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Bacterial microcompartments (BMCs) are polyhedral structures
that segregate enzymatic cargo from the cytosol via encapsulation
within a protein shell. Unlike other biological polyhedra, such as
viral capsids and encapsulins, BMC shells can exhibit a highly
advantageous structural and functional plasticity, conforming to a
variety of anabolic (CO; fixation in carboxysomes) and catabolic
(nutrient assimilation in metabolosomes) roles. Consequently,
understanding the subunit properties and associated
protein—protein interaction processes that guide shell assembly
and function is a necessary step to fully harness BMCs as
modular, biotechnological nanomachines. Here, we describe the
recent insights into the dynamics of structural features of the key
BMC domain (Pfam00936)-containing proteins, which serve as a
structural template for BMC-H and BMC-T shell building blocks.

Addresses

" Los Alamos National Laboratory, Bioscience Division, Microbial and
Biome Sciences group, Los Alamos, NM, USA

2 MSU-DOE Plant Research Laboratory, Michigan State University, East
Lansing, MI 48824, USA

3 Environmental Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720, USA

4 Molecular Biophysics and Integrated Bioimaging Division, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720, USA

Corresponding author: Gonzalez-Esquer, Cesar R (crge@lanl.gov)

Current Opinion in Microbiology 2024, 80:102497

This review comes from a themed issue on Special section on
Bacterial Nanomachines

Edited by Martin Thanbichler and Susan Schlimpert

Available online xxxx
https://doi.org/10.1016/j.mib.2024.102497
1369-5274/© 2024 Published by Elsevier Ltd.

Introduction

Bacterial microcompartments (BMCs) are self-assembling
protein-based analogs to ecukaryotic organelles [1]. In
BMGCs, a defined fraction of cellular metabolism is orga-
nized into discrete particles and segregated from the cy-
tosol. BMCs achieve this by building a selectively

permeable protein shell that surrounds an enzymatic
‘cargo’. The function of a BMC is defined by the content
and biochemistry of the inner cargo and specifically its
‘signature enzyme’; the two widespread classes are called
carboxysomes and metabolosomes [2,3]. Carboxysomes are
anabolic BMCs with ribulose-1,5-bisphosphate carbox-
ylase/oxygenase (Rubisco) as its signature enzyme, and
they serve the role of carbon fixation in cyanobacteria and
some chemoautotrophic and phototrophic bacteria [4,5].
Metabolosomes are catabolic BMCs with functionally di-
verse signature enzymes, and they support the assimilation
of various niche metabolites in a range of bacterial phyla
[3]. Regardless of their function, all BMCs rely on the
formation of a structurally conserved, multimeric protein
shell that has evolutionary adapted to support the function
of the enzymatic core. Together, shell and core compo-
nents constitute a ‘metabolic module’ supported by ac-
cessory proteins encoded in the same genetic module
(operon) [6], which can be deployed and integrated into
heterologous hosts’ metabolism for biotechnological pur-
poses [7-16].

The shells of BMCs are polyhedral, composed of facets
made from the tessellation of self-assembling hexameric
(BMC-H) and trimeric (BMC-T) oligomers (one or two
Pfam00936 domains, respectively), and capped at the
vertices by the pentameric (BMC-P) proteins (con-
taining the Pfam03319 domain) [17-20] (Figure la).
Conserved assembly principles dictate that shell sub-
units associate uniformly in their facet ‘sidedness’ (i.e.
concave versus convex), which directly impacts the
permeability properties of the shell [21]. Additionally,
interaction with the shell interior is mediated by specific
protein regions — encapsulation peptides or scaffold
proteins [22-24]. The BMC architecture may invoke
analogies to viral capsids, but they are evolutionarily and
structurally distinct [25]. BMCs are also unique from
other protein polyhedra, like encapsulins [26-28], in that
they regularly demonstrate size and composition het-
erogeneity. In fully formed shells, the structure forms a
barrier between the cytosol and interior cargo that can
range from 20 to 400 nm in diameter. Alternative con-
figurations have been reported as well, particularly for
shell proteins expressed outside of their native context,
such as sheets, nanotubes, nanocones, rosettes, and
‘wiffle balls’ [29-33]. Overall, BMC shells demonstrate a
modular, structurally conserved, and tractable chassis
that can be engineered to support an array of
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The key proteins and interactions that guide shell assembly. (a) The shells of BMCs are composed of three classes of proteins: BMC-H (left), BMC-T
(center), and BMC-P (right). Both BMC-H and BMC-T make up BMC facets and utilize the Pfam00936 domain (colored blue), with BMC-T containing
two decoupled copies (colored teal). Meanwhile, BMC-P (Pfam03319, orange) occupy the vertex positions. All proteins are oriented with their concave
sides facing the viewer. Protein Data Bank (PDB) structures 5DJB [31], 5DIH [69], and 5V76 [17] (left to right) were used to generate this panel. (b) BMC
facets are composed of interlocking proteins that can be coplanar or bent relative to each other. The gray circled interfaces in (b) are visualized in (c);
these conformations maintain a specific hydrogen bonding network among their KAA motifs (K25, yellow) but differ in the position of a conserved

