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Introduction

What are atomistic simulations and
interatomic potentials?

How does machine learning fit in?

How can interatomic potentials be
improved?



Atomistic Simulation

. . . Protein binding Transition Metal
Atomistic simulations can be used toadug Complex

to determine material and
chemical properties

Simulating how atoms and
molecules behave in a given
system

Atomistic

Simulations
For example:

Understand reactive systems

Exploring phases of materials :
Biological Material




Interatomic Potentials
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How can interatomic potentials be improved?

Classical Examples
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How can classical potentials be improved?

Improve Parameters

Better bond and angle terms  System specific parameters ML of Parameters

QM Hessian Matrix Bond & Angle
Matrix Projections © Parameters
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aPAL aPcl kg

Charges
0.0478 0.0428

Predicted A

' 1\0! al A 20 o
: Development and validation of the quantum Toward transferable empirical valence
rochanics force fields via Hesstan matrix mechanical bespoke protein force field, AEA ~ bonds: Making classical force fields
rojection, AEA Allen, MC Payne, DJ Cole Allen, MJ Robertson, MC Payne, D] Cole, 2019, reactive, AEA Allen, Gabor Csanyi;, .
5015, JCTC ’ ' ' ACS Omega Chem. Phys, 2024

Improve Functional Form

QM Electrostatic Potential around Cl in CH3C1

20~

Improve description
of electrostatics

QUBEKit: Automating the derivation of force field parameters from quantum mechanics, JT Horton, AEA Allen, LS Dodda, DJ Cole,
2019, Journal of chemical information and modeling



Limitations of Classical Force Fields

o QUBE FF r?=0.766
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QUBEKIit: Automating the derivation of force field parameters from quantum mechanics, JT
Horton, AEA Allen, LS Dodda, DJ Cole, 2019, Journal of chemical information and modeling




How can interatomic potentials be improved?

Atom Centred
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Why do we need Machine Learning Potentials?

Potentials can provide forces

and energies Z 4 5 :

—

. Classical
Problem suits machine learning § h Force Fields
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as the potential energy surfaceis & o Learning
highly complex and requires a << 9P Potentials
flexible functional form = | Quantum

= Mechanical

>
Slow Speed Fast

Lots of data can be supplied for
the problem



Machine Learning Potentials

The flexible
functional form
allows for
increased accuracy.

Multiple
considerations for
these forms of
models.
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Improving ML Models

Architecture
Atomic permutationally invariant polynomials for fitting
molecular force fields. Alice E. A. Allen, Genevieve Dusson,
Christoph Ortner, and Gabor Csanyi. Machine Learning: Science
and Technology, 2021

Linear Atomic Cluster Expansion Force Fields for Organic
Molecules: beyond RMSE., Kovacs, D. P., van der Oord, C,,
Kucera, J., Allen, A., Cole, D., Ortner, C., & Csanyi, G., JCTC,
2021

Benzene Ethanol

BTy

Salicylic acid Toluene Uracil

Malonaldehyde

MAE / mev

MAE / mev.

Fitting Methods

Learning together: Towards foundation models for machine
learning interatomic potentials with meta-learning, AEA
Allen, N Lubbers, S Matin, ] Smith, R Messerly, S Tretiak, K
Barros, npj Computational Materials, 2024

All Together
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Training Data

Machine learning potentials with Iterative
Boltzmann Inversion: training to experiment, Sakib
Matin, Alice Allen, Justin S Smith, Nicholas Lubbers,
Ryan B Jadrich, Richard A Messerlg, Benjamin T

Nebgen, Ying Wai Li, Sergei Tretia

Kipton Barros,
JCTC, 2024

Experimental correction i

structure of si liquid

—— Machine learing potential

/
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i
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Distance, r (4)

Interpretability
Alice E. A. Allen and Alexandre Tkatchenko, Machine
Learning of Material Properties: Predictive and

Interpretable Multilinear Models, Science Advances,
2022




Improving ML Models

Architecture
Atomic permutationally invariant polynomials for fitting
molecular force fields. Alice E. A. Allen, Genevieve Dusson,
Christoph Ortner, and Gabor Csanyi. Machine Learning: Science
and Technology, 2021

Linear Atomic Cluster Expansion Force Fields for Organic
Molecules: beyond RMSE., Kovacs, D. P., van der Oord, C,,
Kucera, J., Allen, A., Cole, D., Ortner, C., & Csanyi, G., JCTC,




