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Introduction

What are atomistic simulations and 
interatomic potentials?

How does machine learning fit in?

How can interatomic potentials be 
improved?
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Atomistic Simulation

Atomistic simulations can be used 
to determine material and 
chemical properties

Simulating how atoms and  
molecules behave in a given 
system

For example:
 Understand reactive systems 
 Exploring phases of materials
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Interatomic Potentials

Potentials provide forces and 
energies

Trade off between speed and 
accuracy

Classical models use well 
defined functional form


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How can interatomic potentials be improved?

 

Classical Examples
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How can classical potentials be improved?

 

Improve Parameters

Improve Functional Form

Improve description 
of electrostatics

Development and validation of the quantum 
mechanical bespoke protein force field, AEA 
Allen, MJ Robertson, MC Payne, DJ Cole, 2019, 
ACS Omega

System specific parameters

Harmonic force constants for molecular 
mechanics force fields via Hessian matrix 
projection, AEA Allen, MC Payne, DJ Cole, 
2018, JCTC

QUBEKit: Automating the derivation of force field parameters from quantum mechanics, JT Horton, AEA Allen, LS Dodda, DJ Cole, 
2019, Journal of chemical information and modeling

Better bond and angle terms System specific parameters ML of Parameters

Toward transferable empirical valence 
bonds: Making classical force fields 
reactive, AEA Allen, Gabor Csanyi;,  J. 
Chem. Phys, 2024
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Limitations of Classical Force Fields

 



QUBEKit: Automating the derivation of force field parameters from quantum mechanics, JT 
Horton, AEA Allen, LS Dodda, DJ Cole, 2019, Journal of chemical information and modeling
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How can interatomic potentials be improved?

 

Machine Learning
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Why do we need Machine Learning Potentials?

Potentials can provide forces  
and energies

 Problem suits machine learning 
as the potential energy surface is 
highly complex and requires a 
flexible functional form 

  
 Lots of data can be supplied for 

the problem
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Machine Learning Potentials

The flexible 
functional form 
allows for 
increased accuracy.

Multiple 
considerations for 
these forms of 
models. 
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Improving ML Models

Architecture
Atomic permutationally invariant polynomials for fitting 
molecular force fields. Alice E. A. Allen, Geneviève Dusson, 
Christoph Ortner, and Gábor Csányi. Machine Learning: Science 
and Technology, 2021

Linear Atomic Cluster Expansion Force Fields for Organic 
Molecules: beyond RMSE., Kovacs, D. P., van der Oord, C., 
Kucera, J., Allen, A., Cole, D., Ortner, C., & Csanyi, G.,  JCTC, 
2021

Fitting Methods
Learning together: Towards foundation models for machine 
learning interatomic potentials with meta-learning, AEA 
Allen, N Lubbers, S Matin, J Smith, R Messerly, S Tretiak, K 
Barros, npj Computational Materials, 2024 

Training Data
Machine learning potentials with Iterative 
Boltzmann Inversion: training to experiment, Sakib 
Matin, Alice Allen, Justin S Smith, Nicholas Lubbers, 
Ryan B Jadrich, Richard A Messerly, Benjamin T 
Nebgen, Ying Wai Li, Sergei Tretiak, Kipton Barros,  
JCTC, 2024

Interpretability
Alice E. A. Allen and Alexandre Tkatchenko, Machine 
Learning of Material Properties: Predictive and 
Interpretable Multilinear Models, Science Advances, 
2022 



12

Improving ML Models

Fitting Methods
Learning together: Towards foundation models for machine 
learning interatomic potentials with meta-learning, AEA 
Allen, N Lubbers, S Matin, J Smith, R Messerly, S Tretiak, K 
Barros, npj Computational Materials, 2024 

Training Data
Machine learning potentials with Iterative 
Boltzmann Inversion: training to experiment, Sakib 
Matin, Alice Allen, Justin S Smith, Nicholas Lubbers, 
Ryan B Jadrich, Richard A Messerly, Benjamin T 
Nebgen, Ying Wai Li, Sergei Tretiak, Kipton Barros,  
JCTC, 2024

