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Shale rock characteristics
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Background

Shale rock characteristics
" Low permeability } Caprock for CCS
= Natural gas reserves | energy source

Need for methods to
control shale permeability
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Microbially-induced calcium carbonate
orecipitation (MICP)

Shale Rock

Step 1: Inject microbes
(S. pasteurii) @
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Microbially-induced calcium carbonate
orecipitation (MICP) COMNHY), + 21,0 + Ca?* "% 2NH} + CaC0s(s)

Shale Rock

Step 1: Inject microbes Step 2: Add reactants Q
(S. pasteurii) @ (urea and calcium)‘

" MONTANA 2 Mountains {& Minds

STATE UNIVERSITY




Microbially-induced calcium carbonate
orecipitation (MICP) COMNHY), + 21,0 + Ca?* "% 2NH} + CaC0s(s)

Shale Rock

Step 1: Inject microbes Step 2: Add reactants Q Step 3: Repeat
(S. pasteurii) @ (urea and calcium)‘

/
A MONTANA 2 Mountains {& Minds

STATE UNIVERSITY




Assessing potential of shale biomineralization

1in.
!—1—\
Influent Effluent
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Sand 60°C g
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Injection 26
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Assessing potential of shale biomineralization
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" Add Biomineralize LQ
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Measuring effect of MICP Treatment:

Injection 26
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Assessing potential of shale biomineralization

1lin.

Influent Effluent

2in.

Biomineralize

Sand 60°C

(proppant)

Injection 5

Measuring effect of MICP Treatment:
= Permeability reduction
* Tension testing™
= Extent of biomineralization

Injection 26

*Bedey, Kayla. “Developing Methods to Assess Changes in Mechanical Properties of Shale Modified by Engineered Mineral Precipitation.” MS03.
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Assessing potential of shale biomineralization

1lin.

I—A—\

Influent Effluent

—

—)

2in. -
" Add Biomineralize LQ
Sand 60°C %

I (proppant) .GC_J,

Measuring effect of MICP Treatment:
= Permeability reduction
* Tension testing™
= Extent of biomineralization

Non-invasive tools needed (NMR)

Injection 26

*Bedey, Kayla. “Developing Methods to Assess Changes in Mechanical Properties of Shale Modified by Engineered Mineral Precipitation.” MS03.
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Low-Field Nuclear Magnetic Resonance (NMR)

S(t) =S, exp( t)

-

> time
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Low-Field Nuclear Magnetic Resonance (NMR)

S(t) =S, exp( t)
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> time

*Inverse Laplace Transform
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Low-Field Nuclear Magnetic Resonance (NMR)

S(t) = Sy exp (——) P(T,)

T

=L

> time

» ...increasing pore size

*Inverse Laplace Transform
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Low-Field Nuclear Magnetic Resonance (NMR)

S(t) = Sy exp (——) P(T,)

ndraui

» ...increasing pore size

> time

T, profiles reveal distribution
of pore/fracture sizes.

*Inverse Laplace Transform
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Low-Field Nuclear Magnetic Resonance (NMR)

S(t) = Soexp (- Ti) P(T,)

Solids
(organics)

Liquids
(water)

—
log (T4, T5)

> time

» ...increasing pore size log (1/w,r,)

T, profiles reveal distribution

] T,/T, Relaxation Profile
of pore/fracture sizes.

*Inverse Laplace Transform
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Low-Field Nuclear Magnetic Resonance (NMR)

S(t) = Soexp (- Ti) P(T,)

Solids
(organics)

Liquids
(water)

—
log (T4, T5)

> time

» ...increasing pore size log (1/w,r,)

T, profiles reveal distribution

] T,/T, Relaxation Profile
of pore/fracture sizes.

