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Collisional-radiative (CR) models describe the atomic processes in a plasma by tracking

the population density in the ground and excited states for each charge state of the atom/ion.

These models predict important plasma properties such as charge state distributions and

radiative emissivity and opacity. Accurate descriptions of the CR balance of the plasma

are essential in fusion whole device modeling, especially when significant impurities are

introduced into the plasmas. In an integrated fusion plasma and CR simulation, a CR

model, which is a high-dimensional stiff ODE, needs to be solved on each grid point in

the configuration space, and can overwhelm the overall computational cost. In this work,

we propose a machine-learning-based method that discovers a latent space and learns its

corresponding latent dynamics, which can capture the essential physics to make accurate

predictions at much lower online computational cost. The proposed approach is physics-

assisted, due to its combination of a physical latent space and a data-driven latent space.

It has been demonstrated that the proposed architecture can predict both the full-order CR

dynamics and a physical quantity of interest accurately.

1

mailto:xxie@lanl.gov


I. INTRODUCTION

Fusion reactors, such as tokamaks, confine plasma using magnetic fields to sustain nuclear fu-

sion reactions. However, maintaining stable plasma confinement is challenging due to instabilities

that can lead to disruptions. Plasma disruptions involve a sudden loss of confinement, causing

the plasma to interact with the reactor walls, leading to potential damage and reduced reactor

performance. To prevent or mitigate these disruptions, understanding the underlying physical pro-

cesses, including radiative and collisional interactions within the plasma, is essential. In particular,

collisional-radiative (CR) modeling is a critical component in the study of plasma physics, espe-

cially in the context of plasma disruption mitigation in fusion reactors [1].

The CR model represents these interactions and is mathematically described by a high-

dimensional nonlinear stiff dynamical system. This model considers various processes such

as ionization, recombination, excitation, and de-excitation, which occur simultaneously within the

plasma. In practical plasma disruption simulations, high-fidelity simulations of the CR model are

extremely computationally expensive, making the use of the original CR system impractical for

real-time applications. As a result, there is an increasing interest and demand for efficient and

accurate surrogate models for the CR system in plasma disruption simulations [2,3].

The objective of this work is to develop a data-driven surrogate method for the CR model using

deep neural networks. Specifically, we first use a physics-assisted autoencoder on the CR data to

find a low-dimensional latent representation of the original CR system. Then, we use a flow map

neural network to learn the latent dynamics. Once our reduced surrogate model is trained, we can

predict the whole latent dynamics given only the initial condition, through iteratively applying the

flow map neural network, and then reconstruct its radiative power loss via a decoder. By leveraging

deep learning techniques, our proposed surrogate model can provide a computationally efficient

and accurate representation of the CR dynamics, facilitating better prediction and mitigation of

plasma disruptions in fusion reactors.

A. Collisional-radiative Modeling

CR modeling deals with the complex interactions between electrons, ions, and neutral parti-

cles in a plasma. These interactions include collisional excitation, de-excitation, ionization, and

recombination processes, as well as radiative emissions, Fig. 1 illustrates the whole CR process.
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The goal of CR modeling is to calculate the population densities of various charge states and

energy levels within the plasma, accounting for both collisional and radiative processes. To man-

age the wide range of possible ion states that can occur in a plasma, we order the set of all ion

population density vector in a given plasma as,

N = {N j
α,Z},

where N j
α,Z denotes the population density of ion level j for atomic species α and charge state

Z, which ranges from 0 to Aα , the atomic number of species α . The index j labels each of the

ground and excited states. Typical gas species used in impurity plasma mitigation include helium

(Aα = 2), lithium (Aα = 3), nitrogen (Aα = 7), neon (Aα = 10), and argon (Aα = 18). The high

fidelity solution of a CR model can accurately provide plasma properties as input to subsequent

coupled stages of plasma simulation code. These properties include the species ion charge state

FIG. 1. Ion particles ionization and de-excitation in a CR model.

distribution nα,Z and the radiative cooling rate RL . These quantities are crucial for radiative

energy transport in fusion plasma simulation and help design experiments at ITER. The species

charge state density nα,Z is simply the sum over all ground and excited states of a given charge

state,

nα,Z = ∑
j

N j
α,Z.

