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Measuring effect of MICP Treatment:
 Permeability reduction
 Tension testing* 
 Extent of biomineralization

Non-invasive tools needed (NMR)

*Bedey, Kayla. “Developing Methods to Assess Changes in Mechanical Properties of Shale Modified by Engineered Mineral Precipitation.” MS03.
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𝑻𝑻𝟏𝟏

T2time

ILT*

T2 profiles reveal distribution 
of pore/fracture sizes.

T1-T2 correlations help separate 
signal from water and organics.
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T2 distribution
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μ-CT analysis

μ-CT shows biomineral 
accumulation around 
proppant, throughout 
most surfaces inside 
the fracture.
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Quantitative analysis

 Integrated area under T2 distribution is 
proportional to volume of water
 The amount of biomineral can be 

calculated:
𝑽𝑽 𝑪𝑪𝑪𝑪𝑪𝑪𝑶𝑶𝟑𝟑
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝑽𝑽 𝒑𝒑𝒑𝒑𝒑𝒑−𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 − 𝑽𝑽 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑−𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗

 μ-CT quantifies void volumes after 
measuring signal from solids, not fluid
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 μ-CT quantifies void volumes after 
measuring signal from solids, not fluid

Volume (mL) NMR μ-CT

𝑉𝑉 𝑝𝑝𝑝𝑝𝑝𝑝−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 1.78 1.71

𝑉𝑉 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 1.15 1.15

𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂3
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.62 0.56
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Conclusions
NMR T1-T2 maps confirmed distinct T2 relaxation populations 

attributed to shale organics, shale pore water, and fracture water.
NMR T2 experiments can be used to determine the extent of 

biomineralization within shale fractures by analyzing how peaks shift 
following MICP-treatment.
 μ-CT scanning provides important spatial information and confirmed 

NMR findings.
NMR and μ-CT data can both be used to calculate the volume of solid 

biomineral formed inside the fracture.
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Nuclear magnetic resonance

1. NMR spectrometer magnetizes “spins”      
(1H atoms) in sample

2. Excitation: RF pulses push spins out of 
equilibrium

3. Relaxation: Recovery of magnetization to 
equilibrium
 T1: Longitudinal component
 T2: Transverse component

Extremely sensitive to signal from water 
and can detect organic material present in 
shale.

time
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