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Collisional-radiative (CR) models describe the atomic processes in a plasma by tracking
the population density in the ground and excited states for each charge state of the atom/ion.
These models predict important plasma properties such as charge state distributions and
radiative emissivity and opacity. Accurate descriptions of the CR balance of the plasma
are essential in fusion whole device modeling, especially when significant impurities are
introduced into the plasmas. In an integrated fusion plasma and CR simulation, a CR
model, which is a high-dimensional stifft ODE, needs to be solved on each grid point in
the configuration space, and can overwhelm the overall computational cost. In this work,
we propose a machine-learning-based method that discovers a latent space and learns its
corresponding latent dynamics, which can capture the essential physics to make accurate
predictions at much lower online computational cost. The proposed approach is physics-
assisted, due to its combination of a physical latent space and a data-driven latent space.
It has been demonstrated that the proposed architecture can predict both the full-order CR

dynamics and a physical quantity of interest accurately.
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I. INTRODUCTION

Fusion reactors, such as tokamaks, confine plasma using magnetic fields to sustain nuclear fu-
sion reactions. However, maintaining stable plasma confinement is challenging due to instabilities
that can lead to disruptions. Plasma disruptions involve a sudden loss of confinement, causing
the plasma to interact with the reactor walls, leading to potential damage and reduced reactor
performance. To prevent or mitigate these disruptions, understanding the underlying physical pro-
cesses, including radiative and collisional interactions within the plasma, is essential. In particular,
collisional-radiative (CR) modeling is a critical component in the study of plasma physics, espe-
cially in the context of plasma disruption mitigation in fusion reactors [1].

The CR model represents these interactions and is mathematically described by a high-
dimensional nonlinear stiff dynamical system. This model considers various processes such
as ionization, recombination, excitation, and de-excitation, which occur simultaneously within the
plasma. In practical plasma disruption simulations, high-fidelity simulations of the CR model are
extremely computationally expensive, making the use of the original CR system impractical for
real-time applications. As a result, there is an increasing interest and demand for efficient and
accurate surrogate models for the CR system in plasma disruption simulations [2,3].

The objective of this work is to develop a data-driven surrogate method for the CR model using
deep neural networks. Specifically, we first use a physics-assisted autoencoder on the CR data to
find a low-dimensional latent representation of the original CR system. Then, we use a flow map
neural network to learn the latent dynamics. Once our reduced surrogate model is trained, we can
predict the whole latent dynamics given only the initial condition, through iteratively applying the
flow map neural network, and then reconstruct its radiative power loss via a decoder. By leveraging
deep learning techniques, our proposed surrogate model can provide a computationally efficient
and accurate representation of the CR dynamics, facilitating better prediction and mitigation of

plasma disruptions in fusion reactors.

A. Collisional-radiative Modeling

CR modeling deals with the complex interactions between electrons, ions, and neutral parti-
cles in a plasma. These interactions include collisional excitation, de-excitation, ionization, and

recombination processes, as well as radiative emissions, Fig. 1 illustrates the whole CR process.
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The goal of CR modeling is to calculate the population densities of various charge states and
energy levels within the plasma, accounting for both collisional and radiative processes. To man-
age the wide range of possible ion states that can occur in a plasma, we order the set of all ion

population density vector in a given plasma as,
N={N, ,},

where Né’z denotes the population density of ion level j for atomic species & and charge state
Z, which ranges from 0 to Ag, the atomic number of species . The index j labels each of the
ground and excited states. Typical gas species used in impurity plasma mitigation include helium
(Ag = 2), lithium (A = 3), nitrogen (Ag = 7), neon (A = 10), and argon (Ay = 18). The high
fidelity solution of a CR model can accurately provide plasma properties as input to subsequent

coupled stages of plasma simulation code. These properties include the species ion charge state
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FIG. 1. Ion particles ionization and de-excitation in a CR model.

distribution ny z and the radiative cooling rate #.Z. These quantities are crucial for radiative
energy transport in fusion plasma simulation and help design experiments at ITER. The species
charge state density nq 7 is simply the sum over all ground and excited states of a given charge

state,
_ J
I/la7Z — ZNO&,Z‘
J

The radiative power loss (RL) is a crucial quantity representing the energy radiated away by the
plasma due to various radiative processes. The radiative power loss can be calculated by sum-
ming up the contributions from all radiative transitions, including line emissions, recombination

radiation, and bremsstrahlung. The general form of the radiative loss equation is given by:

REL =Y N, LA, E!
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where Aé 7.« 1s the coefficient for spontaneous emission from energy level j to level k, and £ , .,

is the the energy of the photon emitted in the transition from level j to level k.