The radiative power loss (RL) is a crucial quantity representing the energy radiated away by the

plasma due to various radiative processes. The radiative power loss can be calculated by sum-

ming up the contributions from all radiative transitions, including line emissions, recombination

radiation, and bremsstrahlung. The general form of the radiative loss equation is given by:

RL = ∑
α,Z, j,k

N j
α,ZA j

α,Z→kE j
α,Z→k,
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where A j
α,Z→k is the coefficient for spontaneous emission from energy level j to level k, and E j

α,Z→k

is the the energy of the photon emitted in the transition from level j to level k.

The CR model is mathematically represented as a parameterized ODE:

dN
dt

= R(N,nA,Te)N, (1)

with N the population density of ions in various charge states including both ground and excites

states, Te is the temperature, nA,α = ∑Z nα,Z is the total density for species α . The dimension

of N can vary enormously depending on whether one would want to resolve the fine and super-

fine structures in the excited states. In LANL ATOMIC model [4], it can have N ≈ 106 for ar-

gon species. The rate matrix R(N,nA,Te) is a square matrix, which includes a number of atomic

processes, broadly grouped in up-transition and down-transition. The up-transition includes col-

lisional ionization/excitation, photo-ionization and excitation. The down-transition accounts for

various channels of recombination and de-excitation; see Fig. 1 for instance. Collisional charge

exchange can provide both down- and up-transition depending on the specific ion/atom involved.

The overall rate matrix R has explicit dependence on the electron distribution. The normal as-

sumption is to approximate the electron distribution as a Maxwellian with temperature Te and total

density nA,α for species α .

The CR model is a parameterized stiff ODE as many of the transition rates are very fast on

timescale of interest. Numerical solutions of the full system (1) require implicit methods and are

usually performed with a standard linear algebra package. The high-dimensional dynamics of a

CR model can be a computational burden to obtain high-fidelity solution with accurate prediction

of the ion charge population distribution. The state-of-the-art CR models contain orders of millions

degrees of freedom can take hours to obtain a solution. It is simply impossible to directly couple

the CR physics module in its original form to 3D plasma simulations, since for each spatial grid

point in the plasma simulation, one would need to evolve a coupled ODE with 103−6 degrees of

freedom, which would overwhelm the plasma simulation cost by many orders of magnitude. The

goal of this work is to introduce a reduced-order model that can efficiently and accurately predict

the fast scale dynamics transition of the charge state, nα,Z , and the radiative cooling rate, RL.
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FIG. 2. Trajectory of the charge state from the high-fidelity numerical simulation of the CR model for

different initial conditions. The solution is for a single species, lithium, where the atomic number Aα = 3.

Four colored lines represent four charge states (they are partial sums of the solution state vector; details will

be defined later), n0,n1,n2,n3.

B. Related Work

Reduced Order Modeling (ROM) seeks low-dimensional approximations of high-dimensional

systems, significantly reducing computational costs. In the framework of data-driven ROM, ma-

chine learning (ML) techniques and data are used to distill the essential features of complex sys-

tems into more manageable representations. This is especially relevant in fields such as fluid

dynamics, material science, and climate modeling, where solving full-scale problems involves sig-

nificant computational challenges due to high dimensionality. Proper Orthogonal Decomposition

(POD) and Dynamic Mode Decomposition (DMD) are two of the most popular approaches to ex-

tract dominant features and dynamic structures from data. These methods have been successfully

applied in fluid mechanics, control, and biomechanical problems [5–8]. With the development of

deep learning, autoencoder neural networks have gained significant attention in ROM due to their

ability to efficiently compress high-dimensional data into a lower-dimensional latent space while

preserving essential features. Recent works have demonstrated the use of autoencoders for learn-

ing low-dimensional representations of fluid dynamics [9,10]. Ref. [11] combined autoencoders
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with DMD to learn the governing equations of dynamical systems directly from data, allowing for

efficient predictions of future states.