Architecture

- Interatomic potentials are a regression problem with a regression model
and representation chosen

- The representation chosen must satisfy the following properties:

- Rigid translations
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Architecture

- Interatomic potentials are a regression problem with a regression model
and representation chosen
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- Rigid translations
- Rotations and reflections 1

- Permutation of like atoms



Architecture

- Interatomic potentials are a regression problem with a regression model
and representation chosen

- The representation chosen must satisfy the following properties:

- Rigid translations
- Rotations and reflections >

- Permutation of like atoms



Architecture - aPIPs

- Three identical atoms example for PIPs:

Rotational Permutational
Invariance Invariance

E(RI:RQ?R?)) — E(T121T133r23) — E(II:IQJI3)
I = ri2 + 113 + 123

Iy = ri9r13 4+ 112793 + 113723

I3 = 119713723

E(Ry, R, Rs) = P(I1, Ip, Is) = Y ey I} 13215
k

- These ideas can then be extended to more atoms and to the non-
identical atoms case.



Architecture - aPIPs

- PIPs are a polynomial construction with the underlying
invariances present in the basis used.

- aPIPs retains the polynomial construction B = Z L

- But moves to an atom centred model

P(Iy, Iy, I3) = Y el 152152
k

- Uses a body-ordered approached:

E E El"‘E E2 T’&j)+ E ES ngarzk:Tjk + 5 E4 T%jarzkvr’blarjkﬂrjlarkl) + ...
1<j i<j<k 1<j<k<l

Cas van der Oord, Genevieve Dusson, Gabor Csanyi and Christoph Ortner, Regularised atomic body-ordered
permutation-invariant polynomials for the construction of interatomic potentials, (2020). Machine Learning;:
Science and Technology

Allen, Alice E A, Dusson, Geneviéeve, Ortner, Christoph, Csényi, Gabor, Atomic permutationally invariant
polynomials for fitting molecular force fields, (2021). Machine Learning: Science and Technology



Architecture - ACE

The atomic basis is define as [3, 4]:

2z Aspirin Azobenzene Benzene Ethanol Malonaldehyde
Qz; znlm — E G ”;m(r_,r'i) (1} ® = r‘\.\.‘.\. IS
; > 10 10t 4
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w
< 107! 4
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. .
] _ Bt B Pl A J 10°
q‘)m’m(r) - ‘RHF (f)}f (I") (2) = L
Naphthalene Paracetamol Salicylic acid . Toluene Uracil
. . . . . . 5 = = 101 1
where R, is a radial basis function and ¥;™ is a spherical N 10
harmonic function. A permutation-invariant basis func- g 10
. - . - ~ 10! 4
tion is constructed by forming products of the atomic 9
basis: % ]
10° L
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. # of training configs
Ay = I | Ozinyy V= (U1,...,0,). (3)
t=1
. . = ANI
where v = znlm, defining the atomic number of the atom = erfBar
and the properties of the radial function and spherical E cap
" . " " . " Ly
harmonics. Rotational invariance is then achieved by the = =
H—- . ) P »SCDML
following stage: S
o
- - ACE
v 10 (40.5K) T®(122K)
B. ., = I | A. .. ({Rr;;})dR 4 0.1 1.0 10.0
Y ReO(3) "'”({ ' ‘J}J ) ( ) Time of force call / atom / ms
: 3) =1

= Z Cyvr £ R (5}
] Kovacs, D. P, van der Oord, C., Kucera, J., Allen, A., Cole,
where the coefficients Cyys are the Clebsch-Gordan cou- . . .
pling coefficients. The energy at site 7 is then given by: D., Ortner, C, & Csanylf G" Linear Atomic Cluster
Expansion Force Fields for Organic Molecules: beyond
Bi=) cuvBav=cB )  RMSE. JCTC, 2022



Architecture - ACE

_ : 9B, :
e Construct matrix of 5=+ for one atom (either from
J
training dataset or assigned random neighbours).

dB;
oy

The matrix is calculated numerically.

Initialize a matrix with columns equivalent to the
number of atomic basis functions (av, ., ) and no
rOwWS.

For each B; until the utmost number of B; terms
is reached: append the row vector of the partial
derivatives of the subsequent invariant into the ma-
trix if it augments the rank of the matrix. From
this, constructing an index of B; components that
increase rank.