The CR model is mathematically represented as a parameterized ODE:

. :R(N,I’ZA,Te)N, (1)

with N the population density of ions in various charge states including both ground and excites
states, T, is the temperature, ng o = ) zn¢,z 1s the total density for species . The dimension
of N can vary enormously depending on whether one would want to resolve the fine and super-
fine structures in the excited states. In LANL ATOMIC model [4], it can have N ~ 10° for ar-
gon species. The rate matrix R(N,n4,T,) is a square matrix, which includes a number of atomic
processes, broadly grouped in up-transition and down-transition. The up-transition includes col-
lisional ionization/excitation, photo-ionization and excitation. The down-transition accounts for
various channels of recombination and de-excitation; see Fig. 1 for instance. Collisional charge
exchange can provide both down- and up-transition depending on the specific ion/atom involved.
The overall rate matrix R has explicit dependence on the electron distribution. The normal as-
sumption is to approximate the electron distribution as a Maxwellian with temperature 7, and total

density ny o for species o.

The CR model is a parameterized stiff ODE as many of the transition rates are very fast on
timescale of interest. Numerical solutions of the full system (1) require implicit methods and are
usually performed with a standard linear algebra package. The high-dimensional dynamics of a
CR model can be a computational burden to obtain high-fidelity solution with accurate prediction
of the ion charge population distribution. The state-of-the-art CR models contain orders of millions
degrees of freedom can take hours to obtain a solution. It is simply impossible to directly couple
the CR physics module in its original form to 3D plasma simulations, since for each spatial grid
point in the plasma simulation, one would need to evolve a coupled ODE with 10~ degrees of
freedom, which would overwhelm the plasma simulation cost by many orders of magnitude. The
goal of this work is to introduce a reduced-order model that can efficiently and accurately predict

the fast scale dynamics transition of the charge state, ny 7, and the radiative cooling rate, %
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FIG. 2. Trajectory of the charge state from the high-fidelity numerical simulation of the CR model for
different initial conditions. The solution is for a single species, lithium, where the atomic number Ay, = 3.
Four colored lines represent four charge states (they are partial sums of the solution state vector; details will

be defined later), ng,n;,n,,ns.

B. Related Work

Reduced Order Modeling (ROM) seeks low-dimensional approximations of high-dimensional
systems, significantly reducing computational costs. In the framework of data-driven ROM, ma-
chine learning (ML) techniques and data are used to distill the essential features of complex sys-
tems into more manageable representations. This is especially relevant in fields such as fluid
dynamics, material science, and climate modeling, where solving full-scale problems involves sig-
nificant computational challenges due to high dimensionality. Proper Orthogonal Decomposition
(POD) and Dynamic Mode Decomposition (DMD) are two of the most popular approaches to ex-
tract dominant features and dynamic structures from data. These methods have been successfully
applied in fluid mechanics, control, and biomechanical problems [5—8]. With the development of
deep learning, autoencoder neural networks have gained significant attention in ROM due to their
ability to efficiently compress high-dimensional data into a lower-dimensional latent space while
preserving essential features. Recent works have demonstrated the use of autoencoders for learn-

ing low-dimensional representations of fluid dynamics [9,10]. Ref. [11] combined autoencoders
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with DMD to learn the governing equations of dynamical systems directly from data, allowing for
efficient predictions of future states.

