water.

Fig. 3. The DSC data for pure P84DA, water-swollen polyLLC, and dried polyLLC.

372

373 **Fig. 4.** (a) Variation of polyLLC swelling capacity with temperature (reversibility of the polyLLC
 374 thermoresponsiveness is shown as inset). (b) Kinetics of thermal response when the temperature changes
 375 from 25 to 45 °C. (c) Changes in swelling capacity with ionic strength at 25 and 45 °C. (d) Variation of
 376 the swelling capacity with pH.

377


378 The swelling capacity analysis of the polyLLC sample (using pieces with dimensions of
 379 approximately 2 cm × 2 cm and a thickness of 500 μm) is shown in Fig. 4. The swelling capacity
 380 decreases from around 390% to approximately 100% upon heating the samples from 5 to 45 °C as
 381 a result of the LCST of the polymer, in agreement with the DSC measurements. Moreover, our
 382 analysis indicates that the thermal response is rapid, occurring within 5 minutes, and fully
 383 reversible throughout several heating-cooling cycles. In our earlier study,³² we found that
 384 polyLLCs without AAc exhibited a swelling capacity of 600% at 5 °C, which decreased to 120%
 385 when the temperature was raised to 45 °C. The reduction in swelling capacity upon the addition of
 386 AAc to the formulation can be considered as a direct effect of inclusion of this specie in the

387 chemically cross-linked polymer network. It is expected that the copolymerized acrylic acid makes
388 the system more hydrophilic due to the ionization of carboxylate groups, which would result in
389 higher water uptake.^{60,61} In addition, carboxylate groups increase the osmotic pressure, which leads
390 to higher swelling capacity.⁶² Therefore, the observed decrease in the swelling capacity of
391 polyLLC with acrylic acid comonomer can be attributed to the increased cross-link density of the
392 system, induced by enhanced reactive sites in LLC precursor.

393 We evaluated the swelling capacity at different pH values and ionic strengths. The ionic strength
394 was altered by using different contents of K₂SO₄. Fig. 4c demonstrates that the polyLLC still
395 exhibits thermoresponsiveness, albeit with a slightly reduced swelling capacity and extent of
396 thermal response (change in swelling capacity upon heating from 25 to 45 °C) at higher salt
397 concentrations. This reduction in swelling capacity is a well-known phenomenon that has been
398 observed in hydrogels when exposed to high salt concentrations. This is due to the high osmotic
399 pressure in the saline water, which causes water to be desorbed from the hydrogel.⁶³ Additionally,
400 there are no significant changes in swelling capacity at 25 °C when the pH is altered from 3 to 9
401 (Fig. 4d).

402 CPLM and SAXS were employed to investigate the impact of temperature and pH on the structural
403 changes of the water-swollen polymer (Fig. 5). The structure of the polymer remains unaffected
404 by changes in pH, as evidenced by the consistent CPLM and SAXS results obtained at various pH
405 values. However, irrespective of the pH values, the results indicate that when the polymer is cooled
406 to 10 °C, it exhibits a weakly ordered structure. This is evident from the absence of any discernible
407 texture in CPLM and the presence of very weak peaks (or almost no peaks) in SAXS. This finding
408 is aligned with our recently published research³² and can be attributed to the disruption of PEO
409 and PPO segregation within the water domain. This disruption occurs due to the increased
410 miscibility of PEO and PPO with water, which is a result of PPO becoming hydrophilic at
411 temperatures below LCST of the poloxamer.^{26,58} Under such condition, the micelles adhere to each
412 other because of significant swelling with water, leading to the formation of a weakly porous
413 polymer that lacks any noticeable structure. Such structural alteration is reversible via deswelling
414 the polymer upon heating it to 65 °C, as confirmed by the reappearance of texture in CPLM and
415 the emergence of strong H₁ Bragg peaks in the SAXS profile.

416

417

418 **Fig. 5.** (a-l) CPLM images of water-swollen polyLLC at temperature of (a, e, i) 10, (b, f, j) 25, (c, g, k)
 419 45, and (d, h, l) 65 °C and at pH of (a-d) 9, (e-h) 6, and (i-l) 4. (m) 1D SAXS profile of the water-swollen
 420 polyLLC at different temperatures and pH values. The plots are vertically shifted for clarity.

421

422 3.2. Analysis of the polyLLC membrane performance

423 We have demonstrated the fabrication of an H₁-structured membrane on a polyester support layer
 424 by applying a knife coating technique followed by UV curing.³² The same technique was employed
 425 to create the membrane discussed in the present study. The circular cut and typical cross-sectional
 426 SEM image of the supported membrane are depicted in Fig. 6a and b, respectively. Based on image
 427 analysis, it can be determined that the membrane thickness is in 20–60 μm range with an average
 428 thickness of ~40 μm. Consequently, all membrane flux data are normalized by this average
 429 thickness to unit of liters m⁻² hour⁻¹ μm.

430 The performance of the polyLLC membrane is assessed through various tests, and the ensuing
 431 sections detail the findings obtained from these tests.

432 3.2.1. Water flux and permeability

433 Fig. 6 shows the measurement of membrane flux and permeability in multiple heating-cooling
 434 cycles at 25 and 45 °C. The obtained results indicate that both parameters increase and decrease
 435 reversibly upon heating and cooling, respectively. As shown in our previous work,³² commercially

436 available non-thermoresponsive membranes lack this behavior, which further confirms the
437 thermoresponsiveness of the polyLLC membrane. Notably, the membrane containing AAc
438 exhibits lower permeability than the one without AAc reported in our previous work,³² suggesting
439 smaller pore sizes due to the incorporation of this species. It is important to note that the membrane
440 created in this study exhibits lower flux when compared to commercially available membranes
441 with a similar pore size. However, this is probably due to the differences in active layer thickness.
442 Higher permeability in the same pore size and same active layer thickness is an expected
443 characteristic of LLC-templated membranes because of their higher and more uniform porosity.⁵
444 In other words, the produced membrane in this work has much thicker active layer thickness than
445 typical NIPS and TFC membranes with ~ 100-200 nm active layer thickness. To tackle this issue,
446 we are currently exploring the possibility of reducing the thickness of the active layer to less than
447 1 μm using different casting methods (e.g., spin coating), as the common practice reported in the
448 literature.^{5,13}

449 The fabricated membrane in this study is also compared with the well-known commercial
450 membrane, NF270. Our membrane exhibits much lower permeability which is about 0.18
451 $\text{Lm}^{-2}\text{h}^{-1}\text{bar}^{-1}$, while NF270's permeability has been reported to be more than 10
452 $\text{Lm}^{-2}\text{h}^{-1}\text{bar}^{-1}$ in the literature.^{64,65} We measure the permeability of NF270 membranes by using
453 the same procedure and filtration cell, resulting in a value of 6.5 $\text{Lm}^{-2}\text{h}^{-1}\text{bar}^{-1}$. As discussed
454 earlier, high permeability of NF270 membrane is due to its thin active layer in the range of 150-
455 200 nm.⁶⁴ According to Himstedt et al.,³⁵ NF270 flux is ~70 and ~30 $\text{Lm}^{-2}\text{h}^{-1}$ at ~5 and ~2 bar
456 at 25 °C, respectively. Even at 5 bar, the thickness-normalized flux of NF270 would be about 12
457 $\text{Lm}^{-2}\text{h}^{-1}\mu\text{m}$, which is lower than that of LLC-templated NF membranes at 25 °C. The thickness-
458 normalized flux for NF270 at ~30 psi, tested in this study, decreases to ~5 $\text{Lm}^{-2}\text{h}^{-1}\mu\text{m}$. These
459 results show the potential of developed LLC templated membrane since it can offer higher
460 operational permeability if proper casting method like spin coating is used.