Repeat this N times. constructing an index of all
B; components that increase rank for any datapoint
present.
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Improving ML Models

Training Data
Machine learning potentials with Iterative
Boltzmann Inversion: training to experiment, Sakib
Matin, Alice Allen, Justin S Smith, Nicholas Lubbers,
Ryan B Jadrich, Richard A Messerly, Benjamin T
Nebgen, Ying Wai Li, Sergei Tretiag, Kipton Barros,
JCTC, 2024

n, g(r)

Radial Distribution Functiol




Fitting Data — QM Data

- Improving QM datasets can include improving the level of theory used

- We have been building a unrestricted CCSD(T) dataset for gas phase
reactions

- Energies and forces are included

Reactants and Products

< 4/RMSE MP2: _~"IRMSE wB97x: _~"|RMSE B3LYP: _~"|RMSE PBEO0:
= 10.300eV/A 7 l0205ev/A - 7 |0181eV/A - 7 |0224eV/A -
é 2 t L :/,l’:’ - -'.- . - Tata }/" "1.-\.-_/,/"
Q 0 »

—44. 10

Transition States
— 4/RMSE MP2: - - _~|RMSE wB97x: - _~"|RMSE B3LYP: - _~{RMSE PBEO- - 10!
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$ 20 - st izt o
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=2 At St > e P
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25 00 25 —25 00 25 25 00 25 —25 00 25

MP2/QZ Force eV/A wB97x UKS Force eV/A B3LYP UKS Force eV/A PBE0 UKS Force eV/A



Fitting Data - Experimental

- QM datasets have fundamental limitations

- How can experimental data be incorporated into ML models?

- Investigated using a pair potential correction to an existing MLIP using radial distribution
function data

- Improvements then seen in diffusion coefficients when correction present

Experimental correction improves structure of liquid aluminum
simulated with machine learning potentials

o A Expt A
% i = Machine |learning potential & 1.2 ANI }
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Machine learning potentials with Iterative Boltzmann Inversion: training to experiment, Sakib Matin, Alice Allen, Justin S Smith,
Nicholas Lubbers, Ryan B Jadrich, Richard A Messerly, Benjamin T Nebgen, Ying Wai Li, Sergei Tretiak, Kipton Barros, JCTC, 2024




Improving ML Models

Fitting Methods

Learning together: Towards foundation models for machine
learning interatomic potentials with meta-learning, AEA
Allen, N Lubbers, S Matin, ] Smith, R Messerly, S Tretiak, K
Barros, npj Computational Materials, 2024
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Fitting Methods — Meta Learning

- There is an abundance of datasets Algorithm 1 Reptile
COntalnlng quantum meChaIllcal llliii_}l]izt‘ @ lllll' i_nit ial parameter vector
. for iteration 1,2,3.... do
C&lCU.latlonS fO]_" mOIQCLﬂar and Randomly sample a task T
. Perform k > 1 steps in task T, starting with parame-
matel'lal SystemS. ters @, resulting in parameters W
5t Update: & «— & + g(W— @)

6: Return ¢

b =

[

- However, using the information
from different datasets together
remains a challenge due to the
varying levels of theory employed.

300K

——  Meta-Learning
—— No Pretraining
—f— Joint Fitting

D

=

- We have shown that meta-learning
can be used to pre-train models to
multiple datasets.

Force Error/ kcal /mol/A

[B)

Number of Structures

Learning together: Towards foundation models for machine learning interatomic potentials with meta-learning, AEA Allen,
N Lubbers, S Matin, ] Smith, R Messerly, S Tretiak, K Barros, npj Computational Materials, 2024



Problem

How do we fit multiple datasets together that use different QM
approximations?