T,-T, correlations help separate
“Inverse Laplace Transform signal from water and organics.
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T,-T, correlation
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. Hydrogen populations:
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. Hydrogen populations:
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adsorbed water water water
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Log(T,) (s)

T,-T, correlation

Saturated, pre-fracture
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/ Hydrogen populations:
Structural & Oil Pore Fracture
adsorbed water water water

T,-T, correlation
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Interpreting NMR signal changes
P(T,)

More water in
pore/fracture

Less water in
pore/fracture
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Interpreting NMR signal changes

P(T,)

More water in
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pore/fracture
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Interpreting NMR signal changes
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Interpreting NMR signal changes
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Interpreting NMR signal changes
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T, distribution
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T, distribution

Free water
0.06
—Pre-MICP, w/ proppant
0.05 Pre-MICP, w/ spacers
. 0.04
Multiple water _
' =0.03
populations =
created by 0.02
proppant. 0.01
Pre-MICP  Pre-MICP
0.00 w/ proppant w/ spacers
-4 -3 -2 -1 0 1
Log(T,) (s)

Mountains & Minds
STATE UNIVERSITY




T, distribution
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T, distribution
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T, distribution
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T, distribution
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T, distribution

= Tz_ peaks associated 0.06 | b MICP. w/ broppant
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U-CT analysis

u-CT shows biomineral
accumulation around
proppant, throughout
most surfaces inside
the fracture.
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Quantitative analysis

" Integrated area under T, distribution is
proportional to volume of water
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Quantitative analysis

" Integrated area under T, distribution is
proportional to volume of water

" The amount of biomineral can be

calculated:

solid __ void void
4 CaCO3 — |4 pre—MICP 4 post—MICP
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Quantitative analysis

" Integrated area under T, distribution is
proportional to volume of water

" The amount of biomineral can be
calculated:

solid __ void void
4 CaCO3 — |4 pre—MICP 4 post—MICP

»" u-CT quantifies void volumes after
measuring signal from solids, not fluid
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Quantitative analysis

" Integrated area under T, distribution is
proportional to volume of water

" The amount of biomineral can be

calculated: .
d

vo
CaCo3 pre—MICP = Y post—MICP :
y sold 0.62 0.56
CaCoOs3

Volume (mL) NMR  p-CT
Vz’Io‘led—MICP 1.78 1.71

»" u-CT quantifies void volumes after
measuring signal from solids, not fluid
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Conclusions

*NMR T,-T, maps confirmed distinct T, relaxation populations
attributed to shale organics, shale pore water, and fracture water.
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Conclusions

*NMR T,-T, maps confirmed distinct T, relaxation populations
attributed to shale organics, shale pore water, and fracture water.

*NMR T, experiments can be used to determine the extent of
biomineralization within shale fractures by analyzing how peaks shift
following MICP-treatment.
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Conclusions

*NMR T,-T, maps confirmed distinct T, relaxation populations
attributed to shale organics, shale pore water, and fracture water.

*NMR T, experiments can be used to determine the extent of
biomineralization within shale fractures by analyzing how peaks shift
following MICP-treatment.

" u-CT scanning provides important spatial information and confirmed
NMR findings.
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Conclusions

*NMR T,-T, maps confirmed distinct T, relaxation populations
attributed to shale organics, shale pore water, and fracture water.

*NMR T, experiments can be used to determine the extent of
biomineralization within shale fractures by analyzing how peaks shift
following MICP-treatment.

" u-CT scanning provides important spatial information and confirmed
NMR findings.

" NMR and u-CT data can both be used to calculate the volume of solid
biomineral formed inside the fracture.
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Nuclear magnetic resonance

1. NMR spectrometer magnetizes “spins”
(*H atoms) in sample

2. Excitation: RF pulses push spins out of
equilibrium {

3. Relaxation: Recovery of magnetization to
equilibrium
= T,: Longitudinal component Excited state Equilibrium
= T,: Transverse component

» time

Extremely sensitive to signal from water
a;:dl can detect organic material present in
shale.
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T, distribution
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