461 **3.2.2. MWCO, protein, single salt and dye rejection measurements**

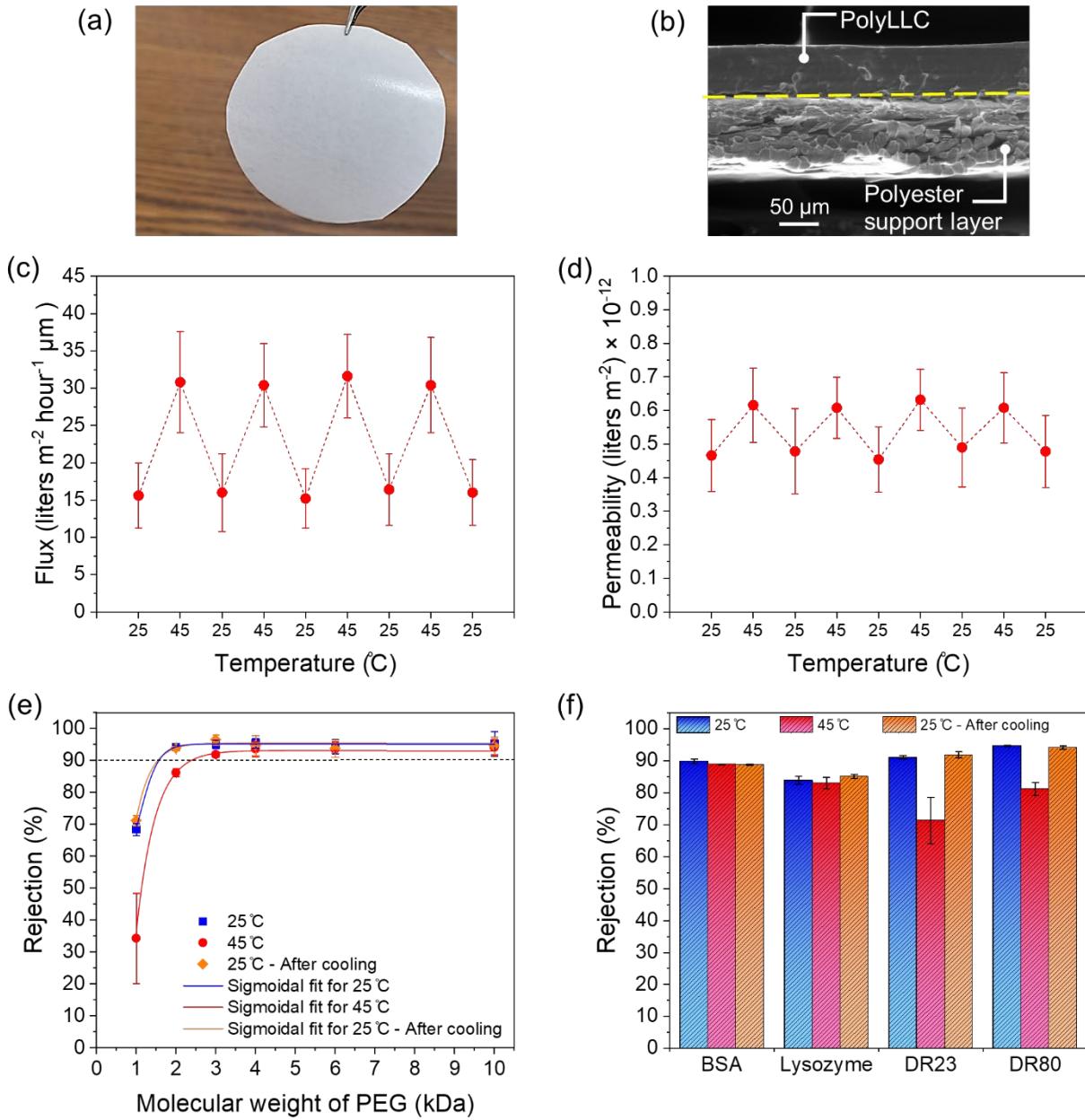
462 A fresh membrane was used to conduct the MWCO experiment at 25 °C, followed by conducting
463 the same experiment at 45 °C using the same membrane. To assess the reversibility of the thermal
464 response, the membrane was subsequently cooled down to 25 °C and the MWCO measurement
465 was repeated. The MWCO data, which usually exhibits a sigmoidal trend, was fitted by using the
466 Boltzmann sigmoidal equation, Eq. (9). This equation includes four parameters, namely A_1 , A_2 , x_0 ,

467 and m , which correspond to the initial value, final value, center value, and slope at the midpoint,
468 respectively.

469
$$y = A_2 + \frac{(A_1 - A_2)}{1 + e^{\frac{(x - x_0)}{m}}} \quad (9)$$

470 As depicted in Fig. 6, the MWCO of the membrane can be altered reversibly from 1600 to 2400
471 Da by increasing the temperature from 25 to 45 °C. Hernández et al.⁶⁶ suggested following
472 equation from regression of MWCO against the hydrodynamic radius of PEG:

473
$$\text{Pore size} = 0.12254 \times \text{MWCO}^{0.3931} \quad (10)$$


474 By considering the obtained MWCO values, therefore, an increase in temperature from 25 to 45
475 °C results in a change in pore size (i.e., pore diameter) from 2.2 to 2.6 nm which is around 18%.
476 The obtained pore sizes are smaller than the ones obtained for polyLLC membrane without AAc
477 in our previous work (2.5 and 3.2 nm at 25 and 45 °C, respectively),³² which correlates with the
478 permeability results.³² Additionally, the hydrodynamic radius of PEG within the investigated range
479 of molecular weights (1–10 kDa) displays insignificant changes upon being heated from 25 to 45
480 °C.^{67,68} Thus, the temperature-dependent MWCO of the polyLLC membrane can be attributed to
481 its thermoresponsive nature. As previously reported,³² non-thermoresponsive commercial UF and
482 NF membranes with comparable pore size do not show alterations in MWCO upon increasing
483 temperature. Dang et al. showed about 15% increase in NF270 membranes pore size by changing
484 the temperature 20 to 40°C.⁶⁹ However, the reversibility of this change has not been verified.
485 The estimated pore size from MWCO analysis at 25 °C (2.2 nm) is smaller than the calculated
486 intermicellar distance of 4.2 nm (see Table 1) determined from SAXS data of the water-swollen
487 sample at the same temperature. A similar deviation is observed at 45 °C, with estimated pore sizes
488 of 2.6 nm compared to the intermicellar distance of 3.1 nm. One reason for the difference is the
489 assumptions made in our calculations based on SAXS data, specially complete segregation of
490 water and the polymer, with water existing only within the pores. In other words, a significant
491 portion of water is trapped between the polymer chains and is released when the membrane is
492 heated, due to the LCST of the polymer. However, the role of this factor is not significant at 45 °C
493 where most of the trapped water within polymer chains has already been released and water is
494 mainly present in the pores. Therefore, there must be an additional factor contributing to this
495 discrepancy. In our previous work,³² where we used a formulation without AAc, we observed that

496 the discrepancies in pore size estimation based on MWCO and SAXS were resolved by heating
497 the polymer to 45 °C. This suggests that the copolymerized AAc in the polymer network could be
498 the other factor contributing to water holdup within polymer chains at 45 °C.

499 Fig. 6 presents the rejection of BSA, lysozyme, DR23, and DR80 for further evaluation of the
500 thermoresponsiveness of the produced membrane. A rejection of over ~85% is observed for BSA
501 and lysozyme, with no significant variation in rejection upon changing temperature. This can be
502 attributed to their large molecular size (~7 nm for BSA⁷⁰ and ~3.2 nm for lysozyme¹⁷), which
503 surpasses the pore size of the membrane at various temperatures.

504 Fig. 6 illustrates that the membrane rejects over 90% of DR23 and DR80 at 25 °C. It is well-known
505 that these dyes, which have a molecular size of ~1 nm, can form clusters larger than 1 nm in
506 water.⁷¹ As such, the synthesized polyLLC membrane can efficiently reject them at 25 °C. Due to
507 the passage of dye clusters upon increasing the temperature to 45 °C, the rejection of DR23 and
508 DR80 decreases to less than 80% and 85%, respectively. The temperature-dependent changes in
509 the rejection of these dyes are less significant compared to the membrane without AAc in its
510 formulation,³² which is attributed to the smaller pore size of the membrane containing AAc at 45
511 °C. The presence of electrostatic repulsions between the COO⁻ group of copolymerized AAc and
512 the sulfate groups of the dyes may also contribute to the observed differences in rejection values.
513 Overall, the studied polyLLC membranes, with or without AAc in formulation,³² are capable of
514 expanding their pores at 45 °C, which allows the passage of dye clusters,⁷¹ leading to lower
515 rejection. The reversibility of the change in dye rejection can be observed in Fig. 6.

516

517

518 **Fig. 6.** (a) A supported polyLLC membrane with a circular cut and (b) typical cross-sectional SEM image
 519 of the membrane. Cyclical changes of (c) thickness-normalized flux and (d) permeability with changes in
 520 temperature. (e) MWCO and (f) rejection of BSA, lysozyme, DR23, and DR80 measured at 25 °C, after
 521 increasing the temperature to 45 °C, and after cooling back down to 25 °C. All rejection tests were done
 522 at 30 psi.