arginine (R78, orange) in the PRPH motif. Hydrogen bond distances among the KAA motif (dashed black lines) are maintained in both coplanar and
bent conformations. However, R78 can bridge the interface and dock into the adjacent hexamer, forming an interlock when coplanar, but it is flipped
out of position when bent. This displacement is visualized as the distance (red solid line) from the central guanidinium carbon of R78 to the backbone
oxygen of V29. The PDB structure 6N06 [35] was used to generate panels (b) and (c). All panels were visualized using PyMOL. (d) The KAA (yellow

highlight) and PRPH (orange highlight) motifs are broadly conserved across shell proteins from disparate organisms.

biochemically diverse functions. Notably, researchers are
interested in leveraging these qualities and developing
BMC platforms for biomanufacturing or enhanced
carbon fixation applications [34-38].

Here, we review the aspects of BMC shells where
structural flexibility impacts assembly, function, mor-
phology, and hence their eventual re-design efforts. We
define structural flexibility as any plasticity in the position
or interaction of BMC components relative to each other.
Mastering these structure—function relationships that
stem from structural flexibility is critical towards estab-
lishing BMCs of programmable size, shape, and cargo
capacity. Within this scope, interaction mechanisms in
BMC shells are reviewed and discussed in the context of
chimeric BMC shells, noncanonical shell architectures,
disordered termini, and other functional polymorphisms.

Areas of structural flexibility in
microcompartment shells

The bacterial microcompartment domain is tuned to
support an array of interactions

BMC shell assembly is supported by several key inter-
actions that are conserved among all classes of shell
proteins. Most critical among these are (1) shape com-
plementarity and (2) a specific hydrogen bonding net-
work supported by both the KAA and PRPH motifs
along the outer edge of each subunit [17]. These motifs
reside at the edge of the hexamer subunits, allowing
interface formation between those adjacent subunits
(Figure 1b). Utilization of an antiparallel hydrogen
bonding network formed by the KAA motif (Figure 1c)
is nearly universal between BMC-H and BMC-T and
creates specific edge pairing [17]. In addition, the argi-
nine in the PRPH motif has been observed physically
bridging the edge interface and docking into the op-
posing hexamer in both BMC polyhedra [17] and in
some crystal structures of BMC-H [39] depending on
their crystal packing. This interlocking mechanism is,
however, only observed when adjacent hexamers are
coplanar (Figure 1b and c). Both coplanar and bent in-
teractions demonstrate similar hydrogen bonding net-
works between their KAA motifs, forming a central
hinge, and differ by the position of the PRPH arginine
relative to a pocket on the adjacent hexamer formed
largely by the backbone oxygen of surrounding residues

(FFigure 1c¢). The angles of non-coplanar BMC-H are
likely confined by steric clashes along the concave/
convex faces [40] as well as the combination of interac-
tions by BMC domains locally. The KAA and PRPH
motifs, which are central to these interactions, are
broadly conserved across BMC-H (Figure 1d). Further
structural diversity is conferred by BMC-T, which con-
tain two genetically fused Pfam00936 domains and have
been observed to host different interactions along al-
ternating edges [41,42].

The shell proteins themselves can adjust to a range of
edge interactions and other physical stresses by adopting
polymorphisms distinct from the classic ‘flat disk’ re-
presentation. A subclass of naturally occurring BMC-H
that are circularly permuted (BMC-HY) has served as a
model for studying these phenomena. For instance,
wild-type EutS from Salmonella enterica has been shown
to crystallize in a bent conformation [43], and CutR from
Streptococeus intermedius has likewise been crystallized in
several different screw conformations [44], though these
might not occur in its solution states. Rationally per-
muted BMC-H can also change its oligomeric state from
homohexameric to pentameric [45]. Similarly, the BMC-
P EutN has been shown to crystallize as a homohexamer
[46]. Despite their questionable physiological relevance,
these instances spotlight the flexibility in quaternary
structure that shell proteins can exhibit to adapt to their
local environments; BMC-H” proteins seem specifically
poised for these roles. BMC-H" abundancies are spar-
ingly low both in stoichiometry (typically 1 hexamer per
facet) [47] and within BMC loci (with loci having 0 or 1
copies) [3]. These observations, in combination with
their polymorphic diversity, suggest that BMC-H" play a
unique role in supporting shell formation.