Data-driven discovery of dynamics has emerged as a powerful tool for modeling and predicting
the behavior of complex physical systems. This approach leverages ML techniques to extract
patterns and underlying dynamics from data, facilitating the development of reduced-order models
that are both efficient and accurate. Ref. [12] introduced the Sparse Identification of Nonlinear
Dynamical Systems (SINDy) method, which aims to discover governing equations from data. By
representing the dynamics in a library of candidate functions, SINDy selects the most relevant
terms to construct a parsimonious model. This data-driven methodology has proven effective
in capturing the underlying physics of complex systems with minimal assumptions, offering a
powerful tool for system identification and model reduction [13,14]. In [15], they introduced
Neural Ordinary Differential Equations (NODE), which parametrize the time derivative of the
hidden state with a neural network, allowing the model to learn complex dynamics directly from
data. This method can also be applied for identifying latent dynamics [16,17]. Ref. [18] utilized
autoencoders to identify a latent space where the nonlinear dynamics are approximated by linear
models based on linear Koopman operator theory, enabling efficient and accurate predictions of
system behavior. Ref. [19] introduced physics- and data-assisted ROM based on approximate
inertial manifolds theory using deep neural networks. Their approach is successfully demonstrated
through dissipative PDEs. Ref. [19] discussed the “physics-assisted” latent space learning where
the latent space is a “gray-box” approach including the known physics latent space and data-driven
latent space. A few recent works on learning flow maps using structure-preserving neural networks
can be found in [20,21]. These studies underscore the potential of integrating ROM approach with
latent dynamics learning to address the computational challenges in simulating high-dimensional

dynamical systems.

C. Our contribution

The main challenge in finding the reduced CR model lies in two parts. The first is to efficiently
identify the low-dimensional representation from the data. The second is to learn latent dynamics
that can accurately predict the trajectories of the reduced system using only the initial conditions.
This allows for an approximation of the full-order dynamics and radiative cooling rate with high

accuracy. Fig. 2 plots the trajectories of different charge states from the high-fidelity numerical

6



simulation. It is evident that the sharp transitions over very short time scales present a signifi-
cant challenge in accurately modeling the reduced CR dynamics. In this work, we introduce a
novel physics-assisted latent space dynamics learning approach based on deep neural networks,
which is partially related to [19]. First, we use an autoencoder neural network to identify the
low-dimensional representation of the original high-dimensional CR system. This representation
is denoted as the black space. We then incorporate the known physical information, specifically
the charge states, denoted as the white space, into the entire latent space. This gray-box approach
ensures that both data-driven and physics-based aspects are integrated into the model. Then, we
use a flow map neural network to learn the dynamics within the latent space, similar with the ap-
proaches in [20,21]. To the best of our knowledge, this is the first effort to apply the integrated
data-driven and physics-based latent dynamics learning for constructing a reduced-order model
of a parameterized CR system. For the purpose of demonstration, our approach will be exces-
sively tested by the CR data from a single species, lithium, under different parameters and initial

conditions in Section III.

II. DATA-DRIVEN MODEL REDUCTION FOR CR MODELING

In this section, we present a physics-assisted model reduction framework for CR modeling
employing deep learning techniques. The methodology involves two crucial steps: latent space
reduction and latent dynamics learning, both of which are facilitated by designing an appropriate
neural network architecture. The network comprises an encoder to reduce the input dimension
to a lower latent space, followed by a neural network to learn the flow map of the latent space.
Subsequently, a decoder is employed to reconstruct the full ion density space. Fig. 3 illustrates the

architecture of our data-driven ML-based surrogate for the CR system.

A. Physics-assisted Latent Space via Autoencoder

In the latent space discovery, we integrate known physics information by adding the charge
state as white space into the latent space discovered by the autoencoder. The latent space is thus
composed of both the white space and the black space. The white space is derived from the charge
state of the corona equilibrium model of CR modeling. In the corona equilibrium model, the rate

equations for the charge states simplify significantly. The assumption is that the ion population
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FIG. 3. Autoencoder architecture for physics-assisted latent space identification (left). Flow map for latent

dynamics learning (right). 6 denotes the parameter space in our CR system which are total density, n4, and

temperature, 7.

is primarily determined by ionization from and recombination to the ground state, rather than by
transitions between excited states.