523

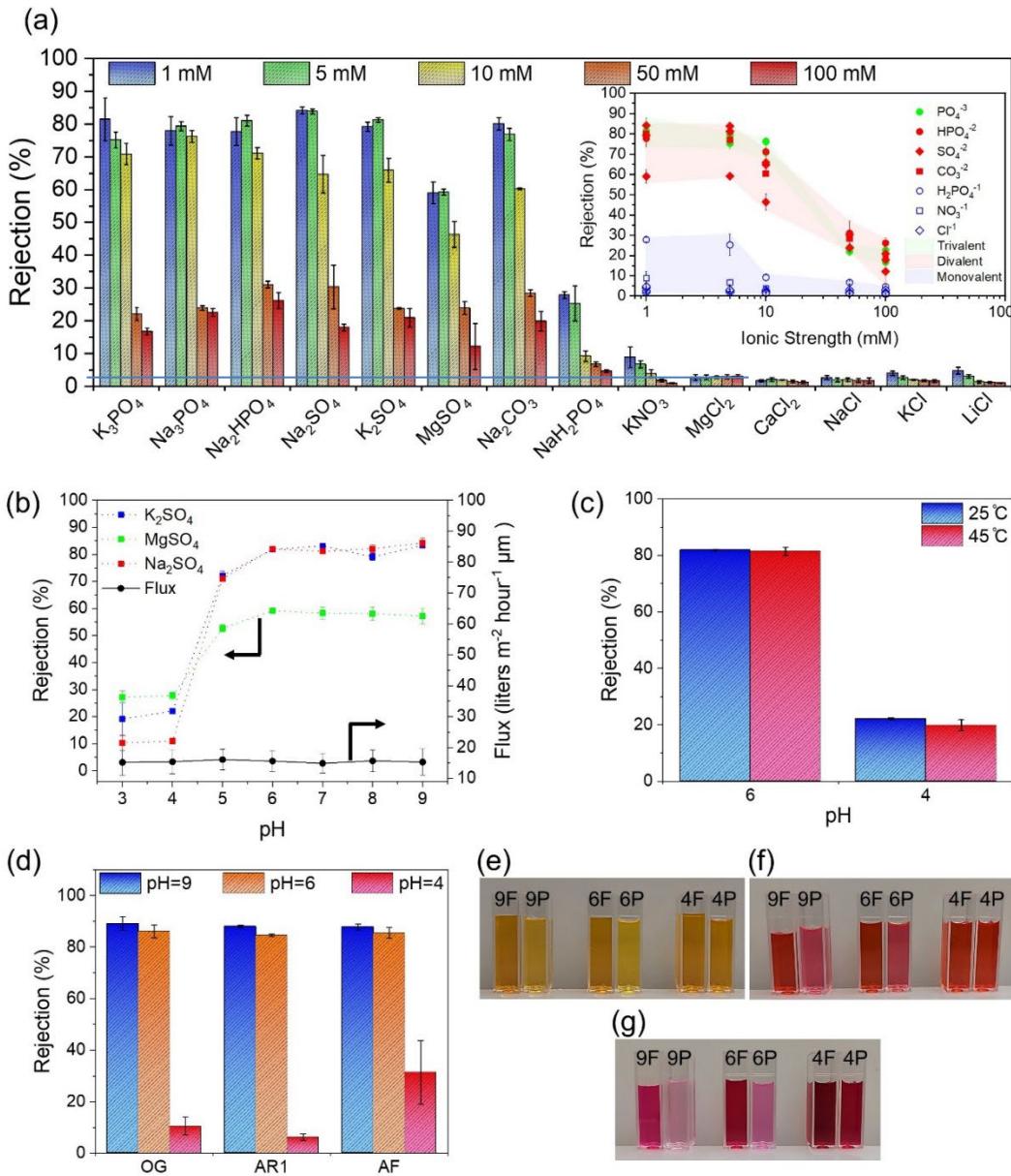
524 To evaluate the salt rejection capability of the H₁-structured NF membrane, we performed a single
 525 salt rejection experiment using different salts containing monovalent, divalent, and trivalent ions.

526 Aqueous solutions of these salts (without adjusting the pH) were prepared at ionic strengths of 1,
527 5, 10, 50, and 100 mM and were passed through the membrane. The results are shown in Fig. 7a,
528 indicating that the membrane exhibits higher rejection for divalent and trivalent species compared
529 to monovalent ones. Additionally, the rejection decreases as the ionic strength is increased.
530 The separation of ionic species by NF membranes is typically influenced by three primary
531 mechanisms: size-exclusion, solution diffusion, and electrostatic interactions.⁴ In membranes
532 where the pore size is larger than the hydrated diameter of the ions, the primary controlling factor
533 in separation is the electrostatic repulsion due to the electrical double layer being larger than the
534 pore diameter.¹³ In our membrane, separation mainly occurs based on the electrostatic repulsions
535 between the COO^- group of copolymerized AAc and the anion of the salt. Based on the
536 electroneutrality principle, therefore, the cation of the salt is also rejected to maintain the neutral
537 ionic conditions on both sides of the membrane. Consequently, the rejection is higher for divalent
538 and trivalent species since they induce stronger electrostatic interactions. With an increase in salt
539 content (ionic strength), electrostatic screening reduces the electrical double layer thickness
540 (Debye length), leading to lower rejection. Debye length, κ^{-1} , can be calculated theoretically using
541 following equation:

$$542 \quad \kappa^{-1} = \sqrt{\frac{\epsilon_r \epsilon_0 R T}{2 F^2 I}} \quad (11)$$

543 Where ϵ_r , ϵ_0 , R , T , F and I are dielectric constant (with a value of 78.5), permittivity of the vacuum
544 (equal to 8.85×10^{-12} C/V.m), gas constant (measuring 8.314 C.V/mol.K), absolute temperature (at
545 298 K), Faraday constant (at 9.65×10^4 C/mol) and ionic strength of the solution, respectively.⁷²
546 By employing this formula, one can determine Debye lengths of 9.6, 4.3, 3, 1.3, and 0.96 nm for
547 ionic strengths of 1, 5, 10, 50, and 100 mM, respectively. When the ionic strength is less than 50
548 mM, the calculated Debye length surpasses the size of the membrane pores, aligning with the
549 observed higher salt rejection values. Conversely, for ionic strengths of 50 and 100 mM, the Debye
550 length notably diminishes, falling within the range of the membrane pore size, resulting in
551 decreased rejection. It should be noted that this behavior is mainly controlled by the electric
552 exclusion mechanism, which can be engineered by changing the size of head and tail of the
553 surfactant to achieve sub-nanometer pore size.⁵
554 With an increase in salt content (ionic strength), electrostatic screening reduces the electrical
555 double layer thickness, leading to lower rejection. As shown in the inset of Fig. 7a, MgSO_4 exhibits

556 lower rejection at low ionic strengths compared to the salts containing the same anion. Such
557 behavior can be attributed to the stronger electrostatic screening effect caused by the higher charge
558 density of magnesium ions (more than 10 times) when compared to sodium and potassium
559 cations.⁷³ Moreover, the membrane exhibits limited rejection for salts containing chloride ion
560 compared to sulfate, which enables the selective separation of anions such as sulfate over chloride.
561 The selectivity can be calculated using the following equation,³⁷ in which selectivity of higher than
562 1 shows higher sulfate rejection:

