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Dynamic structural determinants in bacterial 
microcompartment shells
Daniel S Trettel1, Cheryl A Kerfeld2,3,4 and  
Cesar R Gonzalez-Esquer1

Bacterial microcompartments (BMCs) are polyhedral structures 
that segregate enzymatic cargo from the cytosol via encapsulation 
within a protein shell. Unlike other biological polyhedra, such as 
viral capsids and encapsulins, BMC shells can exhibit a highly 
advantageous structural and functional plasticity, conforming to a 
variety of anabolic (CO2 fixation in carboxysomes) and catabolic 
(nutrient assimilation in metabolosomes) roles. Consequently, 
understanding the subunit properties and associated 
protein–protein interaction processes that guide shell assembly 
and function is a necessary step to fully harness BMCs as 
modular, biotechnological nanomachines. Here, we describe the 
recent insights into the dynamics of structural features of the key 
BMC domain (Pfam00936)-containing proteins, which serve as a 
structural template for BMC-H and BMC-T shell building blocks.
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Introduction
Bacterial microcompartments (BMCs) are self-assembling 
protein-based analogs to eukaryotic organelles [1]. In 
BMCs, a defined fraction of cellular metabolism is orga
nized into discrete particles and segregated from the cy
tosol. BMCs achieve this by building a selectively 

permeable protein shell that surrounds an enzymatic 
‘cargo’. The function of a BMC is defined by the content 
and biochemistry of the inner cargo and specifically its 
‘signature enzyme’; the two widespread classes are called 
carboxysomes and metabolosomes [2,3]. Carboxysomes are 
anabolic BMCs with ribulose-1,5-bisphosphate carbox
ylase/oxygenase (Rubisco) as its signature enzyme, and 
they serve the role of carbon fixation in cyanobacteria and 
some chemoautotrophic and phototrophic bacteria [4,5]. 
Metabolosomes are catabolic BMCs with functionally di
verse signature enzymes, and they support the assimilation 
of various niche metabolites in a range of bacterial phyla 
[3]. Regardless of their function, all BMCs rely on the 
formation of a structurally conserved, multimeric protein 
shell that has evolutionary adapted to support the function 
of the enzymatic core. Together, shell and core compo
nents constitute a ‘metabolic module’ supported by ac
cessory proteins encoded in the same genetic module 
(operon) [6], which can be deployed and integrated into 
heterologous hosts’ metabolism for biotechnological pur
poses [7–16].

The shells of BMCs are polyhedral, composed of facets 
made from the tessellation of self-assembling hexameric 
(BMC-H) and trimeric (BMC-T) oligomers (one or two 
Pfam00936 domains, respectively), and capped at the 
vertices by the pentameric (BMC-P) proteins (con
taining the Pfam03319 domain) [17–20] (Figure 1a). 
Conserved assembly principles dictate that shell sub
units associate uniformly in their facet ‘sidedness’ (i.e. 
concave versus convex), which directly impacts the 
permeability properties of the shell [21]. Additionally, 
interaction with the shell interior is mediated by specific 
protein regions — encapsulation peptides or scaffold 
proteins [22–24]. The BMC architecture may invoke 
analogies to viral capsids, but they are evolutionarily and 
structurally distinct [25]. BMCs are also unique from 
other protein polyhedra, like encapsulins [26–28], in that 
they regularly demonstrate size and composition het
erogeneity. In fully formed shells, the structure forms a 
barrier between the cytosol and interior cargo that can 
range from 20 to 400 nm in diameter. Alternative con
figurations have been reported as well, particularly for 
shell proteins expressed outside of their native context, 
such as sheets, nanotubes, nanocones, rosettes, and 
‘wiffle balls’ [29–33]. Overall, BMC shells demonstrate a 
modular, structurally conserved, and tractable chassis 
that can be engineered to support an array of 
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biochemically diverse functions. Notably, researchers are 
interested in leveraging these qualities and developing 
BMC platforms for biomanufacturing or enhanced 
carbon fixation applications [34–38].

Here, we review the aspects of BMC shells where 
structural flexibility impacts assembly, function, mor
phology, and hence their eventual re-design efforts. We 
define structural flexibility as any plasticity in the position 
or interaction of BMC components relative to each other. 
Mastering these structure–function relationships that 
stem from structural flexibility is critical towards estab
lishing BMCs of programmable size, shape, and cargo 
capacity. Within this scope, interaction mechanisms in 
BMC shells are reviewed and discussed in the context of 
chimeric BMC shells, noncanonical shell architectures, 
disordered termini, and other functional polymorphisms.