“—X—R-n,

dt

The corona equilibrium model leads to a significant simplification of the CR model by reduc-
ing the complexity of the rate equations. Instead of considering detailed level populations, the
model focuses on the balance between ionization and recombination rates for each charge state.
This makes it easier to calculate the charge state distribution and related properties such as ra-
diative losses and spectral line intensities. The charge state from the corona equilibrium model
provides a simplified yet accurate representation of the ionization balance in a high-temperature
plasma. This model captures the essential physics of ionization and recombination processes with-
out the complexity of detailed level populations. By focusing on the charge state, we reduce the
dimensionality of the problem. This allows us to incorporate critical physical insights without
overwhelming the autoencoder with excessive complexity. The autoencoder can then efficiently
learn the latent dynamics of the remaining variables (black space). Incorporating the charge state
as white space guides the autoencoder towards physically meaningful representations. This helps
the model to learn latent dynamics that are consistent with known physical laws. The inclusion of
known physics information in the latent space enhances the interpretability of the model.
Autoencoders consist of two main components: an encoder function fg, which maps the in-
put data to a lower-dimensional latent space, and a decoder function fp, which reconstructs the
original data from its latent representation. During training, the autoencoder minimizes the re-

construction error between the input and the reconstructed output, thereby capturing the most



significant features of the data. In the first part of our data-driven framework, an autoencoder is
utilized to reduce the full ion population space into a black space, B, at a given time step #,,. This
black space, in combination with known physics information such as the charge state (i.e., a white
space, w7), forms our latent space, L,. The full ion population can then be reconstructed through
a decoder fp from this latent space. Note that when setting the dimension of the black space to
zero, we solely rely on the charge state as our latent space, which is referred to as coronal equi-
librium, though impractical. Additionally, the radiation power loss, Z.Z, can be retrieved from
the decoder. In our case, the encoder part transforms the input, i.e., a normalized ion population

W, € R", to a black space B, € R" with r < N:

The decoder part tries to reconstruct the input W,, and predict the radiative loss from the latent

space L, = [w!,B,]:
[an@L,n] - fD(Ln)-

The objective is to minimize the reconstruction 10ss -Zecons, Which measures the difference

between the input W, and the reconstructed output W,, and KL

1 & _ _
grecons = E Z [HWn _WnH2+ H%Lm _%L,nuz]a
n=1

where S is the total number of time steps in our training dataset.

B. Latent Dynamics Learning via Flow Map

In dynamical systems theory, a flow map describes the evolution of states in the system over
time. Specifically, it is a mathematical function that maps an initial state to its future state at any
given time instant. The flow map serves as a bridge between the system’s underlying equations and
its qualitative behavior. For continuous-time dynamical systems governed by ordinary differential
equations (ODEs), the flow map elucidates how an initial point in the system’s phase space evolves
along a trajectory determined by the ODEs. In discrete-time systems, the flow map is often a
straightforward function illustrating transitions between states from one time step to the next.
Analyzing the flow map offers insights into critical properties of the system, such as stability,

convergence, and the existence of attractors or repellors, which are crucial in comprehending the
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long-term behavior of the system. Capturing the essence of how states transition over time, the
flow map in the CR model represents the latent dynamics, which can be leveraged to derive the
quantity of interest with minimal computational cost—a significant advantage in fusion simulation
for disruption mitigation. In continuous-time dynamical systems described by ordinary differential

equations (ODEs), the latent system’s behavior can be expressed as:

dL
— =F(L;0),
5 —F(:0)
Here, L € R” is the reduced latent state vector, and F(L;0) is the vector field that describes the
dynamics of the system parameterized by 6. The flow map ®(Az,Ly) is a function that maps the

initial state L at 7 = 1y to its future state L(z) at a time interval Az, such that:
L(to + Ar) = ®(At,L(to))

In general, for discrete-time dynamical systems with a uniform time step, the system can often be
described by:
Ln+1 - G(Ln)

Since our CR model has an exponential time steps and also parameterized by the total density n4
and temperature 7,, our flow map & acts at discrete steps, mapping L, to L, and can be denoted
as:
Ln+1 = q)(AtrHLn;nA:T:e)a
see the Fig. 3 for the model architecture. In this case 0 includes n4 and 7,. Thus, the flow map
can be approximated by a neural network with the loss function defined as the following,
1 S 2 4 n2
2= X [ = (80, L 0) P o s = Yo ]

n=0 i=0

where ®(At,,L,; 0) is the neural network prediction of the trajectory at next time step, and ||ns —

l-Z:O ny ||? is the additional physical constraint, i.e., the atomic conservation law.