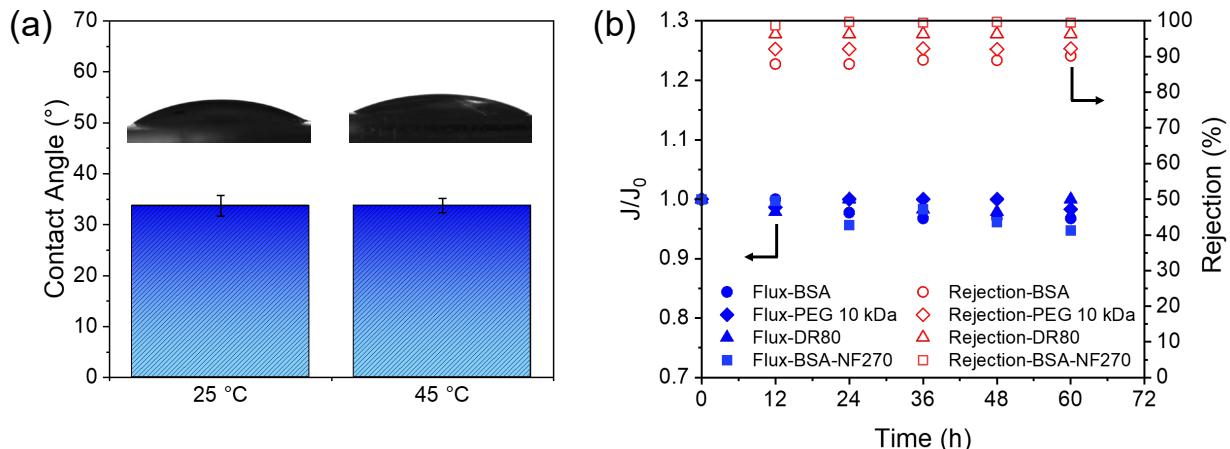

$$563 \quad \alpha_{Cl^+/SO_4^-} = \frac{c_{p,Cl^+}/c_{f,Cl^+}}{c_{p,SO_4^-}/c_{f,SO_4^-}} = \frac{100-r_{Cl^+}}{100-r_{SO_4^-}} \quad (12)$$

564 Considering magnesium as cation, the selectivity of sulfate over chloride of polyLLC membranes
565 is about 2.38, which is comparable with NF270 selectivity of 3.48 for the same salts (Fig. S3).
566 To test the pH-dependent rejection capability of the polyLLC membrane for ionic species, we
567 prepared aqueous solutions of Na₂SO₄, K₂SO₄, and MgSO₄ with an ionic strength of 5 mM at
568 different pH values and passed them through the membrane. As typical experiment, the permeate
569 flux of K₂SO₄ was also continuously monitored. Fig. 7b demonstrates that the rejection for the
570 tested salts (e.g., Na₂SO₄, K₂SO₄, and MgSO₄) is high and steady in neutral and alkaline solutions,
571 but significantly decreases when the pH drops to 4. Moreover, the consistent flux observed at
572 various pH values suggests that the pore size of the membrane does not change with pH. This
573 finding is in agreement with the SAXS data (see Fig. 5), which demonstrates unnoticeable
574 structural variation in the polyLLC at different pH values. Thus, the change in rejection with pH
575 can be attributed to the isoelectric point of COOH of copolymerized AAc, which is approximately
576 4.5.⁷⁴ As a result, when the pH drops below 4, COOH groups on the polymer chains become
577 protonated, leading to weakened electrostatic repulsion and subsequently lower rejection. As a
578 control experiment, the rejection of same salts at different pH was measured using NF270
579 membranes. Fig. S4 shows that although the rejection changes with pH, there is no clear trend that
580 one can conclude NF270 is a pH responsive membrane.

581 To further investigate the pH response, we passed aqueous solutions containing 500 ppm of
582 different anionic dyes through the membrane at different pH values (4, 6, and 9). To minimize the
583 effect of size-exclusion by the membrane, dyes including OG, AF, and AR1 were selected for this
584 experiment which have molecular sizes much smaller than the pore size of the membrane. We did
585 not employ DR23 and DR80 in this test as they can be separated by the membrane through size-

586 exclusion. The results obtained from the experiment (Fig. 7d-g) demonstrate that at pH values of
587 6 and 9, a rejection close to 85% is observed for all the dyes. In contrast, when the pH is set at 4,
588 the rejection drops to 6%, 10%, and 30% for AR1, OG, and AF, respectively. As control
589 experiment, we also tested the OG rejection performance of the commercially available NF270
590 membrane at different pH values. Fig. S5 confirms that the rejection of NF270 remains constant
591 regardless of the pH change, as the separation is primarily dependent on size-exclusion due to the
592 smaller pore size of NF270 (~0.8 nm).⁷⁵ The outcomes of these experiments verify that the
593 polyLLC membrane has pH-responsive separation of ionic species although it does not experience
594 any structural changes due to the change in pH.

595 To assess whether thermoresponsiveness affects pH-dependent selectivity for ionic species, we
596 conducted rejection experiments for K_2SO_4 while varying both pH and temperature
597 simultaneously. The results (Fig. 7c) demonstrate that the rate of salt rejection remains constant at
598 both tested pH values despite a change in temperature from 25 to 45 °C. This indicates that altering
599 the pore size with temperature within the studied range has negligible effect on the rejection of
600 ionic species driven by electrostatic repulsion. This outcome is somewhat expected as the polyLLC
601 membrane does not reject studied ions by size-exclusion. Furthermore, at the temperature of 45
602 °C, the membrane pore size, which is ~2.6 nm from SAXS measurements and MWCO analysis, is
603 still smaller than the computed Debye length of 4.3 nm for an ionic strength of 5 mM. This
604 observation provides additional confirmation that such pore expansion resulting from the
605 membrane thermal response has negligible impact on the membrane ability to reject ionic species.


606

607 **Fig. 7.** (a) The results of single salt rejection experiments are presented for different salts and
 608 concentrations. The range of rejection observed for different anions is indicated by the shaded areas in the
 609 inset. (b) The rejection of different dissolved salts varies with pH. The membrane flux (for K₂SO₄) at
 610 different pH values is also presented in the figure. (c) The variation of K₂SO₄ rejection is demonstrated in
 611 response to changes in temperature and pH. (d) The pH-dependent rejection for different anionic dyes is
 612 displayed. Photos of the feed and permeate at different pH values are provided for (e) OG, (f) AR1, and
 613 (g) AF. In these photos, the pH value (9, 6, or 4) is indicated by a number and the letter indicates whether
 614 it is feed (F) or permeate (P). It should be noted that the color of the feed for AF changes as the pH is
 615 altered since this dye is a pH indicator.

616

617 **3.2.3. Contact angle and fouling resistance**

618 Fouling is a major challenge in membrane separation processes as it can lead to reduced membrane
 619 performance and lifespan. A membrane is particularly susceptible to fouling when it is utilized for
 620 filtering feed streams containing species such as proteins, bacteria, and viruses.⁷⁶ Increasing the
 621 surface hydrophilicity of membranes is a key strategy for mitigating fouling.⁷⁷ This occurs because
 622 a strongly adhered hydration layer forms on the membrane surface, making it thermodynamically
 623 unfavorable for impurities to replace the water molecules. Therefore, we evaluated the surface
 624 hydrophilicity of the polyLLC membrane by measuring its water contact angle.⁷⁷ The results (Fig.
 625 8a) show an average contact angle of 33° for the polyLLC membrane when swollen at 25 to 45
 626 °C. This suggests that the membrane has a highly hydrophilic surface, which can effectively
 627 enhance its resistance to fouling.

628

629 **Fig. 8.** (a) The contact angle of the polyLLC membrane when swelled with water at 25 and 45 °C. (b) The
 630 evolution of the ratio of membrane flux at a given time (J) to the initial flux with DI water ($J_0 \approx$
 631 $0.4 \text{ Lm}^{-2} \text{h}^{-1}$ for polyLLC membranes and $0.35 \text{ Lm}^{-2} \text{h}^{-1}$ for NF270 membranes) represented by filled
 632 symbols and rejection of various solutes represented by open symbols for the polyLLC and NF270
 633 membranes. The first three data sets in the legend of (b) are for polyLLC membrane.

634

635 We assessed the fouling resistance using the same procedure outlined in our previous work.³² In
 636 brief, we passed solutions of three different species through the membrane. The filtration setup
 637 was kept at 25°C for a period of 60 h while the flux was measured at 12-h intervals. We also
 638 monitored the rejection with time to ensure that the membrane was performing consistently. As

639 demonstrated in Fig. 8b, the membrane flux decreased by less than 4% after 60 h, indicating
640 exceptional resistance to fouling, which can be attributed to the highly hydrophilic surface of the
641 membrane. Comparable findings were reported for polyLLC membrane without AAc in our
642 previous work.³² Additionally, the constant rejection confirms the reliable and consistent
643 performance of the polyLLC membrane. It is important to note that the membrane is expected to
644 exhibit similar fouling resistance at 45 °C due to its comparable surface hydrophilicity to that
645 observed at 25 °C (with the same contact angle of 33°).