Interpretability
Alice E. A. Allen and Alexandre Tkatchenko, Machine 
Learning of Material Properties: Predictive and 
Interpretable Multilinear Models, Science Advances, 
2022 

Architecture
Atomic permutationally invariant polynomials for fitting 
molecular force fields. Alice E. A. Allen, Geneviève Dusson, 
Christoph Ortner, and Gábor Csányi. Machine Learning: Science 
and Technology, 2021

Linear Atomic Cluster Expansion Force Fields for Organic 
Molecules: beyond RMSE., Kovacs, D. P., van der Oord, C., 
Kucera, J., Allen, A., Cole, D., Ortner, C., & Csanyi, G.,  JCTC, 
2021
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Architecture

- Interatomic potentials are a regression problem with a regression model 
and representation chosen

- The representation chosen must satisfy the following properties:

● - Rigid translations

●

●

●
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Architecture

- Interatomic potentials are a regression problem with a regression model 
and representation chosen

- The representation chosen must satisfy the following properties:

● - Rigid translations

● - Rotations and reflections

● - Permutation of like atoms

1

2
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Architecture

- Interatomic potentials are a regression problem with a regression model 
and representation chosen

- The representation chosen must satisfy the following properties:

● - Rigid translations

● - Rotations and reflections

● - Permutation of like atoms

2

1
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Architecture - aPIPs

- Three identical atoms example for PIPs:

- These ideas can then be extended to more atoms and to the non-
identical atoms case. 

Rotational
Invariance

Permutational
Invariance
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Architecture - aPIPs

 - PIPs are a polynomial construction with the underlying 
invariances present in the basis used. 

 - aPIPs retains the polynomial construction
 - But moves to an atom centred model
 - Uses a body-ordered approached:

  

 Cas van der Oord, Geneviève Dusson, Gábor Csányi and Christoph Ortner, Regularised atomic body-ordered 
permutation-invariant polynomials for the construction of interatomic potentials, (2020). Machine Learning: 
Science and Technology

 Allen, Alice E A, Dusson, Geneviève, Ortner, Christoph, Csányi, Gábor, Atomic permutationally invariant 
polynomials for fitting molecular force fields, (2021). Machine Learning: Science and Technology 
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Architecture - ACE



  
  
  
  
 Kovacs, D. P., van der Oord, C., Kucera, J., Allen, A., Cole, 

D., Ortner, C., & Csanyi, G., Linear Atomic Cluster 
Expansion Force Fields for Organic Molecules: beyond 
RMSE. JCTC, 2022 


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Architecture - ACE
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Improving ML Models

Architecture
Atomic permutationally invariant polynomials for fitting 
molecular force fields. Alice E. A. Allen, Geneviève Dusson, 
Christoph Ortner, and Gábor Csányi. Machine Learning: Science 
and Technology, 2021

Linear Atomic Cluster Expansion Force Fields for Organic 
Molecules: beyond RMSE., Kovacs, D. P., van der Oord, C., 
Kucera, J., Allen, A., Cole, D., Ortner, C., & Csanyi, G.,  JCTC, 
2021

Fitting Methods
Learning together: Towards foundation models for machine 
learning interatomic potentials with meta-learning, AEA 
Allen, N Lubbers, S Matin, J Smith, R Messerly, S Tretiak, K 
Barros, npj Computational Materials, 2024 

Interpretability
Alice E. A. Allen and Alexandre Tkatchenko, Machine 
Learning of Material Properties: Predictive and 
Interpretable Multilinear Models, Science Advances, 
2022 

Training Data
Machine learning potentials with Iterative 
Boltzmann Inversion: training to experiment, Sakib 
Matin, Alice Allen, Justin S Smith, Nicholas Lubbers, 
Ryan B Jadrich, Richard A Messerly, Benjamin T 
Nebgen, Ying Wai Li, Sergei Tretiak, Kipton Barros,  
JCTC, 2024
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Fitting Data – QM Data

- Improving QM datasets can include improving the level of theory used 

- We have been building a unrestricted CCSD(T) dataset for gas phase 
reactions

- Energies and forces are included 
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Fitting Data - Experimental

- QM datasets have fundamental limitations

- How can experimental data be incorporated into ML models?