Data-driven discovery of dynamics has emerged as a powerful tool for modeling and predicting

the behavior of complex physical systems. This approach leverages ML techniques to extract

patterns and underlying dynamics from data, facilitating the development of reduced-order models

that are both efficient and accurate. Ref. [12] introduced the Sparse Identification of Nonlinear

Dynamical Systems (SINDy) method, which aims to discover governing equations from data. By

representing the dynamics in a library of candidate functions, SINDy selects the most relevant

terms to construct a parsimonious model. This data-driven methodology has proven effective

in capturing the underlying physics of complex systems with minimal assumptions, offering a

powerful tool for system identification and model reduction [13,14]. In [15], they introduced

Neural Ordinary Differential Equations (NODE), which parametrize the time derivative of the

hidden state with a neural network, allowing the model to learn complex dynamics directly from

data. This method can also be applied for identifying latent dynamics [16,17]. Ref. [18] utilized

autoencoders to identify a latent space where the nonlinear dynamics are approximated by linear

models based on linear Koopman operator theory, enabling efficient and accurate predictions of

system behavior. Ref. [19] introduced physics- and data-assisted ROM based on approximate

inertial manifolds theory using deep neural networks. Their approach is successfully demonstrated

through dissipative PDEs. Ref. [19] discussed the “physics-assisted” latent space learning where

the latent space is a “gray-box” approach including the known physics latent space and data-driven

latent space. A few recent works on learning flow maps using structure-preserving neural networks

can be found in [20,21]. These studies underscore the potential of integrating ROM approach with

latent dynamics learning to address the computational challenges in simulating high-dimensional

dynamical systems.

C. Our contribution

The main challenge in finding the reduced CR model lies in two parts. The first is to efficiently

identify the low-dimensional representation from the data. The second is to learn latent dynamics

that can accurately predict the trajectories of the reduced system using only the initial conditions.

This allows for an approximation of the full-order dynamics and radiative cooling rate with high

accuracy. Fig. 2 plots the trajectories of different charge states from the high-fidelity numerical
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simulation. It is evident that the sharp transitions over very short time scales present a signifi-

cant challenge in accurately modeling the reduced CR dynamics. In this work, we introduce a

novel physics-assisted latent space dynamics learning approach based on deep neural networks,

which is partially related to [19]. First, we use an autoencoder neural network to identify the

low-dimensional representation of the original high-dimensional CR system. This representation

is denoted as the black space. We then incorporate the known physical information, specifically

the charge states, denoted as the white space, into the entire latent space. This gray-box approach

ensures that both data-driven and physics-based aspects are integrated into the model. Then, we

use a flow map neural network to learn the dynamics within the latent space, similar with the ap-

proaches in [20,21]. To the best of our knowledge, this is the first effort to apply the integrated

data-driven and physics-based latent dynamics learning for constructing a reduced-order model

of a parameterized CR system. For the purpose of demonstration, our approach will be exces-

sively tested by the CR data from a single species, lithium, under different parameters and initial

conditions in Section III.

II. DATA-DRIVEN MODEL REDUCTION FOR CR MODELING

In this section, we present a physics-assisted model reduction framework for CR modeling

employing deep learning techniques. The methodology involves two crucial steps: latent space

reduction and latent dynamics learning, both of which are facilitated by designing an appropriate

neural network architecture. The network comprises an encoder to reduce the input dimension

to a lower latent space, followed by a neural network to learn the flow map of the latent space.

Subsequently, a decoder is employed to reconstruct the full ion density space. Fig. 3 illustrates the

architecture of our data-driven ML-based surrogate for the CR system.

A. Physics-assisted Latent Space via Autoencoder

In the latent space discovery, we integrate known physics information by adding the charge

state as white space into the latent space discovered by the autoencoder. The latent space is thus

composed of both the white space and the black space. The white space is derived from the charge

state of the corona equilibrium model of CR modeling. In the corona equilibrium model, the rate

equations for the charge states simplify significantly. The assumption is that the ion population
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FIG. 3. Autoencoder architecture for physics-assisted latent space identification (left). Flow map for latent

dynamics learning (right). θ denotes the parameter space in our CR system which are total density, nA, and

temperature, Te.

is primarily determined by ionization from and recombination to the ground state, rather than by

transitions between excited states.
dnz

dt
= R ·nz

The corona equilibrium model leads to a significant simplification of the CR model by reduc-

ing the complexity of the rate equations. Instead of considering detailed level populations, the

model focuses on the balance between ionization and recombination rates for each charge state.