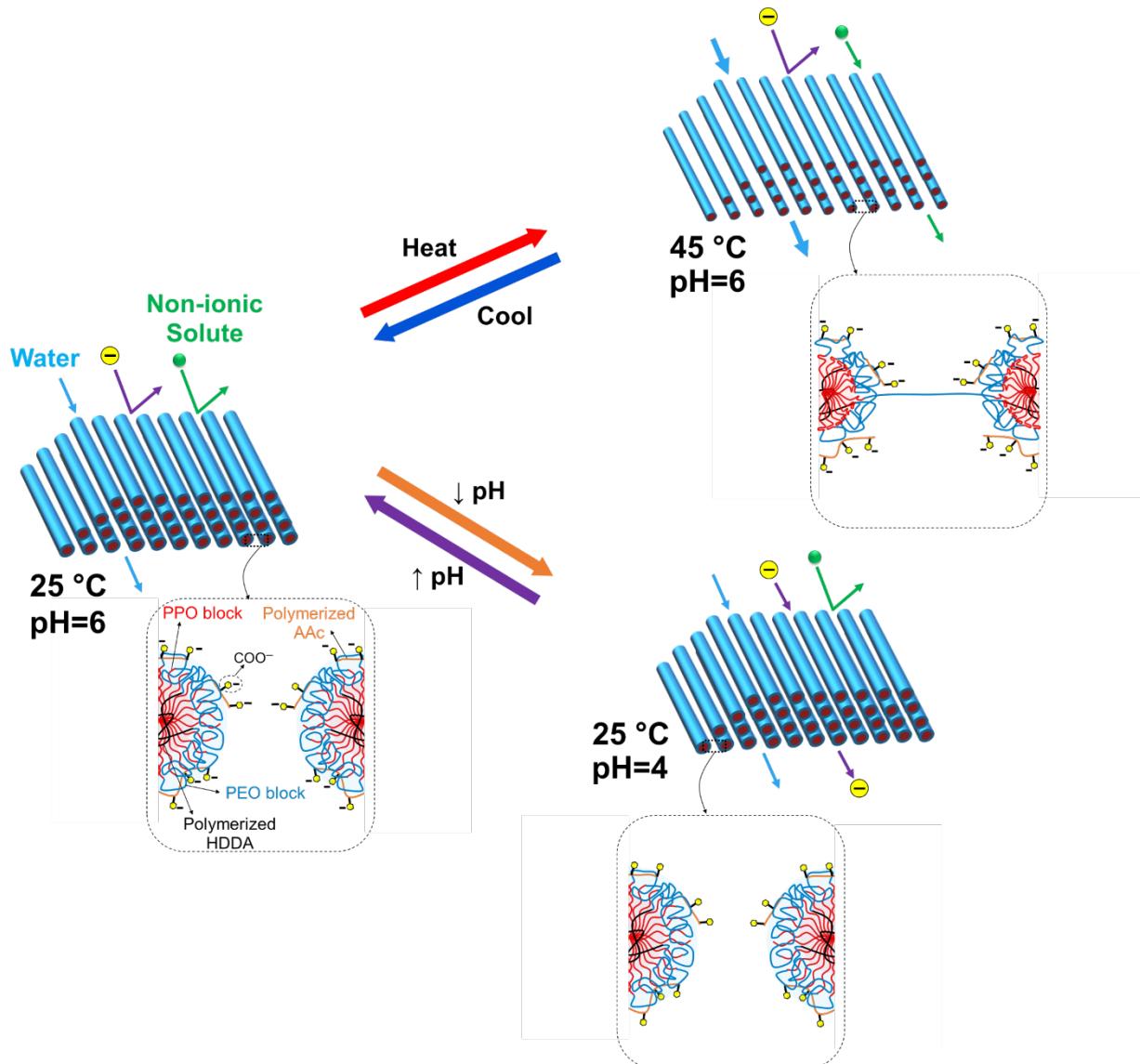
646 The highest flux decline is observed for rejection of BSA, which is known by its extensive fouling
647 behavior and have been used in many studies to test fouling resistance of membranes.^{78,79} As a
648 control experiment, fouling behavior of NF270 for the same concentration of BSA is also
649 monitored. Since the flux of NF270 is higher than polyLLC membrane, the pressure is decreased
650 to reach the same flux, avoiding differences in internal fouling. Overall, NF270 membrane shows
651 higher flux decline than polyLLC membrane. It is worth mentioning that membranes with charged
652 groups have the ability to recover flux after being fouled with BSA. The overall charge of BSA
653 can change from positive to negative by changing the pH from below 4.8 to higher values. Thus,
654 altering the pH of the solution for membranes with charged groups can affect the fouling
655 propensity of the membranes.⁸⁰

656 We also study the BSA, DR80, and PEG 10 kDa adsorption of the polyLLC after exchanging the
657 IL with water (i.e., water swollen polyLLC sample), which mimics the final membrane condition.
658 The purpose of this measurement is to make sure that rejection of solutes shown in Fig. 8 after 60
659 h is not due to the adsorption. The amount of polyLLC placed in the solution is 0.3 g/L, which is
660 the same as the ratio of actual membrane in the cell to 250 ml of solution. The concentrations of
661 solutes are the same as used in Fig. 8. As can be seen in Fig. S6, no significant adsorption is
662 observed at 33°C for different solutes after 60 h.

663

664 **3.3. Mechanisms of thermal and pH response**

665 Fig. 9 illustrates the thermo- and pH-responsiveness mechanisms of the polyLLC membrane. By
666 increasing temperature, the chemically bonded polymer network de-swells, increasing the
667 intermicellar distance, resulting in larger pore sizes. De-swelling is triggered by the LCST of the
668 poloxamer, which makes the PPO block hydrophobic. It is worth noting that such changes in the
669 polymer structure are reversible upon rehydration through cooling the system down to 25 °C.


670 The polyLLC membrane exhibits pH-responsiveness when the pH of the feed solution is lowered
671 to 4, which is close to the isoelectric point of copolymerized AAc. At this pH, there is a weak
672 electrostatic repulsion between the membrane and the ionic solute due to the fact that COOH group
673 on polymer chains become protonated. Thus, as the membrane separates ionic species primarily
674 based on electrostatic repulsion, the rejection decreases considerably.

675

676 **4. CONCLUSION**

677 In this research, for the first time, we demonstrate the creation of an NF membrane with thermo-
678 and pH-responsive 3D transport pathway using H_1 structure LLC as the template. This membrane
679 has the capability to modify the separation characteristics in response to changes in temperature
680 and pH. The formulation of the membrane includes P84DA, which acts as both the monomer and
681 structure-directing amphiphile and is also responsible for changes in membrane pore size with
682 temperature. Additionally, AAc was copolymerized with P84DA in the template, thus, facilitating
683 ion separation through Donnan exclusion and imparting pH-responsive behavior. The thickness-
684 normalized flux and membrane MWCO increased from 16 to 31 liters m^{-2} hour $^{-1}$ μ m and from
685 1600 to 2400 Da by raising the temperature from 25 to 45 °C, respectively. Additionally, the
686 membrane demonstrates exceptional resistance to fouling by various solutes due to its highly
687 hydrophilic surface. Furthermore, the developed membrane exhibits excellent performance in
688 removing dissolved trivalent and divalent salts at neutral and alkaline pH levels, and its ion
689 rejection capability can be turned off by lowering the feed pH to 4. We also observe remarkable
690 sulfate ion selectivity over chloride, which is ideal for salt fractionation and selective salt
691 separation applications. Another potential application is separation of uncharged from charged
692 species by leveraging the pH responsiveness capability of these membranes. The main purpose of
693 this study is to present a new framework for membrane fabrication in which LLC templated
694 membranes could offer pH-responsiveness by incorporating the charged comonomer in the
695 precursor. The separation performance can be adjusted by changing charged comonomer and
696 surfactant to control the electrical and size exclusion mechanisms, respectively.

697

698

699 **Fig. 9.** Schematic illustration of thermo- and pH-responsiveness mechanisms of the polyLLC membrane.

700

701 SUPPORTING INFORMATION

702 Schematic of Pluronic P84 diacrylation reaction and ^1H NMR results for P84DA; structural
 703 changes of the mesophase under a heating-cooling cycle; rejection performance of commercially
 704 available NF270 membranes including: chloride/sulfate selectivity in the presence of magnesium
 705 as a cation without adjusting pH, rejection of sulfate salts at different pH, and rejection of OG at
 706 different pH; adsorption of BSA, DR80, and PEG 10 kDa on mesophase after exchanging the IL
 707 with water.