III. NUMERICAL EXPERIMENT

In this section, we present detailed numerical experiments for the proposed surrogate model
in Section II. As increasing the number of species would significantly amplify the dataset size,

computational requirements, and training costs, we utilize Lithium as our representative species
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in our high-fidelity simulation of the CR model in this study to obtain the necessary data. The
CR solution of Lithium has dimN = 94 states corresponding to different energy levels. Since the

atomic number Ay = 3, we have 4 charge states defined as the following,

31 62 93
ng .= ZNi, ny = Z Ni, ny = Z Nl', n3 .= N94.
i=0 i=32 =63

Fig. 2 shows the charge state trajectories from different initial conditions. We can clearly see
that there is sharp transition at very tiny time scale in the CR dynamics which makes it one of

challenging part in the reduced latent dynamics learning.

A. Data processing

The success of the ML training heavily relies on the proper data processing. Here we describe
two critical components to rescale the data to ease the ML training. A proper sampling for stiff
dynamics is also an important step to guarantee a good training result.

a. lon Density Normalization. The magnitude of ion population N from the numerical so-
lution varies largely between 1el3 to le-11. Since the total density ny should be preserved for
different parameter setting, we first normalize the population using its total density n4 as the fol-

lows,

After the total density scaling, the range of ion population density N lies in (1e-27,1). Many of
the ion densities are still very small, with magnitudes less than 1e-10 making it challenging for the
neural network to train on such values of tiny magnitude. To accurately resolve the high-fidelity
dynamics of the CR model, it is important to resolve small values of the states, Fig. (6) shows the
high-fidelity solution of the charge state dynamics from different temperature (Te). The raw data
however is dominated by one or two states that have much larger magnitudes.

To accommodate that, we first apply the following change of variable to transform the data into
a more suitable range:

W =1-1log(N),

then using (0, 1) min-max scaler on W to obtain the properly scaled training data W:
wo W= Woin
Winax — Winin
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The transformed variable W lies in (0, 1) and is properly scaled, making it easier for the neural
network to train effectively. Fig. 4 shows the charge state, n,, both in its original scale and its
normalized scale (between 0 and 1), as used in practical neural network training. Note that we use
the notation w, (w0, wl, w2, w3) to represent the transformed charge state of n, (n0, nl, n2, n3).

Charge state n, Tranferred charge state w,

0.8
10°
0.7
107
0.6
-2
10 "o 0.5{ — w,
103 — m 0.4 1
— — w2
1074{ — n3 031 — ws
0.2
10-°
0.1
1076
0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Time steps Time steps

FIG. 4. Charge states in the original scale, n,, and in the normalized scale, w,. Latter is used in the neural

network training.

b. Time Step Scaling. Time step size scaling is another crucial aspect for a successful train-
ing. For stiff equations or rapidly changing dynamics, a fixed time step size is often inadequate for
capturing the system’s behavior accurately. In such cases, adaptive time stepping methods, based
on the local behavior of the system, are employed. This adaptive approach often results in more
accurate and computationally efficient simulations. In the high-fidelity numerical simulation of
the CR model, we used prescribed adaptive time steps in the numerical integration. The dataset
was collected from non-uniform time step solutions with Af, ranging from 1071 to 10~!. The
tiny scale of the time step size makes it challenging to train the neural network, as we input Az,
into the flow map to learn the latent dynamics evolution from current step L(#,) to the next L(t,41).
To make the neural network training more efficient, we use the following transfer formula to scale

At,, into a proper range of (0, 1),
- 1

At = —
log(Ar)

: 2)
See Fig. 5 for a demonstration.

c. Coarse Sampling. We simulate the CR equation (1) with 37 temperatures 7, from 5eV to
95eV with a step size of 2.5, 10 different total densities with ny =[lel4, 2e14, 3el4, 4el4, Sel4,
6el4, 7el4, 8el4, 9e14, 1e15], and 40 different initial conditions. This results in a total of 14,800

trajectories. The dataset was collected with 1,000 time steps for each trajectory, leading to 14.8
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FIG. 5. Scaling of the time steps.