- Investigated using a pair potential correction to an existing MLIP using  radial distribution 
function data

- Improvements then seen in diffusion coefficients when correction present

Machine learning potentials with Iterative Boltzmann Inversion: training to experiment, Sakib Matin, Alice Allen, Justin S Smith, 
Nicholas Lubbers, Ryan B Jadrich, Richard A Messerly, Benjamin T Nebgen, Ying Wai Li, Sergei Tretiak, Kipton Barros,  JCTC, 2024
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Kucera, J., Allen, A., Cole, D., Ortner, C., & Csanyi, G.,  JCTC, 
2021
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Fitting Methods
Learning together: Towards foundation models for machine 
learning interatomic potentials with meta-learning, AEA 
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Fitting Methods – Meta Learning

- There is an abundance of datasets 
containing quantum mechanical 
calculations for molecular and 
material systems.

- However, using the information 
from different datasets together 
remains a challenge due to the 
varying levels of theory employed.

- We  have shown that meta-learning 
can be used to pre-train models to 
multiple datasets.  

Learning together: Towards foundation models for machine learning interatomic potentials with meta-learning, AEA Allen, 
N Lubbers, S Matin, J Smith, R Messerly, S Tretiak, K Barros, npj Computational Materials, 2024 
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Problem

  

How do we fit multiple datasets together that use different QM 

approximations?  
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Multiple Existing Datasets Available

 

Over 90 million calculations included, with more than 200 different levels of 

theory. 
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Quantum Mechanical Calculations can be carried out with 
different approximations

  
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Quantum Mechanical Calculations can be carried out with 
different approximations

  
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Transfer Learning

Trained ANI potential to DFT 

and then retrained to CCSD(T) 

dataset with frozen parameters.

Freezing parameters and other 

transfer learning techniques have 

limitations and can t readily ’
train to multiple datasets.

   

Problem: How could we extend this to multiple datasets/level of theory?
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Meta-learning

The problem: 
How can we combine multiple QM datasets?

The solution
Meta-learning trains models in such a 

way that the solution can easily be refit to 

a new task 

Not about finding a model that works well 

for one task

But finding a model that can be easily 

retrained to new tasks with limited data 

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E. 
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj 
Computational Materials, 2024



34

Meta-learning

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E. 
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj 
Computational Materials, 2024

What is meta-learning?

Trying to train models in such a 
way that the solution can easily 
be refit to a new task 

Not about finding a model that 
works well for one task

But finding a model that can be 
easily retrained to new tasks 
with limited data 
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Meta-learning

Previously implemented the Reptile meta-learning algorithm.

This divides a problem into multiple tasks and then performs multiple 

optimization steps on individual tasks to find a model that generalizes well to 

new tasks. 

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E. 
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj 
Computational Materials, 2024
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Reptile

We have implemented the Reptile meta-learning algorithm.

This divides a problem into multiple tasks and then performs 

multiple optimization steps on individual tasks to find a model that 

generalizes well to new tasks. 

NOT: 

Trying to find parameters that are good for one specific task 

Trying to find parameters that work for all tasks at once 
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Aspirin

 

Aspirin was pre-trained to three 

datasets from 300K, 600K and 

900K MD simulations

Three levels of theory were used 

to pre-train the potential 

The potential was then 

retrained to 400 structures at 

MP2.  
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QM9

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E. 
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj 
Computational Materials, 2024

Meta-learning potential was fit to 150 
different levels of theory from the  
QM9 dataset

Refitting was then performed on 15 
different levels of theory that had not 
previous been encountered

The results of this are shown to the 
right.

S. Nandi, T. Vegge, and A. Bhowmik, 
ChemRxiv (2022), 10.26434/chemrxiv-2022-
fs70n.   



39

Combining Datasets

Previously implemented the Reptile meta-learning algorithm.