Multiple Existing Datasets Available

Heavy

Dataset Unique Total Atoms Conforrroler Method |Dispersion Transition
Compounds |Conformers Max Generation Paths
6 DFT
QM9 133,885 133,885 9 None 76 . Yes No
Functionals
_, . wBITx/
4,956,005 Nor“ﬁ])l\ffif )?ﬁ;“ph“g* 6-31G*
AN1-1x ~64,000 and 8 Torsione] %}1 . Effn and No No
4,617,229 Active kLo*xliniilr Eth g(3]3(‘ wBITx/
FEHVE LeaTiig W WPY | def2- TZVPP
Meta Dynamics wBI97X-D/ .
G5 0092 ¢ ;
QMugs 665,911 1,992,984 100 with xTB def2-SVP Yes No
Meta Dynamics r2scan-3c/ .
A27 / 29 (5 1) C ]
GEOM 437,724 32,657,609 91 with CREST mTZVPP Yes No
Normal-mode
a A1 RAT* A 108 927 7 : s
QM7-x 41,537 4,195,237 7 Sampling with DFTB PBEO+MBD Yes No
el — . e . : . wBITx/ i
Transitionlx|10,073 Reactions| 9,644,740 7 Nudged Elastic Band 6-31G(d) No Yes
B . CCSD(T)*
ANI-1cex ~64,0007 489,571 8 Active Learning from ANI-1x (“-B("? )*/ Yes No

Over 90 million calculations included, with more than 200 different levels of

theory.




Quantum Mechanical Calculations can be carried out with
different approximations

1.0 1.2
Bond Length / A




Quantum Mechanical Calculations can be carried out with
different approximations

1.0 1.2
Bond Length / A




Transfer Learning

ARTICLE

Approaching coupled cluster accuracy with
a general-purpose neural network potential
through transfer learning

Justin S. Smith"237, Benjamin T. Nebgen® 2?7, Roman Zubatyuk?>’, Nicholas Lubbers®3, Christian Devereux,

Kipton Barros?, Sergei Tretiak® 2%, Olexandr Isayev® © & Adrian E. Roitberg’

Trained ANI potential to DFT

Computational modeling of chemical and biological systems at atomic resolution is a crucial and then retrained tO CCSD(T)
tool in the chemist's toolset. The use of computer simulations requires a balance between .
cost and accuracy: guantum-mechanical methods provide high accuracy but are computa- dataset Wlth frozen parameteI'S.

tionally expensive and scale poorly to large systems, while classical force fields are cheap and
scalable, but lack transferability to new systems. Machine learning can be used to achieve the

best of both approaches. Here we train a general-purpose neural network potential (AMI- FreeZIDg parameters and Other
Tcex) that approaches CCSD(T)/CBS accuracy on benchmarks for reaction thermochemistry, transfer ]_ea,I‘l’lll’lg teChnlqueS ha,ve

isomerization, and drug-like molecular torsions. This is achieved by training a network to DFT llmltatlons and Can’t I‘eadily

data then using transfer learning techniques to retrain on a dataset of gold standard QM

calculations (CCSD(T)/CBS) that optimally spans chemical space. The resulting potential is train t() multlple datasets,
broadly applicable to materials science, biology, and chemistry, and billions of times faster

than CCSD(T)/CBS calculations.

Problem: How could we extend this to multiple datasets/level of theory?



Meta-learning

The problem:

How can we combine multiple QM datasets?

On First-Order Meta-Learning Algorithms
The SOlutlon Alex Nichol and Joshua Achiam and John Schulman

OpenAl
{alex, jachiam, joschu}@openai.com

Meta-learning trains models in such a
way that the solution can easily be refit to Abstract

This paper considers meta-learning problems, where there is a distribution of tasks, and we
a new task would like to obtain an agent that performs well (i.e., learns quickly) when presented with a
previously unseen task sampled from this distribution. We analyze a [amily ol algorithms for
learning a parameter initialization that ean be fine-tuned quickly on a new task, using only first-
’ * order derivatives for the meta-learning updates. This family includes and generalizes first-order
Not about flndlng a mOdel tha}t Works We].]. MAML, an approximation to MAML obtained by ignoring second-order derivatives. It also
includes Reptile, a new algorithm that we introduce here, which works by repeatedly sampling
fOI‘ One task a task, training on it, and moving the initialization towards the trained weights on that task.
We expand on the results from Finn et al. showing that first-order meta-learning algorithms
perform well on some well-established benchmarks for few-shot elassification, and we provide
theoretical analysis almed at understanding why these algorithins work.

But finding a model that can be easily
retrained to new tasks with limited data

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E.
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj
Computational Materials, 2024



Meta-learning

What is meta-learning? Training Test

Trying to train models in such a Task 1 Task 2 New Task
way that the solution can easily
be refit to a new task

Not about finding a model that
works well for one task

But finding a model that can be
easily retrained to new tasks
with limited data

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E.
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj
Computational Materials, 2024




Meta-learning

Previously implemented the Reptile meta-learning algorithm.