Areas of structural flexibility in 
microcompartment shells
The bacterial microcompartment domain is tuned to 
support an array of interactions
BMC shell assembly is supported by several key inter
actions that are conserved among all classes of shell 
proteins. Most critical among these are (1) shape com
plementarity and (2) a specific hydrogen bonding net
work supported by both the KAA and PRPH motifs 
along the outer edge of each subunit [17]. These motifs 
reside at the edge of the hexamer subunits, allowing 
interface formation between those adjacent subunits 
(Figure 1b). Utilization of an antiparallel hydrogen 
bonding network formed by the KAA motif (Figure 1c) 
is nearly universal between BMC-H and BMC-T and 
creates specific edge pairing [17]. In addition, the argi
nine in the PRPH motif has been observed physically 
bridging the edge interface and docking into the op
posing hexamer in both BMC polyhedra [17] and in 
some crystal structures of BMC-H [39] depending on 
their crystal packing. This interlocking mechanism is, 
however, only observed when adjacent hexamers are 
coplanar (Figure 1b and c). Both coplanar and bent in
teractions demonstrate similar hydrogen bonding net
works between their KAA motifs, forming a central 
hinge, and differ by the position of the PRPH arginine 
relative to a pocket on the adjacent hexamer formed 
largely by the backbone oxygen of surrounding residues 

(Figure 1c). The angles of non-coplanar BMC-H are 
likely confined by steric clashes along the concave/ 
convex faces [40] as well as the combination of interac
tions by BMC domains locally. The KAA and PRPH 
motifs, which are central to these interactions, are 
broadly conserved across BMC-H (Figure 1d). Further 
structural diversity is conferred by BMC-T, which con
tain two genetically fused Pfam00936 domains and have 
been observed to host different interactions along al
ternating edges [41,42].

The shell proteins themselves can adjust to a range of 
edge interactions and other physical stresses by adopting 
polymorphisms distinct from the classic ‘flat disk’ re
presentation. A subclass of naturally occurring BMC-H 
that are circularly permuted (BMC-HP) has served as a 
model for studying these phenomena. For instance, 
wild-type EutS from Salmonella enterica has been shown 
to crystallize in a bent conformation [43], and CutR from 
Streptococcus intermedius has likewise been crystallized in 
several different screw conformations [44], though these 
might not occur in its solution states. Rationally per
muted BMC-H can also change its oligomeric state from 
homohexameric to pentameric [45]. Similarly, the BMC- 
P EutN has been shown to crystallize as a homohexamer 
[46]. Despite their questionable physiological relevance, 
these instances spotlight the flexibility in quaternary 
structure that shell proteins can exhibit to adapt to their 
local environments; BMC-HP proteins seem specifically 
poised for these roles. BMC-HP abundancies are spar
ingly low both in stoichiometry (typically 1 hexamer per 
facet) [47] and within BMC loci (with loci having 0 or 1 
copies) [3]. These observations, in combination with 
their polymorphic diversity, suggest that BMC-HP play a 
unique role in supporting shell formation.

Observations of structural flexibility in bacterial 
microcompartment shells
The examples above account for the well-understood 
assortment of interactions that are mainly hardcoded into 
the Pfam00936 domain, common to all BMC-H and 
BMC-T proteins. However, beyond the Pfam00936 do
main (∼80 amino acids), we find known instances where 
flexibility prevails, such as prevalent C-terminal exten
sions of BMC-H proteins. These termini are predicted 
to be flexible [41,48] and display variety in length, 