This makes it easier to calculate the charge state distribution and related properties such as ra-

diative losses and spectral line intensities. The charge state from the corona equilibrium model

provides a simplified yet accurate representation of the ionization balance in a high-temperature

plasma. This model captures the essential physics of ionization and recombination processes with-

out the complexity of detailed level populations. By focusing on the charge state, we reduce the

dimensionality of the problem. This allows us to incorporate critical physical insights without

overwhelming the autoencoder with excessive complexity. The autoencoder can then efficiently

learn the latent dynamics of the remaining variables (black space). Incorporating the charge state

as white space guides the autoencoder towards physically meaningful representations. This helps

the model to learn latent dynamics that are consistent with known physical laws. The inclusion of

known physics information in the latent space enhances the interpretability of the model.

Autoencoders consist of two main components: an encoder function fE , which maps the in-

put data to a lower-dimensional latent space, and a decoder function fD, which reconstructs the

original data from its latent representation. During training, the autoencoder minimizes the re-

construction error between the input and the reconstructed output, thereby capturing the most
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significant features of the data. In the first part of our data-driven framework, an autoencoder is

utilized to reduce the full ion population space into a black space, Bn, at a given time step tn. This

black space, in combination with known physics information such as the charge state (i.e., a white

space, wn
z ), forms our latent space, Ln. The full ion population can then be reconstructed through

a decoder fD from this latent space. Note that when setting the dimension of the black space to

zero, we solely rely on the charge state as our latent space, which is referred to as coronal equi-

librium, though impractical. Additionally, the radiation power loss, RL , can be retrieved from

the decoder. In our case, the encoder part transforms the input, i.e., a normalized ion population

Wn ∈ Rn, to a black space Bn ∈ Rr with r ≪ N:

Bn = fE(Wn).

The decoder part tries to reconstruct the input Wn and predict the radiative loss from the latent

space Ln = [wn
z ,Bn]:

[Wn,RL,n] = fD(Ln).

The objective is to minimize the reconstruction loss Lrecons, which measures the difference

between the input Wn and the reconstructed output Wn and RL,n:

Lrecons =
1
S

S

∑
n=1

[
∥Wn −Wn∥2 +∥RL,n −RL,n∥2

]
,

where S is the total number of time steps in our training dataset.

B. Latent Dynamics Learning via Flow Map

In dynamical systems theory, a flow map describes the evolution of states in the system over

time. Specifically, it is a mathematical function that maps an initial state to its future state at any

given time instant. The flow map serves as a bridge between the system’s underlying equations and

its qualitative behavior. For continuous-time dynamical systems governed by ordinary differential

equations (ODEs), the flow map elucidates how an initial point in the system’s phase space evolves

along a trajectory determined by the ODEs. In discrete-time systems, the flow map is often a

straightforward function illustrating transitions between states from one time step to the next.

Analyzing the flow map offers insights into critical properties of the system, such as stability,

convergence, and the existence of attractors or repellors, which are crucial in comprehending the
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long-term behavior of the system. Capturing the essence of how states transition over time, the

flow map in the CR model represents the latent dynamics, which can be leveraged to derive the

quantity of interest with minimal computational cost—a significant advantage in fusion simulation

for disruption mitigation. In continuous-time dynamical systems described by ordinary differential

equations (ODEs), the latent system’s behavior can be expressed as:

dL
dt

= F(L;θ),

Here, L ∈ Rr is the reduced latent state vector, and F(L;θ) is the vector field that describes the

dynamics of the system parameterized by θ . The flow map Φ(∆t,L0) is a function that maps the

initial state L0 at t = t0 to its future state L(t) at a time interval ∆t, such that:

L(t0 +∆t) = Φ(∆t,L(t0))

In general, for discrete-time dynamical systems with a uniform time step, the system can often be

described by:

Ln+1 = G(Ln)

Since our CR model has an exponential time steps and also parameterized by the total density nA

and temperature Te, our flow map Φ acts at discrete steps, mapping Ln to Ln+1 and can be denoted

as:

Ln+1 = Φ(∆tn,Ln;nA,Te),

see the Fig. 3 for the model architecture. In this case θ includes nA and Te. Thus, the flow map

can be approximated by a neural network with the loss function defined as the following,

L =
1
S

S

∑
n=0

[
∥Ln+1 −Φ(∆tn,Ln;θ)∥2 +∥nA −

Z

∑
i=0

nn
i ∥2

]
,

where Φ(∆tn,Ln;θ) is the neural network prediction of the trajectory at next time step, and ∥nA −

∑
Z
i=0 nn

i ∥2 is the additional physical constraint, i.e., the atomic conservation law.