This divides a problem into multiple tasks and then performs multiple
optimization steps on individual tasks to find a model that generalizes well to
new tasks.

Algorithm 1 Reptile

1: Initialize @, the initial parameter vector
2: for iteration 1.2.3.... do

3 Randomly sample a task T Trained \\V 04
i: Perform k > 1 steps in task T, starting with parame- to Task 1 | 6 /) \
! 2 steps

_k

ters @, resulting in parameters W /K steps - -
: o ps 3 RS
5: Update: & «— & + e(W — &) 4 \\\” Trained ‘L
i: Return € W 1 Jesteps ¢ Task 3
6: Return Trained > W3

to Task 2 W2

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E.
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj
Computational Materials, 2024




Reptile

We have implemented the Reptile meta-learning algorithm.

This divides a problem into multiple tasks and then performs
multiple optimization steps on individual tasks to find a model that
generalizes well to new tasks.

NOT:
Trying to find parameters that are good for one specific task

Trying to find parameters that work for all tasks at once



Aspirin

Aspirin was pre-trained to three
datasets from 300K, 600K and
900K MD simulations

&
=

Force RMSE / keal/mol/A
W)
Ut

Meta-learning
2.0
Three levels of theory were used
to pre-train the potential . . .
0 200 400
k steps

Reptile Algorithm
The potential was then 9:9_1+6(W_1_9_1)

retralned tO 400 Structures at 91\ .................................................................................

Trained ' 94
\/II 2, toT;skll 9 /> \
! 2 _ k steps

’k steps ° 9 ~
e P \\\\” 3 Trained ~ ~ N
Wi Jesteps ¢ Task 3

Trained ™ A W3
to Task 2 W2



QM9

QM9
Meta-learning potential was fit to 150 301 —— No Pretraining
different levels of theory from the 3 i Meta-Learning
QM9 dataset 20/
Refitting was then performed on 15 N
different levels of theory that had not M
previous been encountered

100 200 300 400

Number of Structures

The results of this are shown to the

ri ht. - —f— Meta-Learning
g _wop T T puj
S. Nandi, T. Vegge, and A. Bhowmik, 3 s
ChemRxiv (2022), 10.26434 /chemrxiv-2022- =< T
fs70n. RN
g VL |
2.51
100 200 300 400

Number of Structures

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E.
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj
Computational Materials, 2024




Combining Datasets

Previously implemented the Reptile meta-learning algorithm.

ANI dz QMugs Trans-1x
800
" Q%Q} All Together
I (}O 4 . 5 o b
A | 4 ol | w3

Energy / keal/mol
S
S
S

DO
(@)
(e

50 100 150 200
No. Atoms

50 100 150 200 50 100 150 200 50 100 150 200
No. Atoms No. Atoms No. Atoms

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E.
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj
Computational Materials, 2024
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Start by investigating the potential
for a single molecule

3BPA - shown to the right

Kovacs, D. P, van der Oord, C., Kucera, J., Allen, A., Cole, D., Ortner, C., & Csanyi, G., Linear Atomic Cluster Expansion Force Fields for
Organic Molecules: beyond RMSE., (2021). JCTC.



Meta-learning

300K

300K

—F— Meta-Learning
? —F— No Pretraining
=9 —— Joint Fitting
2
Energy &
L;ﬂ.:
51
=
10°
Number of Structures
300K
—f— Meta-Learning
:§6 —f— No Pretraining
§ —f— Joint Fitting
é
Force =
&
22

107

Number of Structures

Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E.
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj
Computational Materials, 2024



Next lets look at the 2D torsional

energy scans




Meta-learning

Meta-learning

ANI-1x No Pretraining

Joint Fitting

True
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200 300 0 200

3000 300 0

300 0
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200 300 0

Energy
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Learning Together: Towards foundation models for machine learning interatomic potentials with meta-learning, Alice E.
A. Allen, Nicholas Lubbers, Sakib Matin, Justin Smith, Richard Messerly, Sergei Tretiak, Kipton Barros, npj

Computational Materials, 2024



Quantum Mechanical Calculations can be carried out with
different approximations
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Improving ML Models

Interpretability

Alice E. A. Allen and Alexandre Tkatchenko, Machine
Learning of Material Properties: Predictive and
Interpretable Multilinear Models, Science Advances,
2022