million pairs of (L,,L,) in the flow map neural network training to learn latent dynamics. This
large dataset is very expensive to train in practice. Additionally, there are a significant number of
time steps that are essentially identity mappings (time steps are less than 500). This poses two
challenges: first, the dataset size is substantial, and second, the presence of many identity map-
pings makes the training process difficult. To address these issues, we performed coarse sampling
of the data. The purposes of this approach were to reduce the dataset size and to avoid the identity
mappings. Instead of using all 1,000 time step data points, we performed coarse sampling to retain
161 points; see Fig. 7. Note that time steps are selected to fully resolve the sharp transition of the

dynamics.

B. Autoencoder Training

The entire model is trained in two steps. First, we train the autoencoder to identify the latent
space. Next, we use a flow map neural network (FMNet) to learn the latent dynamics. In the
autoencoder architecture, the encoder and decoder both have two hidden layers. The input is the
normalized ion population density W with an input dimension of 94. The output of the decoder is
the reconstruction of the ion population density and radiative loss rate %, with a dimension of 95.
Increasing the number of hidden neurons and the latent space size increases the training cost. For
the fully connected layers, sigmoid activations are used. The learning rate has constant decay after
every 1000 epochs starting with 0.001. We trained the model for 10,000 epochs, experimenting

with different numbers of hidden units and latent space dimensions. To balance accuracy and
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n, data for different temperatures (Te)
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FIG. 6. High fidelity CR solution of charge state n,. Trajectories from 10 different temperatures 7, are

plotted.
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FIG. 7. Resampled data points from the true trajectory.

efficiency, using 71 = 64, h2 = 32, and a latent space of dimension 10 (with a black space of
dimension 6) provides a reasonably accurate reconstruction and prediction of radiative loss. Fig. 9
shows the prediction of Z, from the decoder. The model is trained using one NVIDIA A100 GPU.
Under this configuration, the training cost is 27 hours. We used this latent space configuration for

our flow map training.
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FIG. 8. The autoencoder architecture, /1,/; are the hidden layers with units 64 and 32 respectively
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FIG. 9. The radiative loss rate %, prediction from the autoencoder neural network. The radiaitive loss
prediction for 20 trajectories are plotted. Red points are the true data, blue dots are the prediction from the

decoder

C. Flow Map Training
1. Prediction Error

In the prediction phase, we provide the initial condition (latent variable at #y found through the
encoder) to the FMNet. FMNet then iteratively predicts the latent trajectory, which includes both
the charge state dynamics (white space) and the unknown dynamics (black space), see Fig. (10).
This latent trajectory is subsequently fed into the decoder to obtain the radiative loss rate %;. The
prediction error of the charge state, used in our model evaluation, is defined as the Mean Squared

Error (MSE) at each time step,
1S =
€pred = E Z ||l’l; —I’lé”
i=1

It is important to note that the training error is computed based on one-step predictions, while the

prediction error in the testing phase accumulates at every time step, reflecting the compound effect
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of iterative predictions. Using prediction errors to evaluate model performance ensures the robust-
ness and reliability of the model, making it suitable for practical applications in predicting radiative
loss rates and understanding charge state dynamics. By leveraging the latent space representation,
the reduced-order model effectively reduces computational complexity while maintaining high
accuracy. This approach facilitates efficient and accurate simulations in high-fidelity numerical

experiments, thereby enhancing the model’s utility in real-world scenarios.

/ N(t1), RL(t1) N(t2), RL(t2) ﬁ(tn),ﬁb
Decoder
fp fp fDT

N(to)

nZ(tO) o o o o
e A B(t0) @ & e
L(to) L(t1) L(t2) L(ts)

K Latent dynamics prediction J

FIG. 10. The iterative prediction scheme of the latent dynamics and radiative loss rate %, after the autoen-

coder and flow map network (FMNet) are trained.