III. NUMERICAL EXPERIMENT

In this section, we present detailed numerical experiments for the proposed surrogate model

in Section II. As increasing the number of species would significantly amplify the dataset size,

computational requirements, and training costs, we utilize Lithium as our representative species
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in our high-fidelity simulation of the CR model in this study to obtain the necessary data. The

CR solution of Lithium has dimN = 94 states corresponding to different energy levels. Since the

atomic number Aα = 3, we have 4 charge states defined as the following,

n0 :=
31

∑
i=0

Ni, n1 :=
62

∑
i=32

Ni, n2 :=
93

∑
i=63

Ni, n3 := N94.

Fig. 2 shows the charge state trajectories from different initial conditions. We can clearly see

that there is sharp transition at very tiny time scale in the CR dynamics which makes it one of

challenging part in the reduced latent dynamics learning.

A. Data processing

The success of the ML training heavily relies on the proper data processing. Here we describe

two critical components to rescale the data to ease the ML training. A proper sampling for stiff

dynamics is also an important step to guarantee a good training result.

a. Ion Density Normalization. The magnitude of ion population N from the numerical so-

lution varies largely between 1e13 to 1e-11. Since the total density nA should be preserved for

different parameter setting, we first normalize the population using its total density nA as the fol-

lows,

Ñ =
N
nA

, nA =
Z

∑
z=0

nz

After the total density scaling, the range of ion population density Ñ lies in (1e-27,1). Many of

the ion densities are still very small, with magnitudes less than 1e-10 making it challenging for the

neural network to train on such values of tiny magnitude. To accurately resolve the high-fidelity

dynamics of the CR model, it is important to resolve small values of the states, Fig. (6) shows the

high-fidelity solution of the charge state dynamics from different temperature (Te). The raw data

however is dominated by one or two states that have much larger magnitudes.

To accommodate that, we first apply the following change of variable to transform the data into

a more suitable range:

W̃ = 1− log(Ñ),

then using (0,1) min-max scaler on W̃ to obtain the properly scaled training data W :

W =
W̃ −W̃min

W̃max −W̃min
.
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The transformed variable W lies in (0,1) and is properly scaled, making it easier for the neural

network to train effectively. Fig. 4 shows the charge state, nz, both in its original scale and its

normalized scale (between 0 and 1), as used in practical neural network training. Note that we use

the notation wz (w0, w1, w2, w3) to represent the transformed charge state of nz (n0, n1, n2, n3).
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FIG. 4. Charge states in the original scale, nz, and in the normalized scale, wz. Latter is used in the neural

network training.

b. Time Step Scaling. Time step size scaling is another crucial aspect for a successful train-

ing. For stiff equations or rapidly changing dynamics, a fixed time step size is often inadequate for

capturing the system’s behavior accurately. In such cases, adaptive time stepping methods, based

on the local behavior of the system, are employed. This adaptive approach often results in more

accurate and computationally efficient simulations. In the high-fidelity numerical simulation of

the CR model, we used prescribed adaptive time steps in the numerical integration. The dataset

was collected from non-uniform time step solutions with ∆tn ranging from 10−16 to 10−1. The

tiny scale of the time step size makes it challenging to train the neural network, as we input ∆tn

into the flow map to learn the latent dynamics evolution from current step L(tn) to the next L(tn+1).