708

709 **ACKNOWLEDGEMENTS**

710 YS, SMT, and RF would like to thank the support by the National Science Foundation (NSF) under
711 grant no. 1840871 and 2212894. This work was performed, in part, at the Center for Integrated
712 Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy
713 (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal
714 opportunity employer, is managed by Triad National Security, LLC for the U.S. DOE's NNSA,
715 under contract 89233218CNA000001.

716

717 **CONFLICT OF INTEREST**

718 The authors declare that they have no conflict of interest.

719

720 **REFERENCES**

721 (1) Wang, K.; Wang, X.; Januszewski, B.; Liu, Y.; Li, D.; Fu, R.; Elimelech, M.; Huang, X. Tailored Design
722 of Nanofiltration Membranes for Water Treatment Based on Synthesis-Property-Performance
723 Relationships. *Chemical Society Reviews*. 2022, pp 672–719.
724 <https://doi.org/10.1039/d0cs01599g>.

725 (2) Ahmad, N. N. R.; Ang, W. L.; Teow, Y. H.; Mohammad, A. W.; Hilal, N. Nanofiltration Membrane
726 Processes for Water Recycling, Reuse and Product Recovery within Various Industries: A Review.
727 *J. Water Process Eng.* **2022**, *45*, 102478. <https://doi.org/10.1016/j.jwpe.2021.102478>.

728 (3) Roy, Y.; Lienhard, J. H. A Framework to Analyze Sulfate: Versus Chloride Selectivity in
729 Nanofiltration. *Environ. Sci. Water Res. Technol.* **2019**, *5* (3), 585–598.
730 <https://doi.org/10.1039/c8ew00847g>.

731 (4) Lu, D.; Yao, Z.; Jiao, L.; Waheed, M.; Sun, Z.; Zhang, L. Separation Mechanism, Selectivity
732 Enhancement Strategies and Advanced Materials for Mono-/Multivalent Ion-Selective
733 Nanofiltration Membrane. *Advanced Membranes*. 2022, p 100032.
734 <https://doi.org/10.1016/j.advmem.2022.100032>.

735 (5) Zhang, Y.; Kim, D.; Dong, R.; Feng, X.; Osuji, C. O. Tunable Organic Solvent Nanofiltration in Self-
736 Assembled Membranes at the Sub-1 Nm Scale. *Sci. Adv.* **2022**, *8* (11).
737 <https://doi.org/10.1126/sciadv.abm5899>.

738 (6) Cao, Y.; Chen, G.; Wan, Y.; Luo, J. Nanofiltration Membrane for Bio-Separation: Process-Oriented
739 Materials Innovation. *Engineering in Life Sciences*. June 20, 2021, pp 405–416.
740 <https://doi.org/10.1002/elsc.202000100>.

741 (7) Dong, X.; Al-Jumaily, A.; Escobar, I. C. Investigation of the Use of a Bio-Derived Solvent for Non-
742 Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes. *Membranes*
743 (*Basel*). **2018**, *8* (2), 23. <https://doi.org/10.3390/membranes8020023>.

744 (8) Mohamat, R. Fabrication of Nanofiltration Membrane Utilising Surfactant Via Non-Solvent

745 Induced Phase Separation Method. *SPEKTRA J. Kaji. Pendidik. Sains* **2019**, 5 (2), 129.
746 <https://doi.org/10.32699/spektra.v5i2.108>.

747 (9) Zhang, L.; Zhang, R.; Ji, M.; Lu, Y.; Zhu, Y.; Jin, J. Polyamide Nanofiltration Membrane with High
748 Mono/Divalent Salt Selectivity via Pre-Diffusion Interfacial Polymerization. *Journal of Membrane
749 Science*. October 2021, p 119478. <https://doi.org/10.1016/j.memsci.2021.119478>.

750 (10) Li, X.; Cao, Y.; Yu, H.; Kang, G.; Jie, X.; Liu, Z.; Yuan, Q. A Novel Composite Nanofiltration
751 Membrane Prepared with PHGH and TMC by Interfacial Polymerization. *J. Memb. Sci.* **2014**, 466,
752 82–91. <https://doi.org/10.1016/j.memsci.2014.04.034>.

753 (11) Yuan, S.; Zhang, G.; Zhu, J.; Mamrol, N.; Liu, S.; Mai, Z.; Van Puyvelde, P.; Van Der Bruggen, B.
754 Hydrogel Assisted Interfacial Polymerization for Advanced Nanofiltration Membranes. *J. Mater.
755 Chem. A* **2020**, 8 (6), 3238–3245. <https://doi.org/10.1039/c9ta12984g>.

756 (12) Kahrs, C.; Schwellenbach, J. Membrane Formation via Non-Solvent Induced Phase Separation
757 Using Sustainable Solvents: A Comparative Study. *Polymer (Guildf)*. **2020**, 186, 122071.
758 <https://doi.org/10.1016/j.polymer.2019.122071>.

759 (13) Zhang, Y.; Dong, R.; Gabinet, U. R.; Poling-Skutvik, R.; Kim, N. K.; Lee, C.; Imran, O. Q.; Feng, X.;
760 Osuji, C. O. Rapid Fabrication by Lyotropic Self-Assembly of Thin Nanofiltration Membranes with
761 Uniform 1 Nanometer Pores. *ACS Nano* **2021**, 15 (5), 8192–8203.
762 <https://doi.org/10.1021/acsnano.1c00722>.

763 (14) Zhang, R.; Zhu, Y.; Zhang, L.; Lu, Y.; Yang, Z.; Zhang, Y.; Jin, J. Polyamide Nanofiltration
764 Membranes from Surfactant-Assembly Regulated Interfacial Polymerization: The Effect of Alkyl
765 Chain. *Macromol. Chem. Phys.* **2021**, 222 (20). <https://doi.org/10.1002/macp.202100222>.

766 (15) Hyde, S. T. Identification of Lyotropic Liquid Crystalline Mesophases. In *Handbook of Applied
767 Surface and Colloid Chemistry*; John Wiley & Sons New York, 2001; Vol. 2, pp 299–332.

768 (16) Saadat, Y.; Imran, O. Q.; Osuji, C. O.; Foudazi, R. Lyotropic Liquid Crystals as Templates for
769 Advanced Materials. *Journal of Materials Chemistry A*. 2021, pp 21607–21658.
770 <https://doi.org/10.1039/d1ta02748d>.

771 (17) Feng, X.; Imran, Q.; Zhang, Y.; Sixdenier, L.; Lu, X.; Kaufman, G.; Gabinet, U.; Kawabata, K.;
772 Elimelech, M.; Osuji, C. O. Precise Nanofiltration in a Fouling-Resistant Self-Assembled
773 Membrane with Water-Continuous Transport Pathways. *Sci. Adv.* **2019**, 5 (8).
774 <https://doi.org/10.1126/sciadv.aav9308>.

775 (18) Dischinger, S. M.; Rosenblum, J.; Noble, R. D.; Gin, D. L.; Linden, K. G. Application of a Lyotropic
776 Liquid Crystal Nanofiltration Membrane for Hydraulic Fracturing Flowback Water: Selectivity and
777 Implications for Treatment. *J. Memb. Sci.* **2017**, 543, 319–327.
778 <https://doi.org/10.1016/j.memsci.2017.08.028>.

779 (19) McLaughlin, J. R.; Abbott, N. L.; Guymon, C. A. Responsive Superabsorbent Hydrogels via
780 Photopolymerization in Lyotropic Liquid Crystal Templates. *Polymer (Guildf)*. **2018**, 142, 119–126.
781 <https://doi.org/10.1016/j.polymer.2018.03.016>.

782 (20) Pindzola, B. A.; Jin, J.; Gin, D. L. Cross-Linked Normal Hexagonal and Bicontinuous Cubic
783 Assemblies via Polymerizable Gemini Amphiphiles. *J. Am. Chem. Soc.* **2003**, 125 (10), 2940–2949.

784 https://doi.org/10.1021/ja0208106.

785 (21) Carter, B. M.; Wiesenauer, B. R.; Hatakeyama, E. S.; Barton, J. L.; Noble, R. D.; Gin, D. L. Glycerol-
786 Based Bicontinuous Cubic Lyotropic Liquid Crystal Monomer System for the Fabrication of Thin-
787 Film Membranes with Uniform Nanopores. *Chem. Mater.* **2012**, *24* (21), 4005–4007.
788 https://doi.org/10.1021/cm302027s.