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E. 
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj 
Computational Materials, 2024
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3BPA

 

Start by investigating the potential 

for a single molecule 

3BPA  shown to the right–

Kovacs, D. P., van der Oord, C., Kucera, J., Allen, A., Cole, D., Ortner, C., & Csanyi, G., Linear Atomic Cluster Expansion Force Fields for 
Organic Molecules: beyond RMSE.,  (2021). JCTC. 
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Meta-learning

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E. 
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj 
Computational Materials, 2024

300K

Energy

Force
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3BPA

 

Next lets look at the 2D torsional 

energy scans
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Meta-learning

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E. 
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj 
Computational Materials, 2024
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Quantum Mechanical Calculations can be carried out with 
different approximations

  
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Improving ML Models

Architecture
Atomic permutationally invariant polynomials for fitting 
molecular force fields. Alice E. A. Allen, Geneviève Dusson, 
Christoph Ortner, and Gábor Csányi. Machine Learning: Science 
and Technology, 2021

Linear Atomic Cluster Expansion Force Fields for Organic 
Molecules: beyond RMSE., Kovacs, D. P., van der Oord, C., 
Kucera, J., Allen, A., Cole, D., Ortner, C., & Csanyi, G.,  JCTC, 
2021

Fitting Methods
Learning together: Towards foundation models for machine 
learning interatomic potentials with meta-learning, AEA 
Allen, N Lubbers, S Matin, J Smith, R Messerly, S Tretiak, K 
Barros, npj Computational Materials, 2024 

Training Data
Machine learning potentials with Iterative 
Boltzmann Inversion: training to experiment, Sakib 
Matin, Alice Allen, Justin S Smith, Nicholas Lubbers, 
Ryan B Jadrich, Richard A Messerly, Benjamin T 
Nebgen, Ying Wai Li, Sergei Tretiak, Kipton Barros,  
JCTC, 2024

Interpretability
Alice E. A. Allen and Alexandre Tkatchenko, Machine 
Learning of Material Properties: Predictive and 
Interpretable Multilinear Models, Science Advances, 
2022 
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Interpretability

 Machine learning models can provide 

fast and accurate predictions of material 

properties but often lack transparency.

 Interpretability techniques can be used 

with black box solutions, or 

alternatively, models can be created that 

are directly interpretable. 

 We revisited several works and 

demonstrate that simple linear 

combinations of nonlinear basis functions 

can be created, which have comparable  

accuracy to the kernel and neural 

network approaches originally used.

 Machine learning of material properties: Predictive and interpretable 

multilinear models, Allen and Tkatchenko, Sci. Adv. 8, eabm7185 (2022)
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Interpretability

 A predictive model for the formation energy of 10,000 

elpasolite structures (ABC2D6 in the Fm3m space 

group) was produced using kernel ridge regression.
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Interpretability
 

The features used to describe the structures were the principle quantum 

number (n) and number of valence electrons (v) at each site A,B,C or D.  

Reach accuracy of 0.11 eV/atom, compared to 0.10 eV/atom for the 

KRR.

The accuracy of the DFT data has been stated as between 0.10  0.19 –
eV/atom 

So we have comparable accuracy to KRR and DFT   
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Interpretability

Search 2 million possible structures

Individual predictions can be broken down 

into variable and interaction contributions: 
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Interpretability

Contributions to the formation energy at 

position D can be found directly from the 

coefficients of the model:
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Interpretability

 With the linear model 

the coefficients can be 

used to guide 

predictions. 

 If we want low 

formation energy 

structures we can focus 

on this region. 

 Machine learning of material properties: Predictive and interpretable 

multilinear models, Allen and Tkatchenko, Sci. Adv. 8, eabm7185 (2022)
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Conclusion

- Atomistic simulations and the 

description of interactions between 

atoms and molecules can be greatly 

improved with ML

- Both building novel machine learning 

models and exploiting techniques from 

ML community is important for 

constructing effective models

- This can help us improve ML through 

better architecture, fitting data, fitting 

methods and interpretability
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Questions?
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