To make the neural network training more efficient, we use the following transfer formula to scale

∆tn into a proper range of (0,1),

∆̃t =− 1
log(∆t)

. (2)

See Fig. 5 for a demonstration.

c. Coarse Sampling. We simulate the CR equation (1) with 37 temperatures Te from 5eV to

95eV with a step size of 2.5, 10 different total densities with nA =[1e14, 2e14, 3e14, 4e14, 5e14,

6e14, 7e14, 8e14, 9e14, 1e15], and 40 different initial conditions. This results in a total of 14,800

trajectories. The dataset was collected with 1,000 time steps for each trajectory, leading to 14.8
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FIG. 5. Scaling of the time steps.

million pairs of (Ln,Ln+1) in the flow map neural network training to learn latent dynamics. This

large dataset is very expensive to train in practice. Additionally, there are a significant number of

time steps that are essentially identity mappings (time steps are less than 500). This poses two

challenges: first, the dataset size is substantial, and second, the presence of many identity map-

pings makes the training process difficult. To address these issues, we performed coarse sampling

of the data. The purposes of this approach were to reduce the dataset size and to avoid the identity

mappings. Instead of using all 1,000 time step data points, we performed coarse sampling to retain

161 points; see Fig. 7. Note that time steps are selected to fully resolve the sharp transition of the

dynamics.

B. Autoencoder Training

The entire model is trained in two steps. First, we train the autoencoder to identify the latent

space. Next, we use a flow map neural network (FMNet) to learn the latent dynamics. In the

autoencoder architecture, the encoder and decoder both have two hidden layers. The input is the

normalized ion population density W with an input dimension of 94. The output of the decoder is

the reconstruction of the ion population density and radiative loss rate RL, with a dimension of 95.

Increasing the number of hidden neurons and the latent space size increases the training cost. For

the fully connected layers, sigmoid activations are used. The learning rate has constant decay after

every 1000 epochs starting with 0.001. We trained the model for 10,000 epochs, experimenting

with different numbers of hidden units and latent space dimensions. To balance accuracy and
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FIG. 6. High fidelity CR solution of charge state nz. Trajectories from 10 different temperatures Te are

plotted.
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FIG. 7. Resampled data points from the true trajectory.

efficiency, using h1 = 64, h2 = 32, and a latent space of dimension 10 (with a black space of

dimension 6) provides a reasonably accurate reconstruction and prediction of radiative loss. Fig. 9

shows the prediction of RL from the decoder. The model is trained using one NVIDIA A100 GPU.

Under this configuration, the training cost is 27 hours. We used this latent space configuration for

our flow map training.
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FIG. 8. The autoencoder architecture, h1,h2 are the hidden layers with units 64 and 32 respectively

FIG. 9. The radiative loss rate RL prediction from the autoencoder neural network. The radiaitive loss

prediction for 20 trajectories are plotted. Red points are the true data, blue dots are the prediction from the

decoder

C. Flow Map Training

1. Prediction Error

In the prediction phase, we provide the initial condition (latent variable at t0 found through the

encoder) to the FMNet. FMNet then iteratively predicts the latent trajectory, which includes both

the charge state dynamics (white space) and the unknown dynamics (black space), see Fig. (10).

This latent trajectory is subsequently fed into the decoder to obtain the radiative loss rate RL. The

prediction error of the charge state, used in our model evaluation, is defined as the Mean Squared

Error (MSE) at each time step,

epred =
1
S

S

∑
i=1

∥ni
z −ni

z∥2

It is important to note that the training error is computed based on one-step predictions, while the

prediction error in the testing phase accumulates at every time step, reflecting the compound effect
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of iterative predictions. Using prediction errors to evaluate model performance ensures the robust-

ness and reliability of the model, making it suitable for practical applications in predicting radiative

loss rates and understanding charge state dynamics. By leveraging the latent space representation,

the reduced-order model effectively reduces computational complexity while maintaining high

accuracy. This approach facilitates efficient and accurate simulations in high-fidelity numerical

experiments, thereby enhancing the model’s utility in real-world scenarios.

FIG. 10. The iterative prediction scheme of the latent dynamics and radiative loss rate RL after the autoen-

coder and flow map network (FMNet) are trained.