789 (22) Gin, D. L.; Carter, B. M.; Wiesenauer, B. R.; Hatakeyama, E. S.; Noble, R. D.; Barton, J. L. Method
790 and Membrane for Nanoporous, Bicontinuous Cubic Lyotropic Liquid Crystal Polymer Membranes
791 That Enable Facile Film Processing and Pore Size Control. U.S. Patent Application No.
792 14/234,362., June 5, 2014.

793 (23) Zhou, M.; Nemade, P. R.; Lu, X.; Zeng, X.; Hatakeyama, E. S.; Noble, R. D.; Gin, D. L. New Type of
794 Membrane Material for Water Desalination Based on a Cross-Linked Bicontinuous Cubic
795 Lyotropic Liquid Crystal Assembly. *J. Am. Chem. Soc.* **2007**, *129* (31), 9574–9575.
796 https://doi.org/10.1021/ja073067w.

797 (24) Carter, B. M.; Wiesenauer, B. R.; Noble, R. D.; Gin, D. L. Thin-Film Composite Bicontinuous Cubic
798 Lyotropic Liquid Crystal Polymer Membranes: Effects of Anion-Exchange on Water Filtration
799 Performance. *J. Memb. Sci.* **2014**, *455*, 143–151. https://doi.org/10.1016/j.memsci.2013.12.056.

800 (25) Choi, J. Y.; Yun, T.; Kwak, S. Y. Two-Step Thermoresponsive Membrane with Tunable Separation
801 Properties and Improved Cleaning Efficiency. *J. Memb. Sci.* **2018**, *554*, 117–124.
802 https://doi.org/10.1016/j.memsci.2018.02.060.

803 (26) Saadat, Y.; Kim, K.; Foudazi, R. Two-Step Thermoresponsive Ultrafiltration Membranes from
804 Polymerization of Lyotropic Liquid Crystals. *ACS Appl. Polym. Mater.* **2022**, *4* (11), 8156–8165.
805 https://doi.org/10.1021/acsapm.2c01095.

806 (27) Zhao, X.; Su, Y.; Chen, W.; Peng, J.; Jiang, Z. PH-Responsive and Fouling-Release Properties of PES
807 Ultrafiltration Membranes Modified by Multi-Functional Block-like Copolymers. *J. Memb. Sci.*
808 **2011**, *382* (1–2), 222–230. https://doi.org/10.1016/j.memsci.2011.08.014.

809 (28) Sinha, M. K.; Purkait, M. K. Preparation and Characterization of Novel Pegylated Hydrophilic PH
810 Responsive Polysulfone Ultrafiltration Membrane. *J. Memb. Sci.* **2014**, *464*, 20–32.
811 https://doi.org/10.1016/j.memsci.2014.03.067.

812 (29) Fu, J.; Wang, X.; Ma, Z.; Wenming, H.; Li, J.; Wang, Z.; Wang, L. Photocatalytic Ultrafiltration
813 Membranes Based on Visible Light Responsive Photocatalyst: A Review. *Desalin. Water Treat.*
814 **2019**, *168*, 42–55. https://doi.org/10.5004/dwt.2019.24403.

815 (30) Xiang, T.; Lu, T.; Zhao, W. F.; Zhao, C. S. Ionic Strength- and Thermo-Responsive Polyethersulfone
816 Composite Membranes with Enhanced Antifouling Properties. *New J. Chem.* **2018**, *42* (7), 5323–
817 5333. https://doi.org/10.1039/c8nj00039e.

818 (31) Sinha, M. K.; Purkait, M. K. Preparation of a Novel Thermo Responsive PSF Membrane, with Cross
819 Linked PVCL-Co-PSF Copolymer for Protein Separation and Easy Cleaning. *RSC Adv.* **2015**, *5* (29),
820 22609–22619. https://doi.org/10.1039/c4ra13863e.

821 (32) Saadat, Y.; Tabatabaei, S. M.; Kim, K.; Foudazi, R. Thermoresponsive Antifouling Ultrafiltration
822 Membranes from Mesophase Templating. *J. Memb. Sci.* **2023**, *684*, 121861.

823 https://doi.org/10.1016/j.memsci.2023.121861.

824 (33) Zhu, Q.; Liu, Y.; Zuo, P.; Dong, Y.; Yang, Z.; Xu, T. An Isoporous Ion Exchange Membrane for
825 Selective Na⁺ Transport. *J. Memb. Sci.* **2022**, *659*, 120805.
826 https://doi.org/10.1016/j.memsci.2022.120805.

827 (34) Li, P.; Johnson, C.; Dyer, S. S.; Osuji, C. O.; Gin, D. L. A PH- and Light-Responsive Nanoporous
828 Lyotropic Gyroid Polymer Network. *Adv. Mater. Interfaces* **2023**, *10* (5), 2201761.
829 https://doi.org/10.1002/admi.202201761.

830 (35) Himstedt, H. H.; Marshall, K. M.; Wickramasinghe, S. R. PH-Responsive Nanofiltration Membranes
831 by Surface Modification. *J. Memb. Sci.* **2011**, *366* (1–2), 373–381.
832 https://doi.org/10.1016/j.memsci.2010.10.027.

833 (36) Wu, C.; Zhao, L.; Zhang, Y. PH-Responsive Nanofiltration Membranes Based on Porphyrin
834 Supramolecular Self-Assembly by Layer-by-Layer Technique. *RSC Adv.* **2017**, *7* (75), 47397–47406.
835 https://doi.org/10.1039/c7ra08568k.

836 (37) Himstedt, H. H.; Du, H.; Marshall, K. M.; Wickramasinghe, S. R.; Qian, X. PH Responsive
837 Nanofiltration Membranes for Sugar Separations. *Ind. Eng. Chem. Res.* **2013**, *52* (26), 9259–9269.
838 https://doi.org/10.1021/ie400982p.

839 (38) Weng, X. D.; Bao, X. J.; Jiang, H. D.; Chen, L.; Ji, Y. L.; An, Q. F.; Gao, C. J. PH-Responsive
840 Nanofiltration Membranes Containing Carboxybetaine with Tunable Ion Selectivity for Charge-
841 Based Separations. *J. Memb. Sci.* **2016**, *520*, 294–302.
842 https://doi.org/10.1016/j.memsci.2016.08.002.

843 (39) Setiawan, O.; Huang, Y. H.; Abdi, Z. G.; Hung, W. S.; Chung, T. S. PH-Tunable and PH-Responsive
844 Polybenzimidazole (PBI) Nanofiltration Membranes for Li⁺/Mg²⁺ Separation. *J. Memb. Sci.* **2023**,
845 *668*, 121269. https://doi.org/10.1016/j.memsci.2022.121269.

846 (40) Tan, S.; Saito, K.; Hearn, M. T. Stimuli-Responsive Polymeric Materials for Separation of
847 Biomolecules. *Curr. Opin. Biotechnol.* **2018**, *53*, 209–223.
848 https://doi.org/10.1016/j.copbio.2018.02.011.

849 (41) Hatakeyama, E. S.; Gabriel, C. J.; Wiesnauer, B. R.; Lohr, J. L.; Zhou, M.; Noble, R. D.; Gin, D. L.
850 Water Filtration Performance of a Lyotropic Liquid Crystal Polymer Membrane with Uniform,
851 Sub-1-Nm Pores. *J. Memb. Sci.* **2011**, *366* (1–2), 62–72.
852 https://doi.org/10.1016/j.memsci.2010.09.028.

853 (42) López-Barrón, C. R.; Chen, R.; Wagner, N. J.; Beltramo, P. J. Self-Assembly of Pluronic F127
854 Diacrylate in Ethylammonium Nitrate: Structure, Rheology, and Ionic Conductivity before and
855 after Photo-Cross-Linking. *Macromolecules* **2016**, *49* (14), 5179–5189.
856 https://doi.org/10.1021/acs.macromol.6b00205.

857 (43) Cellesi, F.; Tirelli, N.; Hubbell, J. A. Materials for Cell Encapsulation via a New Tandem Approach
858 Combining Reverse Thermal Gelation and Covalent Crosslinking. *Macromol. Chem. Phys.* **2002**,
859 *203* (10–11), 1466–1472. https://doi.org/10.1002/1521-3935(200207)203:10/11<1466::AID-
860 MACP1466>3.0.CO;2-P.