The key proteins and interactions that guide shell assembly. (a) The shells of BMCs are composed of three classes of proteins: BMC-H (left), BMC-T 
(center), and BMC-P (right). Both BMC-H and BMC-T make up BMC facets and utilize the Pfam00936 domain (colored blue), with BMC-T containing 
two decoupled copies (colored teal). Meanwhile, BMC-P (Pfam03319, orange) occupy the vertex positions. All proteins are oriented with their concave 
sides facing the viewer. Protein Data Bank (PDB) structures 5DJB [31], 5DIH [69], and 5V76 [17] (left to right) were used to generate this panel. (b) BMC 
facets are composed of interlocking proteins that can be coplanar or bent relative to each other. The gray circled interfaces in (b) are visualized in (c); 
these conformations maintain a specific hydrogen bonding network among their KAA motifs (K25, yellow) but differ in the position of a conserved 
arginine (R78, orange) in the PRPH motif. Hydrogen bond distances among the KAA motif (dashed black lines) are maintained in both coplanar and 
bent conformations. However, R78 can bridge the interface and dock into the adjacent hexamer, forming an interlock when coplanar, but it is flipped 
out of position when bent. This displacement is visualized as the distance (red solid line) from the central guanidinium carbon of R78 to the backbone 
oxygen of V29. The PDB structure 6N06 [35] was used to generate panels (b) and (c). All panels were visualized using PyMOL. (d) The KAA (yellow 
highlight) and PRPH (orange highlight) motifs are broadly conserved across shell proteins from disparate organisms.
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sequence composition, and, therefore, physiochemical 
properties (Figure 2b). Some termini have been con
nected to roles in cargo [49,50] and shell interactions 
[41], or metal binding [51], and it is tempting to spec
ulate further about the potential for cytosolic interac
tions as well, as the C-termini of BMC-H proteins face 
the cytosol. In the case of BMC-H nanotubes assembled 
in vitro, it is suggested that diameter differences (from 
20 to 70 nm) can be due to subtle sequence differences, 
including its disordered C-termini [40,52].

Similarly, while strictly a type of polymorphism, several 
BMC-T variants have been captured in conformations 
with central pores in open, closed, or mixed states for 
stacked BMC-TD [43,53–55]. These pore conformations 
are correlated with global structure changes in synthetic 
BMC shells [42] presumably in response to ligand oc
cupancy and/or environmental conditions. The physio
logical role of this gating has yet to be determined. It 
could simply be another, more controlled, mechanism 
for specific substrate permeation. However, the global 
structure changes that result from ligand binding suggest 
the ability to globally tense or relax the shell in response 
to environmental conditions.

Functional consequences of shell flexibility
Diversity in size and composition of bacterial 
microcompartment shells
BMC shells have been observed occupying triangulation 
values from T = 3 (synthetic systems) [20,56] to well 
over 75 (natural systems) [57] (Figure 3a). Occasionally, 
the existence of multiple distinct BMC shell species 
within the same sample is described [18,20,33,56] in
dicating adaptable particle formation over a range of 
triangulation values (Figure 3b). The coexistence of 
distinct shell polymorphs perhaps owes to kinetic traps 

that may exist during the shell assembly process and less 
influenced by equilibrium [33,58]. It is also proposed 
that the distribution of pentamer packing influences 
stiffness of their local environment, thereby altering the 
allowable angle landscape in different assemblies [33]. 
This may explain why BMCs, while strictly requiring 
just one type of BMC-P for formation, sometimes occur 
as multiple paralogs [3,59]. Cargo-related factors can 
likewise influence shell assembly. For example, the C- 
terminus of the intrinsically disordered interior scaffold 
protein CsoS2 can promote the formation of larger α- 
carboxysome shells [60]. Modifying the copy number of 
the various domain repeats within the CsoS2 archi
tecture is also an accessible route to alter particle mor
phology [61]. Cargo-filled shells, generally, have also 
been appreciated to exhibit larger sizes than when 
empty [62,63] regardless of loading methodology [64].

The conserved nature of shell protein interactions plays 
a role in the formation of numerous noncanonical 
structures. Specifically, BMC-H proteins have been ob
served to form sheets, nanotubes, nanocones, and ro
settes both in vivo or in vitro at various scales 
[30,40,52,65–67] (Figure 3c). These structures can be 
amenable to rational manipulation. For example, in
troducing BMC-P to BMC-H can induce the formation 
of polyhedra over BMC-H nanotubes [68]. To permit 
electron transfer across shells, a [4Fe-4S] cluster [69] or a 
copper atom [70] has been installed in a BMC-T protein 
by leveraging the size and accessibility of the pore at the 
cyclic axis of symmetry. Buffer compositions can also 
have an effect, as pH and various ions have been ob
served to affect both size and assembly rate of BMC-H 
sheets [66], nanotubes [30], and micron-sized compart
ments formed when phase-separated droplets are used 
to template purified hexamers [71]. We expect 

Figure 2  

Current Opinion in Microbiology

Carboxysome BMC-H proteins encode diverse C-terminal extensions. (a) The C-termini of CcmK1 and CcmK2 are compared across several 
cyanobacterial species. The C-termini of CcmK1 is longer than that of CcmK2 and conserved, reflecting an unknown physiological role. The PRPH 
motif is highlighted in orange. The alignment was performed in ClustalX. (b) While the single occurrence of a Pfam00936 domain that defines BMC-H 
proteins is ∼80 residues, BMC-H display a wide range of sequence lengths. Three BMC-H are shown (HO_5815, CcmK1 from Synechocystis sp. PCC 
6803, and PduK from Salmonella enterica). BMC-H sequences were acquired from Sutter et al. [3].  
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continued developments in shell manipulation, which 
will enable precise control over the rich structural 
variability offered by the BMC shell.