2. Dynamics Prediction from Different Initial Conditions

We first evaluate the performance of the FMNet under various initial conditions. We initialize

the FMNet with different latent variables, each corresponding to a unique initial condition in the

high-fidelity simulation data. The purpose of this evaluation is to assess the model’s ability to

generalize and accurately predict the CR dynamics from different starting points. We select a

representative set of initial conditions that span the range of typical operating conditions for the

CR model. For each initial condition, the FMNet iteratively predicts the latent trajectory, capturing

the evolution of charge state dynamics and unknown dynamics. The predicted latent trajectories

are then decoded to obtain the corresponding radiative loss rates RL. We quantify the prediction

accuracy using metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE)

across all time steps for each initial condition. The results are compared to the ground truth

obtained from the high-fidelity simulations. Fig. 11 illustrates the prediction performance for
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a subset of initial conditions, showing both the predicted and true trajectories of key variables.

Fig. 12 shows the corresponding radiative loss predictions. Our analysis indicates that the model

maintains robust performance across a wide range of initial conditions, with prediction errors

remaining within acceptable bounds. This demonstrates the model’s capability to adapt to different

starting points and accurately capture its dynamics.

FIG. 11. Charge state nz trajectory prediction from the flow map neural network (FMNet). Each trajectory

represent different initial conditions. Red dots are the true data, and blue dots are the FMNet prediction

FIG. 12. Radiative loss rate prediction from the decoder after feeding the predicted latent dynamics.
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3. Dynamics Prediction from Different Parameters

In this section, we extend the evaluation to different parameter settings for total density nA and

electron temperature Te. These parameters play a crucial role in the behavior of the CR model,

influencing the rate of collisional and radiative processes. To assess the model’s performance

across different parameter values, we generate predictions for various combinations of nA and Te.

The FMNet is trained to account for these parameters as inputs, enabling it to adapt its predic-

tions based on the specific conditions. We systematically vary nA and Te within their respective

ranges used in the high-fidelity simulations, Fig. 13 shows the split of the parameters in dataset for

training, validation and testing. For each combination of nA and Te, the model predicts the latent

trajectory and the corresponding radiative loss. We then compare these predictions to the ground

truth data, using prediction error. Figs. 14 and 15 show the prediction results charge state and

radiative loss. These plots illustrate the model’s ability to accurately capture the dynamics under

varying conditions. Our findings suggest that the model performs well across a broad spectrum of

parameter values, maintaining high accuracy in its predictions. This highlights the model’s flexi-

bility and robustness, making it a valuable tool for simulating and understanding the behavior of

the CR system under different physical conditions.
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FIG. 13. Parameters sampled for training and prediction test.
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FIG. 14. Charge state trajectory prediction at temperature Te = 65, nA =5e14 with different initial conditions

in the testing dataset, 10 trajectories are plotted. Red represents true data, and blue represents the model

prediction.
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FIG. 15. Radiative loss rate prediction at temperature Te = 65, nA =5e14 with different initial conditions in

the testing dataset. Red represents true data, and blue represents the model prediction.

4. Neural Network Architecture Search

Neural network architecture search (NAS) is a crucial process in the development of ML mod-

els, focusing on automating the design of optimal neural network architectures. The idea behind

NAS is to systematically explore a vast search space of possible architectures to identify the most

effective configurations that meet specific performance criteria, such as accuracy, efficiency, and

computational cost.
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FIG. 16. Charge state trajectory prediction for different temperatures Te in the testing dataset. Red represents

true data, and 4 different colors represent the model prediction from different temperatures.

0 100 200 300 400 500 600 700

10 21

10 20

10 19

Radiative loss rate ( ) prediction for different temperatures (Te)

True data
Te=25.0
Te=65.0
Te=75.0
Te=95.0

FIG. 17. Radiative loss rate prediction for different temperatures Te in the testing dataset. Red represents

true data, and 4 different colors represent the model prediction from different temperatures.

In practice, NAS involves defining a search space that specifies the range of possible architec-

tures, including the number of layers, the type of layers (e.g., convolutional, fully connected), and

the number of units in each layer. The search algorithm then navigates this space to find architec-

tures that maximize a given performance metric on a validation dataset. In our work, we employed

a grid search methodology to systematically explore a range of possible configurations. The pri-

mary objective was to determine the optimal architecture by varying the number of layers and the

number of hidden units within each layer. The number of layers range set was from 2 to 7 layers.