Observations of structural flexibility in bacterial
microcompartment shells

The examples above account for the well-understood
assortment of interactions that are mainly hardcoded into
the Pfam00936 domain, common to all BMC-H and
BMC-T proteins. However, beyond the Pfam00936 do-
main (~80 amino acids), we find known instances where
flexibility prevails, such as prevalent C-terminal exten-
sions of BMC-H proteins. These termini are predicted
to be flexible [41,48] and display variety in length,
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Carboxysome BMC-H proteins encode diverse C-terminal extensions. (a) The C-termini of CcmK1 and CcmK2 are compared across several
cyanobacterial species. The C-termini of CcmKT1 is longer than that of CcmK2 and conserved, reflecting an unknown physiological role. The PRPH
motif is highlighted in orange. The alignment was performed in ClustalX. (b) While the single occurrence of a Pfam00936 domain that defines BMC-H
proteins is ~80 residues, BMC-H display a wide range of sequence lengths. Three BMC-H are shown (HO_5815, CcmK1 from Synechocystis sp. PCC
6803, and PduK from Salmonella enterica). BMC-H sequences were acquired from Sutter et al. [3].

sequence composition, and, therefore, physiochemical
properties (Figure 2b). Some termini have been con-
nected to roles in cargo [49,50] and shell interactions
[41], or metal binding [51], and it is tempting to spec-
ulate further about the potential for cytosolic interac-
tions as well, as the C-termini of BMC-H proteins face
the cytosol. In the case of BMC-H nanotubes assembled
in vitro, it is suggested that diameter differences (from
20 to 70 nm) can be due to subtle sequence differences,
including its disordered C-termini [40,52].

Similarly, while strictly a type of polymorphism, several
BMC-T variants have been captured in conformations
with central pores in open, closed, or mixed states for
stacked BMC-TP [43,53-55]. These pore conformations
are correlated with global structure changes in synthetic
BMC shells [42] presumably in response to ligand oc-
cupancy and/or environmental conditions. The physio-
logical role of this gating has yet to be determined. It
could simply be another, more controlled, mechanism
for specific substrate permeation. However, the global
structure changes that result from ligand binding suggest
the ability to globally tense or relax the shell in response
to environmental conditions.

Functional consequences of shell flexibility
Diversity in size and composition of bacterial
microcompartment shells

BMC shells have been observed occupying triangulation
values from T =3 (synthetic systems) [20,56] to well
over 75 (natural systems) [57] (Figure 3a). Occasionally,
the existence of multiple distinct BMC shell species
within the same sample is described [18,20,33,56] in-
dicating adaptable particle formation over a range of
triangulation values (Figure 3b). The coexistence of
distinct shell polymorphs perhaps owes to kinetic traps

that may exist during the shell assembly process and less
influenced by equilibrium [33,58]. It is also proposed
that the distribution of pentamer packing influences
stiffness of their local environment, thereby altering the
allowable angle landscape in different assemblies [33].
This may explain why BMCs, while strictly requiring
just one type of BMC-P for formation, sometimes occur
as multiple paralogs [3,59]. Cargo-related factors can
likewise influence shell assembly. For example, the C-
terminus of the intrinsically disordered interior scaffold
protein CsoS2 can promote the formation of larger a-
carboxysome shells [60]. Modifying the copy number of
the various domain repeats within the CsoS2 archi-
tecture is also an accessible route to alter particle mor-
phology [61]. Cargo-filled shells, generally, have also
been appreciated to exhibit larger sizes than when
empty [62,63] regardless of loading methodology [64].