861 (44) Qavi, S.; Lindsay, A. P.; Firestone, M. A.; Foudazi, R. Ultrafiltration Membranes from

900 (57) Chatterjee, S.; Hui, P. C. leung; Kan, C. wai; Wang, W. Dual-Responsive (PH/Temperature)
901 Pluronic F-127 Hydrogel Drug Delivery System for Textile-Based Transdermal Therapy. *Sci. Rep.*
902 **2019**, *9* (1), 11658. <https://doi.org/10.1038/s41598-019-48254-6>.

903 (58) Deliormanlı, A. M.; Türk, M. Flow Behavior and Drug Release Study of Injectable Pluronic F-127
904 Hydrogels Containing Bioactive Glass and Carbon-Based Nanopowders. *J. Inorg. Organomet.*
905 *Polym. Mater.* **2020**, *30* (4), 1184–1196. <https://doi.org/10.1007/s10904-019-01346-2>.

906 (59) Lee, C. F.; Tseng, H. W.; Bahadur, P.; Chen, L. J. Synergistic Effect of Binary Mixed-Pluronic
907 Systems on Temperature Dependent Self-Assembly Process and Drug Solubility. *Polymers (Basel)*.
908 **2018**, *10* (1), 105. <https://doi.org/10.3390/POLYM10010105>.

909 (60) Ijaz, Q. A.; Abbas, N.; Arshad, M. S.; Hussain, A.; Shahiq-uz-Zaman; Javaid, Z. Synthesis and
910 Evaluation of PH Dependent Polyethylene Glycol-Co-Acrylic Acid Hydrogels for Controlled Release
911 of Venlafaxine HCl. *J. Drug Deliv. Sci. Technol.* **2018**, *43*, 221–232.
912 <https://doi.org/10.1016/j.jddst.2017.10.010>.

913 (61) Chiu, H.-C.; Wu, A.-T.; Lin, Y.-F. Synthesis and Characterization of Acrylic Acid-Containing Dextran
914 Hydrogels. *Polymer (Guildf)*. **2001**, *42* (4), 1471–1479. [https://doi.org/10.1016/S0032-3861\(00\)00523-1](https://doi.org/10.1016/S0032-3861(00)00523-1).

916 (62) Silberberg-Bouhnik, M.; Ramon, O.; Ladyzhinski, I.; Mizrahi, S.; Cohen, Y. Osmotic Deswelling of
917 Weakly Charged Poly(Acrylic Acid) Solutions and Gels. *J. Polym. Sci. Part B Polym. Phys.* **1995**, *33*
918 (16), 2269–2279. <https://doi.org/10.1002/polb.1995.090331612>.

919 (63) Durpekova, S.; Di Martino, A.; Dusankova, M.; Drohsler, P.; Sedlarik, V. Biopolymer Hydrogel
920 Based on Acid Whey and Cellulose Derivatives for Enhancement Water Retention Capacity of Soil
921 and Slow Release of Fertilizers. *Polymers (Basel)*. **2021**, *13* (19), 3274.
922 <https://doi.org/10.3390/polym13193274>.

923 (64) Chen, Z.; Luo, J.; Hang, X.; Wan, Y. Physicochemical Characterization of Tight Nanofiltration
924 Membranes for Dairy Wastewater Treatment. *J. Memb. Sci.* **2018**, *547*, 51–63.
925 <https://doi.org/10.1016/j.memsci.2017.10.037>.

926 (65) Mänttäri, M.; Pekuri, T.; Nyström, M. NF270, a New Membrane Having Promising Characteristics
927 and Being Suitable for Treatment of Dilute Effluents from the Paper Industry. *J. Memb. Sci.* **2004**,
928 *242* (1–2), 107–116. <https://doi.org/10.1016/j.memsci.2003.08.032>.

929 (66) Hernández, S.; Porter, C.; Zhang, X.; Wei, Y.; Bhattacharyya, D. Layer-by-Layer Assembled
930 Membranes with Immobilized Porins. *RSC Adv.* **2017**, *7* (88), 56123–56136.
931 <https://doi.org/10.1039/c7ra08737c>.

932 (67) Chudoba, R.; Heyda, J.; Dzubiella, J. Temperature-Dependent Implicit-Solvent Model of
933 Polyethylene Glycol in Aqueous Solution. *J. Chem. Theory Comput.* **2017**, *13* (12), 6317–6327.
934 <https://doi.org/10.1021/acs.jctc.7b00560>.

935 (68) Özdemir, C.; Güner, A. Solution Thermodynamics of Poly(Ethylene Glycol)Water Systems. *J. Appl.*
936 *Polym. Sci.* **2006**, *101* (1), 203–216. <https://doi.org/10.1002/app.23191>.

937 (69) Dang, H. Q.; Price, W. E.; Nghiem, L. D. The Effects of Feed Solution Temperature on Pore Size
938 and Trace Organic Contaminant Rejection by the Nanofiltration Membrane NF270. *Sep. Purif.*

939 *Technol.* **2014**, *125*, 43–51. <https://doi.org/10.1016/j.seppur.2013.12.043>.

940 (70) Flecha, F. L. G.; Levi, V. Determination of the Molecular Size of BSA by Fluorescence Anisotropy.
941 *Biochem. Mol. Biol. Educ.* **2003**, *31* (5), 319–322.
942 <https://doi.org/10.1002/bmb.2003.494031050261>.

943 (71) Lin, J.; Ye, W.; Baltaru, M. C.; Tang, Y. P.; Bernstein, N. J.; Gao, P.; Balta, S.; Vlad, M.; Volodin, A.;
944 Sotto, A.; Luis, P.; Zydny, A. L.; Van der Bruggen, B. Tight Ultrafiltration Membranes for
945 Enhanced Separation of Dyes and Na₂SO₄ during Textile Wastewater Treatment. *J. Memb. Sci.*
946 **2016**, *514*, 217–228. <https://doi.org/10.1016/j.memsci.2016.04.057>.

947 (72) Khademi, M.; Barz, D. P. J. Structure of the Electrical Double Layer Revisited: Electrode
948 Capacitance in Aqueous Solutions. *Langmuir* **2020**, *36* (16), 4250–4260.
949 <https://doi.org/10.1021/acs.langmuir.0c00024>.

950 (73) Rayner-Canham, G.; Overton, T. *Descriptive Inorganic Chemistry*; Macmillan, 2003.

951 (74) Wiśniewska, M.; Urban, T.; Grządka, E.; Zarko, V. I.; Gun'ko, V. M. Comparison of Adsorption
952 Affinity of Polyacrylic Acid for Surfaces of Mixed Silica-Alumina. *Colloid Polym. Sci.* **2014**, *292* (3),
953 699–705. <https://doi.org/10.1007/s00396-013-3103-x>.

954 (75) Boo, C.; Wang, Y.; Zucker, I.; Choo, Y.; Osuji, C. O.; Elimelech, M. High Performance Nanofiltration
955 Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. *Environ.*
956 *Sci. Technol.* **2018**, *52* (13), 7279–7288. <https://doi.org/10.1021/acs.est.8b01040>.

957 (76) Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for Next-Generation Desalination and Water
958 Purification Membranes. *Nature Reviews Materials*. April 5, 2016, p 16018.
959 <https://doi.org/10.1038/natrevmats.2016.18>.

960 (77) Rana, D.; Matsuura, T. Surface Modifications for Antifouling Membranes. *Chem. Rev.* **2010**, *110*
961 (4), 2448–2471. <https://doi.org/10.1021/cr800208y>.

962 (78) Kelly, S. T.; Zydny, A. L. Mechanisms for BSA Fouling during Microfiltration. *J. Memb. Sci.* **1995**,
963 *107* (1–2), 115–127. [https://doi.org/10.1016/0376-7388\(95\)00108-O](https://doi.org/10.1016/0376-7388(95)00108-O).

964 (79) Mo, H.; Tay, K. G.; Ng, H. Y. Fouling of Reverse Osmosis Membrane by Protein (BSA): Effects of
965 PH, Calcium, Magnesium, Ionic Strength and Temperature. *J. Memb. Sci.* **2008**, *315* (1–2), 28–35.
966 <https://doi.org/10.1016/j.memsci.2008.02.002>.

967 (80) Hoffman, J. R.; Phillip, W. A. Dual-Functional Nanofiltration Membranes Exhibit Multifaceted Ion
968 Rejection and Antifouling Performance. *ACS Appl. Mater. Interfaces* **2020**, *12* (17), 19944–19954.
969 <https://doi.org/10.1021/acsami.0c03075>.

970

971

972