This range includes both simpler models with fewer layers, which may train faster and are less

prone to overfitting, and more complex models with additional layers, which have the capacity to

capture more intricate patterns in the data. For each layer, the number of hidden units was varied
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between 16 and 512. By systematically combining these two parameters (number of layers and

hidden units), the grid search examined a wide array of architectures and it gives an initial study

on the optimal neural network structure for our training data. The results show that the FMNet

nearly reaches best prediction error with 3 layers and 256 units for each layer; see Fig. 19.
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FIG. 18. Training history of the FMNet. Training error (left) vs prediction error (right) from different

network architectures.
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FIG. 19. Prediction error from models with different architecture.

Addressing NAS effectively requires balancing the exploration of diverse architectures with

the exploitation of promising configurations. Techniques such as early stopping, weight sharing,

and transfer learning are often employed to reduce the computational burden and accelerate the

search process. As NAS continues to evolve, it holds the potential to significantly advance the

field of neural network design, making it more accessible and efficient. The grid search we used in

this study is computationally expensive and may miss optimal configurations lying between grid

points. In the future work, we will explore Bayesian optimization and reinforcement learning for

more robust search.
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5. Impact of Training Data Size

The performance of neural networks is influenced by two key factors: the amount of training

data available and the complexity of the model architecture. In the previous section, we used a

grid search method to find the optimal neural network architecture. In this section, we explore how

increasing the size of the training dataset and the complexity of the neural network model impacts

prediction performance.

One of the fundamental principles in ML is that larger datasets tend to lead to better model

performance. When training a neural network on a small dataset, the model may not have enough

examples to learn robust patterns and relationships in the data. As a result, the model may suffer

from overfitting, where it memorizes the training data rather than generalizing well to unseen data.

By increasing the size of the training dataset, we provide the model with more diverse examples

to learn from, which can help improve its ability to generalize. As the amount of training data

increases, the model becomes more exposed to different variations and nuances present in the

data, allowing it to learn more robust representations. Consequently, we typically observe better

prediction performance as the size of the training dataset grows. Since our dataset is parameterized

by the nA and Te, we use Te as the benchmark to test the impact of the datasize. We split the dataset

according to the Te values. For the testing dataset, we use Te =[15, 45, 75, 95]. Our initial training

only contains data with Te =[5, 25, 35, 55, 65, 85] (black dots in Fig. 20). The second training we

use the full dataset (blue dots in Fig. 20). The results clearly indicate that increasing the training

dataset can lead to better prediction performance for the model, as demonstrated in Figs. 21 and 22.
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FIG. 20. Data used for different training test
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FIG. 21. Charge state prediction from the FMNet trained with first training Te data (see dark dots in

Fig. (20)).
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FIG. 22. Charge state prediction from the FMNet trained with full Te values data.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a physics-assisted surrogate model framework tailored for

Collisional-radiative (CR) modeling. Our approach leverages a mixed latent space, comprising a

“white space” that enforces known physics constraints, and a “black space” discovered through an

autoencoder. Subsequently, neural networks are utilized to learn the dynamics governing this la-

tent space. In the numerical experiments, by thoroughly evaluating the model’s performance under
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various initial conditions and parameter settings, we demonstrate its reliability and effectiveness in

predicting the complex dynamics of the CR model. This comprehensive analysis provides confi-

dence in the model’s applicability to real-world scenarios, where accurate and efficient predictions

are essential for understanding and mitigating plasma disruptions in fusion reactors. The pre-

sented numerical results substantiate the effectiveness of our approach, demonstrating promising

accuracy in modeling the CR problem.

In future work, we plan to expand our model to include data from multiple species. Incorporat-

ing a broader range of species will enhance the model’s applicability and robustness, allowing for

more comprehensive predictions of radiative loss rates and charge state dynamics across different

plasma conditions. This expansion will inevitably increase the dataset size and complexity, pre-

senting new challenges in terms of computational requirements and training costs which we will

use distributed training with multiple GPUs. Additionally, we aim to integrate NODEs into our

framework. NODEs offer a powerful approach for modeling continuous-time dynamics, allowing

the model to learn the system’s evolution directly from data.
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