2. Dynamics Prediction from Different Initial Conditions

We first evaluate the performance of the FMNet under various initial conditions. We initialize
the FMNet with different latent variables, each corresponding to a unique initial condition in the
high-fidelity simulation data. The purpose of this evaluation is to assess the model’s ability to
generalize and accurately predict the CR dynamics from different starting points. We select a
representative set of initial conditions that span the range of typical operating conditions for the
CR model. For each initial condition, the FMNet iteratively predicts the latent trajectory, capturing
the evolution of charge state dynamics and unknown dynamics. The predicted latent trajectories
are then decoded to obtain the corresponding radiative loss rates %;. We quantify the prediction
accuracy using metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE)
across all time steps for each initial condition. The results are compared to the ground truth

obtained from the high-fidelity simulations. Fig. 11 illustrates the prediction performance for
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a subset of initial conditions, showing both the predicted and true trajectories of key variables.
Fig. 12 shows the corresponding radiative loss predictions. Our analysis indicates that the model
maintains robust performance across a wide range of initial conditions, with prediction errors
remaining within acceptable bounds. This demonstrates the model’s capability to adapt to different

starting points and accurately capture its dynamics.
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FIG. 11. Charge state n, trajectory prediction from the flow map neural network (FMNet). Each trajectory

represent different initial conditions. Red dots are the true data, and blue dots are the FMNet prediction

AR RN R R SR ER RN R R R R R A
dd it qii ittt b pppsiqpbiiiieydy
7 RN R ERRRRERRRR RS
- :zziiie;g;;;:,\¥;¥¥giktikil;,5é%z%f
SRR IR 1T TR
‘?i\;é;n;%;zé\;;h\;vaf;
.3=-¢_3

AR

aE

FIG. 12. Radiative loss rate prediction from the decoder after feeding the predicted latent dynamics.

17



3. Dynamics Prediction from Different Parameters

In this section, we extend the evaluation to different parameter settings for total density n4 and
electron temperature 7,. These parameters play a crucial role in the behavior of the CR model,
influencing the rate of collisional and radiative processes. To assess the model’s performance
across different parameter values, we generate predictions for various combinations of n4 and 7.
The FMNet is trained to account for these parameters as inputs, enabling it to adapt its predic-
tions based on the specific conditions. We systematically vary ny and 7, within their respective
ranges used in the high-fidelity simulations, Fig. 13 shows the split of the parameters in dataset for
training, validation and testing. For each combination of n4 and T,, the model predicts the latent
trajectory and the corresponding radiative loss. We then compare these predictions to the ground
truth data, using prediction error. Figs. 14 and 15 show the prediction results charge state and
radiative loss. These plots illustrate the model’s ability to accurately capture the dynamics under
varying conditions. Our findings suggest that the model performs well across a broad spectrum of
parameter values, maintaining high accuracy in its predictions. This highlights the model’s flexi-
bility and robustness, making it a valuable tool for simulating and understanding the behavior of

the CR system under different physical conditions.
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FIG. 13. Parameters sampled for training and prediction test.
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Charge state (n,) dynamics prediction for different initial conditions
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FIG. 14. Charge state trajectory prediction at temperature 7, = 65, n4 =5e14 with different initial conditions
in the testing dataset, 10 trajectories are plotted. Red represents true data, and blue represents the model

prediction.
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FIG. 15. Radiative loss rate prediction at temperature 7, = 65, ny =5e14 with different initial conditions in

the testing dataset. Red represents true data, and blue represents the model prediction.

4. Neural Network Architecture Search

Neural network architecture search (NAS) is a crucial process in the development of ML mod-
els, focusing on automating the design of optimal neural network architectures. The idea behind
NAS is to systematically explore a vast search space of possible architectures to identify the most
effective configurations that meet specific performance criteria, such as accuracy, efficiency, and

computational cost.
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Charge state (n;) prediction for different temperatures (Te)
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FIG. 16. Charge state trajectory prediction for different temperatures 7 in the testing dataset. Red represents

true data, and 4 different colors represent the model prediction from different temperatures.
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FIG. 17. Radiative loss rate prediction for different temperatures 7, in the testing dataset. Red represents

true data, and 4 different colors represent the model prediction from different temperatures.