Intermixing of shell proteins can yield chimeric 
structures
As mentioned, all BMC shell proteins assemble largely 
through shape complementary and conserved hydrogen 
bonding networks provided by their KAA and PRPH 
motifs. Researchers have leveraged these principles to 
intermix or ‘swap’ hexamers to create BMC shell chimera 
with concomitantly altered substrate specificity [72,73]. 
Even different BMC-TD can occupy degenerate positions 
in BMC shells [42]. While these occupancies are plastic, it 
is currently not clear during which stages of BMC as
sembly shell protein intermixing can take place. Atomic 
force microscopy of purified shell proteins shows that 
BMC-H sheets can dynamically remodel [66,74], and 
BMC-H nanotubes can likewise intermix when observed 
with confocal microscopy approaches [52]. Native BMCs 

have traditionally been accepted as largely static, but data 
from in vivo carboxysomes show that they too can dyna
mically remodel in response to environmental conditions 
[75,76], similar to in vitro BMC-H sheets. These lines of 
evidence suggest that BMC shell intermixing may occur 
at all stages of the BMC lifecycle and serve to dynami
cally regulate aspects such as size, composition, and per
haps even their positioning [77,78]. Along these lines, 
bacteria encoding for more than one BMC are known to 
heavily regulate these to avoid intermixing [79].

Heterohexamers as specialized modules to influence 
permeability
The plasticity in quaternary structure extends not only 
to homohexamers but also to heterohexameric subunits. 
These have been recently reported for carboxysome 
BMC-H proteins CcmK1/K2 (various ratios) and 
CcmK3/4 (1:2 ratio) [80,81]. These mixed oligomers 
have been speculated to regulate shell composition and 
permeation when incorporated into or stacked onto a 

Figure 3  

Current Opinion in Microbiology

The shell components of BMC can form an array of structures. (a) Combinations of BMC shell proteins can lead to polyhedra of different sizes, defined 
by their triangulation number (T). BMC-H (blue), BMC-T (teal), and BMC-P (orange) in several cryogenic electron microscopy (cryo-EM) reconstructions 
are shown on a 1:1 scale. (b) While BMC shells can form a variety of sizes, these sizes are defined by the triangulation value (T) of the particle. T is 
proportional to the square of the particle diameter for icosahedra, and the values for known BMC can be used to anticipate the landscape of 
accessible sizes. (c) BMC-H can form noncanonical structures when overexpressed and purified. Transmission electron micrographs are shown 
demonstrating sheets and nanotubes formed by the BMC-H PduA. 
These micrographs are adapted from Trettel and Winkler [52]. PDB: 6OWF and 6OWG from Ref. [20], 8B12 from Ref. [60], 5V74 from Ref. [17], 5HPN 
from Ref. [45], EMD:38544 from Ref. [84], Carboxysome from [85].  
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BMC shell, in response to osmolytes, salt, and pH. Re
gardless of their natural role, these naturally occurring 
shell building blocks reflect the ability to integrate 
asymmetric pore designs into synthetic BMC systems. 
Indeed, researchers have synthetically mimicked this by 
copying the organization of the BMC domain in BMC-T 
to make BMC-H fusions of two [82] or even three 
pfam00936 repeats [83] that integrate into BMC shells.

Conclusions and future outlook
BMC shell proteins demonstrate conserved and modular 
assembly principles that facilitate their analysis and re
design via plug-and-play approaches. The variety of 
structures demonstrated by BMC shell proteins may be 
leveraged for roles in biomanufacturing, bioelectronics, 
passivation, and therapeutics, as well as feature in cytos
keletal roles for scaffolding cellular metabolism. 
Computational advances, such as machine-learning and 
artificial intelligence pipelines, may begin to play an im
portant role in identifying and predicting sequence fea
tures and physiological characteristics that lead to precise 
structural and functional control of native and synthetic 
BMCs. The manipulation of BMCs as Nature-inspired 
nanomachines designed to optimize reaction efficiency, 
increase final product/biomass yields, and decrease/se
quester toxicity of molecules is a promising path to de
velop our burgeoning biotechnological industry.
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