Interpretability

npj | Comput

www.nature.com/npjcompumats

* Machine learning models can provide

Crowd-sourcing materials-science challenges with
the NOMAD 2018 Kaggle competition

fast and accurate predictions of material S L T S

, Xiangyue Liu', Angelo Ziletti' and Matthias Scheffler

. A public data-analytics competition was organized by the Novel Materials Discovery (NOMAD) Centre of Excellence and hosted by
the online platform Kaggle by using a dataset of 3,000 (ALGa,In; ;05 compounds. Its aim was to identify the best machine-

properties but often lac ransparency.
electronic bandgap energy and the crystalline formation energy. Here, we present a summary of the top-three ranked ML
average structural properties with the light gradient-boosting machine regression model. The third-place model employed the
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* A predictive model for the formation energy of 10,000
elpasolite structures (ABC,D; in the Fm3m space

group) was produced using kernel ridge regression.

week ending

PRL 117, 135502 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016
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Elpasolite is the predominant quaternary crystal structure (AINaK,F, prototype) reported in the
Inorganic Crystal Structure Database. We develop a machine learning model to calculate density functional
theory quality formation energies of all ~2 x 10° pristine ABC,D,, elpasolite crystals that can be made up
from main-group elements (up to bismuth). Our model’s accuracy can be improved systematically, reaching
a mean absolute error of 0.1 eV /atom for a training set consisting of 10 x 10" crystals. Important bonding
trends are revealed: fluoride 1s best suited to fit the coordination of the D site, which lowers the formation
energy whereas the opposite is found for carbon. The bonding contribution of the elements A and B is very
small on average. Low formation energies result from A and B being late elements from group Il, C being a
late (group 1) element, and D being fluoride. Out of 2 x 10° crystals, 90 unique structures are predicted to
be on the convex hull—among which is NFAL,Cag, with a peculiar stoichiometry and a negative atomic
oxidation state for AL
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* The features used to describe the structures were the principle quantum
number (n) and number of valence electrons (v) at each site A,B,C or D.

* Reach accuracy of 0.11 eV /atom, compared to 0.10 eV /atom for the
KRR.

* The accuracy of the DFT data has been stated as between 0.10 - 0.19
eV /atom

*So we have comparable accuracy to KRR and DFT
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* Search 2 million possible structures

* Individual predictions can be broken down
into variable and interaction contributions:

Variable Contribution
[ntercept




* Contributions to the formation energy at
position D can be found directly from the
coetficients of the model:

Interpretability
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* With the linear model :
the coefficients can be o]
used to guide :

predictions. //‘

E 10 ? ‘/-

* If we want low 3
formation energy v s i
Structures We Can focus 1 ° | | IHmulmn—[-I‘lum'hu- at IIJ
on this region. T smevwbe

Machine learning of material properties: Predictive and interpretable
multilinear models, Allen and Tkatchenko, Sci. Adv. 8, eabm7185 (2022)
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Architecture
Atomic permutationally invariant polynomials for fitting
molecular force fields. Alice E. A. Allen, Genevieve Dusson,
Christoph Ortner, and Gabor Csanyi. Machine Learning: Science
and Technology, 2021

Linear Atomic Cluster Expansion Force Fields for Organic
Molecules: beyond RMSE., Kovacs, D. P., van der Oord, C,,
Kucera, J., Allen, A., Cole, D., Ortner, C., & Csanyi, G., JCTC,
2021
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BTy

Salicylic acid Toluene Uracil

Malonaldehyde

MAE / mev

MAE / mev.

Fitting Methods

Learning together: Towards foundation models for machine
learning interatomic potentials with meta-learning, AEA
Allen, N Lubbers, S Matin, ] Smith, R Messerly, S Tretiak, K
Barros, npj Computational Materials, 2024
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Training Data

Machine learning potentials with Iterative
Boltzmann Inversion: training to experiment, Sakib
Matin, Alice Allen, Justin S Smith, Nicholas Lubbers,
Ryan B Jadrich, Richard A Messerlg, Benjamin T

Nebgen, Ying Wai Li, Sergei Tretia

Kipton Barros,
JCTC, 2024
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Learning of Material Properties: Predictive and
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Conclusion

- Atomistic simulations and the
description of interactions between
atoms and molecules can be greatly
improved with ML

- Both building novel machine learning
models and exploiting techniques from
ML community is important for
constructing effective models

- This can help us improve ML through
better architecture, fitting data, fitting
methods and interpretability
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