The conserved nature of shell protein interactions plays
a role in the formation of numerous noncanonical
structures. Specifically, BMC-H proteins have been ob-
served to form sheets, nanotubes, nanocones, and ro-
settes both iz wvivo or in wvitro at various scales
[30,40,52,65-67] (Figure 3c). These structures can be
amenable to rational manipulation. For example, in-
troducing BMC-P to BMC-H can induce the formation
of polyhedra over BMC-H nanotubes [68]. To permit
electron transfer across shells, a [4Fe-4S] cluster [69] or a
copper atom [70] has been installed in a BMC-T protein
by leveraging the size and accessibility of the pore at the
cyclic axis of symmetry. Buffer compositions can also
have an effect, as pH and various ions have been ob-
served to affect both size and assembly rate of BMC-H
sheets [66], nanotubes [30], and micron-sized compart-
ments formed when phase-separated droplets are used
to template purified hexamers [71]. We expect
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The shell components of BMC can form an array of structures. (a) Combinations of BMC shell proteins can lead to polyhedra of different sizes, defined
by their triangulation number (T). BMC-H (blue), BMC-T (teal), and BMC-P (orange) in several cryogenic electron microscopy (cryo-EM) reconstructions
are shown on a 1:1 scale. (b) While BMC shells can form a variety of sizes, these sizes are defined by the triangulation value (T) of the particle. T is
proportional to the square of the particle diameter for icosahedra, and the values for known BMC can be used to anticipate the landscape of
accessible sizes. (c) BMC-H can form noncanonical structures when overexpressed and purified. Transmission electron micrographs are shown

demonstrating sheets and nanotubes formed by the BMC-H PduA.

These micrographs are adapted from Trettel and Winkler [52]. PDB: 60WF and 60WG from Ref. [20], 8B12 from Ref. [60], 5V74 from Ref. [17], SHPN

from Ref. [45], EMD:38544 from Ref. [84], Carboxysome from [85].

continued developments in shell manipulation, which
will enable precise control over the rich structural
variability offered by the BMC shell.

Intermixing of shell proteins can yield chimeric
structures

As mentioned, all BMC shell proteins assemble largely
through shape complementary and conserved hydrogen
bonding networks provided by their KAA and PRPH
motifs. Researchers have leveraged these principles to
intermix or ‘swap’ hexamers to create BMC shell chimera
with concomitantly altered substrate specificity [72,73].
Even different BMC-TP® can occupy degenerate positions
in BMC shells [42]. While these occupancies are plastic, it
is currently not clear during which stages of BMC as-
sembly shell protein intermixing can take place. Atomic
force microscopy of purified shell proteins shows that
BMC-H sheets can dynamically remodel [66,74], and
BMC-H nanotubes can likewise intermix when observed
with confocal microscopy approaches [52]. Native BMCs

have traditionally been accepted as largely static, but data
from 7z vivo carboxysomes show that they too can dyna-
mically remodel in response to environmental conditions
[75,76], similar to iz vitro BMC-H sheets. These lines of
evidence suggest that BMC shell intermixing may occur
at all stages of the BMC lifecycle and serve to dynami-
cally regulate aspects such as size, composition, and per-
haps even their positioning [77,78]. Along these lines,
bacteria encoding for more than one BMC are known to
heavily regulate these to avoid intermixing [79].

Heterohexamers as specialized modules to influence
permeability

The plasticity in quaternary structure extends not only
to homohexamers but also to heterohexameric subunits.
These have been recently reported for carboxysome
BMC-H proteins CcmK1/K2 (various ratios) and
CcemK3/4 (1:2 ratio) [80,81]. These mixed oligomers
have been speculated to regulate shell composition and
permeation when incorporated into or stacked onto a
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BMC shell, in response to osmolytes, salt, and pH. Re-
gardless of their natural role, these naturally occurring
shell building blocks reflect the ability to integrate
asymmetric pore designs into synthetic BMC systems.
Indeed, researchers have synthetically mimicked this by
copying the organization of the BMC domain in BMC-T
to make BMC-H fusions of two [82] or even three
pfam00936 repeats [83] that integrate into BMC shells.

Conclusions and future outlook

BMC shell proteins demonstrate conserved and modular
assembly principles that facilitate their analysis and re-
design via plug-and-play approaches. The variety of
structures demonstrated by BMC shell proteins may be
leveraged for roles in biomanufacturing, bioelectronics,
passivation, and therapeutics, as well as feature in cytos-
keletal roles for scaffolding cellular metabolism.
Computational advances, such as machine-learning and
artificial intelligence pipelines, may begin to play an im-
portant role in identifying and predicting sequence fea-
tures and physiological characteristics that lead to precise
structural and functional control of native and synthetic
BMCs. The manipulation of BMCs as Nature-inspired
nanomachines designed to optimize reaction efficiency,
increase final product/biomass yields, and decrease/se-
quester toxicity of molecules is a promising path to de-
velop our burgeoning biotechnological industry.
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