In practice, NAS involves defining a search space that specifies the range of possible architec-
tures, including the number of layers, the type of layers (e.g., convolutional, fully connected), and
the number of units in each layer. The search algorithm then navigates this space to find architec-
tures that maximize a given performance metric on a validation dataset. In our work, we employed
a grid search methodology to systematically explore a range of possible configurations. The pri-
mary objective was to determine the optimal architecture by varying the number of layers and the
number of hidden units within each layer. The number of layers range set was from 2 to 7 layers.
This range includes both simpler models with fewer layers, which may train faster and are less
prone to overfitting, and more complex models with additional layers, which have the capacity to

capture more intricate patterns in the data. For each layer, the number of hidden units was varied
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between 16 and 512. By systematically combining these two parameters (number of layers and

hidden units), the grid search examined a wide array of architectures and it gives an initial study

on the optimal neural network structure for our training data. The results show that the FMNet

nearly reaches best prediction error with 3 layers and 256 units for each layer; see Fig. 19.
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Addressing NAS effectively requires balancing the exploration of diverse architectures with

the exploitation of promising configurations. Techniques such as early stopping, weight sharing,

and transfer learning are often employed to reduce the computational burden and accelerate the

search process. As NAS continues to evolve, it holds the potential to significantly advance the

field of neural network design, making it more accessible and efficient. The grid search we used in

this study is computationally expensive and may miss optimal configurations lying between grid

points. In the future work, we will explore Bayesian optimization and reinforcement learning for

more robust search.
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5. Impact of Training Data Size

The performance of neural networks is influenced by two key factors: the amount of training
data available and the complexity of the model architecture. In the previous section, we used a
grid search method to find the optimal neural network architecture. In this section, we explore how
increasing the size of the training dataset and the complexity of the neural network model impacts

prediction performance.

One of the fundamental principles in ML is that larger datasets tend to lead to better model
performance. When training a neural network on a small dataset, the model may not have enough
examples to learn robust patterns and relationships in the data. As a result, the model may suffer
from overfitting, where it memorizes the training data rather than generalizing well to unseen data.
By increasing the size of the training dataset, we provide the model with more diverse examples
to learn from, which can help improve its ability to generalize. As the amount of training data
increases, the model becomes more exposed to different variations and nuances present in the
data, allowing it to learn more robust representations. Consequently, we typically observe better
prediction performance as the size of the training dataset grows. Since our dataset is parameterized
by the n4 and T,, we use T, as the benchmark to test the impact of the datasize. We split the dataset
according to the 7, values. For the testing dataset, we use T, =[15, 45, 75, 95]. Our initial training
only contains data with T, =[5, 25, 35, 55, 65, 85] (black dots in Fig. 20). The second training we
use the full dataset (blue dots in Fig. 20). The results clearly indicate that increasing the training

dataset can lead to better prediction performance for the model, as demonstrated in Figs. 21 and 22.
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FIG. 20. Data used for different training test
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FIG. 22. Charge state prediction from the FMNet trained with full 7, values data.

IV.  CONCLUSION AND FUTURE WORK

Collisional-radiative (CR) modeling. Our approach leverages a mixed latent space, comprising a
“white space” that enforces known physics constraints, and a “black space” discovered through an
autoencoder. Subsequently, neural networks are utilized to learn the dynamics governing this la-

tent space. In the numerical experiments, by thoroughly evaluating the model’s performance under

In this paper, we have introduced a physics-assisted surrogate model framework tailored for
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various initial conditions and parameter settings, we demonstrate its reliability and effectiveness in
predicting the complex dynamics of the CR model. This comprehensive analysis provides confi-
dence in the model’s applicability to real-world scenarios, where accurate and efficient predictions
are essential for understanding and mitigating plasma disruptions in fusion reactors. The pre-
sented numerical results substantiate the effectiveness of our approach, demonstrating promising
accuracy in modeling the CR problem.

In future work, we plan to expand our model to include data from multiple species. Incorporat-
ing a broader range of species will enhance the model’s applicability and robustness, allowing for
more comprehensive predictions of radiative loss rates and charge state dynamics across different
plasma conditions. This expansion will inevitably increase the dataset size and complexity, pre-
senting new challenges in terms of computational requirements and training costs which we will
use distributed training with multiple GPUs. Additionally, we aim to integrate NODEs into our
framework. NODEs offer a powerful approach for modeling continuous-time dynamics, allowing

the model to learn the system’s evolution directly from data.
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